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Abstract. The Ice, Cloud and Land Elevation Satellite (ICESat-2) laser altimeter can capture sea ice freeboard along track
at both high vertical and high spatial resolution. The measurement occurs along three strong and three weak parallel beams.
Thusthe-across-track-direetion—, the across-track direction is only very sparsely covered and capturing the two-dimensional
spatial distribution of freeboard at high resolution by this instrument alone is not possible. This work shows how in early
Arctic Winter-winter (October, November) Sentinel-1 synthetic aperture radar (SAR) acquisitions ean-help bridge this gapand
meaningfully-extrapolate the freeboard measurements-to-, Freeboard measurements are shown to be meaningfully extrapolated
to a full two-dimensional mapping. To achieve this, it is sufficient to use the SAR HV backscatter to sort the pixels by in-
tensity and then map freeboards measured from altimetry in the area via the cumulative distribution functions. With the pre-
sented algorithm, the snow and ice freeboard derived from altimetry can be meaningfully-extrapolated to Sentinel-1 SAR
aequisitionsscenes, unlocking an extra-additional dimension of Arctic freeboard monitoring at high spatial resolution, with
errors-between10:5-em-and-ice freeboard errors between 6-em-for-cm and 10.5 cm for spatial resolutions between 100-m and

400-m.

1 Introduction

Due to prevalent feedback loops, amplification in the Arctic makes it Earths-Earth’s most affected region by climate change
(Serreze and Barry (2011); Wendisch et al. (2023) present thorough overviews of the observed amplification). Along with
its critical role in Earth’s response to the-global warming, it is also one of the hardest places to monitor consistently. The
environment’s-remoteness and hostility of the environment to the human organism makes-in-situ-make in situ measurements
difficult to obtain. As a result, the global community relies on remote sensing for-ebserving-to observe change in the polar
regions in-a-contintous-mannercontinuously. Space-borne photography in the optical spectrum is only feasible during polar
day for approximately half a year. Passive microwave and ether-active remote sensing techniques thus move to the forefront of
operational monitoring of the polar regions. Passive microwave radiometer instruments and corresponding retrieval algorithms
deliver robust data products (e.g. Spreen et al. (2008); Markus and Cavalieri (2000)) at the ene-to—ten—kitometre—five- to

twenty-kilometre scale. Observation of processes at finer spatial scales can only be carried out by active sensors. One such
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instrument capable of higherreselution-higher-resolution observations is synthetic aperture radar (SAR), delivering year-round
backscatter measurements that are sensitive to changes in the ice cover. Due to the diverse backscattering properties that sea
ice admits i’s-during its diverse development from frazil to perennial ice (see, e.g. Onstott-(1992); Kertumetal(2622,2024)
Onstott (1992); Kortum et al. (2024)) the corresponding data is-are more difficult to interpret than optical satellite imagery.

This complex relationship between radar backscatter and the physical state of sea ice is a central complication fer-of retrieval

algorithms. Continuously operational SAR missions, such as ESA’s Sentinel-1, provide SAR data in two polarisation channels.
A co-pol channel with horizontal send and receive polarisation (denoted HH) and a cross-pol channel, with horizontal send
and vertical receive polarisation (denoted HV). The combination of these two channels grants additional information abour the

sea ice, yet is still by far not sufficient to solve the inverse problem. An alternative approach to high-reselution-high-resolution
monitoring of sea ice is the use of altimeters, which detect the distance to the ground in nadir. In the case of the laser altimeter

on ICESat-2, footprint sizes of the measurement are on the order of tens of meters-metres, as detailed in Neumann et al. (2019).
Altimeter measurements have low uncertainties of only a few eentimeters-centimetres in their height retrievals and thus allow
precise measurements of the distance between the satellite and the scatterer on the ground. If cracks and leads open in the
ice cover up- ater-and open water or thin ice is detected, this distance can be used as _a reference for the sea
surface height. Measurements-Thus, measurements of the surrounding sea ice surface theneanbe-are converted to a freeboard
measurement, as described, e.g., in Kwok et al. (2022). This is the total height of the ice and snow above the sea surface.
Not only is the freeboard indicative of the ice development, series of such measurements can be combined into a topographic
understanding of the surface, describing roughnesses at various scales (Mchedlishvili et al. (2023)). A large blind spot of the
altimetry measurement is given by its spatiatty-spatial sparsity in the transversal/across-track direction of the flight path, as
measurement takes place only along thin lines over the Arctic. Tracks from multiple flights can be combined to give a large-
scale overview on a monthly basis. However, resulting gridded products (Petty et al. (2020)) are constrained to a mere-regional
scale (25 km grid cell size) and have to be aggregated for about one month to achieve pan-Arctic coverage.

