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Abstract. Methane (CH4) is a potent greenhouse gas, and its global warming potential 

is 28 times higher than carbon dioxide (CO2). Various environmental factors influence 20 

aerobic CH4 oxidation in soil. Sulfate (SO4
2-) ion is the main component of atmospheric 

deposition and has been increasing in recent years. It promotes CH4 production and 

anaerobic CH4 oxidation, however, the impact of SO4
2- on aerobic CH4 oxidation in 

soils has not yet been comprehensively summarized. We synthesize current research on 

the effects of SO4
2- on aerobic CH4 oxidation, examining both its macroscopic 25 

manifestations and microscale pathways. Through a literature review, we found that 

SO4
2- enhances aerobic CH4 oxidation by 0–42%, moreover, it has been found that 

various physicochemical properties and processes in the soil are influenced by the 

addition of SO4
2-, which in turn affects aerobic CH4 oxidation. This review enhances 

our understanding of the role of SO4
2- in promoting aerobic CH4 oxidation. It lays the 30 

foundation for future research with two primary goals: (1) validating these findings by 

quantifying CH4 flux and aerobic oxidation rates, and (2) elucidating the underlying 
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microbial processes through experimental research. Concurrently, the review provides 

directions for further investigation into the impact of SO4
2- on aerobic CH4 oxidation. 

 35 

1 Introduction 

CH4 is an important greenhouse gas, and its atmospheric concentration has increased 

since pre-industrial times (Place, 2024; Praeg et al., 2016). Its global warming potential 

is 28 times higher than carbon dioxide (CO2), owing to its superior heat absorption 

efficiency (IPCC, 2013). Methanotrophs (aerobic methanotrophs) consume CH4 under 40 

certain conditions (Le Mer and Roger, 2001), reducing CH4 atmospheric concentration 

(Singh et al., 2010). Consequently, methanotrophs are crucial microbes that play an 

indispensable role in regulating and mitigating the CH4-related greenhouse effect on 

Earth. Soil aerobic CH4 oxidation is the sole known biological sink for atmospheric 

CH4 (Ho et al., 2019; Murguia-Flores et al., 2018), contributing to 5%–7% of the global 45 

annual atmospheric CH4 uptake (Saunois et al., 2020). Upland soils are the primary 

biological CH4 sink (Bodelier, 2011; Guo et al., 2023), owing to methanotroph-

mediated CH4 consumption (Song et al., 2024). This represents the second-largest 

atmospheric CH4 consumption sink, surpassed only by hydroxyl radical depletion 

(Deng et al., 2019). Aerobic CH4 oxidation in soils are influenced by many factors, such 50 

as soil water content, soil texture, soil type, temperature, soil pH, soil inorganic nitrogen 

content, metal availability, etc., many of these factors have been extensively reviewed 

(Shukla et al., 2013; Mishra et al., 2018). However, the effect of SO4
2-, a significant ion 

component of acid deposition, on aerobic CH4 oxidation has not yet been reviewed. 

 55 

Acid rain, involving deposition of SO4
2- and other acidic compounds, remains a globally 

significant environmental issue (Chen et al., 2020; Qi et al., 2022). The three largest 

affected regions are Europe, North America, and China (Li et al., 2021). SO4
2- is the 

major ion in acid rain (Wright and Henriksen, 1978) and has profound impacts on 

substances and biochemical processes in soils. As a crucial component of terrestrial 60 

ecosystems, soils serve as the ultimate receptor of acid deposition. SO4
2- deposition 



 3

induces soil acidification (Huang et al., 2019), alters soil plant diversity (Li et al., 2022), 

affects microbial properties (Wang et al., 2018), and limits grass yield potential (Klessa 

et al., 1989), as well as a reduction in the activities of soil enzymes such as cellulase, 

invertase, and polyphenol oxidase (Tie et al., 2020). SO4
2- can inhibit CH4 production 65 

(methanogenesis) and promote anaerobic CH4 oxidation, playing a crucial role in 

anaerobic CH4 biogeochemical processes. SO4
2- suppresses methanogenesis primarily 

due to its thermodynamic and kinetic preference as an electron acceptor (Granberg et 

al., 2001; Schimel, 2004), leading to decreased CH4 emissions (Gauci et al., 2004). 

SO4
2- has been shown to facilitate anaerobic CH4 oxidation by anaerobic 70 

methanotrophic archaea in diverse ecosystems, such as oceans (Boetius et al., 2000), 

wetlands (La et al., 2022), and paddy fields (Fan et al., 2021), acting as a crucial electron 

acceptor. Despite these well-documented effects on anaerobic CH4 biogeochemical 

processes, the influence of SO4
2- on aerobic CH4 oxidation, particularly in upland soils, 

remains underexplored. Given the increasing global deposition of SO4
2- due to 75 

industrial activities, understanding its impact on aerobic CH4 oxidation is essential for 

predicting future CH4 dynamics and developing effective climate mitigation strategies. 

