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processes remains a major challenge in hydrological modeling. Recent studies have demonstrated the benefits of multi-variable

calibration, which integrates additional hydrological variables such as evapotranspiration and soil moisture alongside

streamflow to improve model realism. However, groundwater recharge as a calibration variable remains relatively

underexplored.
This study evaluates how incorporating groundwater recharge into the calibration of the Water Balance Simulation Model

(WaSiM) affects hydrological variables representation. Three configurations were tested: Baseline (BL) with streamflow-only

calibration, Physical Groundwater Model (GW) with physically-based groundwater flow, and Physical Groundwater with

Recharge Calibration (GW-RC), which further constrains groundwater recharge during calibration. The models were calibrated

and applied to 34 catchments in Southern Québec. Their performance was evaluated using the Kling-Gupta Efficiency (KGE)
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for streamflow and spatial estimates of groundwater recharge derived from a previous research project conducted in the same

region.
Results indicate that while calibrating on streamflow alone produces high KGE values (median KGE = 0.83 for GW and 0.82

for BL), but it comes at the cost of misrepresenting subsurface hydrological processes. Adding groundwater recharge

constraints (GW-RC) reduce streamflow performance, with a median KGE of 0.77 for GW-RC, but improves hydrological

variable representation, especially in seasonal runoff patterns, where it better captures the balance between surface runoff and

interflow during snowmelt. Additionally, GW-RC showed the smallest differences with the groundwater recharge estimates.

These findings illustrate the consequence of equifinality in streamflow-based calibration, where multiple parameter sets can

yield similar streamflow outputs while misrepresenting internal hydrological processes. Incorporating groundwater recharge

constraints improves the representation of internal hydrological processes while maintaining strong streamflow simulation

performance, which could ultimately enhance reliability of climate change adaptation and water resource management

strategies.

1 Introduction

Accurately representing watershed processes under climate change remains a central challenge in the evolving field of
hydrology (Persaud et al., 2020). Recent advances in hydrological modeling have offered valuable insights into water resource
management and climate adaptation strategies (Xu et al., 2005; Chen et al., 2011; Wang et al., 2023). However, the complexity
of watershed dynamics, especially in snow dominated catchments, necessitates models that can accurately simulate both
surface and subsurface hydrological processes (Chu and Shirmohammadi, 2004; Farjad et al., 2016).

The need for detailed, physically based hydrological modeling goes beyond immediate concerns of water management and
climate impact assessments. Groundwater dynamics play-—a-eritical-role-inare crucial for forest health (Maitre et al., 1999;
Jacobs, 2003), as stable water availability;-shaped-by-hydrological-processes,—underpins-forest supports ecosystem resilience
(Cunningham et al., 2011; Orellana et al., 2012). By enhancing the accuracy of groundwater simulation and recharge
calibration, we can improve our ability to forecast forest growth and resilience under changing climatic conditions (Ford et al.,
2011; Grant et al., 2013). This linkage underscores the importance of detailed hydrological modeling and aligns with broader
environmental, economic, and ecological management goals aimed at sustaining forest product|V|ty in the face of
environmental change. i i i i isi

forest-management—ensuring-that forests—continue-to-thriveThis approach helps forest managers make informed decisions,
supporting the long-term health and sustainability of forest ecosystems (Vose et al., 2011; Sun et al., 2023).

The Water balance Simulation Model (WaSiM) (Schulla, 2021) is a distributed and physically based hydrological model-that.

It stands out for its complexity, fine spatial resolution and comprehensive approach to modeling key-hydrological processes.

This capability—is—particularlyadvantageousmakes the model especially useful for yielding—reliable—results—inanalyzing
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intermediate variables-analysis-within-hydrological studiesvariables with greater reliability. Several studies exemplify the

application of WaSiM for examining internal hydrological variables across diverse geographic settings and scenarios. For

example, Jasper et al. (2006) analyzed summer soil water pattern shifts due to climatic changes, demonstrating that WaSiM
could effectively model the substantial alterations in hydrological responses to varying climate scenarios. Natkhin et al. (2012)
used WaSiM to differentiate the impacts of climate change and forest growth dynamics on groundwater recharge in Northeast
Germany. Similarly, two separate studies (RoBler and Loffler, 2010; Rdéssler et al., 2012) analyzed soil moisture dynamics
using WaSiM, discussing the modeling potentials and limitations in high mountain catchments and the broader impact of
climate on soil moisture. Bormann and Elfert (2010) investigated how land use changes influence various runoff generation
processes such as surface runoff, interflow, and baseflow. Furthermore, Forster et al. (2017, 2018) conducted detailed
comparisons of internal state variables with actual forest measurements, including meteorological variables and snow cover
dynamics, highlighting the refined capabilities of WaSiM to model complex interactions like snow cover and canopy
interception. These studies collectively demonstrate the model's utility in capturing a wide range of hydrological variables.

ReeentDespite recent advances-, hydrological modeling haverevealed-eriticalstill faces challenges in aceuratehy-representing

watershed dynamics—particularly. These challenges are especially evident when ealibrating—hydrological-medels—based
selelycalibration relies only on streamflow data (Mei et al., 2023; Schéfer et al., 2023; de Lima Ferreira and da Paz, 2024;

Pool et al., 2024). While streamflow is a key indicator for capturing temporal fluctuations in water systems, it offers limited
insights into the internal hydrological processes (Rajib et al., 2018). This reliance on streamflow can result in models that
perform well in reproducing observed flows but misrepresent underlying processes—a. This phenomenon, known as
equifinality, whereoccurs when different parameter sets produce the same outputs but for the wrong reasons (Kirchner, 2006;
Yassin et al., 2017; Acero Triana et al., 2019; Mei et al., 2023). Therefore, focusing only on streamflow in model calibration
can hide important differences in how hydrological processes are represented.

In pursuit of better representing hydrological processes at the catchment scale, several studies have explored hydrologic scaling
and parameter transferability (Samaniego et al., 2010, 2017; Mizukami et al., 2017; Imhoff et al., 2020). Notably, Samaniego
et al. (2010) introduced the multiscale parameter regionalization to tackle overparameterization and the non-transferability of
parameters across different scales. Ficchi et al. (2019) also proposed a model structure that considers flow accuracy and fluxes
match on different modelling timesteps, adjusting the structure and parameters to ensure robust simulation across various time
scales. Additionally, Peters-Lidard et al. (2017) advocated for adopting the fourth paradigm of data-intensive science in
hydrology, which leverages emerging datasets to refine our understanding of hydrological models and processes. This
paradigm pesitssuggests that advancements in computational science—censidered _represent a new methodological branch

alongside empiricism, theory, and computational simulation—ecan—revolutionize-science-threugh. By enabling the intensive
use of data, these advancements can revolutionize science by facilitating the discovery and testing of theories and models. This

approach emphasizes the integration of comprehensive datasets and computational tools into conventional scientific

workflows, thereby enhancing the capacity for scientific innovation and synthesis in hydrology.
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Recent studies have advocated for a shift towards integrating additional hydrological variables and data sources, such as remote
sensing products and in-situ measurements, into the calibration process (Dembélé et al., 2020; Meyer Oliveira et al., 2021; Liu
et al., 2022; Mei et al., 2023; Schéfer et al., 2023; de Lima Ferreira and da Paz, 2024; Pool et al., 2024). Mei et al. (2023)
found that including gridded soil moisture alongside gauged streamflow improved evapotranspiration simulations across 20
catchments in the Lake Michigan watershed. Schéfer et al. (2023) used WaSiM to simulate the water balance of a forested
catchment in Germany, showing that including plant-available water and evapotranspiration data significantly enhanced model
accuracy. De Lima Ferreira and da Paz (2024) similarly improved model performance by incorporating actual
evapotranspiration estimates into a hydrological model of a Brazilian semi-arid basin, highlighting the benefits of multi-
variable calibration and the need to test distinct data sources.

Although many studies have successfully used variables such as soil moisture, evapotranspiration, and groundwater head in
model calibration, there remains a gap in understanding how other variables, like groundwater recharge, can improve the
representation of hydrological processes. Addressing this gap is important for both the theoretical advancement of hydrological
sciences and the practical applications of water resource management, flood risk assessment, and climate change mitigation
(Pradhan and Indu, 2019). By adopting a calibration approach that integrates a more holistic view of watershed processes,
models become more reflective of complex hydrological interactions and gain robustness in the face of non-stationary climate
conditions (Wang et al., 2023). This enhanced process representation and strengthens confidence in model projections, making
them more reliable for future applications.

In this study, we implement three distinct model configurations of the WaSiM hydrological model;-eenfiguration-: Baseline
(BL-(baseline-medel)configuration-), which follows a traditional streamflow-based calibration; Physical Groundwater Model

(GW—{physieal), which introduces physically based groundwater medeb,flow processes; and eenfiguration—Physical
Groundwater with Recharge Calibration (GW-RC—{physieal), which further constrains groundwater and-recharge during

calibration-medel—. The objective is to investigate how integrating-additional-hydrological-variablesand-different calibration

approachesstrategies and levels of model complexity influence the representation of hydrological processes over a set of 34

catchments in Nerdiesnowy catchment conditions. Through comparative analysis of these configurations, we aim to expose
the nuances in model performance and hydrological variable representation, contributing to the ongoing debate on the best

practices for hydrological model calibration.