SAR and altimetry data both yield valuable insights into the Arctic system. At the same time, they are complementary in
a variety of aspects: SAR has large 2-dimensional coverage, whilst altimetry coverage is sparse. However, converting radar
backscatter data into key measurements of the sea ice is very challenging, whilst laser altimetry measures the sea ice height
very precisely, is easy to interpret, and gives concrete information about the sea ice topography. Because of that some research
already exists concerning the combination of both instruments. Karvonen et al. (2022) combined Sentinel-1 SAR and CryoSat-
2 radar altimeter measurements of ice thickness, seeking to levarage-leverage the advantages of each technique. The technique
they developed uses the SAR data to interpolate between the altimetry data at kilemeterkilometre scale, by segmenting the SAR
image and assigning CryoSat-2 measured ice thicknesses to segments. Recently Macdonald et al. (2024) published a study over
landfast ice in the Canadian Arctic Archipelago, in which correlations of altimeter measurements (roughness, freeboard) and
C-Band SAR HV backscatter appeared stronger than those with HH backscatter. Their research also suggested-suggests that a
roughness retrieval from SAR HV data is feasible. Concerning roughness and SAR HH/V'V backscatter, strong correlations (R,,
= 0.82) where-were found by Cafarella et al. (2019) under shallow incidence angles for first-year ice and similar correlations

(R, = 0.74) where observed in Segal et al. (2020) also over the Canadian Arctic Archipelago. Meaningful correlations of
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surface roughness at smaller scales could not be observed in Kortum et al. (2024) for spaceborne X-Band SAR and airborne
LiDAR data, with (Rpearson < 0.3) over mixed, multiyear ice, second-year ice and first-year ice over a small area of sea ice in the
central Arctic. In this work, we present correlations of freeboard and roughness with C-Band SAR at a near pan-Arctic scope
and demonstrate an algorithm to extrapolate ICESat-2 altimetry-derived freeboard to Sentinel-1 SAR scenes at up to 100-m
resolution.

In this study, we are not proposing that SAR backscatter is a direct indicator of sea ice thickness (which might be questionable).
We are only using the backscatter intensity in the vicinity of actual ICESat-2 (fee;Cloud-and-Land-Elevation-Satelite)-ice
freeboard measurements to extrapolate them in space. Locally, one can expect that the ice thickness to SAR backscatter
relationship is stable enough to retrieve sea ice freeboard for the whole SAR scene. We extrapolate ICESat-2 freeboard heights
to coincident Sentinel-1 SAR scenes, which were acquired within plus/minus 24 hours of the ICESat-2 overflight. This enables
observations near the spatial scope and frequency of the Sentinel-1 constellation, which is considerably larger than the altimeter
coverage alone, but the errors are higher than for the altimetry data, because of the limited correlation of sea ice backscatter
and freeboard. A freeboard product at a spatial resolution of up to 100-m and time intervals and coverage of the Sentinel-1

mission, as proposed here, is none-the-less-a useful resource for polar research and stakeholders.

2 Data

An overview ever-of all data products that-are-used in this study is given below.

The first source data product we use ;-are Sentinel-1 SAR acquisitions, captured in EW (Extended Wide) mode. Seenes
captured-in-this-aequisition-mede;These scenes have a footprint of approximately 400 km by 400 km with an individual pixel
size of 40 metres. We use the Ground Range Detected (GRD) product, which projects the measurement to geo coordinates
using an earth ellipsoid model. The terrain correction in the Sentinel-1 Foelbex-toolbox in SNAP (SNAP (2022)) is used to
correct these measurements with a geoid model, which is close to the ocean height and reduces the geolocation error. The
incidence angle range of the scenes is between 20 and 50 degrees. Thermal noise, scalloping and calibration to o is done
using the SNAP (2022) library and corrections developed by the Nansen Center and described in Park et al. (2018, 2019);
Korosov et al. (2022). These mitigation measures help minimise the effect of sensor artefacts on the study. To allow for more
ICESat-2 footprints to fit into one pixel, and thus to derive more meaningful statistics, the scenes are then resampled to 100 m
x 100metre-m pixel spacing. This also mitigates speckle effects. The footprints of all scenes used in this study are plotted in
figureTig. 1 for an overview.

On the altimetry side, we are using ICESat-2’s ATL-10 sea ice freeboard measurement. ICESat-2 is an optical laser altimeter
that operates at a wavelength of 532 nm and is highly pulsed at 10.000 pulses a second. The resulting altimetry measurement
is accurate to approximately 2 cm. Because the freeboard segments are dependent on the scattering conditions of the surface
(a certain number of photons is collected per segment), the ATL-10 product’s spacing is variable and on the scale of tens of
metres. At these intervalssegments-are-returned-with-a-, segments of freeboard height and expected variance are retrieved. To

have as many data points as possible, we use the three weak beams as well as the three strong ones, giving us a maximum of
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Figure 1. Location of all Sentinel-1 scenes from October or November (2018-2022) with near coincident ICESat-2 coverage. These acquisi-

tions are the main source of data for this study.

6-six beams from which data can be used. The benefit of including the less accurate weak beams is investigated later in the

manuscript. Due to atmospheric conditions and the requirement of nearby open leads a freeboard measurement is not always
available when the instrument is measuring.

