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Abstract. This study investigates the effectiveness of various calibration approaches within the Water Balance Simulation 

Model (WaSiM) to enhance the representation of hydrological variables. We assess the impact of three distinct configurations: 

Baseline (BL), Physical Groundwater Model (GW), and Physical Groundwater with Recharge Calibration (GW-RC) on the 10 

representation of hydrological variables. The analysis demonstrates that while traditional calibration primarily enhances 

streamflow prediction, integrating recharge and groundwater dynamics significantly refines the model’s ability to depict 

subsurface processes. The GW-RC configuration, with minimal emphasis on recharge in the objective function, shows a 

marked improvement in representing both the spatial and seasonal variability of groundwater recharge, suggesting that even 

small and targeted calibration adjustments can significantly enhance the accuracy and realism of model outputs. Although this 15 

approach may reduce the model’s flexibility in mirroring observed streamflow, it enhances the precision with which other 

hydrological processes are represented, providing a more accurate reflection of watershed dynamics. Our findings underscore 

the importance of multi-variable calibration frameworks, which incorporate both streamflow and internal hydrological 

variables, in developing robust models capable of adapting to anticipated hydrological shifts due to climate change. This 

approach provides a more accurate reflection of watershed dynamics and offers valuable insights for calibration strategies in 20 

hydrological modelling, water resource management and climate adaptation strategiesAccurately representing hydrological 

processes remains a major challenge in hydrological modeling. Recent studies have demonstrated the benefits of multi-variable 

calibration, which integrates additional hydrological variables such as evapotranspiration and soil moisture alongside 

streamflow to improve model realism. However, groundwater recharge as a calibration variable remains relatively 

underexplored. 25 

This study evaluates how incorporating groundwater recharge into the calibration of the Water Balance Simulation Model 

(WaSiM) affects hydrological variables representation. Three configurations were tested: Baseline (BL) with streamflow-only 

calibration, Physical Groundwater Model (GW) with physically-based groundwater flow, and Physical Groundwater with 

Recharge Calibration (GW-RC), which further constrains groundwater recharge during calibration. The models were calibrated 

and applied to 34 catchments in Southern Québec. Their performance was evaluated using the Kling-Gupta Efficiency (KGE) 30 
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for streamflow and spatial estimates of groundwater recharge derived from a previous research project conducted in the same 

region. 

Results indicate that while calibrating on streamflow alone produces high KGE values (median KGE = 0.83 for GW and 0.82 

for BL), but it comes at the cost of misrepresenting subsurface hydrological processes. Adding groundwater recharge 

constraints (GW-RC) reduce streamflow performance, with a median KGE of 0.77 for GW-RC, but improves hydrological 35 

variable representation, especially in seasonal runoff patterns, where it better captures the balance between surface runoff and 

interflow during snowmelt. Additionally, GW-RC showed the smallest differences with the groundwater recharge estimates.  

These findings illustrate the consequence of equifinality in streamflow-based calibration, where multiple parameter sets can 

yield similar streamflow outputs while misrepresenting internal hydrological processes. Incorporating groundwater recharge 

constraints improves the representation of internal hydrological processes while maintaining strong streamflow simulation 40 

performance, which could ultimately enhance reliability of climate change adaptation and water resource management 

strategies. 

1 Introduction 

Accurately representing watershed processes under climate change remains a central challenge in the evolving field of 

hydrology (Persaud et al., 2020). Recent advances in hydrological modeling have offered valuable insights into water resource 45 

management and climate adaptation strategies (Xu et al., 2005; Chen et al., 2011; Wang et al., 2023). However, the complexity 

of watershed dynamics, especially in snow dominated catchments, necessitates models that can accurately simulate both 

surface and subsurface hydrological processes (Chu and Shirmohammadi, 2004; Farjad et al., 2016).  

The need for detailed, physically based hydrological modeling goes beyond immediate concerns of water management and 

climate impact assessments. Groundwater dynamics play a critical role inare crucial for forest health (Maitre et al., 1999; 50 

Jacobs, 2003), as stable water availability, shaped by hydrological processes, underpins forest supports ecosystem resilience 

(Cunningham et al., 2011; Orellana et al., 2012). By enhancing the accuracy of groundwater simulation and recharge 

calibration, we can improve our ability to forecast forest growth and resilience under changing climatic conditions (Ford et al., 

2011; Grant et al., 2013). This linkage underscores the importance of detailed hydrological modeling and aligns with broader 

environmental, economic, and ecological management goals aimed at sustaining forest productivity in the face of 55 

environmental change. Such integrative approaches are vital as they provide the groundwork for informed decision-making in 

forest management, ensuring that forests continue to thriveThis approach helps forest managers make informed decisions, 

supporting the long-term health and sustainability of forest ecosystems (Vose et al., 2011; Sun et al., 2023).  

 

The Water balance Simulation Model (WaSiM) (Schulla, 2021) is a distributed and physically based hydrological model that. 60 

It stands out for its complexity, fine spatial resolution and comprehensive approach to modeling key hydrological processes. 

This capability is particularly advantageousmakes the model especially useful for yielding reliable results inanalyzing 
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intermediate variables analysis within hydrological studiesvariables with greater reliability. Several studies exemplify the 

application of WaSiM for examining internal hydrological variables across diverse geographic settings and scenarios. For 

example, Jasper et al. (2006) analyzed summer soil water pattern shifts due to climatic changes, demonstrating that WaSiM 65 

could effectively model the substantial alterations in hydrological responses to varying climate scenarios. Natkhin et al. (2012) 

used WaSiM to differentiate the impacts of climate change and forest growth dynamics on groundwater recharge in Northeast 

Germany. Similarly, two separate studies (Rößler and Löffler, 2010; Rössler et al., 2012) analyzed soil moisture dynamics 

using WaSiM, discussing the modeling potentials and limitations in high mountain catchments and the broader impact of 

climate on soil moisture. Bormann and Elfert (2010) investigated how land use changes influence various runoff generation 70 

processes such as surface runoff, interflow, and baseflow. Furthermore, Förster et al. (2017, 2018) conducted detailed 

comparisons of internal state variables with actual forest measurements, including meteorological variables and snow cover 

dynamics, highlighting the refined capabilities of WaSiM to model complex interactions like snow cover and canopy 

interception. These studies collectively demonstrate the model's utility in capturing a wide range of hydrological variables. 

RecentDespite recent advances in, hydrological modeling have revealed criticalstill faces challenges in accurately representing 75 

watershed dynamics, particularly. These challenges are especially evident when calibrating hydrological models based 

solelycalibration relies only on streamflow data (Mei et al., 2023; Schäfer et al., 2023; de Lima Ferreira and da Paz, 2024; 

Pool et al., 2024). While streamflow is a key indicator for capturing temporal fluctuations in water systems, it offers limited 

insights into the internal hydrological processes (Rajib et al., 2018). This reliance on streamflow can result in models that 

perform well in reproducing observed flows but misrepresent underlying processes—a. This phenomenon, known as 80 

equifinality, whereoccurs when different parameter sets produce the same outputs but for the wrong reasons (Kirchner, 2006; 

Yassin et al., 2017; Acero Triana et al., 2019; Mei et al., 2023). Therefore, focusing only on streamflow in model calibration 

can hide important differences in how hydrological processes are represented. 

In pursuit of better representing hydrological processes at the catchment scale, several studies have explored hydrologic scaling 

and parameter transferability (Samaniego et al., 2010, 2017; Mizukami et al., 2017; Imhoff et al., 2020). Notably, Samaniego 85 

et al. (2010) introduced the multiscale parameter regionalization to tackle overparameterization and the non-transferability of 

parameters across different scales. Ficchì et al. (2019) also proposed a model structure that considers flow accuracy and fluxes 

match on different modelling timesteps, adjusting the structure and parameters to ensure robust simulation across various time 

scales. Additionally, Peters-Lidard et al. (2017) advocated for adopting the fourth paradigm of data-intensive science in 

hydrology, which leverages emerging datasets to refine our understanding of hydrological models and processes. This 90 

paradigm positssuggests that advancements in computational science—considered represent a new methodological branch 

alongside empiricism, theory, and computational simulation—can revolutionize science through. By enabling the intensive 

use of data, these advancements can revolutionize science by facilitating the discovery and testing of theories and models. This 

approach emphasizes the integration of comprehensive datasets and computational tools into conventional scientific 

workflows, thereby enhancing the capacity for scientific innovation and synthesis in hydrology. 95 
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Recent studies have advocated for a shift towards integrating additional hydrological variables and data sources, such as remote 

sensing products and in-situ measurements, into the calibration process (Dembélé et al., 2020; Meyer Oliveira et al., 2021; Liu 

et al., 2022; Mei et al., 2023; Schäfer et al., 2023; de Lima Ferreira and da Paz, 2024; Pool et al., 2024). Mei et al. (2023) 

found that including gridded soil moisture alongside gauged streamflow improved evapotranspiration simulations across 20 

catchments in the Lake Michigan watershed. Schäfer et al. (2023) used WaSiM to simulate the water balance of a forested 100 

catchment in Germany, showing that including plant-available water and evapotranspiration data significantly enhanced model 

accuracy. De Lima Ferreira and da Paz (2024) similarly improved model performance by incorporating actual 

evapotranspiration estimates into a hydrological model of a Brazilian semi-arid basin, highlighting the benefits of multi-

variable calibration and the need to test distinct data sources.  

Although many studies have successfully used variables such as soil moisture, evapotranspiration, and groundwater head in 105 

model calibration, there remains a gap in understanding how other variables, like groundwater recharge, can improve the 

representation of hydrological processes. Addressing this gap is important for both the theoretical advancement of hydrological 

sciences and the practical applications of water resource management, flood risk assessment, and climate change mitigation 

(Pradhan and Indu, 2019). By adopting a calibration approach that integrates a more holistic view of watershed processes, 

models become more reflective of complex hydrological interactions and gain robustness in the face of non-stationary climate 110 

conditions (Wang et al., 2023). This enhanced process representation and strengthens confidence in model projections, making 

them more reliable for future applications. 