2 Methods
2.1 Study area

This study examines 34 catchments in Southern Quebec, Canada, each with distinct physiographic and hydrometeorological

features. The catchments range in size from 525 to 6,840 km? (see Fig. 1). These-specific-catchments-were-selected-for-their
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processesThese catchments were selected based on several key criteria to ensure robust model calibration and validation.

Specifically, they were selected based on the availability of comprehensive streamflow data from 1981 to 2010. Additionally,

catchments were selected to represent the region’s geographical and hydrological diversity to capture a range of climatic

conditions across the study area. Where possible, catchments covered by the PACES project (see detail in section 2.2.5) were

prioritized to ensure data consistency and facilitate comparisons of groundwater recharge estimates. To preserve the natural

integrity of hydrological processes under study, selected catchments needed to be free from dams and reservoirs and located

away from major urban areas to minimize anthropogenic influences.
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Figure 1. Elevation map of study catchments in southern Quebec.

The Kdppen-Geiger Climate Classification designates most of the study area (28 catchments) as belonging to class Dfb (humid
140 continental mild summer, wet all year), except a small part (six catchments) located in the northern portion that belongs to
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class Dfc (subarctic with cool summers and year-round precipitation) (Beck et al., 2018). The region experiences four distinct
seasons. Winters are characterized by frequent sub-freezing temperature and significant snowfall. As spring arrives,
temperatures gradually rise, leading to significant snowmelt which, along with increasing rainfall, influences streamflow and
water availability. Summer brings warmer temperatures, peaking in July, with rainfall remaining relatively high. Fall sees a
gradual cooling and a transition from rain to increasing snowfall, setting the stage for another winter cycle. This climatic
diversity induces complex hydrological processes at catchment scale, as the interplay between snowmelt and precipitation
patterns has a significant influence on streamflow and water availability. These dynamicspatterns are not unique to Québec
but are indicative of broader hydrological tpheavalschanges occurring across boreal regions globally under climate change.

To contextualize the environmental and hydrological setting of the selected catchments, Table 1 presents a synthesis of key
descriptors. The table shows the minimum and maximum values for a set of hydrological and geophysical characteristics for

each catchment, providing an at-a-glance perspective of the environmental variation within the study area.

Table 1. Hydrological and geophysical characteristics of the study catchments.

Catchment characteristics Minimum Maximum
Area (km?) 525 6840
Mean elevation (m) 137 568
Predominant soil type Sandy loam

. Coniferous forest and deciduous
Predominant land use

forest
Annual total precipitation (mm) 785 1547
Annual extreme daily temperature (°C) -37.7 28.6
Annual streamflow (m3s?) 10 130

2.2 Data
2.2.1 Hydrometeorological data

This study utilizes meteorological data, specifically total precipitation and mean temperature on a daily time step, sourced

from ECMWF’s Reanalysis v5 (ERA5) (Hersbach et al., 2020). These-datasets—effectivelyovercome-the-limitations—of

n_n AIth-ob \/ on acord a a aglion a) fa)




160

165

170

175

180

185

190

2020):While ERAS is known to underestimate winter precipitation and exhibit biases in convective precipitation, studies such

as Tarek et al. (2020) have demonstrated that ERA5-driven hydrological simulations perform comparably to those using

ground-based observational data across Eastern Canada. Their evaluation of 3138 North American catchments found that

ERAA5-based simulations achieved similar accuracy levels to traditional meteorological observations in hydrological modeling,

particularly in Eastern Canada. While observational data can offer higher local accuracy, it also comes with gaps and

inconsistencies due to station distribution and measurement errors. ERA5 provided gridded and consistent meteorological

inputs across all study catchments, reducing potential biases from heterogeneous station networks. The collected

meteorological data spans the period from 1981 to 2020.

Observed streamflow data from 1981 to 2010 was used, recorded at a daily resolution. This data was obtained from the
Hydroclimatic Atlas of Southern Québec (MDDELCC, 2022). The dataset contains occasional gaps, primarily during winter
months when ice cover and ice jams can significantly distort river flow measurements. To ensure the accuracy of the study,
these periods were excluded from the dataset.

2.2.2 Elevation data

A hydrologically conditioned digital surface model was derived from the NASA Shuttle Radar Topography Mission version
3.0 Global 1 (SRTM-DSM) to account for terrain elevation. The SRTM-DSM, originally beastinghaving a spatial resolution
of 30 meters at the equator, underwent resampling to 50 meters resolution and filtering using multiple moving average windows
to mitigate the impact of local noise, which could lead to erroneous hydrological behaviours (MacMillan et al., 2000). To
ensure hydrological consistency, we applied hydrological corrections based on data from provincial agencies (Géobase du
réseau hydrographique du Québec (GRHQ) - Données Québec, 2016). The-elevation-values-along-establishedTo maintain
hydrological netwerks-wereconsistency, we adjusted dewnwardelevation values along streams by lowering them by 5 meters

drning-the-stream-network-into-the digital-surface-model {DSM)-withusing the SAGA GIS software (Conrad et al., 2015).
The resulting DSM accurately captures the hydrological characteristics of the study area and is used for catchment delineation.
Additionally, the DSM was resampled to spatial resolutions of 250 and 1000 meters. This resampling process was conducted
to optimize computational efficiency while preserving the essential characteristics of the catchments. The minimum value
resampling method was used to preserve hydrological connectivity within the study area.

Following this, the Tanalys software (Schulla, 2021) was used to generate key topographic layers, including slope, aspect, and
river depth, all formatted for hydrological modeling within WaSiM.

2.2.3 Soil type data

To capture the spatial variability of soil hydraulic properties, we utilized the SIIGSOL 100 meters database (Sylvain et al.,
2021), which provides information on soil composition. The SIIGSOL database provides detailed descriptions of the
proportions of sand, clay, and silt within the soil profile (MRNF, 2022). In this study, we converted the reported proportions

of sand, silt, and clay layers into soil texture classes based on the classification system of the United States Department of

8
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Agriculture (USDA). The USDA soil classification system categorizes soils into various texture classes such as loam, clay,
sand, silt, and combinations thereof, which are determined based on the percentage composition of each type. This
classification aids in understanding the soil's physical characteristics which are crucial factors in hydrological modeling and
in predicting soil-water interactions in the studied catchments (Weil and Brady, 2017).

We derived soil hydraulic properties from generated soil type maps, using established relationships between soil texture classes
and hydraulic parameters. For the soil type maps, WaSiM generates soil layers of specified thickness based on the control file
settings. By default, if there is only one soil type present in the catchment, the soil depth is uniformly distributed throughout
the entire area. To account for soil depth variability, we divided soil types into three distinct sections based on their relative
elevation within catchment: narrow, normal, and deep. Pixels with elevations below the 33rd percentile were classified as
deep, while those with elevations above the 66th percentile were classified as shallow. The remaining soil type rasters fell into
the normal category. This classification was based on the imperfect but useful hypothesis that higher elevations correspond to
a closer proximity of bedrock to the surface, while lower elevations indicate a greater depth of soil cover in a post-glacial
landscape (Akumu et al., 2016; Jeong et al., 2022).

2.2.4 Land use data

For land use attribution, we used the 2015 North American Land Change Monitoring System (NALCMS) 30 meters land cover
dataset (Latifovic et al., 2012; Commission for Environmental Cooperation, 2020). The classification scheme used in this map
adheres to the widely recognized Land Cover Classification System (LCCS) standard established by the Food and Agriculture
Organization (FAQ) of the United Nations. This standardized approach ensures the consistency and comparability of land
cover information, enabling meaningful regional scale assessments and studies. The nearest neighbor resampling method was
employed to align land use maps with the other raster maps used in WaSiM. Land use exerts a substantial influence on various
hydrological parameters, and more specifically for the context of this study, it significantly affects parameters such as root
distribution, vegetation cover fraction (VCF), roughness length (Z0), and albedo within the hydrological model. The
distribution and characteristics of land cover types, ranging from forests to urban areas, directly impact these parameters,

thereby influencing processes such as evapotranspiration, runoff, and infiltration.

2.2.5 Groundwater recharge data

In 2008, the Government of Quebec initiated the “Projets d’acquisition de connaissances sur les eaux souterraines” (PACES;
roughly translated as “groundwater knowledge acquisition projects™) (Carrier et al., 2013; Cloutier et al., 2013, 2015; Comeau
et al., 2013; Larocque et al., 2013, 2015; Rouleau et al., 2013; Buffin-Bélanger et al., 2015; Lefebvre et al., 2015), aimed at
enhancing understanding of the groundwater resources availability in Southern Quebec area. In addition to PACES, numerous
studies conducted across the region have estimated groundwater recharge rates, which vary from 50 mm yr* to over 500 mm
yr't depending on the location and years studied (Croteau et al., 2010; Chemingui et al., 2015; Larocque et al., 2019; Dubois
etal., 2021; Boumaiza et al., 2022).



Of the 34 catchments in this study, fourteen were entirely or partially covered by the PACES project. Table 2 lists these
225 catchments, detailing their areas, associated PACES region reports, the percentage of each catchment's area covered by

PACES, and the mean and standard deviation of groundwater recharge for the areas covered.
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230

235 Table 2. PACES data coverage and groundwater recharge statistics for covered catchments.

Area PACES recharge
Catchment name Region Cover!