 

In this review, we have analyzed the literature on the effects of SO4
2- on aerobic CH4 

oxidation. Our analysis not only reveals evidence suggesting that SO4
2- promotes 80 

aerobic CH4 oxidation but also identifies supporting evidence from related studies. In 

this review, we reviewed references about the influence of SO4
2- on soil properties, 

substances, or biochemical processes, aiming to elucidate any microscale pathways on 

aerobic CH4 oxidation through variations in soil substances or processes. Our analysis 

reveals that SO4
2- may affect aerobic CH4 oxidation. Based on the available literature, 85 

3 out of 5 studies that investigated the influence of SO4
2- on aerobic CH4 oxidation were 

able to demonstrate a positive effect on aerobic CH4 oxidation, we infer that SO4
2- 

favors aerobic CH4 oxidation. This review summarizes the microscale pathways by 

which SO4
2- influences aerobic CH4 oxidation and highlights the importance of future 

research in this area. By providing a comprehensive synthesis of existing knowledge, 90 

this work serves as a valuable reference for future experimental studies. Furthermore, 
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the findings of this review will contribute to a deeper understanding of global CH4 

cycling, particularly in the context of increasing SO4
2- deposition. Moving forward, we 

aim to experimentally validate the impact of aerobic CH4 oxidation following SO4
2- 

addition and elucidate the underlying microbial mechanisms involved. 95 

 

2 The microbial aerobic CH4 oxidation processes 

2.1 Aerobic CH4 oxidation processes 

Aerobic CH4 oxidation is mediated by methanotrophs, a group of specialized 

microorganisms (Chistoserdova et al., 2005). In soils, aerobic CH4 oxidation can be 100 

classified into two distinct forms based on the concentration of CH4 (Walsh et al., 2009). 

The first form, known as high-affinity oxidation, occurs at CH4 concentrations close to 

atmospheric levels (<2ppm) and is carried out by high-affinity methanotrophs 

(Chowdhury and Dick, 2013). This process is commonly observed in upland soils, 

particularly in environments with high NH4
+ concentrations (Ho et al., 2019; Le Mer 105 

and Robért, 2001). The second form, referred to as low-affinity oxidation, occurs at 

CH4 concentrations exceeding 40 ppm and is mediated by low-affinity methanotrophs 

(Chowdhury and Dick, 2013). This form is typically found in wetland environments, 

where CH4 concentrations are significantly higher than atmospheric levels (Bechtold et 

al., 2025). Aerobic CH4 oxidation converts CH4 to CO₂ in four steps: ①MMO oxidizes 110 

CH4 to methanol (CH3OH), ②methanol dehydrogenase (MDH) oxidizes CH3OH to 

formaldehyde (HCHO), ③FADH oxidizes HCHO to formate (HCOOH), ④formate 

dehydrogenase (FDH) oxidizes HCOOH to CO2 (Fig. 1, paths ①–④) (Mancinelli, 

1995). 

 115 

2.2 Methanotrophs 

Methanotrophs constitute a distinct subset of methylotrophs, primarily dependent on 

the one-carbon compound CH4 as their sole source of carbon and energy (Hanson and 

Hanson, 1996). In the traditional classification system, Proteobacterial methanotrophs 

were categorized into type Ⅰ (Methylococcaceae and Crenotrichaceae), type Ⅱ 120 
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(Methylocystaceae and Beijerinckiaceae), and type Ⅹ (Methylococcaceae) (Li et al., 

2020) based on their cell membrane arrangement, chemotaxonomic properties, 

physiological characteristics, and phylogenetic locations. However, due to the 

discovery of non-canonical methanotrophs, the traditional classification system has 

become outdated. Consequently, methanotrophs are now classified into seven 125 

categories based on phylogenetic analysis: Type I-A (Methylomonadacea), I-B 

(Methylococcaceae), I-C (Methylothermaceae), I-D (Crenotrichaceae), II-A 

(Methylocystaceae), II-B (Beijerinckiaceae), III (Methylacidiphilaceae), and NC10 

(Fenibo et al., 2023). Methylomonadaceae, Methylococcaceae, Methylothermaceae, 

and Crenotrichaceae belong to the class Gammaproteobacteria, while 130 

Methylocystaceae and Beijerinckiaceae are classified under Alphaproteobacteria. 