In this study, we implement three distinct model configurations of the WaSiM hydrological model, configuration : Baseline 

(BL (baseline model), configuration ), which follows a traditional streamflow-based calibration; Physical Groundwater Model 

(GW (physical), which introduces physically based groundwater model),flow processes; and configuration Physical 115 

Groundwater with Recharge Calibration (GW-RC (physical), which further constrains groundwater and recharge during 

calibration model)—. The objective is to investigate how integrating additional hydrological variables and different calibration 

approachesstrategies and levels of model complexity influence the representation of hydrological processes over a set of 34 

catchments in Nordicsnowy catchment conditions. Through comparative analysis of these configurations, we aim to expose 

the nuances in model performance and hydrological variable representation, contributing to the ongoing debate on the best 120 

practices for hydrological model calibration. 

2 Methods 

2.1 Study area 

This study examines 34 catchments in Southern Quebec, Canada, each with distinct physiographic and hydrometeorological 

features. The catchments range in size from 525 to 6,840 km² (see Fig. 1). These specific catchments were selected for their 125 

inclusion in the Hydroclimatic Atlas of Southern Québec (MDDELCC, 2022) due to the availability of comprehensive 

streamflow data and their representation of the diverse hydrological conditions prevalent throughout Southern Quebec. 
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Selected catchments are unaffected by the presence of dams and reservoirs, preserving the natural integrity of hydrological 

processesThese catchments were selected based on several key criteria to ensure robust model calibration and validation. 

Specifically, they were selected based on the availability of comprehensive streamflow data from 1981 to 2010. Additionally, 130 

catchments were selected to represent the region’s geographical and hydrological diversity to capture a range of climatic 

conditions across the study area. Where possible, catchments covered by the PACES project (see detail in section 2.2.5) were 

prioritized to ensure data consistency and facilitate comparisons of groundwater recharge estimates. To preserve the natural 

integrity of hydrological processes under study, selected catchments needed to be free from dams and reservoirs and located 

away from major urban areas to minimize anthropogenic influences. 135 
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Figure 1. Elevation map of study catchments in southern Quebec. 

The Köppen-Geiger Climate Classification designates most of the study area (28 catchments) as belonging to class Dfb (humid 

continental mild summer, wet all year), except a small part (six catchments) located in the northern portion that belongs to 140 
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class Dfc (subarctic with cool summers and year-round precipitation) (Beck et al., 2018). The region experiences four distinct 

seasons. Winters are characterized by frequent sub-freezing temperature and significant snowfall. As spring arrives, 

temperatures gradually rise, leading to significant snowmelt which, along with increasing rainfall, influences streamflow and 

water availability. Summer brings warmer temperatures, peaking in July, with rainfall remaining relatively high. Fall sees a 

gradual cooling and a transition from rain to increasing snowfall, setting the stage for another winter cycle. This climatic 145 

diversity induces complex hydrological processes at catchment scale, as the interplay between snowmelt and precipitation 

patterns has a significant influence on streamflow and water availability. These dynamicspatterns are not unique to Québec 

but are indicative of broader hydrological upheavalschanges occurring across boreal regions globally under climate change. 

To contextualize the environmental and hydrological setting of the selected catchments, Table 1 presents a synthesis of key 

descriptors. The table shows the minimum and maximum values for a set of hydrological and geophysical characteristics for 150 

each catchment, providing an at-a-glance perspective of the environmental variation within the study area. 

  

Table 1. Hydrological and geophysical characteristics of the study catchments. 

Catchment characteristics Minimum Maximum 

Area (km2) 525 6840 

Mean elevation (m) 137 568 

Predominant soil type Sandy loam 

Predominant land use 
Coniferous forest and deciduous 

forest 

Annual total precipitation (mm) 785 1547 

Annual extreme daily temperature (°C) -37.7 28.6 

Annual streamflow (m3 s-1) 10 130 

 

2.2 Data 155 

2.2.1 Hydrometeorological data 

This study utilizes meteorological data, specifically total precipitation and mean temperature on a daily time step, sourced 

from ECMWF’s Reanalysis v5 (ERA5) (Hersbach et al., 2020). These datasets effectively overcome the limitations of 

observational data and have demonstrated performance on par with observational records in this region (Tarek et al., 
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2020).While ERA5 is known to underestimate winter precipitation and exhibit biases in convective precipitation, studies such 160 

as Tarek et al. (2020) have demonstrated that ERA5-driven hydrological simulations perform comparably to those using 

ground-based observational data across Eastern Canada. Their evaluation of 3138 North American catchments found that 

ERA5-based simulations achieved similar accuracy levels to traditional meteorological observations in hydrological modeling, 

particularly in Eastern Canada. While observational data can offer higher local accuracy, it also comes with gaps and 

inconsistencies due to station distribution and measurement errors. ERA5 provided gridded and consistent meteorological 165 

inputs across all study catchments, reducing potential biases from heterogeneous station networks. The collected 

meteorological data spans the period from 1981 to 2020. 

Observed streamflow data from 1981 to 2010 was used, recorded at a daily resolution. This data was obtained from the 

Hydroclimatic Atlas of Southern Québec (MDDELCC, 2022).  The dataset contains occasional gaps, primarily during winter 

months when ice cover and ice jams can significantly distort river flow measurements. To ensure the accuracy of the study, 170 

these periods were excluded from the dataset. 

2.2.2 Elevation data 

A hydrologically conditioned digital surface model was derived from the NASA Shuttle Radar Topography Mission version 

3.0 Global 1 (SRTM-DSM) to account for terrain elevation. The SRTM-DSM, originally boastinghaving a spatial resolution 

of 30 meters at the equator, underwent resampling to 50 meters resolution and filtering using multiple moving average windows 175 

to mitigate the impact of local noise, which could lead to erroneous hydrological behaviours (MacMillan et al., 2000). To 

ensure hydrological consistency, we applied hydrological corrections based on data from provincial agencies (Géobase du 

réseau hydrographique du Québec (GRHQ) - Données Québec, 2016). The elevation values along establishedTo maintain 

hydrological networks wereconsistency, we adjusted downwardelevation values along streams by lowering them by 5 meters 

burning the stream network into the digital surface model (DSM) withusing the SAGA GIS software (Conrad et al., 2015). 180 

The resulting DSM accurately captures the hydrological characteristics of the study area and is used for catchment delineation. 

Additionally, the DSM was resampled to spatial resolutions of 250 and 1000 meters. This resampling process was conducted 

to optimize computational efficiency while preserving the essential characteristics of the catchments. The minimum value 

resampling method was used to preserve hydrological connectivity within the study area. 

Following this, the Tanalys software (Schulla, 2021) was used to generate key topographic layers, including slope, aspect, and 185 

river depth, all formatted for hydrological modeling within WaSiM. 

2.2.3 Soil type data 

To capture the spatial variability of soil hydraulic properties, we utilized the SIIGSOL 100 meters database (Sylvain et al., 

2021), which provides information on soil composition. The SIIGSOL database provides detailed descriptions of the 

proportions of sand, clay, and silt within the soil profile (MRNF, 2022). In this study, we converted the reported proportions 190 

of sand, silt, and clay layers into soil texture classes based on the classification system of the United States Department of 
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Agriculture (USDA). The USDA soil classification system categorizes soils into various texture classes such as loam, clay, 

sand, silt, and combinations thereof, which are determined based on the percentage composition of each type. This 

classification aids in understanding the soil's physical characteristics which are crucial factors in hydrological modeling and 

in predicting soil-water interactions in the studied catchments (Weil and Brady, 2017).  195 

We derived soil hydraulic properties from generated soil type maps, using established relationships between soil texture classes 

and hydraulic parameters. For the soil type maps, WaSiM generates soil layers of specified thickness based on the control file 

settings. By default, if there is only one soil type present in the catchment, the soil depth is uniformly distributed throughout 

the entire area. To account for soil depth variability, we divided soil types into three distinct sections based on their relative 

elevation within catchment: narrow, normal, and deep. Pixels with elevations below the 33rd percentile were classified as 200 

deep, while those with elevations above the 66th percentile were classified as shallow. The remaining soil type rasters fell into 

the normal category. This classification was based on the imperfect but useful hypothesis that higher elevations correspond to 

a closer proximity of bedrock to the surface, while lower elevations indicate a greater depth of soil cover in a post-glacial 

landscape (Akumu et al., 2016; Jeong et al., 2022).  

