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Abstract. Accurately representing hydrological processes remains a major challenge in hydrological modeling. Recent 

studies have demonstrated the benefits of multi-variable calibration, which integrates additional hydrological variables such 

as evapotranspiration and soil moisture alongside streamflow to improve model realism. However, groundwater recharge as 10 

a calibration variable remains relatively underexplored. 

This study evaluates how incorporating groundwater recharge into the calibration of the Water Balance Simulation Model 

(WaSiM) affects hydrological variables representation. Three configurations were tested: Baseline (BL) with streamflow-

only calibration, Physical Groundwater Model (GW) with physically-based groundwater flow, and Physical Groundwater 

with Recharge Calibration (GW-RC), which further constrains groundwater recharge during calibration. The models were 15 

calibrated and applied to 34 catchments in Southern Québec. Their performance was evaluated using the Kling-Gupta 

Efficiency (KGE) for streamflow and spatial estimates of groundwater recharge derived from a previous research project 

conducted in the same region. 

Results indicate that while calibrating on streamflow alone produces high KGE values (median KGE = 0.83 for GW and 

0.82 for BL), but it comes at the cost of misrepresenting subsurface hydrological processes. Adding groundwater recharge 20 

constraints (GW-RC) reduce streamflow performance, with a median KGE of 0.77 for GW-RC, but improves hydrological 

variable representation, especially in seasonal runoff patterns, where it better captures the balance between surface runoff 

and interflow during snowmelt. Additionally, GW-RC showed the smallest differences with the groundwater recharge 

estimates.  

These findings illustrate the consequence of equifinality in streamflow-based calibration, where multiple parameter sets can 25 

yield similar streamflow outputs while misrepresenting internal hydrological processes. Incorporating groundwater recharge 

constraints improves the representation of internal hydrological processes while maintaining strong streamflow simulation 

performance, which could ultimately enhance reliability of climate change adaptation and water resource management 

strategies. 
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1 Introduction 30 

Accurately representing watershed processes under climate change remains a central challenge in the evolving field of 

hydrology (Persaud et al., 2020). Recent advances in hydrological modeling have offered valuable insights into water 

resource management and climate adaptation strategies (Xu et al., 2005; Chen et al., 2011; Wang et al., 2023). However, the 

complexity of watershed dynamics, especially in snow dominated catchments, necessitates models that can accurately 

simulate both surface and subsurface hydrological processes (Chu and Shirmohammadi, 2004; Farjad et al., 2016).  35 

The need for detailed, physically based hydrological modeling goes beyond immediate concerns of water management and 

climate impact assessments. Groundwater dynamics are crucial for forest health (Maitre et al., 1999; Jacobs, 2003), as stable 

water availability supports ecosystem resilience (Cunningham et al., 2011; Orellana et al., 2012). By enhancing the accuracy 

of groundwater simulation and recharge calibration, we can improve our ability to forecast forest growth and resilience under 

changing climatic conditions (Ford et al., 2011; Grant et al., 2013). This linkage underscores the importance of detailed 40 

hydrological modeling and aligns with broader environmental, economic, and ecological management goals aimed at 

sustaining forest productivity in the face of environmental change. This approach helps forest managers make informed 

decisions, supporting the long-term health and sustainability of forest ecosystems (Vose et al., 2011; Sun et al., 2023).  

The Water balance Simulation Model (WaSiM) (Schulla, 2021) is a distributed and physically based hydrological model. It 

stands out for its complexity, fine spatial resolution and comprehensive approach to modeling hydrological processes. This 45 

makes the model especially useful for analyzing intermediate hydrological variables with greater reliability. Several studies 

exemplify the application of WaSiM for examining internal hydrological variables across diverse geographic settings and 

scenarios. For example, Jasper et al. (2006) analyzed summer soil water pattern shifts due to climatic changes, demonstrating 

that WaSiM could effectively model the substantial alterations in hydrological responses to varying climate scenarios. 

Natkhin et al. (2012) used WaSiM to differentiate the impacts of climate change and forest growth dynamics on groundwater 50 

recharge in Northeast Germany. Similarly, two separate studies (Rößler and Löffler, 2010; Rössler et al., 2012) analyzed soil 

moisture dynamics using WaSiM, discussing the modeling potentials and limitations in high mountain catchments and the 

broader impact of climate on soil moisture. Bormann and Elfert (2010) investigated how land use changes influence various 

runoff generation processes such as surface runoff, interflow, and baseflow. Furthermore, Förster et al. (2017, 2018) 

conducted detailed comparisons of internal state variables with actual forest measurements, including meteorological 55 

variables and snow cover dynamics, highlighting the refined capabilities of WaSiM to model complex interactions like snow 

cover and canopy interception. These studies collectively demonstrate the model's utility in capturing a wide range of 

hydrological variables. 

Despite recent advances, hydrological modeling still faces challenges in representing watershed dynamics. These challenges 

are especially evident when calibration relies only on streamflow data (Mei et al., 2023; Schäfer et al., 2023; de Lima 60 

Ferreira and da Paz, 2024; Pool et al., 2024). While streamflow is a key indicator for capturing temporal fluctuations in 

water systems, it offers limited insights into the internal hydrological processes (Rajib et al., 2018). This reliance on 
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streamflow can result in models that perform well in reproducing observed flows but misrepresent underlying processes. 

This phenomenon, known as equifinality, occurs when different parameter sets produce the same outputs but for the wrong 

reasons (Kirchner, 2006; Yassin et al., 2017; Acero Triana et al., 2019; Mei et al., 2023). Therefore, focusing only on 65 

streamflow in model calibration can hide important differences in how hydrological processes are represented. 

In pursuit of better representing hydrological processes at the catchment scale, several studies have explored hydrologic 

scaling and parameter transferability (Samaniego et al., 2010, 2017; Mizukami et al., 2017; Imhoff et al., 2020). Notably, 

Samaniego et al. (2010) introduced the multiscale parameter regionalization to tackle overparameterization and the non-

transferability of parameters across different scales. Ficchì et al. (2019) also proposed a model structure that considers flow 70 

accuracy and fluxes match on different modelling timesteps, adjusting the structure and parameters to ensure robust 

simulation across various time scales. Additionally, Peters-Lidard et al. (2017) advocated for adopting the fourth paradigm 

of data-intensive science in hydrology, which leverages emerging datasets to refine our understanding of hydrological 

models and processes. This paradigm suggests that advancements in computational science represent a new methodological 

branch alongside empiricism, theory, and computational simulation. By enabling the intensive use of data, these 75 

advancements can revolutionize science by facilitating the discovery and testing of theories and models. This approach 

emphasizes the integration of comprehensive datasets and computational tools into conventional scientific workflows, 

thereby enhancing the capacity for scientific innovation and synthesis in hydrology. 

Recent studies have advocated for a shift towards integrating additional hydrological variables and data sources, such as 

remote sensing products and in-situ measurements, into the calibration process (Dembélé et al., 2020; Meyer Oliveira et al., 80 

2021; Liu et al., 2022; Mei et al., 2023; Schäfer et al., 2023; de Lima Ferreira and da Paz, 2024; Pool et al., 2024). Mei et al. 

(2023) found that including gridded soil moisture alongside gauged streamflow improved evapotranspiration simulations 

across 20 catchments in the Lake Michigan watershed. Schäfer et al. (2023) used WaSiM to simulate the water balance of a 

forested catchment in Germany, showing that including plant-available water and evapotranspiration data significantly 

enhanced model accuracy. De Lima Ferreira and da Paz (2024) similarly improved model performance by incorporating 85 

actual evapotranspiration estimates into a hydrological model of a Brazilian semi-arid basin, highlighting the benefits of 

multi-variable calibration and the need to test distinct data sources.  

Although many studies have successfully used variables such as soil moisture, evapotranspiration, and groundwater head in 

model calibration, there remains a gap in understanding how other variables, like groundwater recharge, can improve the 

representation of hydrological processes. Addressing this gap is important for both the theoretical advancement of 90 

hydrological sciences and the practical applications of water resource management, flood risk assessment, and climate 

change mitigation (Pradhan and Indu, 2019). By adopting a calibration approach that integrates a more holistic view of 

watershed processes, models become more reflective of complex hydrological interactions and gain robustness in the face of 

non-stationary climate conditions (Wang et al., 2023). This enhanced process representation and strengthens confidence in 

model projections, making them more reliable for future applications. 95 
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In this study, we implement three distinct model configurations of the WaSiM hydrological model: Baseline (BL), which 

follows a traditional streamflow-based calibration; Physical Groundwater Model (GW), which introduces physically based 

groundwater flow processes; and Physical Groundwater with Recharge Calibration (GW-RC), which further constrains 

groundwater recharge during calibration. The objective is to investigate how different calibration strategies and levels of 

model complexity influence the representation of hydrological processes over a set of 34 catchments in snowy catchment 100 

conditions. Through comparative analysis of these configurations, we aim to expose the nuances in model performance and 

hydrological variable representation, contributing to the ongoing debate on the best practices for hydrological model 

calibration. 

2 Methods 

2.1 Study area 105 

This study examines 34 catchments in Southern Quebec, Canada, each with distinct physiographic and hydrometeorological 

features. The catchments range in size from 525 to 6,840 km² (see Fig. 1). These catchments were selected based on several 

key criteria to ensure robust model calibration and validation. Specifically, they were selected based on the availability of 

comprehensive streamflow data from 1981 to 2010. Additionally, catchments were selected to represent the region’s 

geographical and hydrological diversity to capture a range of climatic conditions across the study area. Where possible, 110 

catchments covered by the PACES project (see detail in section 2.2.5) were prioritized to ensure data consistency and 

facilitate comparisons of groundwater recharge estimates. To preserve the natural integrity of hydrological processes under 

study, selected catchments needed to be free from dams and reservoirs and located away from major urban areas to minimize 

anthropogenic influences. 
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 115 

Figure 1. Elevation map of study catchments in southern Quebec. 

The Köppen-Geiger Climate Classification designates most of the study area (28 catchments) as belonging to class Dfb 

(humid continental mild summer, wet all year), except a small part (six catchments) located in the northern portion that 

belongs to class Dfc (subarctic with cool summers and year-round precipitation) (Beck et al., 2018). The region experiences 

four distinct seasons. Winters are characterized by frequent sub-freezing temperature and significant snowfall. As spring 120 

arrives, temperatures gradually rise, leading to significant snowmelt which, along with increasing rainfall, influences 

streamflow and water availability. Summer brings warmer temperatures, peaking in July, with rainfall remaining relatively 

high. Fall sees a gradual cooling and a transition from rain to increasing snowfall, setting the stage for another winter cycle. 

This climatic diversity induces complex hydrological processes at catchment scale, as the interplay between snowmelt and 

precipitation patterns has a significant influence on streamflow and water availability. These patterns are not unique to 125 

Québec but are indicative of broader hydrological changes occurring across boreal regions globally under climate change. 

To contextualize the environmental and hydrological setting of the selected catchments, Table 1 presents a synthesis of key 

descriptors. The table shows the minimum and maximum values for a set of hydrological and geophysical characteristics for 

each catchment, providing an at-a-glance perspective of the environmental variation within the study area. 

  130 
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Table 1. Hydrological and geophysical characteristics of the study catchments. 