The bulk data in the study eonsists-consist of 59 Sentinel-1 EW scenes, along with all ICESat-2 ATL-10 freeboard data,
within 24 hours of the SAR ageuisition-acquisition, over the same footprint. The specific SAR scenes are selected, because
there exists an ICESat-2 overflight that is near-eeinecident-near-coincident with the SAR measurement (time difference is less
than 10 minutes) and the ATL-10 freeboard tracks overlap with at least 300 pixels {+06-<—1+06-m%)-of the SAR scene, each of
100 x_100 m? size. In fact, these 59 scenes are all EW acquisitions between 2018 and 2022 in October and November ;-that had
a near-coincident aequisition-of-freeboard measurement by ICESat-2. The near-coincident flights are important te-ebserve-for
observing the correlations between the measurements and later on to-validatefor validation of the extrapolation results. October
and November are selected ;-beeause-offor two reasons: Firstly, there exist comparatively many near-coincident acquisitions in
this time period. This is likely due to atmospheric conditions, i.e., less clouds, as ICESat-2’s laser at 532 nm does not penetrate
these. Secondly, first-year ice is still quite young at this point and can therefore be-more easily be distinguished from older ice
in both SAR and altimetry missions. As a result, the correlations between freeboard and backscatter are expected to be highest

during this time of the Arctic sea ice cycle.
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Setting the maximum time difference for a 'near-coincident” measurement at 10 minutes and with pixel sizes of 100 metres,
significant decorrelation of both measurements can start to occur if the ice drifts faster than 50 metres in 10 minutes (=
300 m/h). Such high drift speeds are reached occasionally, but this constraint to 10 minutes is sufficient to make sure the vast
majority of data points are still valuable. The data are matched using the geocoding of both products used and no ice drift
correction is applied. For Sentinel-1, geolocation uncertainties are reported by Schubert et al. (2017) to be around S5 m over
land, which we can use as a baseline error. Additionally, the geoid model used for the ground range projection will have an
error relative to the real sea surface height, that should be of a similar scale as the local sea surface height anomaly. Skourup
etal. (2017) investigated the model and observational differences and found differences in the central aretie-Arctic up to 0.5 m.
Thus, we can assume the Sentinel-1 geocoding error to be generally below 10 m. ICESat-2 geolocation errors are reported to
be around 2.5 m to 4.4 m by Luthcke et al. (2021). With pixel sizes of 100 m being significantly larger than the uncertainties of
geocoding, this should be sufficient to-get-for meaningful overlap between the SAR and freeboard products at this scale.

All ICESat-2 ATL-10 segments in one Sentinel-1 pixel are considered equally: To obtain a local freeboard, the mean of all
freeboard segment heights from ATL-10 pertaining to a pixel is taken. For roughness we investigate two different considera-
tions ;-that describe different roughness correlation lengths (scales). The ATL-10 product gives an expected variance for each
freeboard segment, determined by local photon statistics and thus approximately at meter-metre scale. For the first roughness
observation, all freeboard segments’ respective variances are summed up-and from the square root of their mean a final sigma
vatue-standard deviation for each pixel is obtained giving a roughness at approximately the meter-metre scale. Alternatively, a
larger scale roughness can be obtained by calculating the standard deviation of all ATL-10 freeboard segment heights within
one 100-m x 100-m SAR pixel. The correlation fentghtlength/scale of this roughness measure is equivalent to the spacing of
the segments, i.e. on the order of 10s of metersmetres. Both of these roughness measures use the variance of freeboard heights

as a proxy for roughness of the ice surface.
2.1 Correlations

We will first investigate the statistical connections between-of the altimetry and SAR data. In this case, we are mainly interested
in the correlations of these variables, as that will be of importance for the extrapolation measures described later.

Heatmaps of both the freeboard and the roughness from all 597,565 data points are plotted in figure-Fig. 2, along with the
respective Spearman correlations. We use Spearman correlations here, as we do not expect the values to be correlated linearly,
but we are interested in how accurately we could construct a monotonic mapping from one to the other - which is exactly
what the Spearman correlation coefficient captures. In table 1 the Spearman correlation coefficients are listed. The split into
multiyear (MYI) and first-year (FY]) ice is performed for 51 of these scenes (with 392,364 data points), which admitted a
clearly bimodal freeboard distribution, allowing to differentiate between the two ice types via thresholding the freeboard. The
other eight scenes did not show such a split distribution and thus were not concidered.

There are three main studies from the Canadian Arctic Archipelago we can compare these results tewith, all of which focus
on fast ice. Cafarella et al. (2019) investigated the statistical relationship of high-resolution-high-resolution C- and L-band
SAR data (resolution~ 10 and 3 m, respectively) with EibAR-dertved-airborne LiDAR-derived sea ice roughness (resolution=
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Figure 2. 2D Histograms of ICESat-2 freeboard and roughness versus Sentinel-1 HH and HV backscatter measurements, and the respective
Spearman correlation coefficients. Brighter colours correspond to higher data density, whilst darker blueish colors correspond to lower

density. Some banding effects are visible in the HV channel.