2.2.4 Land use data 205 

For land use attribution, we used the 2015 North American Land Change Monitoring System (NALCMS) 30 meters land cover 

dataset (Latifovic et al., 2012; Commission for Environmental Cooperation, 2020). The classification scheme used in this map 

adheres to the widely recognized Land Cover Classification System (LCCS) standard established by the Food and Agriculture 

Organization (FAO) of the United Nations. This standardized approach ensures the consistency and comparability of land 

cover information, enabling meaningful regional scale assessments and studies. The nearest neighbor resampling method was 210 

employed to align land use maps with the other raster maps used in WaSiM. Land use exerts a substantial influence on various 

hydrological parameters, and more specifically for the context of this study, it significantly affects parameters such as root 

distribution, vegetation cover fraction (VCF), roughness length (Z0), and albedo within the hydrological model. The 

distribution and characteristics of land cover types, ranging from forests to urban areas, directly impact these parameters, 

thereby influencing processes such as evapotranspiration, runoff, and infiltration. 215 

2.2.5 Groundwater recharge data 

In 2008, the Government of Quebec initiated the “Projets d’acquisition de connaissances sur les eaux souterraines” (PACES; 

roughly translated as “groundwater knowledge acquisition projects”) (Carrier et al., 2013; Cloutier et al., 2013, 2015; Comeau 

et al., 2013; Larocque et al., 2013, 2015; Rouleau et al., 2013; Buffin-Bélanger et al., 2015; Lefebvre et al., 2015), aimed at 

enhancing understanding of the groundwater resources availability in Southern Quebec area. In addition to PACES, numerous 220 

studies conducted across the region have estimated groundwater recharge rates, which vary from 50 mm yr-1 to over 500 mm 

yr-1 depending on the location and years studied (Croteau et al., 2010; Chemingui et al., 2015; Larocque et al., 2019; Dubois 

et al., 2021; Boumaiza et al., 2022). 
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Of the 34 catchments in this study, fourteen were entirely or partially covered by the PACES project. Table 2 lists these 

catchments, detailing their areas, associated PACES region reports, the percentage of each catchment's area covered by 225 

PACES, and the mean and standard deviation of groundwater recharge for the areas covered.  
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Table 2. PACES data coverage and groundwater recharge statistics for covered catchments. 235 

Catchment name 
Area 

(km2) 
Region Cover1 

PACES recharge 

Mean (mm yr-1) Std. (mm yr-1) 

Matane 1650 Bas-Saint-Laurent 31% 179 78 

Rimouski 1610 Bas-Saint-Laurent 29% 213 81 

Des Trois-Pistoles 932 Bas-Saint-Laurent 38% 74 34 

Ouelle 795 Chaudière-Appalaches 62% 180 35 

Famine 691 Chaudière-Appalaches 100% 186 46 

Bécancour 919 
Chaudière-Appalaches and 

Bécancour 
100% 209 83 

Nicolet Sud-Ouest 549 Nicolet-Saint-François 100% 242 64 

Nicolet 1540 Nicolet-Saint-François 95% 224 82 

Noire 1490 Montérégie-Est 93% 133 98 

Rouge 5460 Outaouais 26% 310 40 

Kinojévis 2590 Abitibi-Témiscamingue 55% 172 87 

Petit Saguenay 712 Saguenay-Lac-Saint-Jean 80% 69 78 

Petite rivière Péribonca 1090 Saguenay-Lac-Saint-Jean 29% 142 103 

Valin 746 Saguenay-Lac-Saint-Jean 73% 221 85 

[1] Fraction of total catchment area covered by PACES data. Median 183 80 

 

2.3 Hydrological modelling 

2.3.1 WaSiM model 

In this study, we employed WaSiM for hydrological modeling (Schulla, 2021). Hydrological processes were analyzed through 

three specific configurations: BL (baseline), which serves as the standard comparison model; GW (physical groundwater 240 

model), which incorporates detailed groundwater dynamics; and GW-RC (physical groundwater model with constrained 
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recharge), which further refines the groundwater variables by incorporating constrained recharge calibrations. Detailed 

descriptions of these configurations can be found in Sect. 2.4 of this study. 

WaSiM consists of two versions: WaSiM version I, originally developed using the Topmodel approach for simulating 

subsurface flows based on variable saturation areas, and WaSiM version II, an extended version with the process-oriented 245 

Richards approach. The Richards version, which considers hydraulic head gradients and detailed soil physical properties (pF-

curve, k(u) function), was selected for this study due to its more physically based nature. 

WaSiM follows a modular structure, composed of multiple sub-models that can be activated based on data availability and the 

specific research objectives. The model operates using a consistent time step, while internally employing flexible sub-time 

steps to optimize computational efficiency. It accommodates both regular and irregular raster grids, enabling the analysis of 250 

diverse spatial configurations. During each time step, the sub-models are sequentially processed across the entire model grid, 

enabling parallelization to aid computational optimization and facilitate faster model execution. 

One of the key process modules within WaSiM is the unsaturated zone model, which plays a crucial role in calculating various 

hydrological variables such as surface runoff, groundwater recharge, interflow, and baseflow. Interflow refers to water moving 

laterally through the upper soil layers, contributing to streamflow, while baseflow is the portion of streamflow sustained by 255 

groundwater flow. These variables are essential for understanding the water balance and hydrological dynamics within the 

study area. Table 3 provides an overview of the hydrological model configuration used in this study. 

Table 3. Overview of WaSiM characteristics and sub-models used in this study. 

Sub-model Method Reference 

Meteorological interpolation Inverse distance interpolation (Shepard, 1968) 

Potential evapotranspiration Hamon approach (Hamon, 1963) 

Actual evapotranspiration Richards equation using the Van Genuchten parameters 

(Richards, 1931; van 

Genuchten, 1980) 

Snow melt Temperature-index approach (Hock, 2003) 

Interception Classic bucket approach dependent on LAI - 

Lake modelling 

Integrated approach to model natural and artificial lakes, 

considering interactions with unsaturated zone, routing, 

snow, evaporation, interception, and groundwater 

models. 

- 

Unsaturated zone flow Richards equation using the Van Genuchten parameters 

(Richards, 1931; van 

Genuchten, 1980) 

Groundwater flow Integrated two-dimensional groundwater model - 

Routing Kinematic wave approach 

(Lighthill and 

Whitham, 1955) 
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Meteorological data interpolation was an essential step in the hydrological modeling process. The chosen hydrological model, 260 

WaSiM, performed the interpolation of daily precipitation and temperature inputs between ERA5 points. For each simulation, 

the model creates grids that incorporate the interpolated meteorological values at the model's spatial resolution, effectively 

representing the climatic conditions for each individual pixel. The inverse distance weighting method was used as 

recommended by WaSiM model description report (Schulla, 2021).  

2.3.2 Calibration parameters 265 

Calibration of WaSiM involved the optimization of 17 parameters, selected in accordance with WaSiM documentation 

(Schulla, 2021), while the remaining parameters in the control file were set to their default values. Table 4 provides a detailed 

description of upper and lower limits set for calibrating the 17 parameters in WaSiM, with each parameter adjusted to two 

decimal places within the specified calibration range. 

Table 4. Description of the parameters used for the calibration of WaSiM. 270 

No. Code Description Unit Sub-Model Range 

1 kD Storage coefficient for surface runoff h Unsaturated zone [1, 25] 

2 kH Storage coefficient for interflow h Unsaturated zone [1, 25] 

3 dr Drainage density for interflow m-1 Unsaturated zone [1, 50] 

4 QDSnow Fraction of surface runoff on snow melt - Unsaturated zone [0.1, 1] 

5 c0 Degree-Day factor mm°C-1 d-1 Snow [0, 3] 

6 T0 Temperature limit for snow melt °C Snow [-4, 4] 

7 TR/S Transition temperature snow/rain °C Snow [-4, 4] 

8 CWH Water storage capacity of snow - Snow [0.1, 0.3] 

9 Crfr Coefficient for refreezing - Snow [0.1, 1] 

10 fi,summer Summer correction factors for ETP - Evapotranspiration [0.1, 2] 

11 fi,fall Fall correction factors for ETP - Evapotranspiration [0.1, 2] 

12 fi,winter Winter correction factors for ETP - Evapotranspiration [0.1, 2] 

13 fi,spring Spring correction factors for ETP - Evapotranspiration [0.1, 2] 

14 Krec 
Recession constant for hydraulic 

conductivity 
- Soil table [0.1, 0.99] 

15 dz
a Soil layer thickness - Soil table [0.8, 1.4] 

16A KB Storage coefficient for base flow m Unsaturated zone [0.1, 8] 

17A Q0 Scaling factor for base flow mm h-1 Unsaturated zone [0.1, 5] 

16B Kolb Colmation of the river links - Input grid [1, 100] 

17B KXY
c 

Saturated horizontal conductivity (x-y-

direction) 
m s-1 Input grid [0.2, 4] 

a Calibration coefficient, ranging from 0.8 to 1.4, is applied to adjust the total soil depth, which is predetermined to be 8 meters for shallow, 14 

meters for normal, and 20 meters for deep soil conditions. 
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b Calibration coefficient, ranging from 0.8 to 1.4, is applied to adjust the colmation grid, which is predetermined to be 1x10 -6.  

c A calibration coefficient, ranging from 0.2 to 4, is applied to adjust the saturated horizontal conductivity grid, which is predetermined to be 4x10-5 

m s-1. 

 

Parameters 16A (KB) and 17A (Q0) are calibrated in the configuration BL when groundwater model is not activated and instead 

uses a conceptual approach to compute groundwater flow within the unsaturated zone sub-model.  Groundwater flow is 

assessed using Eq. (1) (Schulla, 2021), which calculates baseflow as a function of several parameters including the scaling 

factor for baseflow (Q0) and the recession constant for baseflow (KB).  275 

𝑄𝐵 = 𝑄0 ∗ 𝐾𝑠 ∗ 𝑒(ℎ𝐺𝑊−ℎ𝑔𝑒𝑜,0)/𝐾𝐵 ,             (1) 

where 𝑄𝐵 is baseflow (m s-1), 𝑄0 is a scaling factor for baseflow, 𝐾𝑠 is the saturated hydraulic conductivity (m s-1), ℎ𝐺𝑊 is the 

groundwater table height (m), ℎ𝑔𝑒𝑜,0 is the geodetic altitude of the soil surface (m) and 𝐾𝐵 is the recession constant for baseflow 

(m).  

In the configurations used in GW and GW-RC, which activate groundwater model, parameters 16A and 17A are replaced by 280 

parameters 16B and 17B to obtain a more physically based representation of groundwater processes. Parameters 16B and 17B 

adjust values associated to two input grids that allow to account for the colmation of the river links and saturated horizontal 

conductivity. This distinction ensures a consistent number of calibrated parameters across all configurations, facilitating an 

unbiased comparison of model performance. 

2.3.3 Model optimization 285 

Parameters optimization was performed independently for each catchment through the dynamically dimensioned search 

algorithm (DDS; (Tolson and Shoemaker, 2007)), following the recommendation of Arsenault et al. (2014). This algorithm is 

specifically designed for efficiently calibrating complex hydrological models with a large parameter range given a finite 

computing budget. During optimization, it dynamically adapts its search strategy based on the number of evaluations 

performed and performance metrics. To manage computational demands effectively while ensuring thorough exploration of 290 

the parameter space, a two-phase calibration strategy was employed, albeit the approaches differ for the constrained 

groundwater configurations.  