(km?) Mean (mmyr?)  Std. (mmyr?)
Matane 1650 Bas-Saint-Laurent 31% 179 78
Rimouski 1610 Bas-Saint-Laurent 29% 213 81
Des Trois-Pistoles 932 Bas-Saint-Laurent 38% 74 34
Ouelle 795 Chaudiere-Appalaches 62% 180 35
Famine 691 Chaudiére-Appalaches 100% 186 46
Bécancour 919 Chaudiére-Appalaches and 100% 209 83

Bécancour

Nicolet Sud-Ouest 549 Nicolet-Saint-Frangois 100% 242 64
Nicolet 1540 Nicolet-Saint-Frangois 95% 224 82
Noire 1490 Montérégie-Est 93% 133 98
Rouge 5460 Outaouais 26% 310 40
Kinojévis 2590 Abitibi-Témiscamingue 55% 172 87
Petit Saguenay 712 Saguenay-Lac-Saint-Jean 80% 69 78
Petite riviére Péribonca 1090 Saguenay-Lac-Saint-Jean 29% 142 103
Valin 746 Saguenay-Lac-Saint-Jean 73% 221 85
[ Fraction of total catchment area covered by PACES data. Median 183 80

2.3 Hydrological modelling
2.3.1 WaSiM model

In this study, we employed WaSiM for hydrological modeling (Schulla, 2021). Hydrological processes were analyzed through
240 three specific configurations: BL (baseline), which serves as the standard comparison model; GW (physical groundwater

model), which incorporates detailed groundwater dynamics; and GW-RC (physical groundwater model with constrained
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recharge), which further refines the groundwater variables by incorporating constrained recharge calibrations. Detailed
descriptions of these configurations can be found in Sect. 2.4 of this study.

WaSiM consists of two versions: WaSiM version |, originally developed using the Topmodel approach for simulating
subsurface flows based on variable saturation areas, and WaSiM version Il, an extended version with the process-oriented
Richards approach. The Richards version, which considers hydraulic head gradients and detailed soil physical properties (pF-
curve, k(u) function), was selected for this study due to its more physically based nature.

WaSiM follows a modular structure, composed of multiple sub-models that can be activated based on data availability and the
specific research objectives. The model operates using a consistent time step, while internally employing flexible sub-time
steps to optimize computational efficiency. It accommodates both regular and irregular raster grids, enabling the analysis of
diverse spatial configurations. During each time step, the sub-models are sequentially processed across the entire model grid,
enabling parallelization to aid computational optimization and facilitate faster model execution.

One of the key process modules within WaSiM is the unsaturated zone model, which plays a crucial role in calculating various
hydrological variables such as surface runoff, groundwater recharge, interflow, and baseflow. Interflow refers to water moving
laterally through the upper soil layers, contributing to streamflow, while baseflow is the portion of streamflow sustained by
groundwater flow. These variables are essential for understanding the water balance and hydrological dynamics within the
study area. Table 3 provides an overview of the hydrological model configuration used in this study.

Table 3. Overview of WaSiM characteristics and sub-models used in this study.

Sub-model Method Reference
Meteorological interpolation Inverse distance interpolation (Shepard, 1968)
Potential evapotranspiration Hamon approach (Hamon, 1963)

(Richards, 1931; van

Actual evapotranspiration Richards equation using the Van Genuchten parameters Genuchten, 1980)
Snow melt Temperature-index approach (Hock, 2003)
Interception Classic bucket approach dependent on LAl )

Integrated approach to model natural and artificial lakes,
considering interactions with unsaturated zone, routing,

Lake modelling snow, evaporation, interception, and groundwater

models.
(Richards, 1931; van
Unsaturated zone flow Richards equation using the VVan Genuchten parameters Genuchten, 1980)
Groundwater flow Integrated two-dimensional groundwater model )
(Lighthill and
Routing Kinematic wave approach

Whitham, 1955)

12



260 Meteorological data interpolation was an essential step in the hydrological modeling process. The chosen hydrological model,
WaSiM, performed the interpolation of daily precipitation and temperature inputs between ERA5 points. For each simulation,
the model creates grids that incorporate the interpolated meteorological values at the model's spatial resolution, effectively
representing the climatic conditions for each individual pixel. The inverse distance weighting method was used as

recommended by WaSiM model description report (Schulla, 2021).

265 2.3.2 Calibration parameters

Calibration of WaSiM involved the optimization of 17 parameters, selected in accordance with WaSiM documentation
(Schulla, 2021), while the remaining parameters in the control file were set to their default values. Table 4 provides a detailed
description of upper and lower limits set for calibrating the 17 parameters in WaSiM, with each parameter adjusted to two
decimal places within the specified calibration range.

270 Table 4. Description of the parameters used for the calibration of WaSiM.

No. Code  Description Unit Sub-Model Range
1 kp Storage coefficient for surface runoff h Unsaturated zone [1, 25]
2 Kn Storage coefficient for interflow h Unsaturated zone [1, 25]
3 dr Drainage density for interflow m Unsaturated zone [1, 50]
4 QDsnow  Fraction of surface runoff on snow melt - Unsaturated zone [0.1,1]
5 Co Degree-Day factor mm°C1d? Snow [0, 3]

6 To Temperature limit for snow melt °C Snow [-4, 4]
7 Tris  Transition temperature snow/rain °C Snow [-4, 4]
8 Cwn  Water storage capacity of snow - Snow [0.1,0.3]
9 Crr Coefficient for refreezing - Show [0.1, 1]

10 fisummer  Summer correction factors for ETP - Evapotranspiration [0.1, 2]
11 fian Fall correction factors for ETP - Evapotranspiration [0.1, 2]
12 fiwiner ~ Winter correction factors for ETP - Evapotranspiration [0.1,2]
13 fisping  Spring correction factors for ETP - Evapotranspiration [0.1,2]
16 K ovesion consantfor hydraulic . ol able (0., 099
15 d2 Soil layer thickness - Soil table [0.8,1.4]

164 Ks Storage coefficient for base flow m Unsaturated zone [0.1, 8]

17a Qo Scaling factor for base flow mm h?  Unsaturated zone [0.1, 5]

16g Kol®  Colmation of the river links - Input grid [1, 100]

17, Koy® Sgtura}ted horizontal conductivity (x-y- m st Input grid (0.2, 4]

direction)

2 Calibration coefficient, ranging from 0.8 to 1.4, is applied to adjust the total soil depth, which is predetermined to be 8 meters for shallow, 14
meters for normal, and 20 meters for deep soil conditions.
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® Calibration coefficient, ranging from 0.8 to 1.4, is applied to adjust the colmation grid, which is predetermined to be 1x10.

¢ A calibration coefficient, ranging from 0.2 to 4, is applied to adjust the saturated horizontal conductivity grid, which is predetermined to be 4x10°
mst.

Parameters 16 (Kg) and 174 (Qo) are calibrated in the configuration BL when groundwater model is not activated and instead
uses a conceptual approach to compute groundwater flow within the unsaturated zone sub-model. Groundwater flow is
assessed using Eq. (1) (Schulla, 2021), which calculates baseflow as a function of several parameters including the scaling
factor for baseflow (Qo) and the recession constant for baseflow (Ksg).

Qs = Qo * Ky x et lgeo0)/ Kz, (1)
where Qj is baseflow (m s?), Q, is a scaling factor for baseflow, Kj is the saturated hydraulic conductivity (m s1), kg is the
groundwater table height (m), h,., o is the geodetic altitude of the soil surface (m) and Kj is the recession constant for baseflow
(m).

In the configurations used in GW and GW-RC, which activate groundwater model, parameters 164 and 17 are replaced by
parameters 16g and 17g to obtain a more physically based representation of groundwater processes. Parameters 16g and 17g
adjust values associated to two input grids that allow to account for the colmation of the river links and saturated horizontal
conductivity. This distinction ensures a consistent number of calibrated parameters across all configurations, facilitating an

unbiased comparison of model performance.

2.3.3 Model optimization

Parameters optimization was performed independently for each catchment through the dynamically dimensioned search
algorithm (DDS; (Tolson and Shoemaker, 2007)), following the recommendation of Arsenault et al. (2014). This algorithm is
specifically designed for efficiently calibrating complex hydrological models with a large parameter range given a finite
computing budget. During optimization, it dynamically adapts its search strategy based on the number of evaluations
performed and performance metrics. To manage computational demands effectively while ensuring thorough exploration of
the parameter space, a two-phase calibration strategy was employed, albeit the approaches differ for the constrained
groundwater configurations.

Initially, 1000 simulations were performed for each catchment at a broader spatial resolution (1000 meters) using a broader
range of values for each parameter (Table 4). This phase aimed to identify an approximation of the optimal values for each
parameter. Subsequently, these values were used to initialize the second calibration step at a finer spatial resolution (250

meters). This two-step approach was chosen based on preliminary testing on the Bonaventure and Matane catchments, which

demonstrated that transferring optimized parameters from 1000 m resolution to 250 m required only minor refinements.