1.2m) over first-year-first-year ice. From two scenes acquired in the late winter season (March, April), they found a high
correlation (Pearsons R) of 0.86 for high incidence angles (46 deg) and low correlation of 0.30 for low incidence angles, for
the HH backscatter and roughness. The correlation of the HV backscatter and roughness was found to be more similar across
the two scenes at around 0.81 for high and 0.68 for low incidence angles. Segal et al. (2020) observed the correlations of
EibAR-derived-LiDAR-derived roughness, a roughness proxy from the MISR optical satellite and Sentinel-1 C-Band SAR
over first-year and multiyear ice in late winter (April). The roughness was derived from 1 m resolution LiDAR data and the
grid cells were 1.2 km by 0.4 km large. They found a high correlation (Perasons’s) for roughness and HH backscatter at 0.74
across their whole dataset, with 0.76 on only first-year and 0.12 on only multiyear ice. Recently, Macdonald et al. (2024)
published a study comparing SAR and altimetry measurements for three ICESat-2 flights-overflights in the Canadian Arctic
archipelage-Archipelago in March. It is also worth noting that they computed roughnesses from the University of Maryland
supersampled ICESat-2 product, described in Duncan and Farrell (2022); Farrell et al. (2020). As the source for SAR data
they used the Radarsat Constellation Mission (RCM) in a low noise mode unique to the instrument and found (Spearman)
eorreHations-correlations for first-year ice roughness and SAR backscatter at 0.42 for the HV and 0.31 for the HH channel.
The correlations with mutli-year sea ice height and backscatter were 0.49 in the HV and 0.41 in the HH channel. They also

demonstrated an accurate roughness retrieval at 800 m scale. The differences of these previous studies and ours are the spatial
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Table 1. Spearman correlations coefficients of ICESat-2 and Sentinel-1 measurements. The correlations for HH and HV are calculated from

all 59 available flights. Of these 51 admitted a bimodal freeboard distribution, allowing the separation of first-year ice (FYI) and multiyear

ice (MYI).
HH | HH(FY) HHMYI) | HV | HV(FY) HVMYI)
freeboard 0.49 0.18 0.34 0.62 0.32 0.49
roughness (1-m) | 0.27 0.24 0.20 0.36 0.26 0.31
roughness (10-m) | 0.33 0.19 0.22 0.48 0.36 0.36

scales, seasons and location. While these previous studies were looking at a more regional scale, we have-gathered-more-flights
use satellite overflights from more diverse Arctic regions. However, our roughness measures are not as fine-scale or accurate
as the airborne LiDAR data or the University of Maryland ICESat-2 product. Additionallywe-are-focussing-, we are focusing
on the early rather than the late winter season.

The freeboard correlations with the HV channel across our entire dataset are remarkably strong at 0.62. The correlation for
MYTI and the HV channel is the same as in the Macdonald et al. (2024) study at 0.49. Fhe-However, the correlations with the
roughness are -however;-weaker, especially in the HV channel, than in all previous studies. Causes for this could be the ice
development, beeause-of-the difference in ice seasons or the roughness measures used. Comparably low correlations were also
found in Kortum et al. (2024) for sea ice roughness at length scales of 0.5-m with the HH and VV channels of X-band SAR.
The correlations for freeboard might-be-across the entire dataset (R = 0.62) might be slightly stronger in this study in contrast
with the Maedonatd-Macdonald et al. (2024) study, because of the rescaling to 100-m x 100-m, that should lead to an increase
of correlations as quasi-random speckle effects average out. Additionally, the study area and time might be a cause for this,
with both very thin first-yearfirst-year ice and the oldest, thickest perennial ice being captured within this studies’ dataset. This

should also lead to an increase in correlation.

3 Methods
3.1 Algorithm Structure

The structure of the proposed freeboard extrapolation method using SAR backscatter is as follows.

1. For the SAR scene to be used as basis for the extrapolation, all ATL-10 measurements within the last 24 hours are

retrieved.

2. A mapping is constructed from the HV SAR data to non-coincident measured-ATL-10 freeboard in the area via the

cumulative distribution functions of the HV SAR measurement and the altimeter freeboard product.

3. The mapping is applied to the HV channel of the entire scene from step 1.



180

185

190

195

200

development, roughness, desalination, (freeboard)

>

Figure 3. Illustration of the connection between freeboard and ice development responsible for the increase in HV backscatter (mainly

desalination and surface roughness increase).