Initially, 1000 simulations were performed for each catchment at a broader spatial resolution (1000 meters) using a broader 

range of values for each parameter (Table 4). This phase aimed to identify an approximation of the optimal values for each 

parameter. Subsequently, these values were used to initialize the second calibration step at a finer spatial resolution (250 295 

meters). This two-step approach was chosen based on preliminary testing on the Bonaventure and Matane catchments, which 

demonstrated that transferring optimized parameters from 1000 m resolution to 250 m required only minor refinements. 

Additional tests showed that increasing the number of simulations at 250 m resolution beyond 50 runs (e.g., 75 or 100) provided 

negligible improvements in model performance, making further computational expense unjustified. This sequential calibration 

strategy allows to refine the model's performance progressively. By first identifying a set of parameters that achieves 300 
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reasonable model performance at a coarser scale, we then fine-tune the model at a higher resolution to enhance the spatial 

distribution of hydrological simulations.  

The objective functions used vary by configuration: For BL and GW, the objective is to optimize the Kling-Gupta Efficiency 

(KGE, (Kling et al., 2012)), as discussed in Sect. 2.5.1. Conversely, the GW-RC configuration employs a modified objective 

function that seeks to optimize KGE and constrain groundwater recharge rates and variability. This approach is described in 305 

Sect. 2.4.3 and Sect. 2.5.2. 

The study employed split-sample test (SST) framework for the parameter optimization assessment. This widely used approach 

involves dividing the available data into two sets: one for calibrating the model and the other for validating its performance on 

unseen time periods. The calibration period (2000-2009) and the validation period (1990-1999) were chosen based on the 

availability of comprehensive and reliable hydrological data. A five year spin-up period was performed before each simulation 310 

to allow the model to reach a stable state, eliminating the influence of unstable initial conditions on the model's performance 

metrics.To minimize the impact of missing streamflow data, calibration and validation years were selected to ensure that most 

catchments had complete records. However, data gaps were noted for three catchments: Croche, Petit Saguenay, and Sainte-

Marguerite Nord-Est. Specifically, Croche lacked data from 2001 to 2004, Petit Saguenay from 2000 to 2010, and Sainte-

Marguerite Nord-Est from 1998 to 2010. To accommodate these gaps, adjustments were made to the calibration and validation 315 

periods for the affected catchments. The calibration periods were shortened to later years: 1995 to 1999 for Croche and Petit 

Saguenay, and 1992 to 1996 for Sainte-Marguerite Nord-Est. Correspondingly, the validation periods were adjusted to precede 

the missing data: 1991 to 1994 for Croche, 1986 to 1994 for Petit Saguenay, and 1986 to 1991 for Sainte-Marguerite Nord-

Est. A five year spin-up period was performed before each simulation to allow the model to reach a stable state, eliminating 

the influence of unstable initial conditions on the model's performance metrics. 320 

2.4 Model configurations 

The primary objective of this research is to examine how different model configurations influence the representation of 

hydrological processes. To ensure a consistent comparison of model configuration and calibration, we designed a modelling 

framework that allow to compare three configurations that incrementally incorporate more complex hydrological variables.  

2.4.1 Baseline  325 

The first configuration (BL), serving as baseline configuration, employs the standard calibration of the model without 

activating the groundwater module. This configuration is aligned with the traditional application of WaSiM, where the focus 

is predominantly on streamflow, and groundwater flow is modeled using Eq. (1) within the unsaturated zone sub-model. This 

configuration is comparable to what has been frequently adopted in numerous studies, providing a common basis for 

comparative analysis (Rössler et al., 2012; Förster et al., 2018; Markhali et al., 2022; Valencia Giraldo et al., 2023). 330 
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2.4.2 Physical groundwater module 

The second configuration, GW (physical groundwater), marks a departure from the BL configuration by activating WaSiM's 

groundwater module. This adjustment allows for groundwater flow to be simulated within a designated sub-model, 

transitioning from a conceptual to a more physically based representation. In WaSiM, the groundwater model is coupled bi-

directionally with the unsaturated zone, ensuring a dynamic exchange of water fluxes. The unsaturated zone module calculates 335 

fluxes between the unsaturated zone and the groundwater that act as the upper boundary condition for the groundwater model, 

while the groundwater module simulates lateral flow and adjusts the groundwater table, feeding back changes to the 

unsaturated zone as inflow or outflow. This configuration, used in numerous studies (Bormann and Elfert, 2010; Natkhin et 

al., 2012; Gädeke et al., 2014; Schäfer et al., 2023), is recommended by the WaSiM documentation for catchments where 

groundwater dynamics play a pivotal role in the hydrological cycle, particularly in lowland areas with extensive sediment 340 

layers. 

2.4.3 Physical groundwater module and constrained recharge   

For configuration GW-RC (physical groundwater and constrained recharge), we incorporate groundwater recharge into the 

calibration process to achieve a better representation of hydrological variables such as baseflow, interflow, and runoff. 

Importantly, GW-RC uses the same model structure as GW, with the goal of isolating the effect of adding groundwater recharge 345 

in calibration. By introducing recharge into the calibration, we restrict hyperplane exploration and ensure that the model's 

representation of the hydrological cycle is more accurately simulating groundwater recharge dynamics. This is particularly 

useful if model hydrological variables are an important input to another analysis or process, such as for better understanding 

groundwater movement and evolution under climate change for certain types of vegetation, for example.  

TheGW-RC calibration for configuration GW-RC was conductedperformed in two distinct phases. The initial phase involved 350 

definingFirst, we defined new parameter ranges for parameters that impactvariables affecting baseflow (dr, QDSnow, Krec, 

Kol, Kxy). We therefore first conducted 200 evaluations at a spatial resolution of 1000 meters, followed by 50 evaluations at 

250 meters using the objective function presented in Eq. (62). Essentially, the aim here is to constrain the parameter set to a 

single value that performs well overall and provides realistic internal variables. Similar approaches have been used in studies 

such as Duethmann et al. (2024), which underscores the benefits of integrating Landsat-derived land surface temperature (Ts) 355 

data into model calibration. Landsat, a series of Earth-observing satellites, provides crucial Ts data used in this study. By 

including satellite-derived Ts, the study demonstrated improvements in the model's ability to capture spatial anomalies and 

ecosystem stress responses, while maintaining streamflow accuracy, illustrating the advantages of multi-variable constraints 

in model calibration. 

Following pre-calibration at both spatial resolutions, the resulting calibrated parameter sets were analyzed to define new 360 

parameter ranges for the calibration phase. This analysis involved adjusting the minimum and maximum values of parameters 

influencing baseflow (dr, QDSnow, Krec, Kol, Kxy) by ±10% to establish new calibration ranges. 
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In the second and most important calibration phase, the process continued with the adjusted parameter ranges, employing a 

less restrictive objective function (Eq. (73)) to better accommodate uncertainties in the recharge data. This phase involved a 

comprehensive series of 1000 evaluations at 1000 meters and 50 at 250 meters resolutions. The modified objective function 365 

primarily emphasized the KGE while incorporating the standard deviation of recharge at a reduced influence of 4%. This 

modification was crucial to allow the model flexibility to adapt the groundwater recharge rate according to the specific 

hydrological characteristics and precipitation patterns of each catchment. Given that the initial recharge rate of 250 mm yr-1 

was a preliminary estimate and not necessarily reflective of individual catchment conditions, this approach enabled a more 

tailored calibration.  370 

A key justification for not applying the same constrained parameter range across all configurations is that BL and GW do not 

incorporate recharge in calibration. Their parameters optimization is based solely on streamflow, whereas GW-RC explicitly 

integrates recharge to constrain the parameters range. 

Table 5 shows an overview of the three methods to ease comparisons between configurations. 

Table 5. Summary of configurations 375 

Settings BL GW GW-RC 

Groundwater 

Modelling 

Conceptual within unsaturated 

zone sub-model 

Physically based within the 

groundwater sub-model 

Physically based within the 

groundwater sub-model 

Calibration 

Parameters 

17 parameters (including KB and 

Q0) 

17 parameters (including Kol and 

KXY) 

17 parameters (including Kol and 

KXY) 

Precalibration N/A N/A 

200 simulations at 1000 meters 

followed by 50 simulations at 250 

meters 

Calibration 

1000 simulations at 1000 meters 

followed by 50 simulations at 250 

meters 

1000 simulations at 1000 meters 

followed by 50 simulations at 250 

meters 

1000 simulations at 1000 meters 

followed by 50 simulations at 250 

meters 

Objective 

function 
Kling-Gupta efficiency Kling-Gupta efficiency Constrained Kling-Gupta efficiency 

Computational 

demand 
610 CPU-year at 4.5 GHz 610 CPU-year at 4.5 GHz 915 CPU-year at 4.5 GHz 

CPU-year : A CPU-year is the effort of a CPU running for one year. 

2.5 Performance assessments 

2.5.1 Kling-Gupta efficiency 

The KGE (Kling et al., 2012) was chosen as the objective function to assess the model's performance during the calibration 

process of configurations BL and GW.  380 

The KGE is computed using Eq. (2): 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2,        (2) 

where r is the correlation coefficient, calculated as: 
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𝑟 =
∑ (𝑂𝑖−𝑂̅)∗(𝑆𝑖−𝑆̅)𝑛

𝑖=1

√∑ (𝑂𝑖−𝑂̅)2∗∑ (𝑆𝑖−𝑆̅)2𝑛
𝑖=1

𝑛
𝑖=1

,          (3) 

here, Oi and Si are the daily observed and daily simulated streamflow values, respectively, for each day i in the series. 𝑂̅ and 385 

𝑆̅ are the average values of these daily observed and simulated streamflow across the entire series. 