Additional tests showed that increasing the number of simulations at 250 m resolution beyond 50 runs (e.g., 75 or 100) provided

negligible improvements in model performance, making further computational expense unjustified. This sequential calibration

strategy allows to refine the model's performance progressively. By first identifying a set of parameters that achieves
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reasonable model performance at a coarser scale, we then fine-tune the model at a higher resolution to enhance the spatial
distribution of hydrological simulations.

The objective functions used vary by configuration: For BL and GW, the objective is to optimize the Kling-Gupta Efficiency
(KGE, (Kling et al., 2012)), as discussed in Sect. 2.5.1. Conversely, the GW-RC configuration employs a modified objective
function that seeks to optimize KGE and constrain groundwater recharge rates and variability. This approach is described in
Sect. 2.4.3 and Sect. 2.5.2.

The study employed split-sample test (SST) framework for the parameter optimization assessment. This widely used approach
involves dividing the available data into two sets: one for calibrating the model and the other for validating its performance on
unseen time periods. The calibration period (2000-2009) and the validation period (1990-1999) were chosen based on the

availability of comprehensive and reliable hydrological data. A-five-yearspin-up-period-was-performed-before-each-simulatie

metrics:-To minimize the impact of missing streamflow data, calibration and validation years were selected to ensure that most

catchments had complete records. However, data gaps were noted for three catchments: Croche, Petit Saguenay, and Sainte-
Marguerite Nord-Est. Specifically, Croche lacked data from 2001 to 2004, Petit Saguenay from 2000 to 2010, and Sainte-

Marguerite Nord-Est from 1998 to 2010. To accommaodate these gaps, adjustments were made to the calibration and validation
periods for the affected catchments. The calibration periods were shortened to later years: 1995 to 1999 for Croche and Petit
Saguenay, and 1992 to 1996 for Sainte-Marguerite Nord-Est. Correspondingly, the validation periods were adjusted to precede
the missing data: 1991 to 1994 for Croche, 1986 to 1994 for Petit Saguenay, and 1986 to 1991 for Sainte-Marguerite Nord-

Est. A five year spin-up period was performed before each simulation to allow the model to reach a stable state, eliminating

the influence of unstable initial conditions on the model's performance metrics.

2.4 Model configurations

The primary objective of this research is to examine how different model configurations influence the representation of
hydrological processes. To ensure a consistent comparison of model configuration and calibration, we designed a modelling

framework that allow to compare three configurations that incrementally incorporate more complex hydrological variables.

2.4.1 Baseline

The first configuration (BL), serving as baseline configuration, employs the standard calibration of the model without
activating the groundwater module. This configuration is aligned with the traditional application of WaSiM, where the focus
is predominantly on streamflow, and groundwater flow is modeled using Eq. (1) within the unsaturated zone sub-model. This
configuration is comparable to what has been frequently adopted in numerous studies, providing a common basis for
comparative analysis (Rossler et al., 2012; Forster et al., 2018; Markhali et al., 2022; Valencia Giraldo et al., 2023).
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2.4.2 Physical groundwater module

The second configuration, GW (physical groundwater), marks a departure from the BL configuration by activating WaSiM's
groundwater module. This adjustment allows for groundwater flow to be simulated within a designated sub-model,

transitioning from a conceptual to a more physically based representation. In WaSiM, the groundwater model is coupled bi-

directionally with the unsaturated zone, ensuring a dynamic exchange of water fluxes. The unsaturated zone module calculates

fluxes between the unsaturated zone and the groundwater that act as the upper boundary condition for the groundwater model,

while the groundwater module simulates lateral flow and adjusts the groundwater table, feeding back changes to the

unsaturated zone as inflow or outflow. This configuration, used in numerous studies (Bormann and Elfert, 2010; Natkhin et
al., 2012; Gédeke et al., 2014; Schéfer et al., 2023), is recommended by the WaSiM documentation for catchments where
groundwater dynamics play a pivotal role in the hydrological cycle, particularly in lowland areas with extensive sediment

layers.

2.4.3 Physical groundwater module and constrained recharge

For configuration GW-RC (physical groundwater and constrained recharge), we incorporate groundwater recharge into the
calibration process to achieve a better representation of hydrological variables such as baseflow, interflow, and runoff.

Importantly, GW-RC uses the same model structure as GW, with the goal of isolating the effect of adding groundwater recharge

in calibration. By introducing recharge into the calibration, we restrict hyperplane exploration and ensure that the model's
representation of the hydrological cycle is more accurately simulating groundwater recharge dynamics. This is particularly
useful if model hydrological variables are an important input to another analysis or process, such as for better understanding
groundwater movement and evolution under climate change for certain types of vegetation, for example.

FheGW-RC calibration ferconfiguration-GW-RC-was conductedperformed in two distinet-phases. Fhe-initial-phase-nvolved
definingFirst, we defined new parameter ranges for parameters-that-impactvariables affecting baseflow (dr, QDSnow, Krec,
Kol, Kxy). We-therefore first conducted 200 evaluations at a spatial resolution of 1000 meters, followed by 50 evaluations at

250 meters using the objective function presented in Eq. (62). Essentially, the aim here is to constrain the parameter set to a
single value that performs well overall and provides realistic internal variables. Similar approaches have been used in studies
such as Duethmann et al. (2024), which underscores the benefits of integrating Landsat-derived land surface temperature (Ts)
data into model calibration. Landsat, a series of Earth-observing satellites, provides crucial Ts data used in this study. By
including satellite-derived Ts, the study demonstrated improvements in the model's ability to capture spatial anomalies and
ecosystem stress responses, while maintaining streamflow accuracy, illustrating the advantages of multi-variable constraints
in model calibration.

Following pre-calibration at both spatial resolutions, the resulting calibrated parameter sets were analyzed to define new
parameter ranges for the calibration phase. This analysis involved adjusting the minimum and maximum values of parameters

influencing baseflow (dr, QDsnow, Krec, Kol, Kxy) by £10% to establish new calibration ranges.
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In the second and most important calibration phase, the process continued with the adjusted parameter ranges, employing a
less restrictive objective function (Eq. (#3)) to better accommodate uncertainties in the recharge data. This phase involved a
comprehensive series of 1000 evaluations at 1000 meters and 50 at 250 meters resolutions. The modified objective function
primarily emphasized the KGE while incorporating the standard deviation of recharge at a reduced influence of 4%. This
modification was crucial to allow the model flexibility to adapt the groundwater recharge rate according to the specific
hydrological characteristics and precipitation patterns of each catchment. Given that the initial recharge rate of 250 mm yr*
was a preliminary estimate and not necessarily reflective of individual catchment conditions, this approach enabled a more
tailored calibration.

A key justification for not applying the same constrained parameter range across all configurations is that BL and GW do not

incorporate recharge in calibration. Their parameters optimization is based solely on streamflow, whereas GW-RC explicitly

integrates recharge to constrain the parameters range.

Table 5 shows an overview of the three methods to ease comparisons between configurations.

Table 5. Summary of configurations

Settings BL GW GW-RC
Groundwater Conceptual within unsaturated Physically based within the Physically based within the
Modelling zone sub-model groundwater sub-model groundwater sub-model
Calibration 17 parameters (including Kg and 17 parameters (including Kol and 17 parameters (including Kol and
Parameters Qo) Kxy) Kxy)
200 simulations at 1000 meters
Precalibration N/A N/A followed by 50 simulations at 250

Calibration

Objective
function

Computational
demand

1000 simulations at 1000 meters
followed by 50 simulations at 250
meters

Kling-Gupta efficiency

610 CPU-year at 4.5 GHz

1000 simulations at 1000 meters
followed by 50 simulations at 250
meters

Kling-Gupta efficiency

610 CPU-year at 4.5 GHz

meters
1000 simulations at 1000 meters
followed by 50 simulations at 250
meters

Constrained Kling-Gupta efficiency

915 CPU-year at 4.5 GHz

CPU-year : A CPU-year is the effort of a CPU running for one year.

2.5 Performance assessments

PR thici

The KGE (Kling et al., 2012) was chosen as the objective function to assess the model's performance during the calibration

process_of configurations BL and GW.
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An arbitrary baseline groundwater recharge rate of 250 mm yr* and a standard deviation of 80 mm yr? have been established

as representative benchmarks for the studied catchments. These values are based on PACES data and additional studies
conducted in Quebec, as described in Sect. 2.2.5. The objective function for the pre-calibration of configuration GW-RC,
outlined in Eq. (62), aims to balance KGE with these established recharge metrics. Specifically, the function assigns a weight
of 70% to KGE, 20% to the annual recharge standard deviation, and 10% to the mean annual recharge. This specific weighting

was ehesendetermined based on preliminary teststesting conducted on two test catchments, where various weight combinations

were evaluated-on-atestcatchment. The selected weights provided the best trade-off, ensuring that recharge estimates remained

realistic while maintaining strong KGE values for streamflow. In particular, assigning 20% to the recharge standard deviation

and 10% to the mean annual recharge allowed the model to better capture recharge variability without compromising overall

streamflow performance. This objective function was designed to ensure both the quantity and variability of recharge were

realistically modeled without sacrificing performance in terms of overall streamflow quality through the KGE.
The objective function employed in the pre-calibration of GW-RC configuration is formulated as follows:

Precalibration function = 1 — (0.7 * KGE + 0.2 % [0, — 0.08] + 0.1 * [Ty, — 0.25]), (62)

where g, is the simulated annual recharge standard deviation (m yrl), Tm is the simulated mean annual recharge (m yr?)
and KGE is the Kling-Gupta efficiency.
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Groundwater recharge simulations were performed at the pixel level, ensuring detailed local representation. The simulated
mean annual recharge reflects the average amount of recharge occurring annually across the entire catchment during the
calibration period. Similarly, the simulated annual standard deviation quantifies the variability in annual recharge across all
pixels within the catchment during the same period. Introducing pixel level standard deviation helps in curbing extreme values
in groundwater recharge, thus stabilizing the simulation outputs. The mean annual recharge is employed to verify that the
model accurately captures the overall recharge volume expected for the study area.

