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Abstract. The proportionality between global mean temperature and cumulative emissions of CO2 predicted in Earth System 35 

Models (ESMs) is the foundation of carbon budgeting frameworks. Deviations from this behavior could impact estimates of 

required net zero timings and negative emissions requirements to meet the Paris Agreement climate targets.  However, existing 

ESM diagnostic experiments do not allow for direct estimation of these deviations as a function of defined emissions pathways.  

Here we perform a set of climate model diagnostic experiments for the assessment of Transient Climate Response to 

cumulative CO2 Emissions (TCRE),  Zero Emissions Commitment (ZEC),  and climate reversibility metrics in an emissions-40 

driven framework. The emissions-driven experiments provide consistent independent variables simplifying simulation, 
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analysis and interpretation, with emissions rates more comparable to recent levels than existing protocols using model-specific 

compatible emissions from the CMIP DECK 1pctCO2 experiment, where emissions rates tend to increase during the 

experiment, such that at time of CO2 doubling in year 70, emissions are emissions are strongly weighted towards the end of 

the experiment at significantly  much greater than present day values.  A base experiment, ‘esm-flat10’, has constant emissions 45 

of CO2 of 10GtC per year (near-present day values), and initial results show that TCRE estimated in this experiment is about 

0.1K less than that obtained using 1pctCO2.  A subset of ESMs exhibit land carbon sinks which saturate during this experiment.  

A branch experiment, esm-flat10-zec, illustrates that both positive and negative ZEC effects are less pronounced under esm-

flat10 then 1pctCO2 -— the magnitude of ZEC50 in ESMs is on average reduced by 30% compared with 1pctCO2 branch 

experiments.  A final experiment, esm-flat10-cdr, assesses climate reversibility under negative emissions, where we find that 50 

peak warming may occur before or after net zero, and that the asymmetry in temperature at a given level of cumulative 

emissions between the positive and negative emissions phasesresidual warming after removal of all greenhouse gases is well 

described by ZEC in most models.  Further, we find and that current Simple Climate Models (SCMs) tend to distributions may 

be over-estimate temperature reversibility compared with ESMs.   We propose a set of climate diagnostic indicators to quantify 

various aspects of climate reversibility.   These experiments were suggested as potential candidates in  CMIP7 and have since 55 

been adopted as “fast track” simulations.  

 

1. Introduction 

The concept of proportionality of global mean temperatures to cumulative carbon dioxide emissions is central to carbon 

budgeting frameworks and net zero commitments(Rogelj et al., 2019b).   The relationship has its origins in the recognition of 60 

a robust linear relationship in Earth System Model simulations (Allen et al., 2009; Matthews et al., 2009; Zickfeld et al., 2009) 

and observations (Gillett et al., 2013) between the global mean temperature change and the cumulative amount of CO2 released 

into the atmosphere, the slope of which we refer to as the Transient Climate Response to Cumulative Emissions (TCRE) - the 

change in global mean temperature per trillion tonnes of carbon emitted to the atmosphere (Allen et al., 2009; Matthews et al., 

2009; Zickfeld et al., 2009). TCRE offers a powerful, simplified lens for climate policy applications, allowing policymakers 65 

to directly equate emission budgets to projected warming levels (Lamboll et al., 2023; Rogelj et al., 2019b), and to gauge the 

relative impact of different emissions trajectories over time (MacDougall, 2015). 

 

For a simulation in which temperature changes are driven by CO2 alone, 

𝑇𝐶𝑅𝐸 = !"($)
&!"(')

	,      (1) 70 

where  𝛥𝑇(𝑡)  and 𝐼()(t) are the temperature change and cumulative emissions at time t, respectively.  For climate models, 

TCRE is generally calculated using results from a concentration-driven simulation 1pctCO2, where CO2 concentrations are 
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prescribed and ramped up exponentially at a rate of 1% per year.  In assessments (Intergovernmental Panel on Climate Change, 

2023), the TCRE nominally computed in year 70, when concentrations have approximately doubled: 

𝑇𝐶𝑅𝐸*+,$-./ =
!"(01)
&!"(01)

= -
!"(01)

&#$"%&(01). -
&#$"%&(01)
&!"(01) .	, 75 

 

where 𝐼2$)34(70) is the additional carbon in the atmosphere and 𝛥𝑇(70) is the Transient Climate Response (TCR, in practice 

calculated as the average of years 60-80).  &#$"%&(01)
&!"(01)

 is the cumulative airborne fraction, the proportion of cumulative emissions 

which remain in the atmosphere. 

 80 

In order to to apply this approach to constrain compatible carbon emissions budgets for certain warming levels, historical 

human-induced warming must be calculated, along with asome additional corrections (Rogelj et al., 2019b).  Firstly, 

thecorrection must first be made for the  temperature impact of present and future non-CO2 emissions  (Rogelj et al., 

2019b)must be incorporated,.  Multiple approaches have been proposed, either by assuming a ratio of future CO2 and non-CO2 

emissions (Damon Matthews et al., 2021; Leach et al., 2018; Millar and Friedlingstein, 2018), by subtracting an estimate of 85 

non-CO2 warming (Lamboll et al., 2023) or by defining a TCRE based on cumulative CO2- forcing-equivalent emissions 

(Jenkins et al., 2021). 

 

Secondly, any potential further carbon-induced warming after net zero has been achieved introduces additional uncertainty in 

remaining carbon budgets calculated using TCRE(Nicholls et al., 2020).  This behaviour has been characterised by  90 

 ‘Zero Emissions Commitment’ (ZEC)  (Intergovernmental Panel on Climate Change, 2023; Lamboll et al., 2023).  Definitions 

of ZEC are, to date, primarily informed by the ZECMIP CMIP6 experiment (Jones et al., 2019) which is based on an abrupt 

cessation of emissions branching from the 1pctCO2 experiment when 1000PgC of CO2 emissions have been diagnosed, where 

the notation ZECn to correspond to the warming n years after the cessation of emissions (MacDougall et al., 2020).  ZEC50 

and ZEC90 is thus the temperature change 50 and 90 years respectively after the cessation of emissions respectively.  This 95 

experiment was performed by a coordinated set of Earth System Models and intermediate complexity models, which led to the 

finding that ZEC had the potential to be either positive or negative (MacDougall et al., 2020) with a best estimate near zero. 

 

ZECMIP experiments were designed this way to ensure consistency of ZEC and TCRE at the same point, but they do, however, 

have a number of limitations.  Firstly, 1pctCO2 is a prescribed concentration trajectory for atmospheric CO2, and compatible 100 

emissions are computed as a residual term, such that each climate model has a different emissions trajectory.  This poses two 

issues for using the run as a basis for the assessment of ZEC. Firstly, each model follows its own pathway of (implied) 

emissions in such experiments, obfuscating the relationship between model and ZEC response.  Secondly, the compatible 

emissions profile in 1pctCO2 grows throughout the experiment, with the burden of cumulative emissions weighted towards 
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the end of the experiment  ((Sanderson et al., 2023) and Figure 6), whereas contemporary emissions are closer to flat (since 105 

about 2012).   

 

Alternative frameworks have been proposed to provide a less scenario-dependent formulation for ZEC.  Consideration of linear 

pulse-response models of the climate show that cumulative emissions proportionality is an expected first-order response, but 

that Robust use of TCRE to assess compatible emissions also requires an assessment of the limits of its applicability.  For 110 

climate models, TCRE is generally calculated using results from a concentration-driven simulation 1pctCO2, where CO2 

concentrations are prescribed and ramped up exponentially at a rate of 1% per year.  In assessments (Intergovernmental Panel 

on Climate Change, 2023), the TCRE nominally computed in year 70, when concentrations have approximately doubled: 

𝑇𝐶𝑅𝐸*+,$-./ =
!"(01)
&!"(01)

= -
!"(01)

&#$"%&(01). -
&#$"%&(01)
&!"(01) .	, 

 115 

where 𝐼2$)34(70) is the additional carbon in the atmosphere and 𝛥𝑇(70) is the Transient Climate Response (TCR, in practice 

calculated as the average of years 60-80).  &#$"%&(01)
&!"(01)

 is the cumulative airborne fraction, the proportion of cumulative emissions 

which remain in the atmosphere. 