This extrapolation using the cumulative distribution functions entirely relies on the correlations of sea ice ageing processes
and it’s freeboard, illustrated in figure-Fig. 3. As young ice freezes up, a brine expulsion on top of the ice leads to wet and
saline surface and possibly wetted snow, as investigated by e.g. Drinkwater and Crocker (1988). This lossy material is quite
absorbent and backscatter is typically quite low, especially for double bounces required for HV returns. Whatever backscatter

is measured probably originates from surface roughness features, which also increase freeboard. As the ice gets older and

desalinates (Cox and Weeks (1974)), the penetration-of-theradar-measurementinereases-and-bulk ice becomes less opaque

to the radar waves, thus increasing volume scattering from bubbles and empty brine channelsbegins-to-inerease-. In turn the
HYV signal —Finalty-becomes stronger. Finally, large topographical features such as ridges can accommodate deuble-bounee
double-bounce backscatter returns and can again increase the HV backscatter return. It is important to keep-in-mind;--however;
note that there is no direct physical connection between the backscatter and ice freeboard—te—, i.e. there is no physical
reason why a ridge 1.5-m high should have a stronger HV backscatter response than one only 1-m high and this is therefore
the strongest limitation of this approach. We;-however,-However, we propose that in the vicinity of a measured freeboard
distribution from ICESat-2, the backscatter is a reasonable predictor of relative freeboard heights and can therefore be used to

extrapolate the freeboard measurements. This is possible, beeaise-because the freeboard distribution in the majority of cases

does not change drastically on a 100-km scale and within 24 hours. Of course using coincident flights, rather than those within

24 hours, would yield better extrapolation results. However, these cases are extremely rare and the coverage of such a product

would be extremely sparse. Remember that the 59 scenes we are working with here as validation data, are all existing scenes
with near coincident (i.e. <10 minutes time difference) ATL-10 coverage in October and November for 2018-2022.

3.2 Cumulative distribution function (CDF) mapping

To create the mapping between1CESat-2-freeboard-andfrom Sentinel-1 backscatter via-to ICESat-2 freeboard using the
cumulative distribution functions (CDFs) all ATL-10 data from the last 24 hours within the beundariesfootprint of the SAR

scene are collected. They are resampled to match the 100 m pixel spacing from SAR. For our scenes, this was typicall
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Figure 4. Visualisation of the mapping constructed from the cumulative distribution functions of freeboard and HV backscatter. The black

path illustrates a mapping from an HV backscatter value to a freeboard value.

approximately a factor of 10, which is used in the following. Their cumulative distribution function CDF;, is formed from all
measurements taken. For the CDF of the HV channel CDFy;y, all pixels within - 1000 m of an ICESat-2 track are considered.
Because the ice has drifted in between the measurements, it is not the exactsame-same exact ice forming both CDFs;-hewever
. However, restriction to the approximate area does-ensure-ensures that the distribution of the underlying ice is similar. The

constructed map-via-the-CDFs-CDF map is illustrated in figure 4 and can be expressed as

(O3 {O’Hv} — {fb}
(P(CTH\/) = (CDF;bl (¢] CDFH\/)(O'H\/) (1)

With this mapping constructed, pixels can be mapped from HV backscatter to freeboard for the entirety of the Sentinel-1
acquisition. It is worth noting that the Spearman correlation coefficient is invariant under such a monotonic transformation.
Thus, all the improvement between the Spearman correlations of the predicted freeboard and the measured freeboard in contrast

to the HV backscatter and the measured freeboard comes from the different CDF mappings for each scene.
3.3 Validation

To validate the results of the method, the procedure as-described above is earried-out-performed for all 59 seenes—in-the
datasetSAR scenes that additionally have a coincident ICESat-2 overflight. To form the cumulative distribution function CDF f;,

for the freeboard, all ATL-10 data within 24 hours of the aequisition-are-taken;exeeptthe ATE-10-SAR acquisition are used
except for the validation flight within ten minutes. Then the extrapolated freeboard is compared with the near-coincident
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Figure 5. Results at different spatial resolutions (100, 200, 400 m) of the extrapolated freeboard data on all 59 scenes (597,565) data points,

with Pearson correlation coefficients 12, and mean absolute errors (MABS) shown in the figures. Brighter areas indicate a higher density.

validation flight-overflight over the same scene.

unbiased-manner;This ensures the constructed mapping and extrapolated results are entirely independent of the eonstrueted
mapping-and-therefore-validation data, Therefore, the validation results are representative of the algorithm performance —in
ice conditions in October and November. Validating with coincident ICESat-2, instead of helicopter-borne measurements such
as collected during MOSAIC (Nicolaus et al. (2022)) or Operation Ice Bridge (MacGregor et al. (2021)), ensures that errors
arising from the difference in measurement techniques do not need to be accounted for.