Catchment characteristics Minimum Maximum 

Area (km2) 525 6840 

Mean elevation (m) 137 568 

Predominant soil type Sandy loam 

Predominant land use 
Coniferous forest and deciduous 

forest 

Annual total precipitation (mm) 785 1547 

Annual extreme daily temperature (°C) -37.7 28.6 

Annual streamflow (m3 s-1) 10 130 

 

2.2 Data 

2.2.1 Hydrometeorological data 

This study utilizes meteorological data, specifically total precipitation and mean temperature on a daily time step, sourced 135 

from ECMWF’s Reanalysis v5 (ERA5) (Hersbach et al., 2020). While ERA5 is known to underestimate winter precipitation 

and exhibit biases in convective precipitation, studies such as Tarek et al. (2020) have demonstrated that ERA5-driven 

hydrological simulations perform comparably to those using ground-based observational data across Eastern Canada. Their 

evaluation of 3138 North American catchments found that ERA5-based simulations achieved similar accuracy levels to 

traditional meteorological observations in hydrological modeling, particularly in Eastern Canada. While observational data 140 

can offer higher local accuracy, it also comes with gaps and inconsistencies due to station distribution and measurement 

errors. ERA5 provided gridded and consistent meteorological inputs across all study catchments, reducing potential biases 

from heterogeneous station networks. The collected meteorological data spans the period from 1981 to 2020. 

Observed streamflow data from 1981 to 2010 was used, recorded at a daily resolution. This data was obtained from the 

Hydroclimatic Atlas of Southern Québec (MDDELCC, 2022).  The dataset contains occasional gaps, primarily during winter 145 

months when ice cover and ice jams can significantly distort river flow measurements. To ensure the accuracy of the study, 

these periods were excluded from the dataset. 
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2.2.2 Elevation data 

A hydrologically conditioned digital surface model was derived from the NASA Shuttle Radar Topography Mission version 

3.0 Global 1 (SRTM-DSM) to account for terrain elevation. The SRTM-DSM, originally having a spatial resolution of 30 150 

meters at the equator, underwent resampling to 50 meters resolution and filtering using multiple moving average windows to 

mitigate the impact of local noise, which could lead to erroneous hydrological behaviours (MacMillan et al., 2000). To 

ensure hydrological consistency, we applied hydrological corrections based on data from provincial agencies (Géobase du 

réseau hydrographique du Québec (GRHQ) - Données Québec, 2016). To maintain hydrological consistency, we adjusted 

elevation values along streams by lowering them by 5 meters using the SAGA GIS software (Conrad et al., 2015). The 155 

resulting DSM accurately captures the hydrological characteristics of the study area and is used for catchment delineation. 

Additionally, the DSM was resampled to spatial resolutions of 250 and 1000 meters. This resampling process was conducted 

to optimize computational efficiency while preserving the essential characteristics of the catchments. The minimum value 

resampling method was used to preserve hydrological connectivity within the study area. 

Following this, the Tanalys software (Schulla, 2021) was used to generate key topographic layers, including slope, aspect, 160 

and river depth, all formatted for hydrological modeling within WaSiM. 

2.2.3 Soil type data 

To capture the spatial variability of soil hydraulic properties, we utilized the SIIGSOL 100 meters database (Sylvain et al., 

2021), which provides information on soil composition. The SIIGSOL database provides detailed descriptions of the 

proportions of sand, clay, and silt within the soil profile (MRNF, 2022). In this study, we converted the reported proportions 165 

of sand, silt, and clay layers into soil texture classes based on the classification system of the United States Department of 

Agriculture (USDA). The USDA soil classification system categorizes soils into various texture classes such as loam, clay, 

sand, silt, and combinations thereof, which are determined based on the percentage composition of each type. This 

classification aids in understanding the soil's physical characteristics which are crucial factors in hydrological modeling and 

in predicting soil-water interactions in the studied catchments (Weil and Brady, 2017).  170 

We derived soil hydraulic properties from generated soil type maps, using established relationships between soil texture 

classes and hydraulic parameters. For the soil type maps, WaSiM generates soil layers of specified thickness based on the 

control file settings. By default, if there is only one soil type present in the catchment, the soil depth is uniformly distributed 

throughout the entire area. To account for soil depth variability, we divided soil types into three distinct sections based on 

their relative elevation within catchment: narrow, normal, and deep. Pixels with elevations below the 33rd percentile were 175 

classified as deep, while those with elevations above the 66th percentile were classified as shallow. The remaining soil type 

rasters fell into the normal category. This classification was based on the imperfect but useful hypothesis that higher 

elevations correspond to a closer proximity of bedrock to the surface, while lower elevations indicate a greater depth of soil 

cover in a post-glacial landscape (Akumu et al., 2016; Jeong et al., 2022).  
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2.2.4 Land use data 180 

For land use attribution, we used the 2015 North American Land Change Monitoring System (NALCMS) 30 meters land 

cover dataset (Latifovic et al., 2012; Commission for Environmental Cooperation, 2020). The classification scheme used in 

this map adheres to the widely recognized Land Cover Classification System (LCCS) standard established by the Food and 

Agriculture Organization (FAO) of the United Nations. This standardized approach ensures the consistency and 

comparability of land cover information, enabling meaningful regional scale assessments and studies. The nearest neighbor 185 

resampling method was employed to align land use maps with the other raster maps used in WaSiM. Land use exerts a 

substantial influence on various hydrological parameters, and more specifically for the context of this study, it significantly 

affects parameters such as root distribution, vegetation cover fraction (VCF), roughness length (Z0), and albedo within the 

hydrological model. The distribution and characteristics of land cover types, ranging from forests to urban areas, directly 

impact these parameters, thereby influencing processes such as evapotranspiration, runoff, and infiltration. 190 

2.2.5 Groundwater recharge data 

In 2008, the Government of Quebec initiated the “Projets d’acquisition de connaissances sur les eaux souterraines” (PACES; 

roughly translated as “groundwater knowledge acquisition projects”) (Carrier et al., 2013; Cloutier et al., 2013, 2015; 

Comeau et al., 2013; Larocque et al., 2013, 2015; Rouleau et al., 2013; Buffin-Bélanger et al., 2015; Lefebvre et al., 2015), 

aimed at enhancing understanding of the groundwater resources availability in Southern Quebec area. In addition to PACES, 195 

numerous studies conducted across the region have estimated groundwater recharge rates, which vary from 50 mm yr-1 to 

over 500 mm yr-1 depending on the location and years studied (Croteau et al., 2010; Chemingui et al., 2015; Larocque et al., 

2019; Dubois et al., 2021; Boumaiza et al., 2022). 

Of the 34 catchments in this study, fourteen were entirely or partially covered by the PACES project. Table 2 lists these 

catchments, detailing their areas, associated PACES region reports, the percentage of each catchment's area covered by 200 

PACES, and the mean and standard deviation of groundwater recharge for the areas covered.  
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Table 2. PACES data coverage and groundwater recharge statistics for covered catchments. 

Catchment name 
Area 

(km2) 
Region Cover1 

PACES recharge 

Mean (mm yr-1) Std. (mm yr-1) 

Matane 1650 Bas-Saint-Laurent 31% 179 78 

Rimouski 1610 Bas-Saint-Laurent 29% 213 81 

Des Trois-Pistoles 932 Bas-Saint-Laurent 38% 74 34 

Ouelle 795 Chaudière-Appalaches 62% 180 35 

Famine 691 Chaudière-Appalaches 100% 186 46 

Bécancour 919 
Chaudière-Appalaches and 

Bécancour 
100% 209 83 

Nicolet Sud-Ouest 549 Nicolet-Saint-François 100% 242 64 

Nicolet 1540 Nicolet-Saint-François 95% 224 82 

Noire 1490 Montérégie-Est 93% 133 98 

Rouge 5460 Outaouais 26% 310 40 

Kinojévis 2590 Abitibi-Témiscamingue 55% 172 87 

Petit Saguenay 712 Saguenay-Lac-Saint-Jean 80% 69 78 

Petite rivière Péribonca 1090 Saguenay-Lac-Saint-Jean 29% 142 103 

Valin 746 Saguenay-Lac-Saint-Jean 73% 221 85 

[1] Fraction of total catchment area covered by PACES data. Median 183 80 

 

2.3 Hydrological modelling 

2.3.1 WaSiM model 205 

In this study, we employed WaSiM for hydrological modeling (Schulla, 2021). Hydrological processes were analyzed 

through three specific configurations: BL (baseline), which serves as the standard comparison model; GW (physical 

groundwater model), which incorporates detailed groundwater dynamics; and GW-RC (physical groundwater model with 

constrained recharge), which further refines the groundwater variables by incorporating constrained recharge calibrations. 

Detailed descriptions of these configurations can be found in Sect. 2.4 of this study. 210 

WaSiM consists of two versions: WaSiM version I, originally developed using the Topmodel approach for simulating 

subsurface flows based on variable saturation areas, and WaSiM version II, an extended version with the process-oriented 

Richards approach. The Richards version, which considers hydraulic head gradients and detailed soil physical properties 

(pF-curve, k(u) function), was selected for this study due to its more physically based nature. 

WaSiM follows a modular structure, composed of multiple sub-models that can be activated based on data availability and 215 

the specific research objectives. The model operates using a consistent time step, while internally employing flexible sub-
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time steps to optimize computational efficiency. It accommodates both regular and irregular raster grids, enabling the 

analysis of diverse spatial configurations. During each time step, the sub-models are sequentially processed across the entire 

model grid, enabling parallelization to aid computational optimization and facilitate faster model execution. 

One of the key process modules within WaSiM is the unsaturated zone model, which plays a crucial role in calculating 220 

various hydrological variables such as surface runoff, groundwater recharge, interflow, and baseflow. Interflow refers to 

water moving laterally through the upper soil layers, contributing to streamflow, while baseflow is the portion of streamflow 

sustained by groundwater flow. These variables are essential for understanding the water balance and hydrological dynamics 

within the study area. Table 3 provides an overview of the hydrological model configuration used in this study. 

Table 3. Overview of WaSiM characteristics and sub-models used in this study. 225 

Sub-model Method Reference 

Meteorological interpolation Inverse distance interpolation (Shepard, 1968) 

Potential evapotranspiration Hamon approach (Hamon, 1963) 

Actual evapotranspiration Richards equation using the Van Genuchten parameters 

(Richards, 1931; van 

Genuchten, 1980) 

Snow melt Temperature-index approach (Hock, 2003) 

Interception Classic bucket approach dependent on LAI - 

Lake modelling 

Integrated approach to model natural and artificial lakes, 

considering interactions with unsaturated zone, routing, 

snow, evaporation, interception, and groundwater 

models. 

- 

Unsaturated zone flow Richards equation using the Van Genuchten parameters 

(Richards, 1931; van 

Genuchten, 1980) 

Groundwater flow Integrated two-dimensional groundwater model - 

Routing Kinematic wave approach 

(Lighthill and 

Whitham, 1955) 

 

Meteorological data interpolation was an essential step in the hydrological modeling process. The chosen hydrological 

model, WaSiM, performed the interpolation of daily precipitation and temperature inputs between ERA5 points. For each 

simulation, the model creates grids that incorporate the interpolated meteorological values at the model's spatial resolution, 

effectively representing the climatic conditions for each individual pixel. The inverse distance weighting method was used as 230 

recommended by WaSiM model description report (Schulla, 2021).  