For the main calibration phase of the GW-RC configuration, the objective function is simplified to focus more intensively on
streamflow accuracy:

Calibration function = 1 — (0.96 * KGE + 0.04 * [a,, — 0.08]), (73)

where g, is the annual recharge standard deviation (m yr1) and KGE is the Kling-Gupta efficiency.

2.6 Statistical analysis

To assess the performance of the hydrological model configurations, statistical analyses were conducted to compare calibration
and validation performance across different configurations. The primary metric used was the KGE, which evaluates the
accuracy of simulated streamflow against observed data. The performance metrics were analyzed for each configuration during
both the calibration period (2000-2009) and validation period (1990-1999), ensuring robust evaluation across varying
hydrological conditions.

All statistical comparisons were made using the Kruskal-Wallis test, a non-parametric method chosen due to its suitability for
non-normally distributed data. This test was employed to detect significant differences in the performance and hydrological
responses between the model configurations. Where significant differences were identified, multiple comparison post-hoc tests
were conducted to ascertain the specific pairs of configurations that differed significantly.

Pearson’s correlation coefficients were used to explore the influence of calibration parameters on hydrological variables. This
statistical approach provided insights into how variations in parameter settings across different configurations could affect the

representation of hydrological processes like surface runoff, interflow, and groundwater recharge.

3 Results
3.1 Calibration and validation performance

Throughout the calibration (2000-2009) and validation (1990-1999) periods, all configurations yielded KGE values above 0.5.
Calibration and validation performances were very similar, with a deviation less than 5%, demonstrating the robustness of the
simulations. KGE values for all catchments and configurations, for both the calibration and validation periods, are presented
in Table A1.
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Figure 2 reveals a clear trend where catchments with high KGE values during calibration tend to maintain similar performance
during validation. This consistency underpins the robustness of the configurations across different validation periods. During
the validation period, median KGE values were higher for configurations BL (0.824) and GW (0.830) compared to GW-RC
(0.770), demonstrating superior performance in the models without groundwater recharge constraints. However, GW-RC
demonstrates more consistent KGE values between calibration and validation, suggesting it may offer more stability in model

performance despite its slightly lower KGE scores.
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= 09— ® ° @ .v. o - B
o X
© s ) ) L4 [y : L 3 ‘o. ° °
5 [
% o ® ? .‘o. °
© 08 - ¢ e o ot ¢ * ]
: . oo
w o
) ® o
X 07 .
®
06 | | ! |
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

KGE - Validation

Figure 2. Comparison of Kling-Gupta Efficiency values between calibration and validation periods for three configurations. Each
point represents a catchment, color-coded by configuration: Configuration BL (blue), Configuration GW (green), and Configuration
GW-RC (red). The line represents a one-to-one relationship where calibration and validation KGE values are equal. Points below
the line indicate better performance in the validation phase compared to calibration, while those above the line show a decline in

performance from calibration to validation.

It is important to note that the KGE values for configuration GW-RC are slightly lower than those from configurations BL and

GW, which is expected given the supplementary constraints imposed during calibration.

3.2 Hydrological variables analysis

This section delves into the simulated hydrological variables, examining their range and distribution across the various model
configurations during the calibration and validation periods. The variables in focus include surface runoff, baseflow, interflow,
groundwater recharge, and actual evapotranspiration (ETa).

Figure 3 illustrates the annual totals (means for groundwater level and soil moisture) for simulated hydrological variables for

both calibration and validation periods and for all catchments. Notably, there is a consistency in the distribution of hydrological
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variables of each model configuration between the calibration and validation periods;—which. This allows us to focus our
detailed analysis solely on the validation period for conciseness.

A comparative assessment reveals distinct patterns in the simulated hydrological variables among the configurations.
Specifically, configuration GW-RC simulates higher surface runoff and lower interflow, and infiltration compared to
configurations BL and GW. Conversely, configuration BL is characterized by higher actual evapotranspiration, lower
groundwater recharge, and a higher groundwater level. Configuration GW shares similarities with both configuration BL (in
terms of runoff, interflow, and infiltration) and configuration GW-RC (regarding baseflow, groundwater recharge, actual

evapotranspiration, and groundwater level).
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Figure 3. Boxplots illustrating annual totals (means for groundwater level and soil moisture) variability of model internal variables.
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validation periods and for all catchments.

These boxplots detail the variability of key hydrological variables modeled with the different configurations, for calibration and

Figure 4 presents the proportional distribution of surface runoff, baseflow, interflow, and actual evapotranspiration for the

three hydrological model configurations (BL, GW, and GW-RC). The charts effectively compare the relative contribution of

each process to the total water cycle within the modeled catchments.

480

The figure highlights that configuration GW-RC simulates a notably higher proportion of surface runoff (21%) and baseflow

(17%) with a lower proportion of interflow (20%). Conversely, configuration BL has a higher proportion of actual

evapotranspiration (47%) and less baseflow (11%). Finally, configuration GW has similarities with both BL (surface runoff
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and interflow) and GW-RC (baseflow and actual evapotranspiration) configurations. The factors influencing the differences

between configurations are further analyzed in the discussion section.

Setup BL Setup GW Setup GW-RC
6% 6%

21%

. I Surface Runoff
4% [ Baseflow
I Interflow
EETa

41%
47%

17%

20%
485

Figure 4. Proportional distributions of key hydrological variables for the BL, GW and GW-RC hydrological model configurations-

for the validation period (1990-1999).

Table 6 shows that the observed similarities in surface runoff and interflow between configurations BL and GW are
substantiated by statistical significance in their mean groupings. Furthermore, the parallels drawn between configurations GW
490 and GW-RC in terms of actual evapotranspiration and groundwater recharge are also supported by significant statistical
evidence. However, the apparent similarity in baseflow between configurations GW and GW-RC does not hold statistical

significance._This outcome is expected, as both GW and GW-RC employ the same groundwater module, with GW-RC

differing only in its calibration approach. The observed variations in baseflow arise from the inclusion of recharge constraints

in GW-RC. More broadly, the significant contrast in baseflow between BL and the other two configurations suggests that the

495 choice of model configuration plays a primary role in determining baseflow dynamics rather than the specific calibration

strategy applied.

24



500

505

510

Table 6. Statistical analysis of the differences in estimated hydrological variables from the three configurations BL, GW and GW-

RC.

BL vs. BL vs. GW vs.

Hydrological Variables
GW GW-RC GW-RC

Surface runoff 0 1 1
Baseflow 1 1 1
Interflow 0 1 1
Actual evapotranspiration 1 1 0
Groundwater recharge 1 1 0

(Not Different = 0; Different = 1)

Figure 5 illustrates the annual totals distribution of key hydrological variables for-the-(surface runoff, baseflow, interflow,

actual evapotranspiration, groundwater recharge, and precipitation) across 34 catchments and-for each model configuration

(BL, GW, and GW-RC). The figure provides a comprehensive comparison of how each configuration partitions the water

balance components for each catchment. Consistent trends in hydrological responses are observed across the catchments for

each model configuration. For instance, configuration GW-RC typicathy-shows higher surface runoff and baseflow, with lower
interflow values across-meost-catchments—Simiarhrcompared to the other configurations indicating that calibration strategies

and model complexity influence the distribution of water fluxes. In contrast, configuration BL consistently reports higher

actual evapotranspiration (ETa) and lower groundwater recharge. Fhese—patterns—initialy—observedin—Fig—3-and-Fig-

4 Statistical comparisons indicated that baseflow, surface runoff and interflow dynamics of GW-RC configuration are

esented-ir-significantly different compared to BL

and GW configurations (Table 6:).

25



Sun‘ace Runoff = Setup BL = Setup GW = Setup GW-RC

600 | T ' T T T T T T T T T T T T T T T 1

‘TS. i ‘ * 1

s ' + | i i * ‘ !

E, * * * ‘ ﬁ ' |
- " HiTH'** -h+ sl 8 ERE
LN i . | > )

N o A T o O e i 1 T
1 2 3 4 5 6 7 s 9 10 11 12 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
b) Baseflow

500 T T T T T 1 (I — [ — B T —

= 1 .

" 300 ' I - |

5 ‘i B "y h ' ﬁ ” dy ¥

£ 200 = i ' L R $
WA -F L] ¥ L |moaTe ! * LT - Y T . - -

100/t —— 14— — T {0 T I . -

P T e e O T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
c) Interflow

0WOr——7——7 717 17 17 17 1 1 T T T T T T T T T T T T T T T T T T T T T T T T 1

800 | —

| | |

S 600 ” # “ﬁ “ “ J i h * h I u

L RGBT L o e

£ 400 ‘ 1

200—. + ' ? o 8 ; 'y b ' # h ¥ . ﬂ* L *l +. " ii

. ! I N LI
Do ISP O O PR U . S U O NS S OO R OO SO SO | W | S (T o ) R N OO N R R O O
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
d) ETa
— T I — T —— T
800~ l —
. o

%, 600 - ! ﬂ v Y e 4 LI | i I ‘ ' '

'; LW m,* | LT ] “ L] k *+ T A L " LI T TS L ) .