𝛽 is the bias ratio, defined as: 

𝛽 =
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
 ,            (4) 

A bias ratio of 1 indicates no bias. Values less than 1 suggest underestimation by the model, while values greater than 1 suggest 

overestimation. 390 

𝛾 is the variability ratio, calculated as: 

  𝛾 =
𝜎𝑠𝑖𝑚/𝜇𝑠𝑖𝑚

𝜎𝑜𝑏𝑠/𝜇𝑜𝑏𝑠
.            (5) 

The variability ratio assesses how effectively the model reproduces the variability in streamflow. It considers differences in 

the amplitude of variations in simulated and observed streamflow. Again, values less than 1 suggest underestimation by the 

model, while values greater than 1 suggest overestimation. 395 

The resulting KGE values range from −∞ to 1, where a KGE of 1 indicates a perfect match between observed and simulated 

streamflow. According to Knoben et al. (2019), a KGE value greater than -0.41 indicates that the model's performance is an 

improvement over using the mean flow as a benchmark.  

2.5.2 Constrained Kling-Gupta efficiency 

An arbitrary baseline groundwater recharge rate of 250 mm yr-1 and a standard deviation of 80 mm yr-1 have been established 400 

as representative benchmarks for the studied catchments. These values are based on PACES data and additional studies 

conducted in Quebec, as described in Sect. 2.2.5. The objective function for the pre-calibration of configuration GW-RC, 

outlined in Eq. (62), aims to balance KGE with these established recharge metrics. Specifically, the function assigns a weight 

of 70% to KGE, 20% to the annual recharge standard deviation, and 10% to the mean annual recharge. This specific weighting 

was chosendetermined based on preliminary teststesting conducted on two test catchments, where various weight combinations 405 

were evaluated on a test catchment. The selected weights provided the best trade-off, ensuring that recharge estimates remained 

realistic while maintaining strong KGE values for streamflow. In particular, assigning 20% to the recharge standard deviation 

and 10% to the mean annual recharge allowed the model to better capture recharge variability without compromising overall 

streamflow performance. This objective function was designed to ensure both the quantity and variability of recharge were 

realistically modeled without sacrificing performance in terms of overall streamflow quality through the KGE.  410 

The objective function employed in the pre-calibration of GW-RC configuration is formulated as follows:  

𝑃𝑟𝑒𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 1 − (0.7 ∗ 𝐾𝐺𝐸 + 0.2 ∗ ⌈𝜎𝑟𝑠𝑖𝑚
− 0.08⌉ + 0.1 ∗ ⌈𝑟𝑠𝑖𝑚̅̅ ̅̅ ̅ − 0.25⌉),   (62) 

where 𝜎𝑟𝑠𝑖𝑚
 is the simulated annual recharge standard deviation (m yr-1), 𝑟𝑠𝑖𝑚̅̅ ̅̅ ̅  is the simulated mean annual recharge (m yr-1) 

and 𝐾𝐺𝐸 is the Kling-Gupta efficiency.  
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Groundwater recharge simulations were performed at the pixel level, ensuring detailed local representation. The simulated 415 

mean annual recharge reflects the average amount of recharge occurring annually across the entire catchment during the 

calibration period. Similarly, the simulated annual standard deviation quantifies the variability in annual recharge across all 

pixels within the catchment during the same period. Introducing pixel level standard deviation helps in curbing extreme values 

in groundwater recharge, thus stabilizing the simulation outputs. The mean annual recharge is employed to verify that the 

model accurately captures the overall recharge volume expected for the study area. 420 

For the main calibration phase of the GW-RC configuration, the objective function is simplified to focus more intensively on 

streamflow accuracy: 

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 1 − (0.96 ∗ 𝐾𝐺𝐸 + 0.04 ∗ ⌈𝜎𝑟𝑠𝑖𝑚
− 0.08⌉),      (73) 

where 𝜎𝑟𝑠𝑖𝑚
 is the annual recharge standard deviation (m yr-1) and 𝐾𝐺𝐸 is the Kling-Gupta efficiency. 

2.6 Statistical analysis 425 

To assess the performance of the hydrological model configurations, statistical analyses were conducted to compare calibration 

and validation performance across different configurations. The primary metric used was the KGE, which evaluates the 

accuracy of simulated streamflow against observed data. The performance metrics were analyzed for each configuration during 

both the calibration period (2000-2009) and validation period (1990-1999), ensuring robust evaluation across varying 

hydrological conditions. 430 

All statistical comparisons were made using the Kruskal-Wallis test, a non-parametric method chosen due to its suitability for 

non-normally distributed data. This test was employed to detect significant differences in the performance and hydrological 

responses between the model configurations. Where significant differences were identified, multiple comparison post-hoc tests 

were conducted to ascertain the specific pairs of configurations that differed significantly. 

Pearson’s correlation coefficients were used to explore the influence of calibration parameters on hydrological variables. This 435 

statistical approach provided insights into how variations in parameter settings across different configurations could affect the 

representation of hydrological processes like surface runoff, interflow, and groundwater recharge. 

3 Results 

3.1 Calibration and validation performance 

Throughout the calibration (2000-2009) and validation (1990-1999) periods, all configurations yielded KGE values above 0.5. 440 

Calibration and validation performances were very similar, with a deviation less than 5%, demonstrating the robustness of the 

simulations. KGE values for all catchments and configurations, for both the calibration and validation periods, are presented 

in Table A1.  
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Figure 2 reveals a clear trend where catchments with high KGE values during calibration tend to maintain similar performance 

during validation. This consistency underpins the robustness of the configurations across different validation periods. During 445 

the validation period, median KGE values were higher for configurations BL (0.824) and GW (0.830) compared to GW-RC 

(0.770), demonstrating superior performance in the models without groundwater recharge constraints. However, GW-RC 

demonstrates more consistent KGE values between calibration and validation, suggesting it may offer more stability in model 

performance despite its slightly lower KGE scores. 

 450 

Figure 2. Comparison of Kling-Gupta Efficiency values between calibration and validation periods for three configurations. Each 

point represents a catchment, color-coded by configuration: Configuration BL (blue), Configuration GW (green), and Configuration 

GW-RC (red). The line represents a one-to-one relationship where calibration and validation KGE values are equal. Points below 

the line indicate better performance in the validation phase compared to calibration, while those above the line show a decline in 

performance from calibration to validation. 455 

It is important to note that the KGE values for configuration GW-RC are slightly lower than those from configurations BL and 

GW, which is expected given the supplementary constraints imposed during calibration. 

3.2 Hydrological variables analysis 

This section delves into the simulated hydrological variables, examining their range and distribution across the various model 

configurations during the calibration and validation periods. The variables in focus include surface runoff, baseflow, interflow, 460 

groundwater recharge, and actual evapotranspiration (ETa). 

Figure 3 illustrates the annual totals (means for groundwater level and soil moisture) for simulated hydrological variables for 

both calibration and validation periods and for all catchments. Notably, there is a consistency in the distribution of hydrological 
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variables of each model configuration between the calibration and validation periods, which. This allows us to focus our 

detailed analysis solely on the validation period for conciseness. 465 

A comparative assessment reveals distinct patterns in the simulated hydrological variables among the configurations. 

Specifically, configuration GW-RC simulates higher surface runoff and lower interflow, and infiltration compared to 

configurations BL and GW. Conversely, configuration BL is characterized by higher actual evapotranspiration, lower 

groundwater recharge, and a higher groundwater level. Configuration GW shares similarities with both configuration BL (in 

terms of runoff, interflow, and infiltration) and configuration GW-RC (regarding baseflow, groundwater recharge, actual 470 

evapotranspiration, and groundwater level).  
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Figure 3. Boxplots illustrating annual totals (means for groundwater level and soil moisture) variability of model internal variables. 

These boxplots detail the variability of key hydrological variables modeled with the different configurations, for calibration and 475 

validation periods and for all catchments. 

Figure 4 presents the proportional distribution of surface runoff, baseflow, interflow, and actual evapotranspiration for the 

three hydrological model configurations (BL, GW, and GW-RC). The charts effectively compare the relative contribution of 

each process to the total water cycle within the modeled catchments.  

The figure highlights that configuration GW-RC simulates a notably higher proportion of surface runoff (21%) and baseflow 480 

(17%) with a lower proportion of interflow (20%). Conversely, configuration BL has a higher proportion of actual 

evapotranspiration (47%) and less baseflow (11%). Finally, configuration GW has similarities with both BL (surface runoff 
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and interflow) and GW-RC (baseflow and actual evapotranspiration) configurations. The factors influencing the differences 

between configurations are further analyzed in the discussion section. 

 485 

Figure 4. Proportional distributions of key hydrological variables for the BL, GW and GW-RC hydrological model configurations.  

for the validation period (1990-1999). 

Table 6 shows that the observed similarities in surface runoff and interflow between configurations BL and GW are 

substantiated by statistical significance in their mean groupings. Furthermore, the parallels drawn between configurations GW 

and GW-RC in terms of actual evapotranspiration and groundwater recharge are also supported by significant statistical 490 

evidence. However, the apparent similarity in baseflow between configurations GW and GW-RC does not hold statistical 

significance. This outcome is expected, as both GW and GW-RC employ the same groundwater module, with GW-RC 

differing only in its calibration approach. The observed variations in baseflow arise from the inclusion of recharge constraints 

in GW-RC. More broadly, the significant contrast in baseflow between BL and the other two configurations suggests that the 

choice of model configuration plays a primary role in determining baseflow dynamics rather than the specific calibration 495 

strategy applied. 
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Table 6. Statistical analysis of the differences in estimated hydrological variables from the three configurations BL, GW and GW-

RC. 

Hydrological Variables 
BL vs. 

GW 

BL vs. 

GW-RC 

GW vs. 