 

The potential forsecond order terms allow for further temperature changes after emissions have ceased (Avakumović, 2024; 120 

Jenkins et al., 2022).  This second order behaviour can be approximated by ‘Rate of Adjustment to Zero Emissions’ or RAZE, 

which defines the fractional change in CO2-induced warming after CO2 emissions cease(Jenkins et al., 2022).  In this 

approximation (valid for decadal timescales following net zero), RAZE can be related to ZEC for a given scenario as: 

𝑍𝐸𝐶5 = 𝐼()(𝑡 = 𝑡6($78(93)(𝑇𝐶𝑅𝐸)(𝑅𝐴𝑍𝐸)(𝐻) 

where ZEHH is the warming H years after net zero and Iem(t=tnet-zero) is the cumulative emissions at the time of net zero.  In 125 

this framing, a linear estimate of warming rate after net zero, if emissions are held at net-zero, is given by 𝐼()(𝑡 =

𝑡6($78(93)(𝑇𝐶𝑅𝐸)(𝑅𝐴𝑍𝐸). 

 deviations from cumulative emissions proportionality was summarized in the Zero Emissions Commitment 

(Intergovernmental Panel on Climate Change, 2023; Lamboll et al., 2023) where it was used as an estimate of additional 

temperature change which could be expected after emissions have reached net zero, alternatively framed as a ‘Rate of 130 

Adjustment to Zero Emissions’ or RAZE which is used to define an emissions rate which would be consistent with constant 

temperatures (Jenkins et al., 2022). 

 

 

Our definitions of ZEC are, to date, primarily informed by the ZECMIP CMIP6 experiment (Jones et al., 2019) which is based 135 

on an abrupt cessation of emissions branching from the 1pctCO2 experiment when 1000PgC of CO2 emissions have been 

diagnosed, where ZEC50 and ZEC100 is the temperature change 50 and 100 years respectively after the cessation of emissions.  
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This experiment was performed by a coordinated set of Earth System Models and intermediate complexity models, which led 

to the finding that ZEC had the potential to be either positive or negative (MacDougall et al., 2020) with a best estimate near 

zero. 140 

 

ZECMIP experiments were designed this way to ensure consistency of ZEC and TCRE at the same point, but they do, however, 

have a number of limitations.  Firstly, 1pctCO2 is a prescribed concentration trajectory for atmospheric CO2, and compatible 

emissions are computed as a residual term, such that each climate model has a different emissions trajectory.  This poses two 

issues for using the run as a basis for the assessment of ZEC. Firstly, each model follows its own pathway of (implied) 145 

emissions in such experiments, obfuscating the relationship between model and ZEC response.  Secondly, the compatible 

emissions profile in 1pctCO2 grows throughout the experiment, with the burden of cumulative emissions weighted towards 

the end of the experiment  ((Sanderson et al., 2023) and Figure 6), whereas contemporary emissions are closer to flat (since 

about 2012).   

 150 

In addition, no experiment within prior CMIP efforts  has been designed to robustly understand the degree of asymmetry in 

the climate response to positive followed by negative CO2 emissions. The compatible emissions from the 1pctCO2-cdr 

concentration reversal experiment used in CDRMIP (Asaadi et al., 2024) are both asymmetric in time, between the positive 

and negative emissions periods, and have a large discontinuity of roughly 50 Pg C/yr (Koven et al., 2023) at the point of 

reversal from increasing to decreasing CO2 concentrations. Secondly, the lagged effects of the positive emission phase can 155 

complicate assessment of the response to negative emissions.(Chimuka et al., 2023; Koven et al., 2023; Zickfeld et al., 2016)   

This large discontinuity in emissions causes transient temperature responses (Zickfeld et al., 2016) whichThese confounding 

effects inhibit a clear diagnosis of whether and how the general climate response to negative emissions differs from the climate 

response to positive emissions (MacDougall, 2019). An idealized CMIP experiment that allows for a continuous transition 

from positive to negative emissions, and one that is symmetric in time (so that any asymmetries that arise are driven by the 160 

coupled carbon-climate response itself), improves on this status quo (though the separation of lagged effects remains a 

challenge).. 

 

Here we propose a compact set of experiments uniquely designed to cleanly assess carbon-climate dynamics relevant for 

mitigation. Our objectives are threefold: 165 

• Re-assess the transient climate response to cumulative CO2 emissions: assess the response of temperature change 
and land/ocean carbon dynamics as a function of cumulative emissions which are the independent variable of the 
experiment 

• Assess the Zero Emissions Commitment across models on multiple timescales: systematically measure the 
unrealized warming that continues after all CO2 emissions have been halted (again, in an experiment where 170 
emissions are the independent variable), through assessment of ZEC after 50, 90, 100 and 200 years. 
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• Explore climate reversibility potential: isolate assess the impacts of global scale carbon removals, assessing 
hysteresis in the relationship between climate and cumulative CO2 emissions. 

Regional and component responses require further study beyond the scope of the globally aggregated analysis presented here.  

Studies in preparation will consider in detail commitment and reversibility of ocean heat uptake, regional climatology and land 175 

carbon dynamics. 

2. Flat10MIP Experiment design 

(Sanderson et al., 2023) proposed 4 new experiments (Figure 1) which would form part of a standard diagnostic suite for 

carbon emissions-driven behavior in multi-model comparison activities such as CMIP.  These experiments assess behavior 

under sustained constant carbon emissions, immediate cessation of emissions and climate reversibility under an idealized 180 

continuous climate restoration pathway where all emissions are removed by the end of the simulation (Figure 1).  Here, 

Fflat10MIP simulates 3 of the 4 experiments proposed in  (Sanderson et al., 2023) using CMIP6 generation models, as a pilot 

study in preparation for CMIP7.  Below, we briefly describe the experiments as conducted in Fflat10MIP, and 

recommendations for a protocol in CMIP7 and beyond. 

 185 

 
Figure 1: Experiment design.  a) and b) show annual and cumulative carbon emissions as a function of time for the four 
experiments.  Panel c) shows global mean surface temperature derived from cumulative emissions, assuming a perfectly linear TCRE 
relationship, with expected temperature evolution assuming cumulative emissions proportionality using the IPCC AR6 WGI best 
TCRE estimate (solid line, 1.65°C per 1000 PgC) and likely range (shaded area, 1.0-2.3°C per 1000 PgC) (Intergovernmental Panel on 190 
Climate Change (IPCC), 2023b). 

2.1 Experiments in flat10MIP 

2.12.1.1 esm-flat10 

The esm-flat10 experiment would serve as an emissions-driven experiment to diagnose the Transient Climate Response to 

cumulative CO2 Emissions (TCRE), which is the warming from pre-industrial levels observed after the emission of 1000PgC 195 

in a transient scenario. The esm-flat10 experiment would branch from a stable esm-piControl simulation, with a constant annual 

prescribed anthropogenic flux of carbon of 10PgC/year into the atmosphere, with globally homogenous emissions. In esm-
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flat10, the 1000PgC threshold would occur in year 100 - such that TCRE could be estimated as the time average between 

global mean warming in years 90-110, sampling over internal variability in this period.  As such, we refer to TCRE derived 

from esm-flat10 and 1pctCO2 as T100yr and T1000PgC respectively.  The protocol for esm-flat10 is to continue emissions at 200 

10PgC/year for the duration of the experiment.  150 years were conducted in this ensemble to allow the simulation to reach 2x 

pre-industrial CO2 concentrations in most cases (allowing for a wide range of plausible land and ocean carbon 

uptake).  However, for future experiments in CMIP7 and beyond, a 300 year or longer esm-flat10 would be useful to explore 

potential nonlinearities in response at higher cumulative emission levels which have been observed in some models (Schwinger 

et al., 2022).  205 

2.22.1.2 esm-flat10-zec 

The esm-flat10-zec experiment serves as an emissions-driven experiment to diagnose  ZEC, which is the additional warming 

seen a certain number of years after the abrupt cessation of emissions.  The esm-flat10-zec experiment would branch from 

year 100 of the esm-flat10 experiment, with an immediate cessation of emissions and the system is then left to evolve for 220 

years.  ZEC50 is calculated as the average temperature change relative to that when emissions cease, averaged over a 21 year 210 

period, 50 years after the cessation of emissions (i.e. years 140-16059).  ZEC90 is similarly calculated using years 180-

200199.  For CMIP7 and beyond, we recommend 300 years for esm-flat10-zec, to allow for longer timescale comparisons 

with esm-flat10-cdr. 