£ 00| i = " AL N L ' | 14

-+ -

200 R
A R N I I M N (NN A N TN A NN MY N N AN N N AN Y I N N I NN N M SN NN M N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
e) Groundwater Recharge

6077 1T 1T T T 1 T 1 1 1 T T T T T T T T T T T T T T T T T T [ T T I

S ENRRAR: A AL ISRT Y LAY

s \ ]

E " o ‘ i L . J '

20, 4. ¢ B f . H L -* J . . ** ' L o & [ Iy — ‘ 5 + ' N
) It A o -

oo 2 e d® oy - ’ ' -
P N . T Y O S . O | | I A S IS A NSO A NS SO AU A NSO AU N N MU A N |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

26



515

600

<. 400

mm yr

o

500
400
"¢ 300
£ 200
100

1000

501

mm yr'1
o

800
" 600
>
E 400

200

1600
~ 1400
1200

mm yr

1000
800

a) Surface Runoff = Setup BL = Setup GW = Setup GW-RC
7T |' T T T T 1 T T T T T T T T T T T 1 T T 1
b i F * ‘ i Fy
i ' ' a0 + ¥ ‘ ﬁh by : by ull
it ol ﬁ* L] .- " . n
| - o4 * o e A " L
il ‘T o N I 4'T L ‘T ‘T * R N T M, O S S P S N A N
1 2 3 4 5 6 7 8 9 10 11 12 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
b) Baseflow
- T T T T 1 I — B T —
i | : ' — | 1
L L] [ i |
- ' ! ! ' ;
B L . “ !*ﬂ +‘,t .- - h* *il ! v 0
N X Pl A R P O - s
P P N, SO O O [0 P OO OO O Lo Pome I o B oo B o e i o o] e [ [Pt 1 e 1 e 1] cm o] el |
1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
C) Interflow
T T T T T T T T T T 1 T 1 T T T T T T T T T T T T T T T T 1
|
" nhy b, ¢ by
TRAAFTET ALY * LI
s ! y '  F
L] + " 3 Ll ‘ + ‘ _" . R *. . a 4'* . h +i L ' ' i
« |F - bl IR R S * L T -
A R A AN Al A AN SN SN I N G N N O A NN Y GO | N O s 0 - 0 N
1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
d) ETa
T 1 T T T T T T 1 T T T T T T I T T T T 1 T T]
. . 4 ot L ! oo ' ] ' l "
I S PR T _ e . i*! e . " -}-_ —
_‘-‘ A *-ﬁ * =T i i ; -: -+ *_‘ + - ‘* ’ T% ™ *. *’ ol :P 4 - ‘_
-+ = d
T Y Y Y TN T N O N N N Y Y T T N Y Y N I A A A A NN N B
1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
e) Groundwater Recharge
- T T T T T T T 1 T T T T T T T T T T T T T T 1 | —
l |
s | ] ] ' Ii H .
" Pt 'Y { ' ' !
T L N N ﬁ+ *‘i+iﬁ‘ K ' ' 5
- 1 . B
-* - + ,‘ L] : | ﬁ’ b .-* - il » + t * " o = ‘V‘i T [ ] ‘ o
I L O O O O i O O Lo
1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
f) Precipitation
M T T T 1 - - T T 1 T B T T T T 1]
| | ‘ '
m N [ * H H # " H H H H | H M
| | | |
‘ ‘ | #
LLLETL WEPLT LRRRRLLLT bRl
Iy Y Y Y B L1 I O O I Y I | L
1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Figure 5. Boxplots of annual values for key hydrological variables predicted by

configurations. for the validation period (1990-1999).
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3.3 In-depth analysis of the Matane catchment

This section explores the temporal dynamics of streamflow and hydrological variables in the Matane catchment, which was
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540

-Figure-8Figure 6 reveals consistent patterns in hydrological variable behavior across all configurations during both the

calibration and validation periods. Consequently, the following discussions will focus primarily on the validation period.

Generally, interflow is the major contributor to simulated streamflow in configurations BL and GW throughout the year. In

contrast, configuration GW-RC is characterized by a significant increase in surface runoff during the seasonal high flow and

high precipitation periods in the fall, while predominantly exhibiting interflow contributions during other times of the year.

545

Configuration GW-RC is also marked by higher levels of surface runoff and baseflow, but lower interflow compared to the

other configurations. Configuration BL is distinguished by having the highest levels of annual actual evapotranspiration.

Configuration GW aligns closely with configuration BL in terms of interflow, surface runoff, and baseflow, demonstrating

similar hydrological dynamics between these two configurations.
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550 Figure 86. Detailed hydrological variable hydrograph for Matane catchment during both the calibration and validation phases and

for the three configurations. Calibration results are shown in panels (a), (c), and (e) for Configurations BL, GW, and GW-RC,
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respectively, while validation results are depicted in panels (b), (d), and (f). These hydrographs demonstrate how baseflow, interflow

and runoff contribute to total streamflow throughout the year, with noted annual totals provided for a comprehensive comparison.

Figure 97 reveals seasonal variations that correlate with hydrological responses to climatic conditions. Surface runoff and
interflow differ significantly during periods of high flow, typically driven by snowmelt. Configurations BL and GW primarily
attribute high flows to interflow, whereas configuration GW-RC reflects these peaks with increased surface runoff.
Groundwater recharge in configuration BL exhibits more pronounced seasonal fluctuations compared to the patterns observed
in configurations GW and GW-RC. Similarly, configuration BL maintains a consistent baseflow year-round, unlike
configurations GW and GW-RC, which show seasonal baseflow variations. In terms of actual evapotranspiration,
configuration BL consistently exhibits higher rates in the spring and fall, GW peaks during the summer, and GW-RC displays

a pattern that blends characteristics of both BL and GW across different seasons.
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Figure-9 panel C illustrates the daily groundwater recharge in the Matane catchment for each configuration. A common

seasonal pattern is evident across all configurations: recharge decreases in winter, rises significantly during snowmelt, and
then exhibits marked variability throughout summer and autumn. Notably, configuration GW-RC shows a lower dynamic

range during snowmelt compared to configurations BL and GW, which exhibit more pronounced peaks. Throughout the winter,
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summer, and autumn months, configuration GW-RC consistently shows higher recharge rates than the other configurations.

The trends observed in the Matane catchment are also representative of the behaviors seen across all studied catchments.
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4 Discussion

4.1 Performance against representation

This study aimed to analyze how varying model configurations affect the representation of hydrological variables estimated
by WaSiM. Through the comparative analysis of three distinct calibration configurations, BL (baseline model), GW (activated
groundwater simulation), and GW-RC (groundwater simulation and recharge calibration), this study provides insights into
how internal hydrological processes are represented in a physically based model.

KGE values were consistently higher for the BL and GW configurations compared to GW-RC during both calibration and
validation periods. Configuration GW-RC’s modestly lower performance on KGE is reflective of its calibration not solely
focusing on optimizing KGE but also in incorporating a broader suite of hydrological dynamics.

This finding aligns with prior research, which suggests that adding constraints to model parameters can often improve the
representation of other hydrological processes, such as groundwater dynamics and soil moisture, albeit at the cost of lower
validation performance. For instance, Yassin et al. (2017) emphasized that incorporating additional data, such as from the
Gravity Recovery and Climate Experiment (GRACE), can lead to more comprehensive and physically realistic model.

Similarly, Dembélé et al. (2020) showed that incorporating spatial patterns from satellite data significantly improve the model’s
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representation of soil moisture and evapotranspiration. Similarly, Bouaziz et al. (2021) found substantial disparities in internal
process representation among models calibrated to the same streamflow data, highlighting the limitations of relying solely on
discharge data for model validation. Lastly, Pool et al. (2024) demonstrated that incorporating variables such as actual
evapotranspiration and total water storage alongside discharge in model calibration can significantly enhance the simulation

accuracy for these variables.

4.2 Hydrological variables analysis

Regarding the distribution of hydrological variables, configuration BL demonstrated the highest actual evapotranspiration
rates, alongside the lowest groundwater recharge and baseflow. Conversely, GW-RC was noted for the highest surface runoff
and the lowest interflow. Configuration GW demenstratedexhibited characteristics that were intermediate between the other
two configurations-mirrering. It resembled BL in terms of interflow and surface runoff while-aligningbut aligned more closely
with GW-RC in-terms-effor groundwater recharge, actual evapotranspiration, and baseflow.

BaseflewAs shown in Figure C1, baseflow is closely correlated (r = -0.875) with the drainage density parameter (scaling

parameter for interflow) for configurations GW and GW-RC. The constrained parameter range in configuration GW-RC
explains the minor differences in baseflow rates observed between these configurations. In contrast, the baseflow in
configuration BL is significantly correlated (r = 0.715) with the scaling factor for baseflow. The differences in groundwater
recharge and baseflow across the configurations can be primarily attributed to the activation of the groundwater flow sub-
model. In WaSiM, the simulation of groundwater processes can either follow a more conceptual or physically based pathway.
Our results indicated that GW and GW-RC, which incorporate more complex mechanisms between groundwater and surface
processes, lead to more dynamic and possibly more accurate representations of baseflow and recharge dynamics.