4 Results

Figure-Fig. 5 shows the central results of the predicted algorithm. At 100-m resolution a Pearson correlation of 0.68 between
the measured and extrapolated freeboard ;—shows-that-shows that the relationship of HV backscatter and freeboard can be

used to make meaningful extrapolation possible. The-errorsAt just above 10 cm, however, are-still-considerable-atjust-above

+0-emthe errors are still significantly greater than the uncertainties of the underlying ATL-10 product. Judging also by the
heatmap in Figure-Fig. 5, at 100-m resolution this technique enables the separation of ice into approximate classes such as

first-year or multiyear ice and to detect ridges. As the resolution is loweredreduced, the retrieval method becomes increasingly
accurate, as is illustrated by the narrowing of the heatmap. At 400-m resolution, with Pearson correlation 12, = 0.82 and errors
of 6-cm, the retrieval method shows promising results that can unlock comprehensive freeboard surveys of the Arctic in 2-two
dimensions.

An example scene is shown in figtre-Fig. 6, where qualitatively the extrapolated freeboard aligns well with the overlayed
ATL-10 measurements. The bottom track is shown in more detail below in Figure-Fig. 7, where it becomes clear that in

most cases the characteristics are captured well (Rpeurson = 0.67), but the exact height (especially of ridged areas) cannot

10
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be approximated-aceurately-accurately approximated (RMSE = 0.08). OecasionallyOccasionally, some younger ice areas are
shown to be significantly thinner than assumed from the extrapolation. These areas have also posed problems in sea ice classi-

fication algorithms in the past, as-deseribed-forexamplefor example, described in Guo et al. (2022).

5 Error Analysis

The approach detailed in this manuscript is heavily based on the statistical relationship between SAR HV backscatter and
freeboard as measured by ICESat-2. Whilst we suspect the limitations of such a purely statistical relationship to be the greatest
source of error for the extrapolation, we can measure the effect of various other contributions to the error directly. In this
section, we investigate the influence of thermal noise, incidence angle effects, and strong and weak ICESat-2 beam selection
on the accuracy of the final product. To do so we split the dataset in a varicty of ways. The combined results are presented in
Tab. 2.

To measure the influence of thermal noise on the freeboard product, we split the Sentinel-1 scenes into two disjoint subsets,
according to the height of the noise floor. As a divisive criterion we use 30 dB as the limit of the noise floor in the low-noise
dataset. All data where the noise floor is higher than 30dB is placed in the high-noise dataset. We then execute our algorithm
exactly as before and compare the two datasets.

The incidence angle effect of sea ice for the HV channel is not well investigated in contrast to the effect on HH backscatter. In
Aldenhoff et al. (2020) the slopes are found to be roughly half as steep in the HV as in the HH channel. Kortum et al. (2023)
also find weaker HV slopes in their investigation. Despite the effect being smaller, it still influences the brightnesses and
therefore the extrapolation of freeboard. To measure the effect of a incidence angle mitigation strategy on the freeboard
extrapolation, we use a Gaussian clustering approach by Cristea et al. (2020). Using this we obtain HV backscatter versus
incidence angle slopes for every pixel in the scenes and then use these to correct the entire image (to 30 degree incidence
angle). We can then compare the accuracy of the freeboard extrapolation with and without the incidence angle correction.
Finally, we investigate the inclusion of weak beams of the freeboard measurement by constructing two additional datasets
with only weak and only strong beams and comparing with the original one which included both.

From the results in Tab. 2 we can infer the following:

1. Restricting to low SAR backscatter noise areas slightly improves the correlation of extrapolated and measured freeboard.
Also, the errors are lower in the low noise areas (noise floor lower than 30 dB) by ~ 14%. However, such a correction
would reduce the obtained extrapolated data significantly.

2. Restricting to weak or strong beams makes only a small difference. Including both gives best results.

3. Slope correction improves or matches the results of the control dataset in all measures and the amount of extrapolated
data is not negatively affected.
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Figure 6. Example scene from the 29th of November 2021 with both the extrapolated freeboard at 100-m resolution and overlayed ICESat-2

ATL-10 data in subfigure A. The ATL-10 data were thickened artificially (using nearest neighbour extrapolation) to allow easier visualisation
and are shown within the white contour. The three visible tracks are made up of one strong and one weak beam each. Subfigure B shows the
SAR image in false colour. The composition (HV, HH, HV/HH) is chosen for the respective (R, G, B) channels.
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Figure 7. Bottom-track-Track of southernmost (bottom) beam from figure 6 with measured (ICESat-2, blue) and extrapolated (Sentinel-1,

orange) freeboard values at 100-m spacing.

Control 0.68 0.103 0.82 0.06

splitting the dataset along various criteria. Results are Pearsons R (17,) and mean absolute error (MABS), between extrapolated and measured
(coincident) freeboard. We show results for the 100 m product and the 400 m resampling. The control dataset uses the results described in
the methods section. with both strong and weak beams and all incidence angles included, but no incidence angle correction carried out. Best