GW-RC 

Surface runoff 0 1 1 

Baseflow 1 1 1 

Interflow 0 1 1 

Actual evapotranspiration 1 1 0 

Groundwater recharge 1 1 0 

(Not Different = 0; Different = 1) 

 500 

Figure 5 illustrates the annual totals distribution of key hydrological variables for the (surface runoff, baseflow, interflow, 

actual evapotranspiration, groundwater recharge, and precipitation) across 34 catchments and for each model configuration 

(BL, GW, and GW-RC). The figure provides a comprehensive comparison of how each configuration partitions the water 

balance components for each catchment. Consistent trends in hydrological responses are observed across the catchments for 

each model configuration. For instance, configuration GW-RC typically shows higher surface runoff and baseflow, with lower 505 

interflow values across most catchments. Similarlycompared to the other configurations indicating that calibration strategies 

and model complexity influence the distribution of water fluxes. In contrast, configuration BL consistently reports higher 

actual evapotranspiration (ETa) and lower groundwater recharge. These patterns, initially observed in Fig. 3 and Fig. 

4,Statistical comparisons indicated that baseflow, surface runoff and interflow dynamics of GW-RC configuration are 

corroborated across most catchments, aligning with the statistical findings presented in significantly different compared to BL 510 

and GW configurations (Table 6.). 
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Figure 5. Boxplots of annual values for key hydrological variables predicted by WaSiM for the 34 catchments and three 

configurations. for the validation period (1990-1999). 515 
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Figure 6 presents the relationships between key hydrological variables and selected calibration parameters. All subplots show 

high levels of correlations, shedding light on how varying the magnitude of calibration parameters influence model behavior. 

Notably, surface runoff exhibits a strong correlation (r = 0.899) with the parameter QDsnow, which determines the proportion 

of runoff from snowmelt. Actual evapotranspiration shows a notable correlation (r = 0.683) with the correction factors for 

potential evapotranspiration (ETp), and interflow is similarly strongly linked (r = 0.801) to the drainage density parameter. 520 

Baseflow and groundwater recharge display a strong correlation (r = 0.850) across all configurations. For configurations GW 

and GW-RC, baseflow is inversely but strongly correlated (r = -0.875) with drainage density, whereas in configuration BL, it 

correlates (r = 0.715) with the scaling factor for baseflow, Q0. It is also observed that configuration GW-RC generally has a 

higher QDsnow parameter and a lower drainage density. Additionally, configuration BL is characterized by larger correction 

factors for ETp. 525 

 

Figure 6. Correlations between key hydrological variables and calibration parameters for three model configurations. 
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3.3 In-depth analysis of the Matane catchment 

This section explores the temporal dynamics of streamflow and hydrological variables in the Matane catchment, which was 

selected as a representative example from the study’s catchments. Figure 7 contrasts observed and simulated streamflow for 530 

the Matane catchment during both calibration and validation periods, across the three configurations This figure highlights the 

high similarity in the simulated streamflow between all configurations for both calibration and validation periods with the 

largest differences happening between April and July. This period aligns with seasonal high flows due to snowmelt. While 

configurations BL and GW exhibit higher KGE values during these periods, configuration GW-RC demonstrates a slightly 

reduced performance, in alignment with observations from Sect. 3.1. Nonetheless, all configurations show good performance, 535 

highlighting their robustness throughout both the calibration and validation periods. 

 

Figure 7. Comparative hydrographs for Matane catchment showing modeling results from the three configurations as well as 

streamflow observations (Qobs). 
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 Figure 8Figure 6 reveals consistent patterns in hydrological variable behavior across all configurations during both the 540 

calibration and validation periods. Consequently, the following discussions will focus primarily on the validation period. 

Generally, interflow is the major contributor to simulated streamflow in configurations BL and GW throughout the year. In 

contrast, configuration GW-RC is characterized by a significant increase in surface runoff during the seasonal high flow and 

high precipitation periods in the fall, while predominantly exhibiting interflow contributions during other times of the year. 

Configuration GW-RC is also marked by higher levels of surface runoff and baseflow, but lower interflow compared to the 545 

other configurations. Configuration BL is distinguished by having the highest levels of annual actual evapotranspiration. 

Configuration GW aligns closely with configuration BL in terms of interflow, surface runoff, and baseflow, demonstrating 

similar hydrological dynamics between these two configurations. 

 

Figure 86. Detailed hydrological variable hydrograph for Matane catchment during both the calibration and validation phases and 550 

for the three configurations. Calibration results are shown in panels (a), (c), and (e) for Configurations BL, GW, and GW-RC, 
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respectively, while validation results are depicted in panels (b), (d), and (f). These hydrographs demonstrate how baseflow, interflow 

and runoff contribute to total streamflow throughout the year, with noted annual totals provided for a comprehensive comparison. 

Figure 97 reveals seasonal variations that correlate with hydrological responses to climatic conditions. Surface runoff and 

interflow differ significantly during periods of high flow, typically driven by snowmelt. Configurations BL and GW primarily 555 

attribute high flows to interflow, whereas configuration GW-RC reflects these peaks with increased surface runoff. 

Groundwater recharge in configuration BL exhibits more pronounced seasonal fluctuations compared to the patterns observed 

in configurations GW and GW-RC. Similarly, configuration BL maintains a consistent baseflow year-round, unlike 

configurations GW and GW-RC, which show seasonal baseflow variations. In terms of actual evapotranspiration, 

configuration BL consistently exhibits higher rates in the spring and fall, GW peaks during the summer, and GW-RC displays 560 

a pattern that blends characteristics of both BL and GW across different seasons. 
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Figure 7

 

Figure 9. Seasonal distribution of hydrological variables in the Matane catchment. This figure visualizes the annual distribution of 

key hydrological variables across the three configurations throughout the year. 565 

3.4 Groundwater recharge analysis 

This section evaluates groundwater recharge, focusing on the influence of differing model configurations within WaSiM. 

Figure 9 panel C illustrates the daily groundwater recharge in the Matane catchment for each configuration. A common 

seasonal pattern is evident across all configurations: recharge decreases in winter, rises significantly during snowmelt, and 

then exhibits marked variability throughout summer and autumn. Notably, configuration GW-RC shows a lower dynamic 570 

range during snowmelt compared to configurations BL and GW, which exhibit more pronounced peaks. Throughout the winter, 
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summer, and autumn months, configuration GW-RC consistently shows higher recharge rates than the other configurations. 

The trends observed in the Matane catchment are also representative of the behaviors seen across all studied catchments. 

 

Figure Further analysis involves distributed maps of annual recharge (Fig. C1), calculated at the pixel level for seven 575 

catchments, comparing PACES data with model outputs. Visually, configurations GW and GW-RC show recharge 

distributions that are more consistent with the PACES dataset, suggesting a better spatial accuracy in these configurations 

compared to BL. 

Figure 10 presents the boxplots of the annual recharge of each pixel for all configurations and the PACES data for the seven 

catchments. Configuration GW-RC's recharge estimates generally align more closely with the PACES data, indicating its 580 

ability in capturing the annual recharge dynamics at a finer spatial resolution. The other configurations follow, with GW also 

showing a reasonable approximation of PACES data, whereas BL appears less representative. 
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Figure 10. Distributions of annual groundwater recharge across seven catchments, for the three configurations and the PACES data. 

Each boxplot represents the range and distribution of pixel-level annual recharge values in millimeters per year (mm yr-1), with the 585 

central line indicating the median and whiskers extending to the 25th and 75th percentiles. 

7. Seasonal distribution of hydrological variables in the Matane catchment for the validation period (1990-1999). This figure 

visualizes the annual distribution of key hydrological variables across the three configurations throughout the year. 

4 Discussion 

4.1 Performance against representation 590 

This study aimed to analyze how varying model configurations affect the representation of hydrological variables estimated 

by WaSiM. Through the comparative analysis of three distinct calibration configurations, BL (baseline model), GW (activated 

groundwater simulation), and GW-RC (groundwater simulation and recharge calibration), this study provides insights into 

how internal hydrological processes are represented in a physically based model. 

KGE values were consistently higher for the BL and GW configurations compared to GW-RC during both calibration and 595 

validation periods. Configuration GW-RC’s modestly lower performance on KGE is reflective of its calibration not solely 

focusing on optimizing KGE but also in incorporating a broader suite of hydrological dynamics. 

This finding aligns with prior research, which suggests that adding constraints to model parameters can often improve the 

representation of other hydrological processes, such as groundwater dynamics and soil moisture, albeit at the cost of lower 

validation performance. For instance, Yassin et al. (2017) emphasized that incorporating additional data, such as from the 600 

Gravity Recovery and Climate Experiment (GRACE), can lead to more comprehensive and physically realistic model. 

Similarly, Dembélé et al. (2020) showed that incorporating spatial patterns from satellite data significantly improve the model’s 
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representation of soil moisture and evapotranspiration. Similarly, Bouaziz et al. (2021) found substantial disparities in internal 

process representation among models calibrated to the same streamflow data, highlighting the limitations of relying solely on 

discharge data for model validation. Lastly, Pool et al. (2024) demonstrated that incorporating variables such as actual 605 

evapotranspiration and total water storage alongside discharge in model calibration can significantly enhance the simulation 

accuracy for these variables. 

4.2 Hydrological variables analysis 

Regarding the distribution of hydrological variables, configuration BL demonstrated the highest actual evapotranspiration 

rates, alongside the lowest groundwater recharge and baseflow. Conversely, GW-RC was noted for the highest surface runoff 610 

and the lowest interflow. Configuration GW demonstratedexhibited characteristics that were intermediate between the other 

two configurations, mirroring. It resembled BL in terms of interflow and surface runoff while aligningbut aligned more closely 

with GW-RC in terms offor groundwater recharge, actual evapotranspiration, and baseflow. 