2.3.2 Calibration parameters 

Calibration of WaSiM involved the optimization of 17 parameters, selected in accordance with WaSiM documentation 

(Schulla, 2021), while the remaining parameters in the control file were set to their default values. Table 4 provides a 
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detailed description of upper and lower limits set for calibrating the 17 parameters in WaSiM, with each parameter adjusted 235 

to two decimal places within the specified calibration range. 

Table 4. Description of the parameters used for the calibration of WaSiM. 

No. Code Description Unit Sub-Model Range 

1 kD Storage coefficient for surface runoff h Unsaturated zone [1, 25] 

2 kH Storage coefficient for interflow h Unsaturated zone [1, 25] 

3 dr Drainage density for interflow m-1 Unsaturated zone [1, 50] 

4 QDSnow Fraction of surface runoff on snow melt - Unsaturated zone [0.1, 1] 

5 c0 Degree-Day factor mm°C-1 d-1 Snow [0, 3] 

6 T0 Temperature limit for snow melt °C Snow [-4, 4] 

7 TR/S Transition temperature snow/rain °C Snow [-4, 4] 

8 CWH Water storage capacity of snow - Snow [0.1, 0.3] 

9 Crfr Coefficient for refreezing - Snow [0.1, 1] 

10 fi,summer Summer correction factors for ETP - Evapotranspiration [0.1, 2] 

11 fi,fall Fall correction factors for ETP - Evapotranspiration [0.1, 2] 

12 fi,winter Winter correction factors for ETP - Evapotranspiration [0.1, 2] 

13 fi,spring Spring correction factors for ETP - Evapotranspiration [0.1, 2] 

14 Krec 
Recession constant for hydraulic 

conductivity 
- Soil table [0.1, 0.99] 

15 dz
a Soil layer thickness - Soil table [0.8, 1.4] 

16A KB Storage coefficient for base flow m Unsaturated zone [0.1, 8] 

17A Q0 Scaling factor for base flow mm h-1 Unsaturated zone [0.1, 5] 

16B Kolb Colmation of the river links - Input grid [1, 100] 

17B KXY
c 

Saturated horizontal conductivity (x-y-

direction) 
m s-1 Input grid [0.2, 4] 

a Calibration coefficient, ranging from 0.8 to 1.4, is applied to adjust the total soil depth, which is predetermined to be 8 meters for shallow, 14 

meters for normal, and 20 meters for deep soil conditions. 

b Calibration coefficient, ranging from 0.8 to 1.4, is applied to adjust the colmation grid, which is predetermined to be 1x10 -6.  

c A calibration coefficient, ranging from 0.2 to 4, is applied to adjust the saturated horizontal conductivity grid, which is predetermined to be 4x10-5 

m s-1. 

 

For each model configuration (BL, GW, GW-RC), the full set of 17 parameters was recalibrated independently within the 

specified ranges. In the BL configuration, where the groundwater model is not activated and groundwater flow is computed 240 

using a conceptual approach within the unsaturated zone sub-model, parameters 16A (KB) and 17A (Q0) were the ones 

calibrated for baseflow representation, as these parameters are only relevant when the conceptual groundwater scheme is 

used. Groundwater flow is assessed using Eq. (1) (Schulla, 2021), which calculates baseflow as a function of several 

parameters including the scaling factor for baseflow (Q0) and the recession constant for baseflow (KB).  
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𝑄𝐵 = 𝑄0 ∗ 𝐾𝑠 ∗ 𝑒(ℎ𝐺𝑊−ℎ𝑔𝑒𝑜,0)/𝐾𝐵 ,             (1) 245 

where 𝑄𝐵 is baseflow (m s-1), 𝑄0 is a scaling factor for baseflow, 𝐾𝑠 is the saturated hydraulic conductivity (m s-1), ℎ𝐺𝑊 is 

the groundwater table height (m), ℎ𝑔𝑒𝑜,0 is the geodetic altitude of the soil surface (m) and 𝐾𝐵 is the recession constant for 

baseflow (m).  

In the configurations used in GW and GW-RC, which activate groundwater model, parameters 16A and 17A are replaced by 

parameters 16B and 17B to obtain a more physically based representation of groundwater processes. Parameters 16B and 17B 250 

adjust values associated to two input grids that allow to account for the colmation of the river links and saturated horizontal 

conductivity. This distinction ensures a consistent number of calibrated parameters across all configurations, facilitating an 

unbiased comparison of model performance. 

2.3.3 Model optimization 

Parameters optimization was performed independently for each catchment through the dynamically dimensioned search 255 

algorithm (DDS; (Tolson and Shoemaker, 2007)), following the recommendation of Arsenault et al. (2014). This algorithm 

is specifically designed for efficiently calibrating complex hydrological models with a large parameter range given a finite 

computing budget. During optimization, it dynamically adapts its search strategy based on the number of evaluations 

performed and performance metrics. To manage computational demands effectively while ensuring thorough exploration of 

the parameter space, a two-phase calibration strategy was employed, albeit the approaches differ for the constrained 260 

groundwater configurations.  

Initially, 1000 simulations were performed for each catchment at a broader spatial resolution (1000 meters) using a broader 

range of values for each parameter (Table 4). This phase aimed to identify an approximation of the optimal values for each 

parameter. Subsequently, these values were used to initialize the second calibration step at a finer spatial resolution (250 

meters). This two-step approach was chosen based on preliminary testing on the Bonaventure and Matane catchments, which 265 

demonstrated that transferring optimized parameters from 1000 m resolution to 250 m required only minor refinements. 

Additional tests showed that increasing the number of simulations at 250 m resolution beyond 50 runs (e.g., 75 or 100) 

provided negligible improvements in model performance, making further computational expense unjustified. This sequential 

calibration strategy allows to refine the model's performance progressively. By first identifying a set of parameters that 

achieves reasonable model performance at a coarser scale, we then fine-tune the model at a higher resolution to enhance the 270 

spatial distribution of hydrological simulations.  

The objective functions used vary by configuration: For BL and GW, the objective is to optimize the Kling-Gupta Efficiency 

(KGE, (Kling et al., 2012)), as discussed in Sect. 2.5.1. Conversely, the GW-RC configuration employs a modified objective 

function that seeks to optimize KGE and constrain groundwater recharge rates and variability. This approach is described in 

Sect. 2.4.3 and Sect. 2.5.2. 275 

The study employed split-sample test (SST) framework for the parameter optimization assessment. This widely used 

approach involves dividing the available data into two sets: one for calibrating the model and the other for validating its 
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performance on unseen time periods. The calibration period (2000-2009) and the validation period (1990-1999) were chosen 

based on the availability of comprehensive and reliable hydrological data. To minimize the impact of missing streamflow 

data, calibration and validation years were selected to ensure that most catchments had complete records. However, data 280 

gaps were noted for three catchments: Croche, Petit Saguenay, and Sainte-Marguerite Nord-Est. Specifically, Croche lacked 

data from 2001 to 2004, Petit Saguenay from 2000 to 2010, and Sainte-Marguerite Nord-Est from 1998 to 2010. To 

accommodate these gaps, adjustments were made to the calibration and validation periods for the affected catchments. The 

calibration periods were shortened to later years: 1995 to 1999 for Croche and Petit Saguenay, and 1992 to 1996 for Sainte-

Marguerite Nord-Est. Correspondingly, the validation periods were adjusted to precede the missing data: 1991 to 1994 for 285 

Croche, 1986 to 1994 for Petit Saguenay, and 1986 to 1991 for Sainte-Marguerite Nord-Est. A five-year spin-up period was 

performed before each simulation to allow the model to reach a stable state, eliminating the influence of unstable initial 

conditions on the model's performance metrics. 

2.4 Model configurations 

The primary objective of this research is to examine how different model configurations influence the representation of 290 

hydrological processes. To ensure a consistent comparison of model configuration and calibration, we designed a modelling 

framework that allow to compare three configurations that incrementally incorporate more complex hydrological variables.  

2.4.1 Baseline  

The first configuration (BL), serving as baseline configuration, employs the standard calibration of the model without 

activating the groundwater module. This configuration is aligned with the traditional application of WaSiM, where the focus 295 

is predominantly on streamflow, and groundwater flow is modeled using Eq. (1) within the unsaturated zone sub-model. This 

configuration is comparable to what has been frequently adopted in numerous studies, providing a common basis for 

comparative analysis (Rössler et al., 2012; Förster et al., 2018; Markhali et al., 2022; Valencia Giraldo et al., 2023). 

2.4.2 Physical groundwater module 

The second configuration, GW (physical groundwater), marks a departure from the BL configuration by activating WaSiM's 300 

groundwater module. This adjustment allows for groundwater flow to be simulated within a designated sub-model, 

transitioning from a conceptual to a more physically based representation. In WaSiM, the groundwater model is coupled bi-

directionally with the unsaturated zone, ensuring a dynamic exchange of water fluxes. The unsaturated zone module 

calculates fluxes between the unsaturated zone and the groundwater that act as the upper boundary condition for the 

groundwater model, while the groundwater module simulates lateral flow and adjusts the groundwater table, feeding back 305 

changes to the unsaturated zone as inflow or outflow. This configuration, used in numerous studies (Bormann and Elfert, 

2010; Natkhin et al., 2012; Gädeke et al., 2014; Schäfer et al., 2023), is recommended by the WaSiM documentation for 
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catchments where groundwater dynamics play a pivotal role in the hydrological cycle, particularly in lowland areas with 

extensive sediment layers. 

2.4.3 Physical groundwater module and constrained recharge   310 

For configuration GW-RC (physical groundwater and constrained recharge), we incorporate groundwater recharge into the 

calibration process to achieve a better representation of hydrological variables such as baseflow, interflow, and runoff. 

Importantly, GW-RC uses the same model structure as GW, with the goal of isolating the effect of adding groundwater 

recharge in calibration. By introducing recharge into the calibration, we restrict hyperplane exploration and ensure that the 

model's representation of the hydrological cycle is more accurately simulating groundwater recharge dynamics. This is 315 

particularly useful if model hydrological variables are an important input to another analysis or process, such as for better 

understanding groundwater movement and evolution under climate change for certain types of vegetation, for example.  

GW-RC calibration was performed in two phases. First, we defined new parameter ranges for variables affecting baseflow 

(dr, QDSnow, Krec, Kol, Kxy). We first conducted 200 evaluations at a spatial resolution of 1000 meters, followed by 50 

evaluations at 250 meters using the objective function presented in Eq. (2). Essentially, the aim here is to constrain the 320 

parameter set to a single value that performs well overall and provides realistic internal variables. Similar approaches have 

been used in studies such as Duethmann et al. (2024), which underscores the benefits of integrating Landsat-derived land 

surface temperature (Ts) data into model calibration. Landsat, a series of Earth-observing satellites, provides crucial Ts data 

used in this study. By including satellite-derived Ts, the study demonstrated improvements in the model's ability to capture 

spatial anomalies and ecosystem stress responses, while maintaining streamflow accuracy, illustrating the advantages of 325 

multi-variable constraints in model calibration. 