265 6 Comparison with Upward Looking Sonar Data

To_gain additional insight into the extrapolation performance and to demonstrate the usefulness of such an approach, we
compare the extrapolated freeboard product to upward looking sonar data at mooring B (78N, 150W). acquired by Krishfield et al. (2023)
- Upward looking sonar measures the ice draft from below. In theory. having both measurements, the freeboard from above and
draft from below, available allows us to characterise the ice (and snow) thickness. The advantage of upward looking sonar is
270  thatitis constantly acquiring and therefore we can evaluate all scenes that capture the location of the sensor for comparison.
We conducted this comparison for the entire November of 2022, using 29 SAR scenes. The results are presented in Fig. 8.
The greatest challenge in bringing these two measurements together is the difference of scales. We are working with a
100-400 m freeboard product, but the footprint of the sonar is only approximately 2 m. To enable some sensible comparison,
we use ten minutes of sonar data around the acquisition time of the satellite and the 400 m SAR product. As a result we have
275 a2m thick line sampled by the sonar (with the length depending on the drift speed) being compared with 400 x 400_m area
of extrapolated freeboard. This means that the distribution of ice sampled in the freeboard maps should be overlapping the
sonar coverage, but the area sampled from satellite is much larger. This is a circumstance we cannot mitigate further. The
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scatterplot in the top left of Fig. 8 shows that there exists a clear statistical correlation between freeboard and ice draft - as one
would expect. It also shows that the relationship breaks down below around 0.5 m of ice draft. For such relatively young ice,
the freeboard values are probably not accurate. We investigate this further in two outlier cases A and B. From the freeboard
map it becomes obvious that the dynamic range of the HV measurement is not able to capture the subtleties of the backscatter
response, as we are too close to the noise floor. This is apparent from the strong edges of the low ice areas in the freeboard maps.
Another outlier, C, shows a high ice draft with only medium freeboard. The freeboard map reveals that we are in a rather young.
ice area, but with signs of ridging, as can be seen from the linear features with higher freeboard. In fact such a ridge area is
right in the measured area. Therefore, we suspect that the sonar sampled a large part of that ridge’s keel. while the contribution
is only small in SAR. Le. the difference in sampling scales/footprint sizes is the reason for this strong disagreement. In the
final outlier D, we have the opposite scenario, where the freeboard is large, yet the ice draft is not. The freeboard map shows a
highly diverse ice area. Again, it is likely that the two distributions sampled by the two measurements are quite different, due
to their differences in scales and limited overlap.

This brief excursion showed how freeboard extrapolation enables the comparison and combination of altimeter-derived
freeboards with additional measurements. It also revealed that thin ice areas below 0.5 m with low HV backscatter cannot be
extrapolated accurately with the proposed CDE-based mapping. As expected, sampling scales are a considerable challenge
with combining upward looking sonar data with satellite sea ice measurements.

7 Discussion

The correlations between the SAR backscatter and altimetry freeboard and roughness data in-this-datasetlargely-differfromthe
ones-found in this study join those observed in previous studies by Cafarella et al. (2019); Segal et al. (2020); Macdonald et al.
(2024) to form a more complete picture of the variability and correlations of SAR and topographic ice properties. As mentioned
earlier, the study area and time are probably the main reasens—for-this—FHromour-ebservationsreason for the differences in
observed correlations. From the dataset studied here, it seems that relating roughness and backscatter is more difficult in the
early winter season focussed on in this work ;-than in the late winter seasons investigated by the previous studies. However,
correlations with freeboard are still significant, which reinforce the notion that they can sueeessfully-be-be successfully related
to one another.

This study is the first time these correlations ceuld-be-between satellite laser altimeter freeboard and SAR backscatter were
observed for drifting sea ice across a large area in the Arcticand-the-correlations-of-. The correlations of 0.68 (100 m scale)
t0 0.82 (400 m scale) of freeboard and the SAR HV channel are remarkably high, considering that there is no direct physical
connection between backscatter and freeboard.

The results reveal that the proposed algorithm enables meaningful extrapolation of ice freeboard as measured by ICESat-2,
capturing the-key features and revealing the spatial variability of freeboard in two dimensions at 100-m to 400-m resolution
and for the coverage of full 400 km Sentinel-1 scenes. The accuracy of the retrieval is difficult to judge in relation to other

methods as no comparable products exist. The algorithm performs aceurate-accurately enough to separate ice types and ridges
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at 100-m resolution with errors around 10

cm. At 400-m
resolution-m resolution the method is even more accurate given an error of approximately 6-cm.

We also demonstrated a comparison with other sea ice measurements in the case of upward looking sonar (ULS), that is
enabled by the extrapolation effort. The comparison of satellite ice freeboard and ULS ice draft reveals a reasonable correlation
of 0.58 between the dataset and that the correspondence breaks down below about 0.5 m ice thickness. However, the difference
in measurement scales limits the information that can be derived from such a combination. With additional effort, cases with
two satellite acquisitions and largely homogenous drift could be found. In this case, the displacement between the two scenes
can be derived, and the drift between points can be assumed to be a straight line. Then the overlap between two measurements
would greatly increase and in part the difference of scales could be mitigated.