2.32.1.3 esm-flat10-cdr 

 215 

The esm-flat10-cdr experiment serves as an emissions-driven experiment to diagnose the response of the climate system to 

reducing, and ultimately reaching net-negative emissions and will provide a measure of climate reversibility when all 

cumulative anthropogenic emissions are removed (i.e. all cumulative emissions and removals sum to zero) at the end of the 

experiment. The esm-flat10-cdr experiment would branch from year 100 of the esm-flat10 experiment, with a linear ramp 

down of emissions (from a starting point of 10PgC/yr) of -0.2PgCyr-1 - such that net zero emissions are achieved in year 150 220 

and a negative flux of -10PgCyr-1 is achieved in year 200. This negative emission flux of -10PgC/yr would then be held 

constant from years 200-300, such that by year 300 - cumulative emissions from the start of the simulation would be zero. A 

20 year extension follows keeping the emissions at zero.  For CMIP7 and beyond, we recommend 300 years for esm-flat10-

cdr, to allow for better evaluation of system dynamics after the termination of negative emissions. 

2.42.1.4 esm-flat10-nz 225 

We propose a final experiment for CMIP7 and beyond (not conducted here, but noted for its relevance). esm-flat10-

nz  (Sanderson et al., 2023)  which branches from esm-flat10-cdr in year 150 at the point at which the simulation reaches net 

zero CO2 emissions, keeping emissions at zero thereafter.  Such an experiment would provide a proxy for warming 
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commitment after a gradual semi-idealised emission reduction to net zero, and would provide additional information on 

ZEC.  We recommend that such an experiment should run ideally for 250 years to allow for comparison of long term dynamics 230 

with esm-flat10-zec and esm-flat10-cdr.  Such an experiment could help differentiate the response of the system to negative 

emissions in esm-flat10-cdr from the delayed response to positive emissions, and would provide a counterpoint to the abrupt 

emissions termination seen in esm-flat10-zec – providing an idealised scenario which might provide a more policy-relevant 

estimate of ZEC dyanmics, reaching net-zero after a period emissions reduction.   

 235 

 

Experiment Branches from Years (this 

paper) 

Years (CMIP7 

recommended 

protocol) 

CO2 emissions Diagnostic 

Metrics 

esm-flat10 esm-piControl 150 years 

(From year 

0 to year 

149) 

300 years 10PgC/year constant emissions, 

globally homogenous flux 

TCRE 

esm-flat10-

zec 

esm-flat10 

(branch at start 

of  year 100 of 

esm-flat10) 

220 years 

(From year 

100 to year 

319) 

300 years (From 

year 100 to year 

399400) 

0 PgC/yr constant ZEC50 

ZEC90 

ZEC100 

ZEC200 

esm-flat10-

cdr 

esm-flat10 

(branch at start 

of  year 100 of 

esm-flat10) 

220 years 

(From year 

100 to year 

319) 

300 years (From 

year 100 to year 

399400) 

• Linearly declining 

emissions by 2PgC/decade 

from 10PgC/yr (year 100) 

to -10PgC/Yr (year 200) 

• Constant -10PgC/yr  

(years 200-299300) 

• Zero emissions for year 

300-31920 
 

TNZ, 

TR1000 

TR0 

tPW  
 

esm-flat10-

nz* 

esm-flat10-cdr 

(branch in year 

150) 

- 250 years (From 

year 150 to year 

399400) 

0 PgC/yr constant 
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Table 1: Experiment design for emissions-driven diagnostic runs, detailing the branch point, length and configuration of the 

experiments as conducted in Fflat10MIP (present study).  The CMIP7 recommended protocol are run lengths and experiments 

suggested for future multi-model comparisons, including esm-flat10-nz which is not included in flat10MIPin this study. 240 

 

The esm-flat10-cdr experiment allows for a number of simple idealized diagnostics which are relevant to the net zero transition 

and the response of the system to net negative emissions (Fig 2). Like ZEC, each of these metrics is a measure of the path-

dependence of the temperature to cumulative emissions relationship, and thus would have a value of exactly zero if global 

temperature response  exactly followed TCRE proportionality. They include 245 

• Temperature difference at net zero (TNZ): This measures the error associated with assuming cumulative emissions 

proportionality to predict temperatures at net zero. esm-flat10-cdr reaches net zero emissions in year 150, with 

cumulative emissions of 1250PgC (calculated from year 1, see Figure 1).  TNZ is calculated as a 21 year average 

around year 150 in esm-flat10-cdr (i.e. 50 years after branching from esm-flat10) minus the expected temperature at 

net zero using cumulative emissions proportionality (Tref, which is 1.25 times the esm-flat10 derived TCRE - see 250 

Figure 2).     

• Temperature asymmetry under CO2 removal at 1000 PgC (TR1000): This measures the asymmetry in warming during 

positive and negative emissions at the same net cumulative emissions.  It is calculated as a 21 year average around 

year 200 in esm-flat10-cdr minus a 21 year average around year 100 in esm-flat10. TR1000 would be a measure of 

hysteresis in global mean temperature when cumulative emissions return to  1000PgC on the downward branch minus 255 

the expectation from TCREwarming at the same cumulative emissions level under esm-flat10.  This could be 

calculated using a combination of the esm-flat10 and esm-flat10-cdr experiments for a cumulative carbon emissions 

total of 1000PgC.  esm-flat10-cdr reaches 1000PgC cumulative emissions in year 200 on the downward branch (see 

Figure 1).  esm-flat10 itself reaches 1000PgC in year 100.   

• Temperature asymmetry under CO2 removal at 0 PgC (TR0): This is a measure of carbon-climate reversibility when 260 

all previously-emitted carbon has been removed from the atmosphere.  It is calculated as the average of years 301-

320 in esm-flat10-cdr minus mean global temperatures in esm-piControl. TR0 is a measure of hysteresis in global 

mean temperature when cumulative emissions return to zero after a period of negative emissions.  This is calculated 

using a combination of the esm-piControl and esm-flat10-cdr experiments.  esm-flat10-cdr reaches zero cumulative 

emissions in year 300 on the downward branch (see Figure 1). 265 

• Time to Peak Warming (tPW): This is a measure of the difference in timing between net zero and peak warming.  It 

is calculated as the time difference between the peak value of 20-year smoothed global mean temperatures and the 

point that net zero is achieved in esm-flat10-cdr (year 150). This metric has a clear policy-relevant translation as the 

expected time it will take for the climate system to achieve maximum CO2-driven global warming after (or before) 

reaching net zero emissions under a smooth positive-to-negative emissions transition. 270 
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2.2 Models used in flat10MIP 

This ensemble provides a broad range of climate model structures and components to evaluate emissions-driven climate 

reversibility. Each model is selected for its specific configuration, facilitating the exploration of feedback processes and carbon 

cycle dynamics.   275 

We include 8 CMIP6 generation Earth System Models, one CMIP3 generation model, one intermediate complexity model and 

the three simple climate model ensembles used in the AR6 IPCC assessment (Forster et al., 2023). The ESMs and SCMs 

participating in this study are listed in Table 2 and more fully described in the Appendix. Each Earth System Model has 

completed one ensemble member of each of the MIP experiments (esm-flat10, esm-flat10-cdr and esm-flat10-zec) - with 

supporting existing experiments from CMIP6 (C4MIP, ZECMIP and CDRMIP).   We note that metrics from Earth System 280 

Models, unlike SCMs, are subject to uncertainty arising from internal variability. We would encourage centers to perform at 

least 3 members of these experiments in CMIP7 to provide better sampling and estimation of the role of initial condition 

uncertainty.   For each SCM, an ensemble of approximately 1000 simulations are completed with simple climate model 

versions spanning a range of climate responses consistent with assessed climate uncertainty (using a combination of 

observational constraints, IPCC assessed ranges and ESM data to constrain the parameter space of the simple climate models 285 

(IPCC AR6 working group 1: Technical summary, 2023)). 

 In this study, we summarize the global mean characteristics of the simulations which conducted the experiments, while 

additional dedicated domain-specific studies will assess regional aspects of transient emissions- driven response and 

reversibility. 

 290 
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Figure 2: Schematic of metrics derived from esm-flat10-cdr experiment to quantify different aspects of temperature reversibility 
under a continuous transition from positive to negative emissions. Dashed lines correspond to temperature trajectories for a 
hypothetical case where temperatures do not perfectly follow cumulative CO2 emissions. 