BaseflowAs shown in Figure C1, baseflow is closely correlated (r = -0.875) with the drainage density parameter (scaling 

parameter for interflow) for configurations GW and GW-RC. The constrained parameter range in configuration GW-RC 615 

explains the minor differences in baseflow rates observed between these configurations. In contrast, the baseflow in 

configuration BL is significantly correlated (r = 0.715) with the scaling factor for baseflow. The differences in groundwater 

recharge and baseflow across the configurations can be primarily attributed to the activation of the groundwater flow sub-

model. In WaSiM, the simulation of groundwater processes can either follow a more conceptual or physically based pathway. 

Our results indicated that GW and GW-RC, which incorporate more complex mechanisms between groundwater and surface 620 

processes, lead to more dynamic and possibly more accurate representations of baseflow and recharge dynamics. 

The disparities in interflow offor configuration GW-RC are mostly linkedprimarily due to the restricted calibration of the 

drainage density parameter with a. A strong correlation (r = 0.801) noted between interflow rates and the parameter value, 

highlighting highlights how constraining the groundwater recharge during calibration can impactinfluence other hydrological 

variables like, such as interflow. Similarly, variationsVariations in surface runoff infor configuration GW-RC are tiedlinked 625 

to the calibration restrictions on the 'QDsnow' parameter (, which represents the fraction of surface runoff on snow melt), 

which is strongly correlatedfrom snowmelt. A strong correlation (r = 0.899) withbetween this parameter and surface runoff 

rates, indicating indicates that it has a significant control overinfluence on this hydrological variable. Also, configuration GW-

RC showed the highest value for 'QDsnow' parameter and the lowest value for the drainage density parameter consequently 

leading to the highest surface runoff and lowest interflow rates. This observation indicates that interflow is a flexible variable 630 

within the model, with configurations BL and GW appearing to prioritize it over surface runoff and baseflow. This 

prioritization allows the optimization algorithm greater latitude to enhance performance metrics like KGE and more accurately 

reproduce observed streamflow patterns. Conversely, configuration GW-RC, constrained by groundwater recharge, tends to 

prioritize baseflow and surface runoff. While this approach may reduce the model’s flexibility in mirroring observed 

streamflow, it enhances the precision with which other hydrological processes are represented as detailed in Sect. 4.3.  The 635 
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same trend was found for the Matane catchment, underlining the broader applicability of these findings across different 

geographical contexts. Such a representation offers essential information that can be pivotal for water management strategies. 

4.3 Pinpointing the optimal model configuration  

The differences in surface runoff during the snowmelt season across configurations can be largely attributed to the parameter 

QDsnow. WaSiM employs a singular parameter (QDsnow) to account for surface runoff from snowmelt. This parameter is 640 

calibrated between 0 and 1, and its precise setting critically influences the model's surface runoff predictions.  

Analysis of Fig. 86 reveals that configurations BL and GW exhibit lower surface runoff from snowmelt, where melted snow 

predominantly percolates into the soil, contributing to interflow rather than surface runoff. This behavior is unexpected 

because, in fully frozen soil conditions, significant surface runoff is typically anticipated due to reduced infiltration. 

Conversely, configuration GW-RC, which integrates groundwater recharge into the calibration process, follows a more typical 645 

hydrological pattern. Higher surface runoff is observed at the onset of snowmelt, gradually decreasing as infiltration and 

interflow increase when the soil thaws. This progression aligns with the expected hydrological responses in frozen terrains, 

illustrating how the inclusion of groundwater recharge can improve the model's simulation of seasonal transitions. This trend 

of higher surface runoff during snowmelt was observed consistently across all catchments in the study, with detailed figures 

provided in the supplementary material (Fig. S1 to Fig. S32). Configuration GW-RC showed increased surface runoff during 650 

the snowmelt period compared to the other configurations. However, for 11 out of the 34 catchments, the surface runoff results 

were notably elevated. Figure B1 illustrates an example where nearly all of the spring discharge was attributed to surface 

runoff, suggesting that the value assigned to the QDsnow parameter, when set too close to 1, may lead to an overestimation of 

runoff. Careful calibration of this parameter is essential to avoid misrepresentations in the hydrological processes. 

The analysis of groundwater recharge, as detailed in Sect. 3.4, reveals significant differences in seasonal dynamics and spatial 655 

distribution among the configurations. Notably, GW-RC displays less dynamic recharge rates during the snowmelt period 

compared to configurations BL and GW. This is indicative of a distinct interplay between surface runoff and infiltration 

processes within configuration GW-RC, where higher surface runoff during the spring results in reduced infiltration. 

Additionally, GW-RC exhibits higher recharge rates during summer, fall, and winter, with a peak in fall. 

Spatial analysis through distributed maps and boxplot representations of annual recharge (Fig. S1 and Fig. 10) demonstrates 660 

that configuration GW-RC's recharge estimates align more closely with PACES data than the other configurations. Similarities 

between both datasets suggests that configuration GW-RC provides a more precise representation of spatial variability in 

recharge, indicating its enhanced ability to capture the real-world spatial distribution of recharge processes across diverse 

landscapes effectively. 

The spatial analysis of groundwater recharge across the catchments revealed key differences between the model configurations. 665 

Configuration BL struggled to simulate recharge rates exceeding 250 mm yr⁻¹, despite such values being common in the study 

area. However, it performed well in catchments with low recharge values, consistently producing lower recharge estimates 

compared to GW and GW-RC. 
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For configurations GW and GW-RC, groundwater recharge rates were influenced by catchment size and total precipitation. 

Larger catchments with higher precipitation exhibited greater recharge, while smaller, drier catchments showed lower recharge 670 

rates. This relationship indicates that these configurations better capture broad spatial trends in groundwater recharge compared 

to configuration BL, which showed less sensitivity to variations in precipitation and catchment size. Furthermore, GW and 

GW-RC displayed similar spatial patterns. Configuration GW exhibited the highest variability between catchments, whereas 

GW-RC produced estimates of average annual recharge that were more consistent with PACES data across most catchments. 

Future studies should further investigate how spatial characteristics of catchments affect the overall dynamics of hydrological 675 

variables in this context.  

Supporting these observations, Chemingui et al. (2015) found the average recharge rates across different seasons at three 

locations in the “des Anglais” catchment. The numbers retrieve in their work closely align with those simulated by the GW-

RC configuration: winter (58 vs 50 mm), spring (58 vs 54 mm), summer (92 vs 60 mm), and fall (52 vs 72 mm). 

Furthermore, Rivard et al. (2014) utilized the HELP infiltration model to simulate recharge for a catchment in Eastern Canada, 680 

reporting average recharge rates of 67 mm in winter, 62 mm in spring, 27 mm in summer, and 76 mm in fall. These findings 

align with our results from configuration GW-RC, which also show peak recharge occurring in fall rather than in spring, 

differentiating it from the other configurations. Configuration GW aligns less precisely with these specific seasonal patterns, 

with a peak recharge in spring, but still outperforms BL in terms of matching the documented recharge rates from PACES. 

Recharge rates from GW-RC align well with the PACES spatial distribution and compare favorably with observed seasonal 685 

fluctuations in the literature. Overall, GW-RC's alignment with empirical data and its ability to simulate hydrological processes 

more accurately make it a preferable model configuration for studying and predicting hydrological dynamics under varied 

climatic conditions.  

In this study, the GW-RC configuration demonstrated that assigning a minor weight to recharge in the objective function can 

significantly enhance WaSiM’s capability to represent hydrological variables accurately, even with non-exact prior recharge 690 

data. This approach underscores, again, the potential of leveraging prior information to refine model outputs, suggesting that 

even a modest emphasis on recharge within the calibration framework can lead to substantial improvements in model realism. 

This finding is particularly noteworthy as it implies that effective model calibration does not necessarily require precise initial 

recharge estimates if the calibration process is appropriately managed. It also points to the broader applicability of using 

informed yet flexible calibration strategies to improve hydrological models under varied conditions, highlighting a path 695 

forward for enhancing model accuracy with limited prior data. 

4.4 Practical implications, general applicability and limitations 

TheThis research has practical implications of this research extendapplications beyond hydrological process modeling. 

Integrating groundwater recharge into model calibration, as demonstrated in the GW-RC configuration, offers a more 

comprehensive approach to representing key hydrological variables. This approach is particularly valuable for improving 700 

predictions of water resources under varying climate conditions, as it enhances the accuracy of inputs critical to models of 
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forest growth (Ford et al., 2011; Grant et al., 2013). As climate change continues to alter hydrological dynamics, the reliance 

on physically based models becomes crucial. These models are favored over conceptual ones or even machine learning based 

models because they can be adapted more readily to varying conditions, ensuring more robust predictions under climate change 

scenarios. For example, a strong recent trend is the use of deep learning architectures in hydrological modelling (Kratzert et 705 

al. 2018, 2019; Arsenault et al. 2023). These models simulate streamflow with generally better accuracy than traditional 

hydrological models, but they lack any mechanism to investigate internal and intermediate hydrological variables. Such 

adaptability is also critical for effective water resource management and mitigation of climate impacts (Wilby, 2005; Ludwig 

et al., 2009; Poulin et al., 2011). By improving the representation of hydrological processes, the GW-RC configuration may 

enhance the model’s ability to simulate hydrological responses under changing climatic conditions. This is especially important 710 

given the non-stationarity of climate, where historical hydrological relationships no longer hold under future conditions. In 

this context, calibrating models using physically meaningful constraints, such as groundwater recharge, may improve their 

ability to capture shifting hydrological patterns and enhance confidence in assessments of climate change impacts on 

hydrological variables. 

This research emphasizes the need to calibrate hydrological models using not only streamflow but also other variables such as 715 

groundwater recharge. This approach aligns with findings from other studies such as Yassin et al. (2017) and Dembélé et al. 

(2020), which advocate for multi-objective calibrations that enhance model reliability across different hydrological variables. 

By integrating measurements from diverse sources such as satellite data and in-situ measurements, models can avoid the pitfalls 

of calibration based solely on streamflow, which might not capture the full spectrum of watershed dynamics. Bouaziz et al. 