Following pre-calibration at both spatial resolutions, the resulting calibrated parameter sets were analyzed to define new 

parameter ranges for the calibration phase. This analysis involved adjusting the minimum and maximum values of 

parameters influencing baseflow (dr, QDSnow, Krec, Kol, Kxy) by ±10% to establish new calibration ranges. 

In the second and most important calibration phase, the process continued with the adjusted parameter ranges, employing a 330 

less restrictive objective function (Eq. (3)) to better accommodate uncertainties in the recharge data. This phase involved a 

comprehensive series of 1000 evaluations at 1000 meters and 50 at 250 meters resolutions. The modified objective function 

primarily emphasized the KGE while incorporating the standard deviation of recharge at a reduced influence of 4%. This 

modification was crucial to allow the model flexibility to adapt the groundwater recharge rate according to the specific 

hydrological characteristics and precipitation patterns of each catchment. Given that the initial recharge rate of 250 mm yr-1 335 

was a preliminary estimate and not necessarily reflective of individual catchment conditions, this approach enabled a more 

tailored calibration.  

A key justification for not applying the same constrained parameter range across all configurations is that BL and GW do not 

incorporate recharge in calibration. Their parameters optimization is based solely on streamflow, whereas GW-RC explicitly 

integrates recharge to constrain the parameters range. 340 
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Table 5 shows an overview of the three methods to ease comparisons between configurations. 

Table 5. Summary of configurations 

Settings BL GW GW-RC 

Groundwater 

Modelling 

Conceptual within unsaturated zone 

sub-model 

Physically based within the 

groundwater sub-model 

Physically based within the 

groundwater sub-model 

Calibration 

Parameters 

17 parameters (including KB and 

Q0) 

17 parameters (including Kol and 

KXY) 

17 parameters (including Kol and 

KXY) 

Precalibration N/A N/A 

200 simulations at 1000 meters 

followed by 50 simulations at 250 

meters 

Calibration 

1000 simulations at 1000 meters 

followed by 50 simulations at 250 

meters 

1000 simulations at 1000 meters 

followed by 50 simulations at 250 

meters 

1000 simulations at 1000 meters 

followed by 50 simulations at 250 

meters 

Objective 

function 
Kling-Gupta efficiency Kling-Gupta efficiency Constrained Kling-Gupta efficiency 

Computational 

demand 
10 CPU-year at 4.5 GHz 10 CPU-year at 4.5 GHz 15 CPU-year at 4.5 GHz 

CPU-year : A CPU-year is the effort of a CPU running for one year. 

2.5 Performance assessments 

The KGE (Kling et al., 2012) was chosen as the objective function to assess the model's performance during the calibration 345 

process of configurations BL and GW.  

An arbitrary baseline groundwater recharge rate of 250 mm yr-1 and a standard deviation of 80 mm yr-1 have been 

established as representative benchmarks for the studied catchments. These values are based on PACES data and additional 

studies conducted in Quebec, as described in Sect. 2.2.5. The objective function for the pre-calibration of configuration GW-

RC, outlined in Eq. (2), aims to balance KGE with these established recharge metrics. Specifically, the function assigns a 350 

weight of 70% to KGE, 20% to the annual recharge standard deviation, and 10% to the mean annual recharge. This specific 

weighting was determined based on preliminary testing conducted on two test catchments, where various weight 

combinations were evaluated. The selected weights provided the best trade-off, ensuring that recharge estimates remained 

realistic while maintaining strong KGE values for streamflow. In particular, assigning 20% to the recharge standard 

deviation and 10% to the mean annual recharge allowed the model to better capture recharge variability without 355 

compromising overall streamflow performance. This objective function was designed to ensure both the quantity and 

variability of recharge were realistically modeled without sacrificing performance in terms of overall streamflow quality 

through the KGE.  

The objective function employed in the pre-calibration of GW-RC configuration is formulated as follows:  

𝑃𝑟𝑒𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 1 − (0.7 ∗ 𝐾𝐺𝐸 + 0.2 ∗ ⌈𝜎𝑟𝑠𝑖𝑚
− 0.08⌉ + 0.1 ∗ ⌈𝑟𝑠𝑖𝑚̅̅ ̅̅ ̅ − 0.25⌉),   (2) 360 
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where 𝜎𝑟𝑠𝑖𝑚
 is the simulated annual recharge standard deviation (m yr-1), 𝑟𝑠𝑖𝑚̅̅ ̅̅ ̅  is the simulated mean annual recharge (m yr-1) 

and 𝐾𝐺𝐸 is the Kling-Gupta efficiency.  

Groundwater recharge simulations were performed at the pixel level, ensuring detailed local representation. The simulated 

mean annual recharge reflects the average amount of recharge occurring annually across the entire catchment during the 

calibration period. Similarly, the simulated annual standard deviation quantifies the variability in annual recharge across all 365 

pixels within the catchment during the same period. Introducing pixel level standard deviation helps in curbing extreme 

values in groundwater recharge, thus stabilizing the simulation outputs. The mean annual recharge is employed to verify that 

the model accurately captures the overall recharge volume expected for the study area. 

For the main calibration phase of the GW-RC configuration, the objective function is simplified to focus more intensively on 

streamflow accuracy: 370 

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 1 − (0.96 ∗ 𝐾𝐺𝐸 + 0.04 ∗ ⌈𝜎𝑟𝑠𝑖𝑚
− 0.08⌉),      (3) 

where 𝜎𝑟𝑠𝑖𝑚
 is the annual recharge standard deviation (m yr-1) and 𝐾𝐺𝐸 is the Kling-Gupta efficiency. 

2.6 Statistical analysis 

To assess the performance of the hydrological model configurations, statistical analyses were conducted to compare 

calibration and validation performance across different configurations. The primary metric used was the KGE, which 375 

evaluates the accuracy of simulated streamflow against observed data. The performance metrics were analyzed for each 

configuration during both the calibration period (2000-2009) and validation period (1990-1999), ensuring robust evaluation 

across varying hydrological conditions. 

All statistical comparisons were made using the Kruskal-Wallis test, a non-parametric method chosen due to its suitability 

for non-normally distributed data. This test was employed to detect significant differences in the performance and 380 

hydrological responses between the model configurations. Where significant differences were identified, multiple 

comparison post-hoc tests were conducted to ascertain the specific pairs of configurations that differed significantly. 

Pearson’s correlation coefficients were used to explore the influence of calibration parameters on hydrological variables. 

This statistical approach provided insights into how variations in parameter settings across different configurations could 

affect the representation of hydrological processes like surface runoff, interflow, and groundwater recharge. 385 

3 Results 

3.1 Calibration and validation performance 

Throughout the calibration (2000-2009) and validation (1990-1999) periods, all configurations yielded KGE values above 

0.5. Calibration and validation performances were very similar, with a deviation less than 5%, demonstrating the robustness 
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of the simulations. KGE values for all catchments and configurations, for both the calibration and validation periods, are 390 

presented in Table A1.  

Figure 2 reveals a clear trend where catchments with high KGE values during calibration tend to maintain similar 

performance during validation. This consistency underpins the robustness of the configurations across different validation 

periods. During the validation period, median KGE values were higher for configurations BL (0.824) and GW (0.830) 

compared to GW-RC (0.770), demonstrating superior performance in the models without groundwater recharge constraints. 395 

However, GW-RC demonstrates more consistent KGE values between calibration and validation, suggesting it may offer 

more stability in model performance despite its slightly lower KGE scores. 

 

Figure 2. Comparison of Kling-Gupta Efficiency values between calibration and validation periods for three configurations. Each 

point represents a catchment, color-coded by configuration: Configuration BL (blue), Configuration GW (green), and 400 

Configuration GW-RC (red). The line represents a one-to-one relationship where calibration and validation KGE values are 

equal. Points below the line indicate better performance in the validation phase compared to calibration, while those above the line 

show a decline in performance from calibration to validation. 

It is important to note that the KGE values for configuration GW-RC are slightly lower than those from configurations BL 

and GW, which is expected given the supplementary constraints imposed during calibration. 405 

3.2 Hydrological variables analysis 

This section delves into the simulated hydrological variables, examining their range and distribution across the various 

model configurations during the calibration and validation periods. The variables in focus include surface runoff, baseflow, 

interflow, groundwater recharge, and actual evapotranspiration (ETa). 
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Figure 3 illustrates the annual totals (means for groundwater level and soil moisture) for simulated hydrological variables for 410 

both calibration and validation periods and for all catchments. Notably, there is a consistency in the distribution of 

hydrological variables of each model configuration between the calibration and validation periods. This allows us to focus 

our detailed analysis solely on the validation period for conciseness. 

A comparative assessment reveals distinct patterns in the simulated hydrological variables among the configurations. 

Specifically, configuration GW-RC simulates higher surface runoff and lower interflow, and infiltration compared to 415 

configurations BL and GW. Conversely, configuration BL is characterized by higher actual evapotranspiration, lower 

groundwater recharge, and a higher groundwater level. Configuration GW shares similarities with both configuration BL (in 

terms of runoff, interflow, and infiltration) and configuration GW-RC (regarding baseflow, groundwater recharge, actual 

evapotranspiration, and groundwater level).  
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 420 

Figure 3. Boxplots illustrating annual totals (means for groundwater level and soil moisture) variability of model internal 

variables. These boxplots detail the variability of key hydrological variables modeled with the different configurations, for 

calibration and validation periods and for all catchments. 

Figure 4 presents the proportional distribution of surface runoff, baseflow, interflow, and actual evapotranspiration for the 

three hydrological model configurations (BL, GW, and GW-RC). The charts effectively compare the relative contribution of 425 

each process to the total water cycle within the modeled catchments.  

The figure highlights that configuration GW-RC simulates a notably higher proportion of surface runoff (21%) and baseflow 

(17%) with a lower proportion of interflow (20%). Conversely, configuration BL has a higher proportion of actual 

evapotranspiration (47%) and less baseflow (11%). Finally, configuration GW has similarities with both BL (surface runoff 
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and interflow) and GW-RC (baseflow and actual evapotranspiration) configurations. The factors influencing the differences 430 

between configurations are further analyzed in the discussion section. 

 

Figure 4. Proportional distributions of key hydrological variables for the BL, GW and GW-RC hydrological model configurations 

for the validation period (1990-1999). 

Table 6 shows that the observed similarities in surface runoff and interflow between configurations BL and GW are 435 

substantiated by statistical significance in their mean groupings. Furthermore, the parallels drawn between configurations 

GW and GW-RC in terms of actual evapotranspiration and groundwater recharge are also supported by significant statistical 

evidence. However, the apparent similarity in baseflow between configurations GW and GW-RC does not hold statistical 

significance. This outcome is expected, as both GW and GW-RC employ the same groundwater module, with GW-RC 

differing only in its calibration approach. The observed variations in baseflow arise from the inclusion of recharge 440 

constraints in GW-RC. More broadly, the significant contrast in baseflow between BL and the other two configurations 

suggests that the choice of model configuration plays a primary role in determining baseflow dynamics rather than the 

specific calibration strategy applied. 
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Table 6. Statistical analysis of the differences in estimated hydrological variables from the three configurations BL, GW and GW-445 

RC. 

Hydrological Variables 
BL vs. 

GW 

BL vs. 

GW-RC 

GW vs. 