As previously mentioned, the main source of the remaining retrieval uncertainties is the limitation of physical connection
between topography and SAR backscatter—, something that cannot be circumvented. Additional sources of error do-alse-exist;
heweveralso exist. For example, the footprints of ICESat-2 are not covering the entire pixel they are being mapped to, meaning
the ground truth we use for freeboard in every pixel is already contaminated by this undersampling. Next to the existing
uncertainty of the ATL-10 products, SAR noise and speckle effects also are-additional-sourees-of-error—Additionally-contribute
to the error, Furthermore, the overlap of the validation flights-overflights is limited by the accuracy of the georeferencing of the
sensors. In the case of Sentinel-1, the GRD product uses an elpseid-ellipsoid model which can vary up to 10s of meters-metres

from the real ocean surface height.

Investigations into the incidence angle effect have shown that a brightness correction using slopes derived from a clusterin,
method is a successful measure to mitigate the influence of incidence angle on backscatter and thus the extrapolation algorithm.

It was also shown in Tab. 2, that restricting to weak beams yielded slightly better results than restricting to strong beams,
which is counter-intuitive. The weak beam segments are derived from the same amount of photons. As these take longer to
accumulate for the weaker beams, the segments become longer. Keeping in mind, that the strong extrapolations were evaluated
against measurements from strong beams and vice versa for weak beams, we offer two possible explanations for this. Firstly,
the beams are not always available (or unavailable) at the same time, so it is possible that the correlation between freeboards
and backscatter is stronger in the weak beam dataset simply by chance. The other possibility is, that the matching of the pixels
via geolocation is not uite pixel perfect and the longer weak segments align better, as they smooth the validation measurements
alittle.

Overall, this purely statistical mapping is rather simple, given the complexity of the physical relationship between sea ice
properties such as freeboard and the radar backscatter of a SAR sensor. However, we believe there is great merit in having such
simple and explainable method to drive forward scientific work in this field. For future work, it is very valuable to have such a
baseline algorithm available to compare to or use as a basis for more complex methods.

So far, the extrapolation has been limited to only a certain season in the year, i.e. October/November, where older and
younger ice have significantly different freeboards, which increase the correlation with SAR backscatter. Expanding this ap-

proach to other seasons and the marginal ice zone will be more challenging. Part of the reason is, that the amount of overlap-
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ping data at 10 minutes of time difference, needed to validate the results, is sparser in other months and non-existing inside the
marginal ice zone.

We have validated the approach with independent, nrear—coineident-near-coincident ICESat-2 flights. Comparison with
CryoSat-2 radar altimeter measurements would be the next logical step. Because of the different dominant scattering sur-
face of that radar instrument, however, the freeboard measured by CryoSat-2 is different than-from that measured by ICESat-2,

as shown in Fredensborg Hansen et al. (2024) using the Cryo2Ice data. Therefore, it is less useful as validation data. It would

be very interesting ;-hewever;-to investigate the possibility of extrapolating CryoSat-2 and future CRISTAL measurements
using the same method and comparing the results. Additionally, the new SWOT-surface water and ocean topography (SWOT)
altimeter allows for 2D freeboard retrieval that would be a great candidate for validation, or extrapolation. Hewever-the-Work
by Kacimi et al. (2025) has shown good correlations with ATL-10 freeboard used here. However, SWQOTSs coverage is restricted
to 78° North/South, and therefore it’s use for sea ice applieation-is-unfortunately-guite-applications is unfortunately limited,
but a ease-study-case study based comparison might be possible.

Whilst we worked with extrapolating ICESat-2s ATL-10 product from NASA, other current or future altimetry products
might also be able to be extrapolated with SAR. For example, the previeusly—mentioned-University of Maryland product
by Farrell et al. (2020); Duncan and Farrell (2022) mentioned earlier would be worth using instead of the ATL-10 data for
roughness approximation as was done in Macdonald et al. (2024). As the main focus was shifted to freeboard in this study, this
was not considered.

The uses of a medium to high resolution freeboard product are manifold. The data can be used as a good proxy te-for sea ice
thickness in terms of variability in two dimensions, something that has so far alluded-eluded consistent observation. Maritime
stakeholders might also profit from these data, as well as weather and climate models, the former of which could be initialised
with observations in near-reak-time—Highresotution-near-real time. High-resolution digital twin earth models, as-are-such as
those currently in development by Hoffmann et al. (2023) at ECMWF would-might especially benefit from these observations,

due to their km-scale grid spacing.

8 Conclusions

Our work presented in this manuscript shows how ICESat-2 derived freeboard measurements can be meaningfully extrapolated
with Sentinel-1 SAR measurements at resolutions up to 100-m for the entire 466km-400km SAR scene with up to a 24
hour time difference between the-SAR and altimetry acquisitions and an freeboard extrapolation error lower than 10 cm. This
algorithm opens up an opportunity to monitor Arctic wide sea ice freeboard in two dimensions, capturing its spatial variability
at previously unattainable coverage and making in-an important step towards monitoring ice thickness. It is yet to be shown

that this approach can also work throughout all seasons and regions i#-of the Arctic.
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