 

3. Results  295 

 

 
Figure 3:  Summary results for global mean  sSurface temperature (GMST) response in the trial flat10MIP. Colored lines indicate 
temperature change from (a) pre-industrial levels (b,c) T100yr (the average temperature in years 91-110 in esm-flat10) in each of 
the participating ESMs.  Shaded regions refer to the Simple Climate Models’ probabilistic distribution ranging the 10th–90th 300 
percentiles. This distribution is shown as violin plots for the last time step of each scenario, where the shading shows the full range 
of results, and the vertical line indicates the 10th–90th percentiles with the median in the center. A 20-year moving average is applied 
to all time series. 

Figure 3 illustrates the global temperature response for the 3 simulations requested in flat10MIP.  Throughout this section, we 

refer by default to T100yr - the warming, in units K, after 1000PgC of cumulative emissions (which in esm-flat10 occurs in year 305 

100).  T100yr , is numerically equivalent to TCRE which has( units K/1000PgC) but allowsing proper consideration of the 

arithmetic sum with ZECn, also in units K.  Summary metrics as defined above for each model, are detailed in Table 2.   Figure 

3a shows that the range of T100yr seen in the ESM ensembles (1.1K-2.4K) is broadly captured by the SCMs considered in this 

study, though MAGICC shows a greater upper bound in T100yr (10th-90th percentile of 1.1-2.7K) relative to FaIR or CICERO-

SCM (10th-90th percentiles of 1.1-2.1K and 1.2K-2.1K respectively).  However, we see differences in the ZEC50, ZEC90 and 310 

reversibility distributions.  The ESM ZEC90 distribution is best captured by FaIR (ZEC90 range of -0.1K to +0.2K), whereas 

MAGICC and CICERO-SCM simulate more negative values -0.2 to +0.1K and -0.3 to -0.1K respectively.   We also see that 

two of the three SCM ensembles (MAGICC and CICERO-SCM) tend to simulate stronger temperature decline under negative 

emissions than seen in any of the ESMs, although the FaIR ensemble is broadly consistent.  The intermediate complexity 

model, UVic-ESM lies within the ESM distribution for both T100yr and ZEC90. 315 

Commented [3]: mental note to add charlie's hysteresis plot here 

Commented [GU4R3]: resolving because fig. 11. 

Commented [GU5]: just noting here that the Y-axis in fig. 3a is 
mistakenly labeled "years" instead of Delta GMST 
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3.1 Earth System Model responses 

 

 
Figure 4: ESM results.  Columns represent global indicators from ESM simulations running esm-flat10 (left), esm-flat10-zec (center) 
and esm-flat10-cdr (right).  Panels a)--c) show changes in GMST with the dashed black line and gray shading denoting central 320 
estimate and range derived from cumulative emissions assuming a linear TCRE relationship as given in AR6 (TCRE=1.65 K, likely 
range 1.0 -- 2.3 K) for reference. Panels d)--f) illustrate changes in atmospheric CO2 concentrations as a function of time.  Panels g)-
i) show cumulative carbon absorption by the land surface.  Panels j-l) show cumulative absorption of carbon by the ocean over 
time.  The circles for the esm-flat10-cdr experiments indicate the maximum of each time series. A 20-year moving average is applied 
for the GMST time series (bold line), faint line shows original data. 325 

 

Figure 4 illustrates ESM results in more detail, showing the evolution of a number of climate indicators.  In esm-flat10, 

emissions are constant at 10PgC/yr - and thus temperature change from pre-industrial in year 100 is a measure of the Transient 
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Response to Cumulative CO2 Emissions.  Figure 4a illustrates the range of transient response in the context of the assessed 

TCRE range in IPCC AR6 (1.0 to 2.3 K/(1000PgC)) (Intergovernmental Panel on Climate Change (IPCC), 2023a).  The 330 

models considered in the present MIP largely span this range, with values of TCRE (as calculated from 1pctCO2) from 1.2K 

to 2.6K (Table 2).  Model land sink evolution varies during the extended esm-flat10 simulations, with some models showing 

a saturation of the land sink (HadCM3, UVic, ACCESS), while others show continued land uptake throughout the experiment 

(CESM, NorESM, GFDL, CNRM). 

 335 

Figure 4b shows how temperatures evolve in esm-flat10-zec - showing that temperatures remain (approximately) stable 

following cessation of emissions, even though atmospheric carbon dioxide concentrations decline.  Different models show a 

diversity of evolution of land and ocean carbon sinks - with some models (e.g. MPI, GFDL, GISS) initially continuing to 

absorbing land carbon for the first 20-50 years of the zero emissions phase before losing carbon on longer timescales into the 

land surface during the zero emissions phase, while the majority stabilize rapidl while the land sink in other models (Uvic, 340 

GISS, HadCM3, UKESM) stabilise the land sink after emissions cessationy.  Similarly,Ocean uptake is more consistent across 

the ensmble, with all models indicate simulating a continued uptake of carbon in the ocean during the zero emissions phase. 

 

The reversibility experiment esm-flat10-cdr branches from esm-flat10 in year 100 and linearly reduces emissions by 2PgC / 

decade such that net zero occurs in year 150.  Linear emissions reduction then continues until year 200 at which point emissions 345 

are held at -10PgC/yr until year 300 and set to 0PgC/yr thereafter such that cumulative emissions are zero from year 300 

onwards (Fig. 1c).  As such, any residual temperature change after year 300 is indicative of non-proportionality of temperature 

with cumulative emissions.  Global mean results for esm-flat10-cdr results are summarized in Figure 4c, showing that peak 

warming can occur either before or after net zero (but most models peak before), as seen in similar experiments in (Koven et 

al., 2023) and ZECMIP experiments (Jenkins et al., 2022).   By the end of the simulation, some models remain warmer than 350 

pre-industrial (CESM, CNRM, ACCESS, UVic), while some are cooler (GISS, MPI, NorESM, GFDL).   

 

AAll models are in agreement that peak CO2 concentrations occur before net zero, and all models predict that the ocean carbon 

sink peaks after net zero.   All models predict that the cumulative ocean carbon sink will decline but stay positive.  However, 

models disagree on the timing of the peak land sink relative to net zero.  GFDL, CESM, NorESM, GISS, MPI and CNRM 355 

show the cumulative land carbon sink peaking after net zero, whereas HadCM3, UVic and ACCESS show the cumulative land 

carbon sink peaking before net zero.  At zero cumulative emissions in year 300, models range from the cumulative land sink 

being near-zero to being a slight net source of carbon over the 300 year period (model range -50 to 0PgC), while all models 

agree that the cumulative ocean sink is a net sink (model range 120-220PgC). 

 360 
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Figure 5: Evolution of carbon sinks in ESMs in flat10MIP.  [Light blue/dark blue/green] shading shows the [airborne fraction/ocean 
fraction/land fraction] of emissions in each year as a function of time.  Gains to each domain are shown in solid colors, while losses 
are shown in light dotted colors.  The left hand column shows the fractions for esm-flat10, where emissions total 10PgC/yr.  Central 
column shows results for esm-flat10-zec, where emissions are zero and atmospheric loss is compensated by gains in the land and 365 
ocean.  Right hand column shows esm-flat10-cdr, where removals are balanced by losses from each of the pools. 

 

Figure 5 shows how the rate of carbon emission allocation to the atmosphere, land, and ocean evolves as a function of time in 

the different experiments. In esm-flat10, we observe a transition from an initially high airborne fraction towards increasing 

allocation to land and ocean pools, with the airborne fraction in year 100 ranging between 0.45 and 0.55 across models. This 370 

variation arises from inter-model differences in the representation of land and ocean carbon uptake processes. For example, 

some models exhibit sustained terrestrial uptake (e.g., CESM2, NorESM2), while others (e.g., ACCESS, UKESM) show land 

sink saturation or reversal, likely reflecting the interplay between CO₂ fertilization(Arora et al., 2020), nutrient availability 

(Goll et al., 2012) and warming-induced soil carbon losses (MacDougall et al., 2020; Wieder et al., 2013).  Declining land 

uptake in some models may also reflect increasing hydrological stress or climatic constraints on productivity(Fisher et al., 375 

2019). During the esm-flat10-zec experiment, atmospheric CO₂ declines following cessation of emissions, but models diverge 

in whether this drawdown is primarily balanced by land (e.g., GFDL, CNRM) or ocean (e.g., GISS, ACCESS) uptake. These 

differences reflect the distinct timescales and sensitivities of the carbon pools: the land sink responds quickly to emissions 

cessation but may decay as CO₂ fertilization effects diminish and heterotrophic respiration increases(Jones et al., 2013), while 

the ocean continues to absorb carbon due to its longer equilibration timescales and sustained pCO₂ disequilibrium (Schwinger 380 

and Tjiputra, 2018; Tjiputra et al., 2013) and model-specific representation of deep ocean ventilation and carbon transport 

(Séférian et al., 2024). The resulting diversity in sink partitioning highlights key model-dependent feedbacks in the terrestrial 

biosphere and ocean circulation, which modulate the climate system’s reversibility following net-zero. 