GW-RC 

Surface runoff 0 1 1 

Baseflow 1 1 1 

Interflow 0 1 1 

Actual evapotranspiration 1 1 0 

Groundwater recharge 1 1 0 

(Not Different = 0; Different = 1) 

 

Figure 5 illustrates the annual totals distribution of key hydrological variables (surface runoff, baseflow, interflow, actual 

evapotranspiration, groundwater recharge, and precipitation) across 34 catchments for each model configuration (BL, GW, 

and GW-RC). The figure provides a comprehensive comparison of how each configuration partitions the water balance 450 

components for each catchment. Consistent trends in hydrological responses are observed across the catchments for each 

model configuration. For instance, configuration GW-RC shows higher surface runoff and baseflow, with lower interflow 

values compared to the other configurations indicating that calibration strategies and model complexity influence the 

distribution of water fluxes. In contrast, configuration BL consistently reports higher actual evapotranspiration (ETa) and 

lower groundwater recharge. Statistical comparisons indicated that baseflow, surface runoff and interflow dynamics of GW-455 

RC configuration are significantly different compared to BL and GW configurations (Table 6). 
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Figure 5. Boxplots of annual values for key hydrological variables predicted by WaSiM for the 34 catchments and three 

configurations for the validation period (1990-1999). 
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3.3 In-depth analysis of the Matane catchment 460 

This section explores the temporal dynamics of streamflow and hydrological variables in the Matane catchment, which was 

selected as a representative example from the study’s catchments. Figure 6 reveals consistent patterns in hydrological 

variable behavior across all configurations during both the calibration and validation periods. Consequently, the following 

discussions will focus primarily on the validation period. Generally, interflow is the major contributor to simulated 

streamflow in configurations BL and GW throughout the year. In contrast, configuration GW-RC is characterized by a 465 

significant increase in surface runoff during the seasonal high flow and high precipitation periods in the fall, while 

predominantly exhibiting interflow contributions during other times of the year. 

Configuration GW-RC is also marked by higher levels of surface runoff and baseflow, but lower interflow compared to the 

other configurations. Configuration BL is distinguished by having the highest levels of annual actual evapotranspiration. 

Configuration GW aligns closely with configuration BL in terms of interflow, surface runoff, and baseflow, demonstrating 470 

similar hydrological dynamics between these two configurations. 
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Figure 6. Detailed hydrological variable hydrograph for Matane catchment during both the calibration and validation phases and 

for the three configurations. Calibration results are shown in panels (a), (c), and (e) for Configurations BL, GW, and GW-RC, 

respectively, while validation results are depicted in panels (b), (d), and (f). These hydrographs demonstrate how baseflow, 475 

interflow and runoff contribute to total streamflow throughout the year, with noted annual totals provided for a comprehensive 

comparison. 

Figure 7 reveals seasonal variations that correlate with hydrological responses to climatic conditions. Surface runoff and 

interflow differ significantly during periods of high flow, typically driven by snowmelt. Configurations BL and GW 

primarily attribute high flows to interflow, whereas configuration GW-RC reflects these peaks with increased surface runoff. 480 

Groundwater recharge in configuration BL exhibits more pronounced seasonal fluctuations compared to the patterns 

observed in configurations GW and GW-RC. Similarly, configuration BL maintains a consistent baseflow year-round, unlike 

configurations GW and GW-RC, which show seasonal baseflow variations. In terms of actual evapotranspiration, 



25 

 

configuration BL consistently exhibits higher rates in the spring and fall, GW peaks during the summer, and GW-RC 

displays a pattern that blends characteristics of both BL and GW across different seasons. 485 

Figure 7 panel C illustrates the daily groundwater recharge in the Matane catchment for each configuration. A common 

seasonal pattern is evident across all configurations: recharge decreases in winter, rises significantly during snowmelt, and 

then exhibits marked variability throughout summer and autumn. Notably, configuration GW-RC shows a lower dynamic 

range during snowmelt compared to configurations BL and GW, which exhibit more pronounced peaks. Throughout the 

winter, summer, and autumn months, configuration GW-RC consistently shows higher recharge rates than the other 490 

configurations. The trends observed in the Matane catchment are also representative of the behaviors seen across all studied 

catchments. 

 

Figure 7. Seasonal distribution of hydrological variables in the Matane catchment for the validation period (1990-1999). This 

figure visualizes the annual distribution of key hydrological variables across the three configurations throughout the year. 495 
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4 Discussion 

4.1 Performance against representation 

This study aimed to analyze how varying model configurations affect the representation of hydrological variables estimated 

by WaSiM. Through the comparative analysis of three distinct calibration configurations, BL (baseline model), GW 

(activated groundwater simulation), and GW-RC (groundwater simulation and recharge calibration), this study provides 500 

insights into how internal hydrological processes are represented in a physically based model. 

KGE values were consistently higher for the BL and GW configurations compared to GW-RC during both calibration and 

validation periods. Configuration GW-RC’s modestly lower performance on KGE is reflective of its calibration not solely 

focusing on optimizing KGE but also in incorporating a broader suite of hydrological dynamics. 

This finding aligns with prior research, which suggests that adding constraints to model parameters can often improve the 505 

representation of other hydrological processes, such as groundwater dynamics and soil moisture, albeit at the cost of lower 

validation performance. For instance, Yassin et al. (2017) emphasized that incorporating additional data, such as from the 

Gravity Recovery and Climate Experiment (GRACE), can lead to more comprehensive and physically realistic model. 

Similarly, Dembélé et al. (2020) showed that incorporating spatial patterns from satellite data significantly improve the 

model’s representation of soil moisture and evapotranspiration. Similarly, Bouaziz et al. (2021) found substantial disparities 510 

in internal process representation among models calibrated to the same streamflow data, highlighting the limitations of 

relying solely on discharge data for model validation. Lastly, Pool et al. (2024) demonstrated that incorporating variables 

such as actual evapotranspiration and total water storage alongside discharge in model calibration can significantly enhance 

the simulation accuracy for these variables. 

4.2 Hydrological variables analysis 515 

Regarding the distribution of hydrological variables, configuration BL demonstrated the highest actual evapotranspiration 

rates, alongside the lowest groundwater recharge and baseflow. Conversely, GW-RC was noted for the highest surface 

runoff and the lowest interflow. Configuration GW exhibited characteristics that were intermediate between the other two 

configurations. It resembled BL in terms of interflow and surface runoff but aligned more closely with GW-RC for 

groundwater recharge, actual evapotranspiration, and baseflow. 520 

As shown in Figure C1, baseflow is closely correlated (r = -0.875) with the drainage density parameter (scaling parameter 

for interflow) for configurations GW and GW-RC. The constrained parameter range in configuration GW-RC explains the 

minor differences in baseflow rates observed between these configurations. In contrast, the baseflow in configuration BL is 

significantly correlated (r = 0.715) with the scaling factor for baseflow. The differences in groundwater recharge and 

baseflow across the configurations can be primarily attributed to the activation of the groundwater flow sub-model. In 525 

WaSiM, the simulation of groundwater processes can either follow a more conceptual or physically based pathway. Our 
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results indicated that GW and GW-RC, which incorporate more complex mechanisms between groundwater and surface 

processes, lead to more dynamic and possibly more accurate representations of baseflow and recharge dynamics. 

The disparities in interflow for configuration GW-RC are primarily due to the restricted calibration of the drainage density 

parameter. A strong correlation (r = 0.801) between interflow rates and the parameter value highlights how constraining 530 

groundwater recharge during calibration can influence other hydrological variables, such as interflow. Variations in surface 

runoff for configuration GW-RC are linked to calibration restrictions on the 'QDsnow' parameter, which represents the 

fraction of surface runoff from snowmelt. A strong correlation (r = 0.899) between this parameter and surface runoff rates 

indicates that it has a significant influence on this hydrological variable. Also, configuration GW-RC showed the highest 

value for 'QDsnow' parameter and the lowest value for the drainage density parameter consequently leading to the highest 535 

surface runoff and lowest interflow rates. This observation indicates that interflow is a flexible variable within the model, 

with configurations BL and GW appearing to prioritize it over surface runoff and baseflow. This prioritization allows the 

optimization algorithm greater latitude to enhance performance metrics like KGE and more accurately reproduce observed 

streamflow patterns. Conversely, configuration GW-RC, constrained by groundwater recharge, tends to prioritize baseflow 

and surface runoff. While this approach may reduce the model’s flexibility in mirroring observed streamflow, it enhances the 540 

precision with which other hydrological processes are represented as detailed in Sect. 4.3.  The same trend was found for the 

Matane catchment, underlining the broader applicability of these findings across different geographical contexts. Such a 

representation offers essential information that can be pivotal for water management strategies. 

Moreover, configuration GW-RC also exhibited lower values of kh (storage coefficient for interflow), higher values of Krec 

(recession constant for hydraulic conductivity), lower correction factors for PET in summer, and higher correction factors for 545 

PET in winter compared to the other two configurations. These differences indicate that adding groundwater recharge 

constraints during calibration can influence parameter values in sub-models that are seemingly unrelated to groundwater 

processes, such as evapotranspiration. This suggests that the recharge constraint propagates through the model structure, 

affecting multiple hydrological components. A complete list of calibrated parameter values for each catchment and 

configuration is provided in Appendix D. 550 

4.3 Pinpointing the optimal model configuration  

The differences in surface runoff during the snowmelt season across configurations can be largely attributed to the parameter 

QDsnow. WaSiM employs a singular parameter (QDsnow) to account for surface runoff from snowmelt. This parameter is 

calibrated between 0 and 1, and its precise setting critically influences the model's surface runoff predictions.  

Analysis of Fig. 6 reveals that configurations BL and GW exhibit lower surface runoff from snowmelt, where melted snow 555 

predominantly percolates into the soil, contributing to interflow rather than surface runoff. This behavior is unexpected 

because, in fully frozen soil conditions, significant surface runoff is typically anticipated due to reduced infiltration. 

Conversely, configuration GW-RC, which integrates groundwater recharge into the calibration process, follows a more 

typical hydrological pattern. Higher surface runoff is observed at the onset of snowmelt, gradually decreasing as infiltration 
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and interflow increase when the soil thaws. This progression aligns with the expected hydrological responses in frozen 560 

terrains, illustrating how the inclusion of groundwater recharge can improve the model's simulation of seasonal transitions. 

This trend of higher surface runoff during snowmelt was observed consistently across all catchments in the study, with 

detailed figures provided in the supplementary material (Fig. S1 to Fig. S32). Configuration GW-RC showed increased 

surface runoff during the snowmelt period compared to the other configurations. However, for 11 out of the 34 catchments, 

the surface runoff results were notably elevated. Figure B1 illustrates an example where nearly all of the spring discharge 565 

was attributed to surface runoff, suggesting that the value assigned to the QDsnow parameter, when set too close to 1, may 

lead to an overestimation of runoff. Careful calibration of this parameter is essential to avoid misrepresentations in the 

hydrological processes. 

The analysis of groundwater recharge, as detailed in Sect. 3.4, reveals significant differences in seasonal dynamics and 

spatial distribution among the configurations. Notably, GW-RC displays less dynamic recharge rates during the snowmelt 570 

period compared to configurations BL and GW. This is indicative of a distinct interplay between surface runoff and 

infiltration processes within configuration GW-RC, where higher surface runoff during the spring results in reduced 

infiltration. Additionally, GW-RC exhibits higher recharge rates during summer, fall, and winter, with a peak in fall. 