(2021) further illustrate this point by demonstrating howshowing that hydrological models calibrated solely on streamflow can 720 

yieldproduce differing results when validated against other hydrological variables, underscoring. This highlights the risk of 

equifinality, where different parameter sets produceyield similar results for streamflow outputs but diverge for other 

variables.hydrological processes. Without proper constraints—, such as incorporating groundwater recharge into the 

calibration process—, models may produce seemingly accurategenerate realistic streamflow simulations while 

failingmisrepresenting key internal processes. This issue is evident in configurations BL and GW, which fail to accurately 725 

capture thecertain underlying hydrological processes like configurations BL and GW. dynamics. 

The methodology developed in this study has broad applicability beyond the specific context of Southern Québec. This 

approach can be valuable in a variety of geographic regions and hydrological settings, given similar contexts of equifinality 

(i.e. more processes and parameters than the data can support). Moreover, this multi-variable calibration method can enhance 

the accuracy of other distributed hydrological models by improving the representation of groundwater recharge related 730 

processes. Similar calibration techniques using remote-sensing data have been applied successfully in different settings, 

demonstrating that incorporating additional hydrological variables in calibration improves model performance.  

Nevertheless, it is crucial to address the limitations of this study. The models' performance in replicating hydrological processes 

like soil frost impacts and its implications on runoff and recharge remain unknown. Future studies would benefit from 

incorporating field measurements alongside a broader range of climatic and hydrological conditions. Expanding the research 735 
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to include different geographic regions with similar soil and climate characteristics could significantly enhance the validation 

and applicability of the findings. 

Additionally, the selected catchments in this study range from 525 km² to 6,840 km², which may limit the generalizability of 

the findings to catchments outside this size range. Future research could investigate smaller or larger catchments to determine 

whether the observed trends and calibration impacts remain consistent across different watershed scales.  740 

Furthermore, the choice of objective function presents another limitation. This study primarily relied on the Kling-Gupta 

Efficiency (KGE) for streamflow calibration.  However, alternative metrics such as SPAtial EFficiency (SPAEF) (Koch et al., 

2018) could enable a more comprehensive evaluation of multiple hydrological components when using distributed 

hydrological models. The lack of sufficient spatially distributed observations prevented the application of SPAEF in this study, 

but future research could explore its use, particularly in conjunction with remote sensing data to better assess the spatial 745 

coherence of hydrological variables. 

Moreover, the uncertainty inherent in modeling, especially with configurations that involve complex interactions of multiple 

variables, poses a continuous challenge. The study's reliance on specific data sets like PACES also introduces potential biases 

that could influence the generalizability of the findings. It's essential for future research to explore these limitations, perhaps 

by expanding the range of observational data used for model validation. 750 

In terms of practical implementations and further research, continuing to refine the calibration of hydrological models to 

include diverse hydrological variables can enhance their utility in real-world applications. Such efforts will help in developing 

more accurate flood forecasting models, improving water resource management strategies, and crafting more effective climate 

adaptation measures for forest, agricultural and anthropogenic ecosystems. This study advances calibration techniques in 

hydrological modeling, but further work is needed to develop universally reliable models. 755 

Overall, while this study lays a solid foundation for using advanced calibration techniques in hydrological modeling, the 

journey towards fully reliable and universally applicable hydrological models continues. 

5 Conclusion 

This study examined the nuances of hydrological modeling under different calibration settings using WaSiM model across 34 

catchments classified under climate zones Dfb and Dfc in Eastern North America. By implementing three distinct model 760 

configurations, BL (baseline model), GW (physical groundwater model), and GW-RC (physical groundwater and recharge 

calibration model), this research has demonstrated that incorporating groundwater recharge alongside streamflow during 

calibration process leads to a more accurate representation of hydrological variablesprocesses that better aligns with expected 

system behavior. 

The results indicate that the GW-RC configuration, enhanced with groundwater recharge calibration, aligns more closely with 765 

estimated groundwater recharge rates, thereby providing a more precise representation of groundwater behaviour both spatially 
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and seasonally. The study also underscores the importance of extending calibration beyond traditional streamflow metrics to 

include other hydrological variables like groundwater recharge. This approach helps to mitigate the risks of equifinality. 

Given the successful application of these methodologies within Eastern North American catchments, it presents an intriguing 

premise for their applicability to other geographical areas with similar hydrological contexts. Further research could explore 770 

how these calibration techniques perform under different hydrological conditions, potentially broadening our understanding 

of these relationships. 
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Appendix A 780 

Table A1. Kling-Gupta efficiency values across studied catchments during calibration and validation periods, for the three 

calibrations configurations. Each row corresponds to a specific catchment, identified by its basin number. 

Catchment Calibration  Validation 

Code Name BL GW GW-RC BL GW GW-RC 

108021 Bonaventure 0.835 0.849 0.817 0.897 0.892 0.861 

204042 York 0.847 0.872 0.815 0.843 0.889 0.814 

206023 Dartmouth 0.888 0.882 0.842 0.899 0.907 0.828 

216014 Matane 0.906 0.901 0.877 0.908 0.900 0.861 

220035 Rimouski 0.920 0.905 0.870 0.831 0.812 0.827 

223016 Des Trois-Pistoles 0.898 0.895 0.848 0.783 0.754 0.712 

225077 Du Loup 0.872 0.852 0.800 0.795 0.749 0.696 

227048 Ouelle 0.900 0.896 0.834 0.838 0.846 0.792 

234229 Famine 0.826 0.814 0.754 0.794 0.798 0.745 

2400310 Bécancour 0.861 0.859 0.788 0.820 0.816 0.765 

3010111 Nicolet Sud-Ouest 0.828 0.810 0.771 0.801 0.770 0.746 

3010312 Nicolet 0.804 0.799 0.744 0.811 0.792 0.767 

3023413 Eaton 0.769 0.768 0.637 0.738 0.741 0.661 

3028214 Au Saumon 0.836 0.815 0.717 0.790 0.774 0.713 

3030415 Noire 0.823 0.813 0.723 0.767 0.770 0.694 

4020416 Rouge 0.830 0.842 0.798 0.838 0.829 0.844 

4083017 Gatineau 0.817 0.840 0.796 0.807 0.831 0.772 

4301218 Kinojévis 0.765 0.850 0.784 0.695 0.711 0.735 

5011919 Mattawin 0.852 0.814 0.740 0.799 0.758 0.751 

5013520 Croche 0.835 0.835 0.833 0.839 0.840 0.831 

5014421 Vermillon 0.835 0.853 0.747 0.808 0.809 0.733 

5030422 Batiscan 0.878 0.856 0.801 0.884 0.847 0.796 

5040823 Sainte-Anne 0.872 0.860 0.833 0.852 0.847 0.829 

5040924 Bras du Nord 0.853 0.864 0.856 0.859 0.863 0.869 

5221225 Ouareau 0.855 0.881 0.818 0.839 0.837 0.765 

5221926 L'Assomption 0.865 0.886 0.851 0.829 0.859 0.821 

5223327 De l'Achigan 0.869 0.851 0.829 0.700 0.720 0.701 

5280528 Du Loup 0.808 0.783 0.800 0.786 0.721 0.753 

6010129 Petit Saguenay 0.895 0.879 0.843 0.864 0.857 0.800 

6180130 Petite rivière Péribonca 0.833 0.876 0.775 0.819 0.839 0.742 

6150231 Métabetchouane 0.872 0.861 0.806 0.801 0.769 0.670 

6270132 Valin 0.880 0.882 0.826 0.842 0.888 0.793 

6280233 Sainte-Marguerite Nord-Est 0.872 0.854 0.810 0.854 0.833 0.772 

7140134 Godbout 0.857 0.864 0.799 0.838 0.861 0.777 



 

42 

 

 

Table A2. Multiple streamflow metrics values during calibration (2000-2009) and validation (1990-1999) periods, for the 

three configurations. 785 

Metric 
Calibration  Validation 

BL GW GW-RC BL GW GW-RC 

KGE 
µ 0.852 0.852 0.799 0.816 0.820 0.772 

σ 0.034 0.036 0.050 0.055 0.049 0.056 
        

Pearson Coefficient 
µ 0.855 0.855 0.804 0.844 0.845 0.797 

σ 0.034 0.036 0.050 0.040 0.039 0.049 
        

Bias ratio 
µ 0.998 0.990 0.985 1.030 1.024 1.018 

σ 0.021 0.024 0.023 0.054 0.052 0.050 
        

Variability ratio 
µ 0.996 1.005 1.020 1.022 1.028 1.055 

σ 0.023 0.013 0.027 0.083 0.075 0.079 
        

NSE 
µ 0.704 0.706 0.603 0.677 0.679 0.558 

σ 0.059 0.076 0.091 0.091 0.073 0.120 
        

RMSE 
µ 20.926 20.749 24.317 22.877 22.621 26.545 

σ 11.018 10.681 13.055 12.594 11.665 13.870 
        

Percent bias 
µ 0.155 0.074 1.263 -3.563 -2.760 -1.756 

σ 1.399 2.209 2.132 5.792 5.628 5.650 
        

MAE 
µ 11.364 11.198 13.287 12.444 12.045 14.432 

σ 6.621 6.259 8.106 7.966 7.043 8.638 
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Appendix B 

 

Figure B1. Detailed hydrological variable hydrograph for Godbout catchment during both the calibration and validation phases 790 

and for the three configurations. Calibration results are shown in panels (a), (c), and (e) for Configurations BL, GW, and GW-

RC, respectively, while validation results are depicted in panels (b), (d), and (f). These hydrographs demonstrate how baseflow, 

interflow and runoff contribute to total streamflow throughout the year, with noted annual totals provided for a comprehensive 

comparison. 
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Appendix C 795 
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Figure C1. Spatial distribution of annual total recharge for PACES data and hydrological model 

calibration configurations.

 

Figure C1. Correlations between key hydrological variables and calibration parameters for three model configurations. 800 
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