Methylacidiphilaceae belongs to the phylum Verrucomicrobia. The composition of 

different types of methanotrophs is shown in Figure 1 (Fenibo et al., 2023). Notably, 

only four genera–Methylocella, Methyacidimicrobium, Methylacidiphilum, and 

Methanomirabilis—are capable of carbon fixation via the Calvin-Benson-Bassham 135 

(CBB) cycle (Fenibo et al., 2023; Op den Camp et al., 2009). Among Actinobacterial 

methanotrophs, Candidatus Mycobacterium methanotrophicum is classified with the 

Mycobacterium genus (van Spanning et al., 2022). Methanotrophs utilize two forms of 

methane monooxygenase (MMOs): soluble cytoplasmic monooxygenase (sMMO) and 

particulate membrane–bound monooxygenase (pMMO). Except for Methylocella 140 

silvestris and Methyloferula stellata, all methanotrophs possess pMMO. sMMO has 

only been detected in a few specific genera, namely Methylomonas sp., 

Methylomicrobium sp., Methylosinus sp., and Methylococcus capsulatus (DiSpirito et 

al., 2016). Copper (Cu) concentration differentially regulates MMO expression (Fig. 1

⑤): high Cu concentrations induces pMMO (Fig. 1⑥), whereas low Cu concentrations 145 

triggers sMMO (Fig. 1⑦) (Hakemian & Rosenzweig, 2007). 

 

3 Soil CH4 oxidation in response to SO4
2- addition 

Sulfates, including SO4
2- and sulfuric acid (H2SO4), enhance aerobic CH4 oxidation 
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within a range of 0–42% (Table 1), so we hypothesize that SO4
2- may stimulate aerobic 150 

CH4 oxidation. For example, in a temperate mixed deciduous woodland, the cumulative 

uptake of aerobic CH4 oxidation was 25% higher in the experimental group with H2SO4 

addition compared to the control group during the final quarter of the study period 

(Bradford et al., 2001b). Similar results were reported by Sitaula et al. (1995). In 

another study, King and Schell (1998) found that adding SO4
2- (Na2SO4) increased 155 

aerobic CH4 oxidation by 3% at a CH4 concentration of 250 ppm compared to the 

control group, although this result was not statistically significant. The lack of 

significance may be attributed to the insufficient concentration gradient of Na2SO4 in 

the experimental setup, which limited the ability to fully assess the effects of SO4
2- on 

aerobic CH4 oxidation. Therefore, we propose that the observed enhancement of 160 

aerobic CH4 oxidation following H2SO4 addition is primarily due to the increase in 

SO4
2- concentration. 

 

The promotional effect of SO4
2- on aerobic CH4 oxidation is further supported by 

comparisons with other anions under similar cationic conditions. Benstead and King 165 

(2001) observed that HNO3 exerted a stronger inhibitory effect on aerobic CH4 

oxidation under equivalent soil acidic conditions than H2SO4. This finding is consistent 

with the results of Bradford et al. (2001a), who experimentally confirmed the inhibitory 

effect of nitrate (NO3
-) on aerobic CH4 oxidation (Dunfield and Knowles, 1995; Wang 

and Ineson, 2003). When H2SO4 and HNO3 were added to the soil to achieve H+ 170 

concentrations of 10 and 1 μmol H+ per gram of fresh weight (gfw), respectively, both 

acids inhibited aerobic CH4 oxidation to a similar extent. However, H2SO4 exhibited a 

lesser inhibitory effect than HNO3. We hypothesize that SO4
2- may promote aerobic 

CH4 oxidation, as evidenced by the findings of Benstead and King (2001) and Bradford 

et al. (2001a). 175 

 

However, not all studies support the hypothesis that SO4
2- promotes aerobic CH4 

oxidation. For instance, Bradford et al. (2001a) observed no significant difference in 

aerobic CH4 oxidation between low (564 μM) and high (1408 μM) concentrations of 
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H2SO4 compared to the control group. This discrepancy may be due to differences in 180 

H2SO4 concentration across studies. Similarly, Hu et al. (2018) reported no significant 

effect of SO4
2- on aerobic CH4 oxidation. Based on the available evidence, SO4

2- 

promotes aerobic CH4 oxidation within a range of 0–42%. Although the mechanisms 

by which SO4
2- influences aerobic CH4 oxidation are not yet fully understood, we have 

identified potential microscopic pathways through which SO4
2- may affect this aerobic 185 

process by reviewing relevant literature. 

 

4 Microscale pathways by which SO4
2- addition influences aerobic CH4 

oxidation 

 190 

SO4
2-’s impact on aerobic CH4 oxidation—particularly its mechanisms for 

enhancement—remains unclear. Our literature review reveals two promotion pathways: 

Shifts in methanotroph activity and community structure (Fig. 2 path d) (Bradford et 

al., 2001b; Sitaula et al., 1995). Alterations to soil physicochemical properties (Fan et 

al., 2017), substrate availability (Bjorneras et al., 2019; Palmer et al., 2013; Xu et al., 195 

2017), and nutrient dynamics (Islam, 2012) (Fig. 2). 