The spatial analysis of groundwater recharge across the catchments revealed key differences between the model 

configurations. Configuration BL struggled to simulate recharge rates exceeding 250 mm yr⁻¹, despite such values being 575 

common in the study area. However, it performed well in catchments with low recharge values, consistently producing lower 

recharge estimates compared to GW and GW-RC. 

For configurations GW and GW-RC, groundwater recharge rates were influenced by catchment size and total precipitation. 

Larger catchments with higher precipitation exhibited greater recharge, while smaller, drier catchments showed lower 

recharge rates. This relationship indicates that these configurations better capture broad spatial trends in groundwater 580 

recharge compared to configuration BL, which showed less sensitivity to variations in precipitation and catchment size. 

Furthermore, GW and GW-RC displayed similar spatial patterns. Configuration GW exhibited the highest variability 

between catchments, whereas GW-RC produced estimates of average annual recharge that were more consistent with 

PACES data across most catchments. Future studies should further investigate how spatial characteristics of catchments 

affect the overall dynamics of hydrological variables in this context.  585 

Supporting these observations, Chemingui et al. (2015) found the average recharge rates across different seasons at three 

locations in the “des Anglais” catchment. The numbers retrieve in their work closely align with those simulated by the GW-

RC configuration: winter (58 vs 50 mm), spring (58 vs 54 mm), summer (92 vs 60 mm), and fall (52 vs 72 mm). 

Furthermore, Rivard et al. (2014) utilized the HELP infiltration model to simulate recharge for a catchment in Eastern 

Canada, reporting average recharge rates of 67 mm in winter, 62 mm in spring, 27 mm in summer, and 76 mm in fall. These 590 

findings align with our results from configuration GW-RC, which also show peak recharge occurring in fall rather than in 

spring, differentiating it from the other configurations. Configuration GW aligns less precisely with these specific seasonal 
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patterns, with a peak recharge in spring, but still outperforms BL in terms of matching the documented recharge rates from 

PACES. 

Recharge rates from GW-RC compare favorably with observed seasonal fluctuations in the literature. Overall, GW-RC's 595 

alignment with empirical data and its ability to simulate hydrological processes more accurately make it a preferable model 

configuration for studying and predicting hydrological dynamics under varied climatic conditions.  

In this study, the GW-RC configuration demonstrated that assigning a minor weight to recharge in the objective function can 

significantly enhance WaSiM’s capability to represent hydrological variables accurately, even with non-exact prior recharge 

data. This approach underscores, again, the potential of leveraging prior information to refine model outputs, suggesting that 600 

even a modest emphasis on recharge within the calibration framework can lead to substantial improvements in model 

realism. This finding is particularly noteworthy as it implies that effective model calibration does not necessarily require 

precise initial recharge estimates if the calibration process is appropriately managed. It also points to the broader 

applicability of using informed yet flexible calibration strategies to improve hydrological models under varied conditions, 

highlighting a path forward for enhancing model accuracy with limited prior data. 605 

4.4 Practical implications, general applicability and limitations 

This research has practical applications beyond hydrological modeling. Integrating groundwater recharge into model 

calibration, as demonstrated in the GW-RC configuration, offers a more comprehensive approach to representing key 

hydrological variables. This approach is particularly valuable for improving predictions of water resources under varying 

climate conditions, as it enhances the accuracy of inputs critical to models of forest growth (Ford et al., 2011; Grant et al., 610 

2013). As climate change continues to alter hydrological dynamics, the reliance on physically based models becomes crucial. 

These models are favored over conceptual ones or even machine learning based models because they can be adapted more 

readily to varying conditions, ensuring more robust predictions under climate change scenarios. For example, a strong recent 

trend is the use of deep learning architectures in hydrological modelling (Kratzert et al. 2018, 2019; Arsenault et al. 2023). 

These models simulate streamflow with generally better accuracy than traditional hydrological models, but they lack any 615 

mechanism to investigate internal and intermediate hydrological variables. Such adaptability is also critical for effective 

water resource management and mitigation of climate impacts (Wilby, 2005; Ludwig et al., 2009; Poulin et al., 2011). By 

improving the representation of hydrological processes, the GW-RC configuration may enhance the model’s ability to 

simulate hydrological responses under changing climatic conditions. This is especially important given the non-stationarity 

of climate, where historical hydrological relationships no longer hold under future conditions. In this context, calibrating 620 

models using physically meaningful constraints, such as groundwater recharge, may improve their ability to capture shifting 

hydrological patterns and enhance confidence in assessments of climate change impacts on hydrological variables. 

This research emphasizes the need to calibrate hydrological models using not only streamflow but also other variables such 

as groundwater recharge. This approach aligns with findings from other studies such as Yassin et al. (2017) and Dembélé et 

al. (2020), which advocate for multi-objective calibrations that enhance model reliability across different hydrological 625 



30 

 

variables. By integrating measurements from diverse sources such as satellite data and in-situ measurements, models can 

avoid the pitfalls of calibration based solely on streamflow, which might not capture the full spectrum of watershed 

dynamics. Bouaziz et al. (2021) further illustrate this point by showing that hydrological models calibrated solely on 

streamflow can produce differing results when validated against other hydrological variables. This highlights the risk of 

equifinality, where different parameter sets yield similar streamflow outputs but diverge for other hydrological processes. 630 

Without proper constraints, such as incorporating groundwater recharge into calibration, models may generate realistic 

streamflow simulations while misrepresenting key internal processes. This issue is evident in configurations BL and GW, 

which fail to accurately capture certain underlying hydrological dynamics. 

The methodology developed in this study has broad applicability beyond the specific context of Southern Québec. This 

approach can be valuable in a variety of geographic regions and hydrological settings, given similar contexts of equifinality 635 

(i.e. more processes and parameters than the data can support). Moreover, this multi-variable calibration method can enhance 

the accuracy of other distributed hydrological models by improving the representation of groundwater recharge related 

processes. Similar calibration techniques using remote-sensing data have been applied successfully in different settings, 

demonstrating that incorporating additional hydrological variables in calibration improves model performance.  

Nevertheless, it is crucial to address the limitations of this study. The models' performance in replicating hydrological 640 

processes like soil frost impacts and its implications on runoff and recharge remain unknown. Future studies would benefit 

from incorporating field measurements alongside a broader range of climatic and hydrological conditions. Expanding the 

research to include different geographic regions with similar soil and climate characteristics could significantly enhance the 

validation and applicability of the findings. 

Additionally, the selected catchments in this study range from 525 km² to 6,840 km², which may limit the generalizability of 645 

the findings to catchments outside this size range. Future research could investigate smaller or larger catchments to 

determine whether the observed trends and calibration impacts remain consistent across different watershed scales.  

Furthermore, the choice of objective function presents another limitation. This study primarily relied on the Kling-Gupta 

Efficiency (KGE) for streamflow calibration.  However, alternative metrics such as SPAtial EFficiency (SPAEF) (Koch et 

al., 2018) could enable a more comprehensive evaluation of multiple hydrological components when using distributed 650 

hydrological models. The lack of sufficient spatially distributed observations prevented the application of SPAEF in this 

study, but future research could explore its use, particularly in conjunction with remote sensing data to better assess the 

spatial coherence of hydrological variables. 

Moreover, the uncertainty inherent in modeling, especially with configurations that involve complex interactions of multiple 

variables, poses a continuous challenge. The study's reliance on specific data sets like PACES also introduces potential 655 

biases that could influence the generalizability of the findings. The two-step calibration adopted for GW-RC, necessitated by 

the absence of high-quality, spatially distributed recharge observations, limits the extent to which a fully direct comparison 

with GW can be achieved. Future work with access to such datasets could implement a single-step calibration using both 

streamflow and recharge, enabling a more controlled assessment of the effects of internal recharge constraints.  It's essential 
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for future research to explore these limitations, perhaps by expanding the range of observational data used for model 660 

validation. 

In terms of practical implementations and further research, continuing to refine the calibration of hydrological models to 

include diverse hydrological variables can enhance their utility in real-world applications. Such efforts will help in 

developing more accurate flood forecasting models, improving water resource management strategies, and crafting more 

effective climate adaptation measures for forest, agricultural and anthropogenic ecosystems. This study advances calibration 665 

techniques in hydrological modeling, but further work is needed to develop universally reliable models. 

5 Conclusion 

This study examined the nuances of hydrological modeling under different calibration settings using WaSiM model across 

34 catchments classified under climate zones Dfb and Dfc in Eastern North America. By implementing three distinct model 

configurations, BL (baseline model), GW (physical groundwater model), and GW-RC (physical groundwater and recharge 670 

calibration model), this research has demonstrated that incorporating groundwater recharge alongside streamflow during 

calibration process leads to a representation of hydrological processes that better aligns with expected system behavior. 

The results indicate that the GW-RC configuration, enhanced with groundwater recharge calibration, aligns more closely 

with estimated groundwater recharge rates, thereby providing a more precise representation of groundwater behaviour both 

spatially and seasonally. The study also underscores the importance of extending calibration beyond traditional streamflow 675 

metrics to include other hydrological variables like groundwater recharge. This approach helps to mitigate the risks of 

equifinality. 

Given the successful application of these methodologies within Eastern North American catchments, it presents an intriguing 

premise for their applicability to other geographical areas with similar hydrological contexts. Further research could explore 

how these calibration techniques perform under different hydrological conditions, potentially broadening our understanding 680 

of these relationships. 
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Appendix A 

Table A1. Kling-Gupta efficiency values across studied catchments during calibration and validation periods, for the three 

calibrations configurations. Each row corresponds to a specific catchment, identified by its basin number. 685 

Catchment Calibration  Validation 

Code Name BL GW GW-RC BL GW GW-RC 

1 Bonaventure 0.835 0.849 0.817 0.897 0.892 0.861 

2 York 0.847 0.872 0.815 0.843 0.889 0.814 

3 Dartmouth 0.888 0.882 0.842 0.899 0.907 0.828 

4 Matane 0.906 0.901 0.877 0.908 0.900 0.861 

5 Rimouski 0.920 0.905 0.870 0.831 0.812 0.827 

6 Des Trois-Pistoles 0.898 0.895 0.848 0.783 0.754 0.712 

7 Du Loup 0.872 0.852 0.800 0.795 0.749 0.696 

8 Ouelle 0.900 0.896 0.834 0.838 0.846 0.792 

9 Famine 0.826 0.814 0.754 0.794 0.798 0.745 

10 Bécancour 0.861 0.859 0.788 0.820 0.816 0.765 

11 Nicolet Sud-Ouest 0.828 0.810 0.771 0.801 0.770 0.746 

12 Nicolet 0.804 0.799 0.744 0.811 0.792 0.767 

13 Eaton 0.769 0.768 0.637 0.738 0.741 0.661 

14 Au Saumon 0.836 0.815 0.717 0.790 0.774 0.713 

15 Noire 0.823 0.813 0.723 0.767 0.770 0.694 

16 Rouge 0.830 0.842 0.798 0.838 0.829 0.844 

17 Gatineau 0.817 0.840 0.796 0.807 0.831 0.772 

18 Kinojévis 0.765 0.850 0.784 0.695 0.711 0.735 

19 Mattawin 0.852 0.814 0.740 0.799 0.758 0.751 

20 Croche 0.835 0.835 0.833 0.839 0.840 0.831 

21 Vermillon 0.835 0.853 0.747 0.808 0.809 0.733 

22 Batiscan 0.878 0.856 0.801 0.884 0.847 0.796 

23 Sainte-Anne 0.872 0.860 0.833 0.852 0.847 0.829 

24 Bras du Nord 0.853 0.864 0.856 0.859 0.863 0.869 

25 Ouareau 0.855 0.881 0.818 0.839 0.837 0.765 

26 L'Assomption 0.865 0.886 0.851 0.829 0.859 0.821 

27 De l'Achigan 0.869 0.851 0.829 0.700 0.720 0.701 

28 Du Loup 0.808 0.783 0.800 0.786 0.721 0.753 

29 Petit Saguenay 0.895 0.879 0.843 0.864 0.857 0.800 

30 Petite rivière Péribonca 0.833 0.876 0.775 0.819 0.839 0.742 

31 Métabetchouane 0.872 0.861 0.806 0.801 0.769 0.670 

32 Valin 0.880 0.882 0.826 0.842 0.888 0.793 

33 Sainte-Marguerite Nord-Est 0.872 0.854 0.810 0.854 0.833 0.772 

34 Godbout 0.857 0.864 0.799 0.838 0.861 0.777 
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Table A2. Multiple streamflow metrics values during calibration (2000-2009) and validation (1990-1999) periods, for the 

three configurations. 