Figure 5 shows how the rate of carbon emission allocation to the atmosphere, land, and ocean evolves as a function of time in 

the different experiments.  In esm-flat10, we see a diversity of behavior - although all models rapidly adjust from a high 385 

airborne fraction at the start of the experiment to a greater uptake by land and ocean, the airborne fraction in year 100 varies 

by model (ranging between 0.45 and 0.55, see Figure 6).  We also observe that although most models reach a constant fractional 

allocation to land, atmosphere and ocean by year 100, there are exceptions - with UKESM and ACCESS showing peak land 

uptake some decades into the experiment with declining uptake thereafter.   During the esm-flat10-zec experiment, we see inter 

model differences in how atmospheric carbon losses are balanced by land or ocean uptake - some models (e.g. GFDL, CNRM) 390 

dominated by land, others (GISS, ACCESS) dominated by ocean.  Similarly in esm-flat10-cdr, there are large model 

differences - with some models which show residual warming and some models with net cooling at the end of the experiment. 
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3.2 Global response indicators in flat10 and other experiments 395 

3.2.1 Transient Climate response to positive emissions 

Figure 6 and Table 2 illustrate the global trajectories and summary indicators of the ESMs which participated in the experiment 

set in both esm-flat10 and 1pctCO2 (drawing on results from (Arora et al., 2020)).  Figure 6a shows that this compatible 

emissions timeseries is time-varying and model dependent - with typical behavior showing compatible emissions growing 

from ~10PgC/yr at the start of the experiment to between 16-22PgC/yr at the time at which cumulative emissions reach 400 

1000PgC.  As such, compatible cumulative emissions are weighted towards the end of the experiment - the mean result exceeds 

500PgC in year 39 and 1000PgC in year 65 (Figure 6b).  Compatible emissions in 1pctCO2 are also significantly greater than 

current anthropogenic emissions (11.1士 0.8PgC/yr in 2023 (Friedlingstein et al., 2023). 
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 405 
Figure 6: Comparative ESM results for TCRE calculation using 1pctCO2 and esm-flat10, showing [a,b] compatible 

[annual,cumulative] emissions in 1pctCO2 compared with the constant 10PgC/yr flux in esm-flat10.  Annual total 

anthropogenic carbon emissions in 2023 are shown for context . [c,d] show temperature evolution in [1pctCO2,esm-

flat10].  Colored lines show global model output from available ESMs with a 21 year moving average applied. [e,f] show 



18 
 

airborne fraction in [1pctCO2,esm-flat10].  Circles show results at the time when cumulative emissions reach 410 

1000PgC.  Shaded region in [d] illustrates the range of warming according to the IPCC AR6 assessed likely range of TCRE. 
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Figure 7: (a) for ESMs, a comparison of T100yr [flat10] and T1000PgC [1pctCO2], T100yr+ZEC50 [flat10-zec]/T1000PgC+ZEC50 [1pctCO2] 420 
(small transparent points) and T100yr+ZEC90 [flat10-zec]/T1000PgC+ZEC90 [1pctCO2] (large transparent points) for ESMs 
participating in flat10MIP (red) and ZECMIP (blue, where available).   The final point is the multi-model mean for cases where 
there exist complete runs for both ZECMIP and flat10MIP [ACCESS, CESM2, NorESM, MPIESM and CNRM-ESM2] (b) for 
SCMs, violin plots showing distributions of T100yr , T100yr +ZEC50 and T100yr +ZEC90 for esm-flat10 (left) and 1pctCO2 (right).   

 425 

 Figure 7 compares distributions of T100yr  and ZEC computed using the 1pctCO2 and esm-flat10 approaches.   

We see, on average, a slight offset such that TCRE estimates in the ESMs have a value that is an average of 0.12K greater in 

1pctCO2 relative to esm-flat10 (see Table 1, Figure 7). This is consistent with (Krasting et al., 2014), who found that TCRE 

estimated at high emissions rates was greater than that estimated using present day emissions rates and attributed the difference 

to a greater disequilibrium between land/atmosphere and ocean response states when emissions rates are very high.  Similarly, 430 

distributions in the simple climate models MAGICC and CICERO-SCM, show T1000PgC from 1pctCO2 is on average about 

0.1K greater than T100yr from esm-flat10.  The third simple climate model, FaIR, shows comparable values of T1000PgC and T100yr 

(Figure 7).  Given that probabilistic calibration is performed independently for each SCM, it is not easy to attribute these 

differences to structural differences between the models or to choices of probabilistic parameter calibration strategy. Figure 8a 

shows correlations between T1000PgC and T100yr  - re-enforcing the small average offset between the two approaches - though 435 

the gradient of the best fit line is near-unity. 
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Figure 8: Comparison metrics assessed using the flat10MIP methodology and 1pctCO2 based experiments.  ESM summary metrics 440 
are T100yr, ZEC50 and ZEC90 for esm-flat10 and T1000PgC, ZEC50 and ZEC90 for 1pctCO2.  Filled shapes illustrate values assessed 
from ESMs, pale dots illustrate members of the Simple Climate Model ensembles for (FaIR, MAGICC, CICERO-SCM) in (orange, 
blue, purple).  Straight lines show least-square best fits for the ESMs (black) and SCMs.   

 

 445 

3.2.2 Zero emissions commitment 

For ZEC, however, we see greater differences between the concentration-driven approach and the emissions driven approach 

than for TCRE (Figures 7,8,9).  In the SCM ensembles, ZEC50 and ZEC90 are of order 25% smaller if measured using the 

flat10-zec protocol relative to the ZECMIP protocol (this is true irrespective of whether ZEC is positive or negative, Figure 

8c,d).  This is consistent with (MacDougall et al., 2020) who found smaller ZEC in experiments with lower emission rates up 450 

to the point of net zero, proposing that both warming and carbon cycle response being closer to equilibrium.  We also note that 

one SCM, CICERO-SCM, shows more consistently negative values of both ZEC50 and ZEC90 when quantified via flat10MIP 

than by ZECMIP (Figure 8c,d).  ESMs are also consistent with the relationship of ~25% smaller absolute magnitudes in ZEC50 

and ZEC90, albeit with larger scatter.  Some models (NorESM, CESM2, MPI, CNRM) in the ZECMIP experiment suggest an 

apparent short term warming pulse following cessation of emissions, followed by a cooling in the decades following cessation, 455 

which is less apparent pronounced in the esm-flat10-zec experiment (Figure 9) - but additional ensemble members are required 

to properly quantify this behavior.  In the MPI model, this is consistent with findings that TCRE was higher using the ZECMIP 

protocol compared to flat10MIP (Fig. 1d in (Winkler et al., 2024)).  

 

It is also evident that total warming measured from pre-industrial levels 100 years after emissions cease (i.e. T100yr+ZEC90 460 

from esm-flat10 and T1000PgC+ZEC90 from 1pctCO2), are more consistent between ZECMIP and flat10MIP protocols (Figure 

8b) than either of TCRE or ZEC90 independently - indicating that total warming following a period of emissions followed by 

cessation is path independent in the models considered here.  However, we continue to see in the mean values of the SCM 

distributions (Figure 7b) for MAGICC and CICERO-SCM that T1000PgC+ZEC90 is ~0.1K greater in esm-flat10-zec than in 

esm-1pct-brch-1000PgC.  FaIR is again consistent between the two approaches, with only 0.01K difference between mean 465 

values.  For the ESMs (Figure 7a), we note that multi-model mean T1000PgC+ZEC90 is 0.05K greater for esm-1pct-brch-

1000PgC than T100yr+ZEC90 for esm-flat10-zec (wheras mean T1000PgC is 0.12K greater than T100yr). 