The disparities in interflow effor configuration GW-RC are mestly-tnkedprimarily due to the restricted calibration of the
drainage density parameter-with-a. A strong correlation (r = 0.801) neted-between interflow rates and the parameter value;
hightghting highlights how constraining the-groundwater recharge during calibration can #mpaetinfluence other hydrological
variables-tike, such as interflow. Similarhy—variationsVariations in surface runoff infor configuration GW-RC are tiedlinked
to the-calibration restrictions on the '‘QDsnow' parameter—{, which represents the fraction of surface runoff en-srew-melt);
which-is-stronghy-correlatedfrom snowmelt. A strong correlation (r = 0.899) withbetween this parameter and surface runoff
ratesindicating indicates that it has a significant centrol-everinfluence on this hydrological variable. Also, configuration GW-
RC showed the highest value for 'QDsnow' parameter and the lowest value for the drainage density parameter consequently

leading to the highest surface runoff and lowest interflow rates. This observation indicates that interflow is a flexible variable
within the model, with configurations BL and GW appearing to prioritize it over surface runoff and baseflow. This
prioritization allows the optimization algorithm greater latitude to enhance performance metrics like KGE and more accurately
reproduce observed streamflow patterns. Conversely, configuration GW-RC, constrained by groundwater recharge, tends to
prioritize baseflow and surface runoff. While this approach may reduce the model’s flexibility in mirroring observed

streamflow, it enhances the precision with which other hydrological processes are represented as detailed in Sect. 4.3. The
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same trend was found for the Matane catchment, underlining the broader applicability of these findings across different

geographical contexts. Such a representation offers essential information that can be pivotal for water management strategies.

4.3 Pinpointing the optimal model configuration

The differences in surface runoff during the snowmelt season across configurations can be largely attributed to the parameter
QDsnow. WaSiM employs a singular parameter (QDsnow) to account for surface runoff from snowmelt. This parameter is
calibrated between 0 and 1, and its precise setting critically influences the model's surface runoff predictions.

Analysis of Fig. 86 reveals that configurations BL and GW exhibit lower surface runoff from snowmelt, where melted snow
predominantly percolates into the soil, contributing to interflow rather than surface runoff. This behavior is unexpected
because, in fully frozen soil conditions, significant surface runoff is typically anticipated due to reduced infiltration.
Conversely, configuration GW-RC, which integrates groundwater recharge into the calibration process, follows a more typical
hydrological pattern. Higher surface runoff is observed at the onset of snowmelt, gradually decreasing as infiltration and
interflow increase when the soil thaws. This progression aligns with the expected hydrological responses in frozen terrains,
illustrating how the inclusion of groundwater recharge can improve the model's simulation of seasonal transitions. This trend
of higher surface runoff during snowmelt was observed consistently across all catchments in the study, with detailed figures
provided in the supplementary material (Fig. S1 to Fig. S32). Configuration GW-RC showed increased surface runoff during
the snowmelt period compared to the other configurations. However, for 11 out of the 34 catchments, the surface runoff results
were notably elevated. Figure B1 illustrates an example where nearly all of the spring discharge was attributed to surface
runoff, suggesting that the value assigned to the QDsnow parameter, when set too close to 1, may lead to an overestimation of
runoff. Careful calibration of this parameter is essential to avoid misrepresentations in the hydrological processes.

The analysis of groundwater recharge, as detailed in Sect. 3.4, reveals significant differences in seasonal dynamics and spatial
distribution among the configurations. Notably, GW-RC displays less dynamic recharge rates during the snowmelt period
compared to configurations BL and GW. This is indicative of a distinct interplay between surface runoff and infiltration

processes within configuration GW-RC, where higher surface runoff during the spring results in reduced infiltration.

Additionally, GW-RC exhibits higher recharge rates during summer, fall, and winter, with a peak in fall.

The spatial analysis of groundwater recharge across the catchments revealed key differences between the model configurations.

Configuration BL struggled to simulate recharge rates exceeding 250 mm yr !, despite such values being common in the study

area. However, it performed well in catchments with low recharge values, consistently producing lower recharge estimates
compared to GW and GW-RC.
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For configurations GW and GW-RC, groundwater recharge rates were influenced by catchment size and total precipitation.

Larger catchments with higher precipitation exhibited greater recharge, while smaller, drier catchments showed lower recharge

rates. This relationship indicates that these configurations better capture broad spatial trends in groundwater recharge compared

to configuration BL, which showed less sensitivity to variations in precipitation and catchment size. Furthermore, GW and

GW-RC displayed similar spatial patterns. Configuration GW exhibited the highest variability between catchments, whereas

GW-RC produced estimates of average annual recharge that were more consistent with PACES data across most catchments.

Future studies should further investigate how spatial characteristics of catchments affect the overall dynamics of hydrological

variables in this context.

Supporting these observations, Chemingui et al. (2015) found the average recharge rates across different seasons at three
locations in the “des Anglais” catchment. The numbers retrieve in their work closely align with those simulated by the GW-
RC configuration: winter (58 vs 50 mm), spring (58 vs 54 mm), summer (92 vs 60 mm), and fall (52 vs 72 mm).
Furthermore, Rivard et al. (2014) utilized the HELP infiltration model to simulate recharge for a catchment in Eastern Canada,
reporting average recharge rates of 67 mm in winter, 62 mm in spring, 27 mm in summer, and 76 mm in fall. These findings
align with our results from configuration GW-RC, which also show peak recharge occurring in fall rather than in spring,
differentiating it from the other configurations. Configuration GW aligns less precisely with these specific seasonal patterns,
with a peak recharge in spring, but still outperforms BL in terms of matching the documented recharge rates from PACES.
Recharge rates from GW-RC align-well-with-the PACES spatial-distribution-and-compare favorably with observed seasonal
fluctuations in the literature. Overall, GW-RC's alignment with empirical data and its ability to simulate hydrological processes
more accurately make it a preferable model configuration for studying and predicting hydrological dynamics under varied
climatic conditions.

In this study, the GW-RC configuration demonstrated that assigning a minor weight to recharge in the objective function can
significantly enhance WaSiM’s capability to represent hydrological variables accurately, even with non-exact prior recharge
data. This approach underscores, again, the potential of leveraging prior information to refine model outputs, suggesting that
even a modest emphasis on recharge within the calibration framework can lead to substantial improvements in model realism.
This finding is particularly noteworthy as it implies that effective model calibration does not necessarily require precise initial
recharge estimates if the calibration process is appropriately managed. It also points to the broader applicability of using
informed yet flexible calibration strategies to improve hydrological models under varied conditions, highlighting a path

forward for enhancing model accuracy with limited prior data.

4.4 Practical implications, general applicability and limitations

FheThis research has practical implications—of-this—research—extendapplications beyond hydrological precess-modeling.
Integrating groundwater recharge into model calibration, as demonstrated in the GW-RC configuration, offers a more

comprehensive approach to representing key hydrological variables. This approach is particularly valuable for improving

predictions of water resources under varying climate conditions, as it enhances the accuracy of inputs critical to models of

37



705

710

715

720

725

730

735

forest growth (Ford et al., 2011; Grant et al., 2013). As climate change continues to alter hydrological dynamics, the reliance
on physically based models becomes crucial. These models are favored over conceptual ones or even machine learning based
models because they can be adapted more readily to varying conditions, ensuring more robust predictions under climate change
scenarios. For example, a strong recent trend is the use of deep learning architectures in hydrological modelling (Kratzert et
al. 2018, 2019; Arsenault et al. 2023). These models simulate streamflow with generally better accuracy than traditional
hydrological models, but they lack any mechanism to investigate internal and intermediate hydrological variables. Such
adaptability is also critical for effective water resource management and mitigation of climate impacts (Wilby, 2005; Ludwig

et al., 2009; Poulin et al., 2011). By improving the representation of hydrological processes, the GW-RC configuration may

enhance the model’s ability to simulate hydrological responses under changing climatic conditions. This is especially important

given the non-stationarity of climate, where historical hydrological relationships no longer hold under future conditions. In

this context, calibrating models using physically meaningful constraints, such as groundwater recharge, may improve their

ability to capture shifting hydrological patterns and enhance confidence in assessments of climate change impacts on

hydrological variables.