Metric 
Calibration  Validation 

BL GW GW-RC BL GW GW-RC 

KGE 
µ 0.852 0.852 0.799 0.816 0.820 0.772 

σ 0.034 0.036 0.050 0.055 0.049 0.056 
        

Pearson Coefficient 
µ 0.855 0.855 0.804 0.844 0.845 0.797 

σ 0.034 0.036 0.050 0.040 0.039 0.049 
        

Bias ratio 
µ 0.998 0.990 0.985 1.030 1.024 1.018 

σ 0.021 0.024 0.023 0.054 0.052 0.050 
        

Variability ratio 
µ 0.996 1.005 1.020 1.022 1.028 1.055 

σ 0.023 0.013 0.027 0.083 0.075 0.079 
        

NSE 
µ 0.704 0.706 0.603 0.677 0.679 0.558 

σ 0.059 0.076 0.091 0.091 0.073 0.120 
        

RMSE 
µ 20.926 20.749 24.317 22.877 22.621 26.545 

σ 11.018 10.681 13.055 12.594 11.665 13.870 
        

Percent bias 
µ 0.155 0.074 1.263 -3.563 -2.760 -1.756 

σ 1.399 2.209 2.132 5.792 5.628 5.650 
        

MAE 
µ 11.364 11.198 13.287 12.444 12.045 14.432 

σ 6.621 6.259 8.106 7.966 7.043 8.638 

 

 690 
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Appendix B 

 

Figure B1. Detailed hydrological variable hydrograph for Godbout catchment during both the calibration and validation 

phases and for the three configurations. Calibration results are shown in panels (a), (c), and (e) for Configurations BL, GW, 

and GW-RC, respectively, while validation results are depicted in panels (b), (d), and (f). These hydrographs demonstrate 695 

how baseflow, interflow and runoff contribute to total streamflow throughout the year, with noted annual totals provided for 

a comprehensive comparison. 
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Appendix C 

 

Figure C1. Correlations between key hydrological variables and calibration parameters for three model configurations. 700 
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Appendix D 

 

Figure D1. Final calibrated parameter values for all catchments across each model configuration (BL, GW, GW-RC). 

A.

Code Name A B C A B C A B C A B C A B C A B C A B C A B C A B C

1 Bonaventure 24.7 24.7 25.0 25.0 24.8 24.5 38 46 19 0.1 0.1 0.4 1.8 2.2 2.6 0.5 0.1 0.9 -0.6 -0.1 0.4 0.3 0.5 0.0 0.1 0.1 0.1

2 York 25.0 24.8 24.7 24.1 24.3 14.9 38 18 5 0.1 0.1 0.8 1.2 1.8 1.4 0.6 0.4 0.3 -1.3 -0.2 0.3 1.3 0.2 1.6 0.1 0.1 0.1

3 Dartmouth 21.6 24.4 24.7 20.9 17.7 1.8 49 50 8 0.1 0.1 0.8 2.1 2.1 2.1 0.8 0.9 0.2 -0.3 -0.1 0.1 1.4 1.0 2.3 0.1 0.1 0.2

4 Matane 24.7 24.9 24.6 25.0 24.7 19.8 44 48 20 0.1 0.1 0.6 2.3 2.9 2.5 0.1 0.2 0.2 -0.1 0.6 0.6 1.8 0.7 1.1 0.1 0.1 0.1

5 Rimouski 24.8 24.9 24.6 24.9 25.0 23.8 43 17 4 0.2 0.3 0.4 1.5 1.9 2.1 0.2 0.2 0.9 -0.1 0.6 -0.3 0.3 -2.4 2.5 0.2 0.2 0.2

6 Des Trois-Pistoles 24.7 24.7 25.0 24.9 24.5 1.6 49 48 2 0.2 0.2 0.8 1.9 2.8 2.1 1.0 1.0 0.5 0.2 1.0 0.7 -3.1 -2.6 -2.3 0.3 0.2 0.2

7 Du Loup 24.7 23.4 24.9 24.3 24.1 16.8 41 8 4 0.1 0.2 0.6 2.0 2.6 1.9 0.2 0.2 0.9 -0.8 0.7 0.6 1.7 0.3 -2.6 0.2 0.3 0.3

8 Ouelle 24.7 24.9 24.6 24.6 23.6 3.5 40 50 19 0.1 0.1 0.6 2.3 2.5 2.3 0.1 0.1 1.0 -0.1 0.0 0.6 1.7 1.8 1.2 0.3 0.3 0.3

9 Famine 22.6 24.5 25.0 19.8 11.8 1.6 46 48 18 0.1 0.1 0.7 1.9 2.7 2.6 1.0 0.7 0.3 -1.1 -0.8 0.7 1.1 1.2 0.3 0.2 0.3 0.2

10 Bécancour 24.9 24.4 24.7 23.6 25.0 23.5 35 47 20 0.1 0.1 0.7 2.7 2.5 2.0 0.1 0.9 0.9 0.2 0.2 0.0 1.3 1.3 1.7 0.1 0.1 0.2

11 Nicolet Sud-Ouest 25.0 24.1 24.9 24.9 24.7 16.4 49 36 33 0.1 0.1 0.7 2.9 2.8 2.5 0.6 1.0 0.9 0.7 0.5 0.8 -3.0 -0.2 -2.9 0.1 0.2 0.2

12 Nicolet 24.9 24.7 24.8 22.8 19.1 5.0 25 45 28 0.1 0.2 1.0 3.0 2.0 1.7 0.9 0.9 1.0 0.7 -0.6 0.3 -2.9 0.2 0.0 0.1 0.2 0.2

13 Eaton 24.7 24.3 20.9 3.5 2.9 2.0 20 49 9 0.3 0.4 1.0 2.8 3.0 1.8 0.9 0.9 0.2 0.0 -0.1 -0.2 -3.6 -0.3 -3.8 0.1 0.2 0.1

14 Au Saumon 25.0 24.7 24.9 20.6 12.7 2.7 49 49 18 0.1 0.3 1.0 2.5 3.0 2.1 0.9 1.0 0.2 -0.8 0.0 0.1 1.7 -2.6 -1.5 0.1 0.1 0.1

15 Noire 25.0 24.5 24.9 13.8 14.9 2.5 27 45 21 0.1 0.3 1.0 2.1 3.0 2.2 0.8 0.8 1.0 -1.0 0.3 0.3 0.5 -1.2 0.4 0.3 0.3 0.2

16 Rouge 17.8 23.5 24.3 24.8 24.7 24.8 40 5 6 0.1 0.1 0.3 0.8 1.7 0.9 0.1 0.9 0.2 -2.3 -0.8 -3.2 0.1 0.7 1.9 0.1 0.2 0.3

17 Gatineau 24.1 22.6 24.9 12.7 24.3 24.8 19 5 6 0.3 0.3 0.6 0.9 1.7 0.9 0.3 0.2 0.7 -3.0 -0.1 0.0 3.1 -3.8 -1.9 0.3 0.3 0.2

18 Kinojévis 24.9 22.9 24.0 24.4 24.2 21.4 46 19 7 0.5 0.1 0.5 1.1 1.8 0.9 0.8 0.3 0.8 0.9 0.5 -1.9 -3.2 -0.9 3.5 0.3 0.1 0.2

19 Mattawin 22.6 24.1 24.7 24.8 24.9 20.9 25 15 4 0.1 0.1 0.6 1.7 2.2 0.8 0.1 0.1 0.6 -0.3 1.0 -1.3 0.8 -1.7 1.3 0.2 0.1 0.2

20 Croche 9.3 11.1 24.8 21.6 13.7 24.8 25 1 17 0.1 0.1 0.4 0.8 2.2 1.0 0.3 0.3 0.2 -1.2 1.3 -0.2 -0.5 -2.2 -3.2 0.3 0.2 0.2

21 Vermillon 12.7 12.2 24.7 20.1 21.5 23.9 12 5 1 0.2 0.1 0.5 1.0 1.9 1.2 0.3 0.3 0.3 -0.5 0.5 0.5 -3.2 0.9 0.7 0.3 0.2 0.1

22 Batiscan 22.6 22.5 24.9 24.5 24.8 1.8 18 25 1 0.2 0.1 0.8 0.7 0.5 0.7 0.2 0.2 0.6 -1.9 -2.1 0.2 -1.8 -3.0 -1.7 0.2 0.3 0.2

23 Sainte-Anne 24.9 24.2 24.9 23.6 18.5 7.3 34 25 23 0.3 0.3 0.8 1.7 1.4 1.0 0.2 0.3 0.9 0.3 0.0 -0.1 -3.2 -0.2 -0.4 0.1 0.1 0.1

24 Bras du Nord 24.7 24.9 25.0 24.4 24.3 24.2 34 46 22 0.1 0.1 0.4 1.4 1.0 1.3 0.7 0.2 0.7 0.4 -1.5 0.3 -3.4 -1.2 -0.7 0.1 0.2 0.1

25 Ouareau 21.8 23.0 24.7 24.8 16.3 24.7 39 7 12 0.2 0.1 0.5 1.6 2.5 1.6 0.1 0.1 0.6 0.5 0.8 0.7 -1.2 0.5 -1.9 0.2 0.2 0.1

26 L'Assomption 24.7 22.5 24.8 24.3 24.5 25.0 33 31 13 0.1 0.1 0.4 1.1 2.3 1.6 0.1 0.1 0.7 -0.8 0.3 0.7 0.8 -1.0 -0.2 0.1 0.1 0.2

27 De l'Achigan 24.9 23.6 24.6 24.7 1.6 6.0 44 48 11 0.1 0.1 0.4 2.2 2.8 2.7 0.2 0.6 0.8 0.3 0.6 0.6 -2.8 -0.2 -2.1 0.1 0.2 0.2