 

Our results in general suggest that the weighting of compatible emissions towards the end of the simulation in 1pctCO2, as 

well as the shorter total time period over which emissions occur in 1pctCO2 (~70 vs 100 years), have an impact on both the 470 

estimate of TCRE and the transient response following cessation of emissions.  We tend to see slightly greater estimated values 

of TCRE in 1pctCO2, with most models exhibiting short term continued warming, followed by cooling in the decades 
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following cessation of emissions.  In contrast, behavior in esm-flat10-zec has slightly less warming during the positive 

emissions phase, and less adjustment afterwards, resulting in lower values for TCRE and smaller magnitudes (either positive 

or negative) of ZEC50 and ZEC90.  The finding that ZEC50/90 from esm-flat10 is lower than ZECMIP estimates is consistent 475 

with the findings of (Jenkins et al., 2022), who found that ZEC is modulated by “average cumulative emissions over the 

period”, a metric which is different under the two experimental designs.  
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Figure 9: global mean temperature change evolution for ESMs participating in flat10MIP (bold colors), in the context of 1pctCO2 480 
(grey) and ZECMIP where comparable simulations with the same model version are available (faded colors) .  Red lines show the 
positive emissions period (10PgC/yr for flat10, solid red and 1pctCO2 compatible emissions for ZECMIP), blue/grey lines show zero 
emissions period for esm-flat10-zec and esm-1pct-brch-1000PgC respectively.  Horizontal dashed lines show [T100yr,T1000PgC]  as 
estimated from [esm-flat10 (red),1pctCO2 (grey)]. 

 485 
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3.2.3 Climate Reversibility Experiments 

 
Figure 10: Global mean temperature relationship with cumulative emissions for the ESMs.   A 21-year moving average is applied 
for the GMST time series.  Arrows show the direction of time, with [red,yellow,blue] lines showing [constant positive, rampdown, 490 
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constant negative] phases of the experiment.  Black dashed and dotted lines show TCRE * cumulative emissions (Iem) and TCRE * 
cumulative emissions + ZEC90 for each model, using TCRE and ZEC90 values  as calculated from esm-flat10 and esm-flat10-zec. 

 

Global mean results for esm-flat10-cdr are shown in Figure 4.  Temperature response at year 300 (when cumulative emissions 

return to zero) show a range of -.7K to +.5K, indicating notable deviations from cumulative emissions proportionality with 495 

residual warming or cooling depending on the model.  Figure 10 illustrates global scale hysteresis in the ESM results, showing 

the change in global mean surface temperature as a function of cumulative emissions.  Though all models broadly indicate 

proportionality between temperature and cumulative emissions, there are some notable deviations.  Many models indicate 

some hysteresis, either positive (ACCESS) or negative (GFDL, NorESM, MPI-ESM), between the upward and downward 

branches of the simulation, and some (CESM2, GFDL, CNRM) appear to show a change in temperature/cumulative emissions 500 

response during the course of the downward branch. Overlain in dotted lines on each panel of figure 10 is a null hypothesis, 

informed only by TCRE and ZEC90 from the esm-flat10 and esm-flat10-zec experiments, that temperatures in the net-negative 

emissions period of esm-flat10-cdr might be explained as a combination of the TCRE * Iem + ZEC terms (Koven et al., 2022, 

2023). This framework explains muchsome, but not all, of the hysteresis observed; in particular some of the models (e.g. 

GFDL, UKESM) show larger hysteresis than predicted by ZEC90, and the TCRE+ZEC framework does not predict the 505 

deviations late in the downward branch for those models which have such dynamics.  Alternative frameworks such as RAZE 

(Jenkins et al., 2022), explain other key features – such as the expectation in a symmetrical experiment such as esm-flat10-cdr 

that half of the ZEC is manifested at the time of net zero.  A unifying explanation for these frameworks that is accurate both 

during the net zero transition and at timescales significantly before and after, remains absent from the literature to date. 
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 510 
Figure 11: Global mean temperature relationship with cumulative emissions for the ESM distribution in esm-flat10-cdr, normalised 
by TCRE as estimated from esm-flat10.    A 21-year moving average is applied for the GMST time series.  Arrows show the direction 
of time, with [red,blue] lines showing multi-model mean [positive, negative] emissions phases of the experiment.  [red,blue] shaded 
regions indicate the [10-90]th percentiles of the ESM ensemble temperature distribution at a given cumulative emissions level.  Black 
dashed line shows the normalised relationship between cumulative emissions and warming.  515 
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Figure 11 indicates the ESM ensemble distribution of temperature evolution in the esm-flat10-cdr, normalised by expected 

warming from TCRE.  The figure shows that TCRE proportionality is consistent between models in the ensemble, with 

relatively small spread during the constant positive emissions phase of the experiment. As the emissions rate reduces and 520 

becomes negative, additional spread but no systematic direction of asymmetry is seen relative to expectations from TCRE 

alone – but and this spread remains constant throughout the negative emissions phase.  We can categorise this uncertainty as 

approximately ±10% of TCRE, which remains broadly constant over time during the negative phase. 

 

Figure 12 shows how additional climate indicators vary with cumulative emissions.  Atmospheric carbon dioxide levels are 525 

consistently lower on the downward branch, but cumulative land carbon sink hysteresis varies by model - with some models 

showing significantly larger cumulative land carbon sinks on the downward branch (e.g NorESM), while some models (e.g. 

GISS, HadCM3LC) show cumulative sinks proportional to cumulative emissions on both upward and downward 

branches.  Similarly, all models show hysteresis in cumulative ocean sink strength with cumulative emissions, with between 

100 and 200PgC remaining in the ocean in year 300 of esm-flat10-cdr. 530 

 

 
Figure 12: Climate indicators as a function of cumulative emissions for the ESMs.   A 21-year moving average is applied for the all 
time series.  

 535 

 We identify a number of new metrics  (TNZ, TR1000, TR0, and tPW; Fig. 2, Table 2), which are aimed to capture aspects of 

climate reversibility and commitment from the flat10-cdr experiment. As noted above, each of these measures a distinct aspect 
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of potential deviation from perfect TCRE proportionality, and thus, like ZEC, would have a value of exactly zero if temperature 

were exactly proportional to cumulative emissions.   

 540 

  
Figure 13. Matrix of relationships between metrics quantified here. Shown are pairwise plots between the following metrics: 
TCRE  (T100yr for flat10 and T1000PgC  for 1pctCO2), ZEC50, ZEC90,ZEC100, tPW, TNZ, TR1000, TR0. SCM ensembles are 
shown as contours at the 10th percentile of the joint distribution for each pairwise comparison (such that 90% of points lie within 
the contours, FaIR, MAGICC, CICERO-SCM in orange, green, blue, respectively), ESMs are shown as individual points. Diagonal 545 
panels show histograms (SCMs) and discrete values (ESMs) for each of the metrics diagnosed here. 
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Two of these metrics measure the hysteresis around the net zero transition: tPW is the time offset of peak warming relative to 

net zero, whereas TNZ is the difference in realized temperature at net zero relative to what one would predict through TCRE 

proportionality.  Fig. 13 shows how these metrics relate to each other, and to TCRE and ZEC. With the exception of TCRE, 550 

all metrics show a positive correlation with all other metrics, particularly for SCMs. ESMs show greater scatter across a number 

of the pairwise relationships than the SCMs, reflecting a greater diversity of potential dynamics arising from their high 

complexity than are being captured in the more parsimonious relationships represented by the SCMs . For example, in each of 

the SCM ensembles tPW and TNZ are highly and consistently related - but a number of ESMs (CNRM, GISS, CESM, 

UKESM) lie outside of the SCM distributions, such that we see peak warming significantly before net zero with greater 555 

warming than one would expect from cumulative emissions proportionality (contours in Figure 13 indicate 90% of the 

ensemble distribution, for tPW vs TNZ, ESM results lie outside of the 99th percentile, not shown).  Similar differences are 

seen in the relationship between tPW and ZEC50, with two ESMs showing peak warming occurring particularly early.  This 

hints at behavior in the ESMs which might not be represented in current generation of SCM parameter ensembles.  This could 

potentially be due to a number of different processes, e.g. ocean circulation processes such as AMOC weakening which are 560 

not represented in current SCMs (Schwinger et al., 2022) but larger ESM initial condition ensembles are necessary to have 

confidence in the ESM metrics in the presence of internal variability.  This discrepancy could potentially be related to studies 

which have found inconsistencies between the temporal dynamics of the ocean heat and carbon uptake in ESM and SCM 

ensembles (Séférian et al., 2024), and would benefit from further investigation. 