This research emphasizes the need to calibrate hydrological models using not only streamflow but also other variables such as
groundwater recharge. This approach aligns with findings from other studies such as Yassin et al. (2017) and Dembélé et al.
(2020), which advocate for multi-objective calibrations that enhance model reliability across different hydrological variables.
By integrating measurements from diverse sources such as satellite data and in-situ measurements, models can avoid the pitfalls
of calibration based solely on streamflow, which might not capture the full spectrum of watershed dynamics. Bouaziz et al.
(2021) further illustrate this point by demenstrating-hewshowing that hydrological models calibrated solely on streamflow can
yieldproduce differing results when validated against other hydrological variables;—underseoring. This highlights the risk of
equifinality, where different parameter sets preduceyield similar resutts—for—streamflow outputs but diverge for other
variables-hydrological processes. Without proper constraints—, such as incorporating groundwater recharge into the
calibration—process—, models may preduce—seeminghy—accurategenerate realistic  streamflow simulations while

fatlingmisrepresenting key internal processes. This issue is evident in configurations BL and GW, which fail to accurately

capture thecertain underlying hydrological precesses-tike-configurations BLand-G\W.-dynamics.
The methodology developed in this study has broad applicability beyond the specific context of Southern Québec. This

approach can be valuable in a variety of geographic regions and hydrological settings, given similar contexts of equifinality
(i.e. more processes and parameters than the data can support). Moreover, this multi-variable calibration method can enhance
the accuracy of other distributed hydrological models by improving the representation of groundwater recharge related
processes. Similar calibration techniques using remote-sensing data have been applied successfully in different settings,
demonstrating that incorporating additional hydrological variables in calibration improves model performance.

Nevertheless, it is crucial to address the limitations of this study. The models' performance in replicating hydrological processes
like soil frost impacts and its implications on runoff and recharge remain unknown. Future studies would benefit from

incorporating field measurements alongside a broader range of climatic and hydrological conditions. Expanding the research
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to include different geographic regions with similar soil and climate characteristics could significantly enhance the validation
and applicability of the findings.
Additionally, the selected catchments in this study range from 525 km? to 6,840 km?, which may limit the generalizability of

the findings to catchments outside this size range. Future research could investigate smaller or larger catchments to determine

whether the observed trends and calibration impacts remain consistent across different watershed scales.

Furthermore, the choice of objective function presents another limitation. This study primarily relied on the Kling-Gupta

Efficiency (KGE) for streamflow calibration. However, alternative metrics such as SPAtial EFficiency (SPAEF) (Koch et al.,

2018) could enable a more comprehensive evaluation of multiple hydrological components when using distributed

hydrological models. The lack of sufficient spatially distributed observations prevented the application of SPAEF in this study,

but future research could explore its use, particularly in conjunction with remote sensing data to better assess the spatial

coherence of hydrological variables.

Moreover, the uncertainty inherent in modeling, especially with configurations that involve complex interactions of multiple
variables, poses a continuous challenge. The study's reliance on specific data sets like PACES also introduces potential biases
that could influence the generalizability of the findings. It's essential for future research to explore these limitations, perhaps
by expanding the range of observational data used for model validation.

In terms of practical implementations and further research, continuing to refine the calibration of hydrological models to
include diverse hydrological variables can enhance their utility in real-world applications. Such efforts will help in developing
more accurate flood forecasting models, improving water resource management strategies, and crafting more effective climate

adaptation measures for forest, agricultural and anthropogenic ecosystems._This study advances calibration techniques in

hydrological modeling, but further work is needed to develop universally reliable models.

5 Conclusion

This study examined the nuances of hydrological modeling under different calibration settings using WaSiM model across 34
catchments classified under climate zones Dfb and Dfc in Eastern North America. By implementing three distinct model
configurations, BL (baseline model), GW (physical groundwater model), and GW-RC (physical groundwater and recharge
calibration model), this research has demonstrated that incorporating groundwater recharge alongside streamflow during
calibration process leads to a mere-aceurate-representation of hydrological variablesprocesses that better aligns with expected

system behavior.
The results indicate that the GW-RC configuration, enhanced with groundwater recharge calibration, aligns more closely with

estimated groundwater recharge rates, thereby providing a more precise representation of groundwater behaviour both spatially
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and seasonally. The study also underscores the importance of extending calibration beyond traditional streamflow metrics to
include other hydrological variables like groundwater recharge. This approach helps to mitigate the risks of equifinality.

Given the successful application of these methodologies within Eastern North American catchments, it presents an intriguing
premise for their applicability to other geographical areas with similar hydrological contexts. Further research could explore

how these calibration techniques perform under different hydrological conditions, potentially broadening our understanding
of these relationships.
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780 Appendix A

Table Al. Kling-Gupta efficiency values across studied catchments during calibration and validation periods, for the three

calibrations configurations. Each row corresponds to a specific catchment, identified by its basin number.

Catchment Calibration Validation
Code Name BL GW GW-RC BL GW GW-RC
108021 Bonaventure 0.835 0.849 0.817 0.897 0.892 0.861
204042 York 0.847 0.872 0.815 0.843 0.889 0.814
206023 Dartmouth 0.888 0.882 0.842 0.899  0.907 0.828
216014 Matane 0.906 0.901 0.877 0.908 0.900 0.861
220035 Rimouski 0.920 0.905 0.870 0.831 0.812 0.827
223016 Des Trois-Pistoles 0.898 0.895 0.848 0.783 0.754 0.712
225077 Du Loup 0.872  0.852 0.800 0.795 0.749 0.696
227048 Ouelle 0.900 0.896 0.834 0.838 0.846 0.792
234229 Famine 0.826  0.814 0.754 0.794  0.798 0.745
2400310 Bécancour 0.861 0.859 0.788 0.820 0.816 0.765
3010111 Nicolet Sud-Ouest 0.828 0.810 0.771 0.801 0.770 0.746
3010312 Nicolet 0.804  0.799 0.744 0.811 0.792 0.767
3023413 Eaton 0.769 0.768 0.637 0.738 0.741 0.661
3028214 Au Saumon 0.836 0.815 0.717 0.790 0.774 0.713
3030415 Noire 0.823 0.813 0.723 0.767 0.770 0.694
4020416 Rouge 0.830 0.842 0.798 0.838 0.829 0.844
4083017 Gatineau 0.817 0.840 0.796 0.807 0.831 0.772
4301218 Kinojévis 0.765 0.850 0.784 0.695 0.711 0.735
5011919 Mattawin 0.852 0.814 0.740 0.799 0.758 0.751
5013520 Croche 0.835 0.835 0.833 0.839 0.840 0.831
5014421 Vermillon 0.835 0.853 0.747 0.808 0.809 0.733
5030422 Batiscan 0.878 0.856 0.801 0.884 0.847 0.796
5040823 Sainte-Anne 0.872 0.860 0.833 0.852  0.847 0.829
5040924 Bras du Nord 0.853 0.864 0.856 0.859 0.863 0.869
5221225 QOuareau 0.855 0.881 0.818 0.839 0.837 0.765
5221926 L'Assomption 0.865 0.886 0.851 0.829  0.859 0.821
5223327 De I'Achigan 0.869 0.851 0.829 0.700 0.720 0.701
5280528 Du Loup 0.808 0.783 0.800 0.786 0.721 0.753
6010129 Petit Saguenay 0.895 0.879 0.843 0.864  0.857 0.800
6180130 Petite riviére Péribonca 0.833 0.876 0.775 0.819  0.839 0.742
6150231 Métabetchouane 0.872 0.861 0.806 0.801 0.769 0.670
6270132 Valin 0.880 0.882 0.826 0.842 0.888 0.793
6280233 Sainte-Marguerite Nord-Est 0.872 0.854 0.810 0.854  0.833 0.772
7140134 Godbout 0.857 0.864 0.799 0.838 0.861 0.777
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Table A2. Multiple streamflow metrics values during calibration (2000-2009) and validation (1990-1999) periods, for the

785 three configurations.

Metric Calibration Validation
- BL GW GW-RC BL GW GW-RC
KGE u 0.852 0.852 0.799 0.816 0.820 0.772
. c 0.034 0.036 0.050 0.055 0.049 0.056
Pearson Cosfficient g 0.855 0.855 0.804 0.844 0.845 0.797
c 0.034 0.036 0.050 0.040 0.039 0.049
. . u 0.998 0.990 0.985 1.030 1.024 1.018
Bias ratio
- s 0.021 0.024 0.023 0.054 0.052 0.050
Variability ratio u 0.996 1.005 1.020 1.022 1.028 1.055
Variability ratio
s 0.023 0.013 0.027 0.083 0.075 0.079
SE u  0.704 0.706 0.603 0.677 0.679 0.558
- o 0.059 0.076 0.091 0.091 0.073 0.120
RMSE U 20.926 20.749 24.317 22.877 22.621 26.545
- o 11.018 10.681 13.055 12.594 11.665 13.870
Percent bias u 0.155 0.074 1.263 -3.563  -2.760 -1.756
- o 1.399 2.209 2.132 5.792 5.628 5.650

g 11.364 11.198 13.287 12.444  12.045 14.432
MAE
&)

6.621 6.259 8.106 7.966 7.043 8.638
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Appendix B
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Figure B1. Detailed hydrological variable hydrograph for Godbout catchment during both the calibration and validation phases
and for the three configurations. Calibration results are shown in panels (a), (c), and (e) for Configurations BL, GW, and GW-
RC, respectively, while validation results are depicted in panels (b), (d), and (f). These hydrographs demonstrate how baseflow,

interflow and runoff contribute to total streamflow throughout the year, with noted annual totals provided for a comprehensive
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Figure C1. Correlations between key hydrological variables and calibration parameters for three model configurations.
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Code and data availability

The calibrated WaSiM model for all configurations discussed in this study is publicly accessible at https://osf.io/h9rsj/ (Talbot
et al., 2024). This dataset encompasses control files, input parameters and output files from both calibration and validation

phases.
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