28 Du Loup 24.9 23.4 24.5 24.9 24.7 24.3 19 19 3 0.2 0.1 0.4 1.0 1.3 1.6 0.4 0.2 0.1 -0.8 0.6 0.3 0.0 -0.4 2.8 0.2 0.2 0.2

29 Petit Saguenay 24.9 24.6 24.8 24.8 3.6 2.7 22 9 2 0.1 0.2 0.7 1.5 1.8 1.0 0.1 0.3 0.9 0.2 0.0 -0.1 0.3 -3.8 1.3 0.1 0.2 0.2

30 Petite rivière Péribonca 24.7 24.3 24.8 23.6 24.4 1.2 40 26 4 0.1 0.1 0.8 1.7 0.7 0.5 0.3 0.3 0.7 1.5 -3.5 -0.8 -3.1 2.4 0.2 0.1 0.3 0.3

31 Métabetchouane 24.2 24.8 25.0 24.4 18.0 16.5 26 9 1 0.1 0.2 0.5 0.6 1.4 1.1 0.1 0.1 0.5 -2.2 -1.1 1.3 -0.4 -0.8 -2.5 0.3 0.3 0.2

32 Valin 25.0 22.8 25.0 23.5 19.4 17.2 44 10 7 0.2 0.1 0.9 1.2 2.4 0.8 0.1 0.5 0.9 0.7 1.4 0.4 -2.5 1.2 0.3 0.1 0.1 0.2

33 Sainte-Marguerite Nord-Est 25.0 24.7 24.6 24.3 17.5 18.2 39 11 12 0.1 0.3 0.9 1.7 2.4 1.3 0.1 0.3 0.9 0.6 1.1 0.7 -2.6 -3.5 -0.9 0.1 0.1 0.1

34 Godbout 24.8 23.2 24.8 23.8 24.7 24.6 44 21 20 0.3 0.1 0.9 1.3 2.4 1.4 1.0 0.3 0.6 0.1 0.6 0.5 0.7 1.0 -1.8 0.2 0.2 0.1

23.4 23.3 24.6 22.6 19.9 14.6 35 28 12 0.2 0.2 0.7 1.7 2.1 1.6 0.4 0.4 0.6 -0.4 0.0 0.1 -0.6 -0.5 -0.2 0.2 0.2 0.2

B.

Code Name A B C A B C A B C A B C A B C A B C A B C A B C

1 Bonaventure 0.7 0.2 0.7 1.3 1.1 1.0 0.5 0.2 0.6 0.5 2.0 1.5 1.4 0.8 0.7 - 83 9 - 3.2 1.4 1.1 1.3 1.4

2 York 0.6 0.6 0.8 1.7 1.1 0.5 1.0 0.6 0.2 0.2 0.2 1.3 1.6 1.4 1.8 - 5 15 - 0.6 1.5 1.1 1.3 1.4

3 Dartmouth 0.6 0.9 0.8 1.2 1.2 0.9 1.4 0.7 0.7 0.3 0.2 0.9 0.6 0.7 0.6 - 35 55 - 0.2 1.7 0.9 1.0 1.3

4 Matane 0.6 0.6 0.9 1.2 1.6 1.3 1.7 0.8 0.9 0.4 1.0 1.0 0.9 0.2 0.5 - 97 44 - 3.2 1.6 1.1 1.1 0.9

5 Rimouski 0.6 0.6 0.7 1.2 1.2 0.9 1.7 0.8 0.7 0.3 0.8 0.2 0.9 0.7 1.1 - 23 35 - 0.3 0.5 1.1 1.1 0.8

6 Des Trois-Pistoles 0.7 0.4 0.4 1.3 1.3 1.2 1.2 1.5 1.1 0.1 0.3 0.6 1.0 0.6 0.7 - 44 56 - 1.5 2.4 1.4 0.8 0.8

7 Du Loup 0.7 1.0 0.7 1.8 1.2 1.1 1.4 0.6 0.8 0.4 0.1 0.8 0.8 1.1 1.0 - 20 41 - 0.2 2.3 1.1 1.3 1.2

8 Ouelle 0.7 0.8 1.0 1.1 1.1 1.1 2.0 1.5 1.0 0.7 1.0 1.2 1.1 0.9 0.9 - 40 92 - 0.2 2.2 1.1 1.0 1.2

9 Famine 0.6 0.7 0.7 1.0 1.4 1.0 1.7 0.1 0.8 0.2 0.5 0.9 1.1 0.7 0.7 - 21 63 - 0.2 0.6 1.2 0.9 1.1

10 Bécancour 0.6 1.0 0.6 1.5 1.3 1.2 0.6 1.5 0.7 0.7 0.7 1.4 0.9 0.7 0.5 - 47 75 - 1.4 3.6 1.1 1.4 1.3

11 Nicolet Sud-Ouest 0.7 0.3 0.9 1.2 1.4 1.2 1.0 0.5 0.9 0.8 0.6 1.1 1.1 0.9 0.9 - 62 97 - 0.2 0.6 1.1 1.0 0.9

12 Nicolet 0.8 1.0 0.8 1.2 1.7 1.7 1.0 0.6 0.4 0.9 0.2 1.3 1.0 0.9 0.6 - 65 62 - 0.2 3.9 1.3 0.8 1.1

13 Eaton 0.6 0.8 0.9 0.9 1.2 0.8 1.2 1.4 1.3 0.8 0.4 1.1 1.6 1.0 0.9 - 21 37 - 0.2 2.8 1.2 0.8 1.2

14 Au Saumon 0.8 0.9 0.9 1.0 1.1 0.9 1.3 0.7 0.7 0.9 0.1 0.9 0.7 0.6 0.6 - 20 66 - 0.2 3.9 1.3 0.8 1.2

15 Noire 0.8 0.7 0.7 1.2 1.2 1.0 1.1 1.5 1.6 0.6 0.2 0.7 1.2 1.0 0.9 - 64 94 - 0.3 2.6 1.2 0.8 1.1

16 Rouge 1.0 0.9 1.0 1.2 1.1 1.7 0.9 0.9 0.6 1.5 0.3 1.7 1.0 0.5 0.2 - 16 25 - 2.2 2.6 1.2 1.3 0.9

17 Gatineau 0.6 0.8 0.8 1.3 1.2 0.8 0.4 0.5 1.2 1.9 0.1 1.3 1.1 0.6 0.9 - 15 14 - 2.2 4.0 1.0 1.3 1.1

18 Kinojévis 0.7 0.5 0.5 0.4 1.0 0.7 1.2 1.0 1.8 1.0 0.9 1.3 1.7 0.2 0.6 - 4 21 - 3.2 3.9 1.4 1.1 1.2

19 Mattawin 0.6 0.7 0.4 1.2 0.6 0.9 1.4 1.3 1.7 0.4 0.3 1.7 1.1 1.0 0.8 - 14 21 - 3.0 3.8 1.4 1.4 1.2

20 Croche 0.6 0.7 1.0 1.7 1.2 1.0 1.3 0.2 1.6 1.4 0.1 1.3 0.6 0.8 0.7 - 26 29 - 0.8 3.6 0.9 0.8 1.1

21 Vermillon 0.7 0.5 0.7 1.9 1.4 1.0 0.5 1.0 2.0 0.5 0.3 2.0 1.0 0.9 0.2 - 4 21 - 1.0 4.0 1.3 1.3 1.1

22 Batiscan 0.7 0.7 0.7 1.6 1.2 0.4 1.4 0.7 1.4 0.2 0.5 1.9 1.0 1.2 1.3 - 21 32 - 4.0 3.5 1.1 1.3 1.0

23 Sainte-Anne 0.7 0.8 0.9 1.1 1.0 0.9 0.6 0.3 0.6 0.4 0.6 1.6 1.0 0.8 0.6 - 7 40 - 1.3 2.9 1.2 1.1 1.2

24 Bras du Nord 0.8 0.8 0.8 1.5 1.2 0.9 1.0 0.5 0.5 0.7 0.2 1.9 1.0 0.9 0.7 - 3 33 - 1.7 3.1 0.8 1.3 0.9

25 Ouareau 0.6 0.9 0.8 1.4 1.0 1.0 1.8 0.6 0.7 1.5 0.5 1.0 0.5 0.7 0.1 - 26 29 - 1.0 3.9 0.9 1.1 1.2

26 L'Assomption 0.8 0.8 0.3 1.6 1.3 1.3 0.6 0.7 1.3 0.4 0.7 1.3 1.3 0.6 0.5 - 9 12 - 1.2 3.2 1.3 1.4 1.2

27 De l'Achigan 0.7 0.7 0.7 1.2 1.3 1.4 0.6 0.4 0.4 0.7 0.9 0.6 0.9 0.5 0.4 - 34 32 - 0.4 1.2 1.1 1.1 0.8

28 Du Loup 0.9 0.6 1.0 1.6 1.2 1.2 1.0 0.8 0.4 0.4 0.5 1.5 1.4 0.9 0.8 - 4 16 - 4.0 2.6 1.1 1.2 1.0

29 Petit Saguenay 0.7 0.1 0.3 1.7 1.4 0.6 1.9 0.9 1.2 0.5 0.3 1.3 1.3 0.8 1.5 - 25 46 - 1.8 1.8 1.1 1.3 1.2

30 Petite rivière Péribonca 1.0 1.0 0.4 1.7 1.1 0.4 1.9 0.8 1.6 0.3 1.7 2.0 1.9 0.9 1.5 - 6 35 - 3.7 4.0 1.3 1.1 1.3

31 Métabetchouane 0.7 0.9 0.7 1.5 1.2 0.7 1.0 1.2 1.7 1.2 0.4 1.6 1.2 0.2 1.2 - 3 28 - 3.2 3.8 1.1 1.2 1.0

32 Valin 0.6 0.7 0.8 1.4 0.7 0.1 0.2 0.7 0.3 0.3 0.2 0.7 0.9 0.4 1.2 - 12 77 - 2.2 3.9 1.1 1.1 1.2

33 Sainte-Marguerite Nord-Est 0.7 0.8 0.4 0.9 0.6 0.1 0.4 0.3 0.6 0.1 0.2 1.0 0.9 0.3 0.8 - 27 80 - 1.3 2.8 1.1 1.3 1.2

34 Godbout 0.7 0.6 0.9 1.0 0.7 0.2 0.8 0.5 0.9 0.3 1.2 1.5 1.4 0.3 0.7 - 5 34 - 2.5 3.3 1.4 1.2 1.2

0.7 0.7 0.7 1.3 1.2 0.9 1.1 0.8 1.0 0.6 0.5 1.2 1.1 0.7 0.8 - 27 43 - 1.5 2.7 1.1 1.1 1.1Average

dzCatchment Crfr fi,summer fi,fall fi,winter fi,spring Kol KXY

T0c0QDSnowdrCatchment

Average

CWHTR/SkD kH Krec
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Code and data availability 705 

The calibrated WaSiM model for all configurations discussed in this study is publicly accessible at https://osf.io/h9rsj/ 

(Talbot et al., 2024). This dataset encompasses control files, input parameters and output files from both calibration and 

validation phases. 
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