 565 

Another pattern that emerges in Fig. 13 is the greater correlation captured in the short-term metrics (ZEC50, TR1000) than in 

the longest-term metric (TR0) that shows greater scatter with the ZEC and other reversibility metrics. This high correlation 

(e.g., between ZEC50 and TR1000 and between ZEC100 and TR1000) has an important implication: that most of the 

uncertainty present in the reversibility of GMST (although not necessarily regionally or in other metrics (Schleussner et al., 

2024)) under an idealized overshoot scenario will also be present under zero emissions at the same level of cumulative 570 

emissions that avoids the overshoot. 

4. Summary and Conclusions 

The finding of a near-linear relationship between cumulative carbon emissions and global mean temperature (Allen et al., 

2009; Matthews et al., 2009) enabled recent climate policy to link desired limits for warming to an allowable budget of 

remaining carbon emissions.   The years following have seen regular efforts to quantify remaining carbon budgets for the Paris 575 

Agreement goals (Lamboll et al., 2023), with scenarios built on this premise (Rogelj et al., 2019a), and refinement in the 

treatment of how to incorporate non-CO2 emissions into this framework (Cain et al., 2019; Jenkins et al., 2018; Mengis and 

Matthews, 2020).   

 



31 
 

Further, an increased understanding has emerged  that the TCRE relationship is an approximation, owing to fortuitous 580 

cancellation of terms in heat and carbon uptake in many models, but that this cancellation is not perfect and a “Zero Emissions 

Commitment” or ZEC (Palazzo Corner et al., 2023) may result in residual carbon-induced warming (or cooling) even if carbon 

emissions are held at net zero.  This ZEC effect may cause peak temperatures to be seen before or after net zero (Koven et al., 

2023).  Building confidence in this timing is important; if peak temperatures occur after net zero, this may create climate 

adaptation challenges which might not otherwise be planned for if simple TCRE proportionality is used to predict warming 585 

outcomes..  Such non-TCRE dynamics are also related to the emissions levels compatible with a stable climate - which could 

potentially be net positive or negative (Jenkins et al., 2022).    

 

Operational methods of quantifying TCRE and ZEC to date have utilized existing default Earth System Model diagnostic 

experiments which have focussed on the response of the Earth System to a prescribed concentration pathway - generally an 590 

exponential increase of 1 percent per year - as an idealised proxy for climate change induced by carbon dioxide.  It is then 

possible to calculate compatible CO2 emissions, specific to a given model, to frame the output of these experiments in terms 

of emissions (Jones et al., 2016; Liddicoat et al., 2021) and calculate TCRE, with branched zero-emission experiments to 

calculate ZEC (Jones et al., 2019). 

 595 

Although these experiments have been highly useful in helping to quantify TCRE and ZEC efficiently using mostly pre-

existing simulations, the use of a concentration-driven diagnostic runs has limitations (Gregory et al., 2015; MacDougall, 

2019) - emissions are specific to a given model, and are highly weighted towards the end of the experiment when emissions 

rates greatly exceed present day or projected levels.  As such, given that experiments to measure ZEC seek fundamentally to 

measure subtle, second order effects - there is an argument for new diagnostic experiments which cleanly measure TCRE, 600 

ZEC and climate reversibility using reproducible and cleanly interpretable benchmarks. 

 

In this study, we have demonstrated the utility of a new set of idealized experiments  that can be applied with both complex 

and simple Earth System Models.  This ‘flat10’ framework is based upon a small number of variants around a simple core 

experiment, where emissions are fixed at 10PgC/yr for 100 years - a rate which approximates current anthropogenic carbon 605 

emissions, and conveniently totals 1000PgC after 100 years of simulation, with the temperature in year 100 thus providing a 

direct assessment of TCRE.  Branch experiments from this point can measure the Zero Emissions Commitment (with emissions 

set to zero in year 100), and climate reversibility (with an idealized net zero and net negative emissions pathway in which 

cumulative emissions reach zero by the end of the experiment).  Along with these experiments, we propose diagnostic 

measures  which serve to measure different aspects of non-TCRE behavior and how they relate to the likely outcomes of real 610 

world net zero and net negative emissions proposals.  These experiments complement similar experimental design being 

developed and run by the Tipping Point intercomparison project, TIPMIP (Colin Jones et al., in prep). TIPMIP experiments 

also follow a prescribed constant CO2 emission pathway, but the emissions are tailored for each model to result in a common 
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warming rate of 2°C per century. As such, the goal of TIPMIP is to examine the behavior of ESMs at common levels of global 

warming, while the goal of the flat10MIP experiments is to examine the behavior of ESMs under common external 615 

forcing.  Furthermore, for future experiments using the TIPMIP protocol, the flat emissions pathway in esm-flat10 will likely 

provide a more accurate TCRE estimate for calibrating the emissions rate required for constant warming rates. 

 

These experiments form part of the ‘fast track’ recommendation for CMIP7, through which the climate change research 

community will gain a greater understanding of ZEC and reversibility behavior in the next generation of climate models. 620 

Here,  to illustrate the potential for these simulations to diagnose a broad suite of climate response metrics, we demonstrate 

the results of the flat10MIP experiments for a subset of CMIP6-generation models and the simple climate models used in the 

IPCC 6th Assessment Report.  We find, as expected, that TCRE is first order consistent whether calculated using the 1pctCO2 

simulations, or using esm-flat10 simulations - but also that the values of ZEC estimated with 1pctCO2 tend to be greater than 

for esm-flat10-zec, indicating that the weighting of emissions towards the latter part of the 1pctCO2 experiment may increase 625 

transient warming or cooling trends, potentially driving a larger ZEC than would be seen in a realistic emissions scenario.    

 

We also find a large diversity of ESM behavior in the climate reversibility experiment esm-flat10-cdr, including that peak 

warming can occur before or after net zero emissions and is not necessarily predictable from a combination of TCRE and ZEC 

(consistent with existing studies (Asaadi et al., 2024)) with a range of carbon sink evolutions in different ESMs, both in the 630 

positive and negative emissions phases of the experiment.  Models strongly disagree on the timing and amplitude of peak land 

carbon uptake, some showing peak uptake decades before and others decades after the net zero transition.  In addition to 

difference in carbon cycle representations, the diverse transient carbon sinks behavior can also be attributed to the difference 

in ESM’s preindustrial states or initial conditions (Tjiputra et al., 2025). There is also evidence of state-changes during the 

negative emissions phase, with some models showing a change in the rate of cooling per unit carbon removed - potentially 635 

indicating dynamical changes in ocean circulation which might impact carbon-climate dynamics. 

 

However, in this study our scope for understanding this diversity is limited: we present the experimental design for CMIP7 

plus global scale results from ESMs and SCMs which are now available to the community.  Detailed process understanding 

will be presented in follow-up studies, considering land and ocean dynamical processes from the flat10MIP ensemble, where 640 

we hope for wide community engagement.   

 

We argue that emissions-driven diagnostic experiments are the cleanest method for diagnosing the response to climate forcers 

on a range of relevant timescales.  In future, we would imagine these experiments becoming elements of a wider set of 

idealized, yet policy relevant emission-driven experiments which can efficiently categorize either a simple or complex climate 645 

model’s response to climate forcers.   
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In the present study, this has been limited to a specific trajectory of carbon emissions which has been chosen pragmatically to 

minimize computational burden.  Future understanding would be increased by adding to this archive, both in terms of larger 

initial condition ensembles to improve confidence in ZEC and reversibility metrics, perturbed parameter ensembles in ESMs 650 

to understand conditionalities on model calibration choices, and with longer simulations to understand longer timescales of 

commitment. 

 

Despite these caveats, the present effort has indicated that some models exhibit non-linear and threshold behavior.  Further 

experiments would be required to fully document the conditions under which such transitions occur. As such, future CMIP 655 

activities might consider a range of flat-n type experiments spanning warming levels and decarbonisation rates to categorise 

the response of the carbon-climate dynamics to different types of overshoot pathway.   Also, as ESMs increasingly seek to 

represent the response to a range of activities (land use change, methane, nitrous oxide emissions amongst others), it will 

become necessary to cleanly categorize the response to each of these in a reproducible fashion - creating a necessity for well-

crafted experiments to cleanly represent model responses to non-fossil-CO2 forcers.   A shift towards emissions-driven 660 

modeling is essential to produce relevant climate simulations for increasingly specific emissions pathways referred to in 

climate policy, and this requires a new generation of emissions-driven diagnostic experiments. 

 

 

  665 
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Appendix 

Participating Models  

Earth System Models 670 

The flat10MIP experiments are included in the recommended CMIP7 ‘fast track’- a subset of experiments highlighted for 

particular relevance as input for climate change assessments.  In preparation for this recommendation, a trial model 

intercomparison conducted the esm-flat10 experiment set for a collection of eight Earth System Models from the CMIP6 

ensemble (Eyring et al., 2016), and one Intermediate Complexity Model. 

ACCESS-ESM1-5 (Ziehn et al., 2020): 675 

Atmosphere: UM7.3 (Walters et al., 2019)at 1.875° × 1.25° resolution 

Ocean: MOM5 (Griffies, 2012) at 1° × 1° resolution 

Land: CABLE2.4  (Kowalczyk et al., 2013)  

ACCESS-ESM1-5 features a coupled carbon-nitrogen-phosphorus cycle in the land component (CABLE2.4), with an ocean 

provided by the GFDL MOM5 model. 680 

CESM2 (Danabasoglu et al., 2020): 

Atmosphere: CAM6 (Bogenschutz et al., 2018) at 1° resolution  

Ocean: POP2 (Smith et al., 2010) at 1° × 1° resolution 

Land: CLM5 (Lawrence et al., 2019) 

CESM2 includes updated aerosol-cloud interactions in CAM6, while CLM5 provides new parameterizations for carbon and 685 

nitrogen interactions in terrestrial ecosystems, and POP2 emphasizes ocean-ice dynamics. 

GFDL-ESM4 (Dunne et al., 2020): 

 

Atmosphere: AM4.1 (Horowitz et al., 2020)at 1° × 1° resolution 

Ocean: MOM6 (Adcroft et al., 2019) 690 

Land: LM4.1 (Shevliakova et al., 2024) 
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GFDL-ESM4 uses MOM6 for advanced representations of ocean circulation and biogeochemical processes, with AM4.1 

providing a fully coupled aerosol and cloud interaction system. LM4.1 emphasizes nutrient constraints on land carbon cycles. 

GISS-E2-1-G (Kelley et al., 2020): 

 695 

Atmosphere: ModelE (Schmidt et al., 2014) at 2° × 2.5° resolution (Kelley et al 2020) 

Ocean: GISS Ocean v1 at 1° × 1° resolution  

Land: The vegetation model is the Ent Terrestrial Biosphere Model (Kiang et al 2012) with prescribed leaf area index and 

prescribed interannual variation of land use and land cover (LULC) change; interactive with carbon cycle (Ito et al, 2020) 

Ocean carbon: NASA Ocean Biogeochemical Model (GISS version NOBMg, Romanou et al 2013; Ito et al, 2020; Lerner et 700 

al 2021) 

 

HadCM3LC-Bris 

Atmosphere: HadAM3 (Pope et al., 2000), 3.75° x 2.5° resolution, 19 vertical levels 

Ocean: HadCM3L (Cox et al., 2000) , 3.75° x 2.5° resolution, 20 vertical levels 705 

Land: MOSES-2 (Essery et al., 2003), with dynamic vegetation  and 9 plant functional types (Cox, 2001) 

Ocean BGC: HadOCC(Palmer and Totterdell, 2001) marine biogeochemistry with NPZD biology model. 

HadCM3LC-Bris is based on the HadCM3 climate model (Gordon et al., 2000) adapted for use with an interactive carbon 

cycle by adopting lower ocean resolution (Cox et al., 2000), and subsequently modified slightly for use on Bristol HPC (Valdes 

et al., 2017). 710 

 

NorESM2-LM (Seland et al., 2020) 

Atmosphere: CAM6  (Bogenschutz et al., 2018)  at 2° × 2° resolution (with modifications) 

Ocean: BLOM-iHAMOCC (Tjiputra et al., 2020) 

Land: CLM5 (Lawrence et al., 2019) 715 

NorESM2-LM shares land and some atmosphere elements with CESM2, but modifies CAM6 to include updated aerosol and 

cloud microphysical schemes and uses the isopycnal-coordinate BLOM for ocean processes, which improves deep ocean 

mixing simulations. 

MPI-ESM1-2-LR(Mauritsen et al., 2019; MPI, 2024): 

Atmosphere: ECHAM6.3 at 1.875° × 1.875° resolution 720 

Ocean: MPIOM (Jungclaus et al., 2013)at 1.5° × 1.5° resolution 
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Land: JSBACH3 (Reick et al., 2021) 

MPI-ESM1-2-LR utilizes ECHAM6.3, featuring updates in atmospheric chemistry processes, while MPIOM improves ocean 

heat transport. JSBACH3 integrates biogeophysical and biogeochemical interactions. 

CNRM-ESM2-1 (Séférian et al., 2019): 725 

 

Atmosphere: ARPEGE-Climat version 6 (Roehrig et al., 2020) at 1.4° × 1.4° resolution 

Ocean: NEMO (Madec et al., 2017) version 3.6 at 1° × 1° resolution 

Land: ISBA (Decharme et al., 2019) 

CNRM-ESM2-1 features NEMO 3.6, which includes advanced parameterizations of ocean mixing, and ARPEGE-Climat for 730 

atmospheric dynamics, with updates in stratospheric processes and land-atmosphere coupling through ISBA. 

UKESM1 (Sellar et al., 2019): 

 

Atmosphere: HadGEM3-GA7.1 (Walters et al., 2019) at 1.875° × 1.25° resolution 

Ocean: NEMO3.6 (Madec et al., 2017) at 1° × 1° resolution 735 

Land: JULES (Best et al., 2011) 

UKESM1 includes JULES, which features dynamic vegetation and coupled nitrogen cycles, along with HadGEM3-GA7.1 

which provided improved stratosphere-troposphere interactions and cloud-aerosol physics relative to previous versions 

Intermediate Complexity Models 

UVic ESCM 2.10 ((Mengis et al., 2020)): 740 

Atmosphere: 2D energy moisture balance model 3.6° x 1.8° (Fanning and Weaver, 1996) 

Ocean: MOM2 3.6° x 1.8° (Pacanowski, 1995) with thermodynamic-dynamic sea ice model (Bitz et al., 2001) 

Land: Dynamic vegetation with 5 plant functional types (Meissner et al., 2003); 14 layers of soil; permafrost (MacDougall and 

Knutti, 2016); no N, P cycle 

Ocean: NZPD model with 2 nutrients (N, P) and Fe limitation scheme (Keller et al. 2012) 745 

 

Simple Climate Models 

We also include simulations from three Simple Climate Models which provided climate assessments in the IPCC AR6 WG3 

assessment (Intergovernmental Panel on Climate Change (IPCC), 2023c).  
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MAGICC6 (Meinshausen et al., 2011): 750 

MAGICC6 is a reduced-complexity model that uses simplified representations of global carbon cycles and radiative forcing, 

allowing for rapid simulation of emissions-driven climate pathways. 

FaIR (Smith et al., 2018): 

FaIR uses simplified equations to model temperature responses and radiative forcing - using pulse-response assumptions to 

model carbon and thermal responses to climate forcers, with flexible configurations that allow it to mimic the behavior of more 755 

complex models in emissions-driven scenarios. 

CICERO-SCM (Sandstad et al., 2024): 

CICERO-SCM is a reduced-complexity model that focuses on simplified representations of carbon cycle and climate 

feedbacks, but with extensively developed short lived climate forcer parameterisations. It emphasizes flexibility in handling 

uncertainties in emissions scenarios and climate sensitivity.  Calibration and run-scripts for Flat10MIP are archived here 760 

(Sanderson and Sandstad, 2024) 

Code availability 

All code to reproduce plots in this study is permanently available at: 

https://doi.org/10.5281/zenodo.1526755610.5281/zenodo.14012042 

Data availability 765 

All data to reproduce this study is included at: 

https://doi.org/10.5281/zenodo.1526755610.5281/zenodo.14012042 
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