 

First, the addition of SO4
2- alters soil physicochemical properties (Fig. 2 path a), i.e., 

particularly by reducing soil pH (Fig. 2 ① ). Soil acidification increases due to 

enhanced base cation leaching associated with SO4
2- addition (Hu et al., 2013), leading 200 

to a decrease in the pH of forest soils (Fasth et al., 1991; Tie et al., 2020). The addition 

of H2SO4 has been shown to promote aerobic CH4 oxidation by altering the activity or 

community structure of methanotrophs (Bradford et al., 2001b; Sitaula et al., 1995). 

However, in experiments involving H2SO4 addition, it remains unclear whether the 

observed enhancement in aerobic CH4 oxidation is primarily due to the decreased pH 205 

(Fig. 2 path e) or the increase in SO4
2- concentration (Fig. 2 path d). Generally, CH4 

consumption is greater at higher pH conditions in forest soils (Brumme and Borken, 
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1999; Silver et al., 1999), therefore, the reduction in soil pH may lead to a decrease in 

aerobic CH4 oxidation. However, in acidic soils, a decrease in pH has been shown to 

increase aerobic CH4 oxidation (Sitaula et al., 1995). Consequently, when evaluating 210 

the impact of SO4
2- addition on aerobic CH4 oxidation, it is essential to consider the 

initial soil pH (Fig. 2 path e), as methanotrophs exhibit different pH preferences in 

acidic and alkaline environments (Shukla et al., 2013). 

 

Second, SO4
2- addition can alter the soil microbial substrate (Fig. 2 path b), particularly 215 

by decreasing soil di-O-alkyl C content (Fig. 2 ②) (Xu et al., 2017). In a subtropical 

forest, SO4
2- addition has been shown to increase the activity of gram-negative bacteria 

in soil by reducing the litter di-O-alkyl carbon (di-O-alkyl C) (Fig. 2 ② and path g) 

(Xu et al., 2017). Di-O-alkyl C is a component of soil organic carbon (SOC). SOC 

degradation is accelerated when the percentage of di-O-alkyl C is high (Huang et al., 220 

2021). Conversely, when the content of di-O-alkyl C is low, SOC degradation slows 

down, leading to a greater availability of substrates for microorganisms, including 

methanotrophs. Methanotrophs, which are gram-negative bacteria (Schimel and 

Gulledge, 1998), may exhibit increased activity in response to SO4
2- addition. This 

enhancement of methanotrophs activity (Fig. 2 path h) can ultimately promote aerobic 225 

CH4 oxidation (Fig. 2 path o). 

 

Third, SO4
2- can alter soil nutrition content (Fig. 2 path c), specifically increasing soil 

Cu availability (Fig. 2 ③) (Islam, 2012), phosphorus (P) content (Fig. 2 ④) by 

enhancing acid phosphatase activity (Lv et al., 2014; Veraart et al., 2015), (aluminum 230 

ion) Al3+ toxicity (Fig. 2 ⑤) (Hu et al., 2013; Sogn and Abrahamsen, 1998), and NH4
+ 

absorption (Bradford et al., 2001b; Gulledge and Schimel, 1998; King and Schnell, 

1998) (Fig. 2 ⑥). Cu is a crucial component in aerobic CH4 oxidation processes, with 

its critical role stemming from its high abundance in catalytically active pMMO 

complexes—where it directly participates in CH4 oxidation and facilitates electron 235 

transfer from endogenous reductants to molecular oxygen (Balasubramanian & 
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Rosenzweig, 2007; Semrau et al., 2010). This process drives the conversion of CH4 to 

methanol (Dassama et al., 2016). It was anticipated that methanobactin secreted by 

methanotrophs during aerobic CH4 oxidation would facilitate Cu uptake (Knapp et al., 

2007); however, the specific mechanism by which methanobactin affects Cu uptake 240 

remains unclear (Fig. 2 path j). For methanotrophs capable of expressing both sMMO 

and pMMO, the expression of these enzymes is regulated by the availability of Cu, a 

phenomenon known as the classic “copper switch” (Stanley et al., 1983). Under Cu-

deficient conditions, these methanotrophs express sMMO. However, as the ratio of Cu 

to biomass increases, the expression of sMMO significantly decreases, while the 245 

expression of pMMO increases (Semrau et al., 2018). Notably, nearly all methanotrophs 

possess pMMO (Koo and Rosenzweig, 2021); therefore, increased Cu availability can 

enhance the expression of pMMO. Research indicates that Cu can serve as a promoter 

of aerobic CH4 oxidation (Ho et al., 2013). Therefore, SO4
2- addition may promote 

aerobic CH4 oxidation by increasing the availability of soil Cu, thereby enhancing the 250 

expression of pMMO (Fig. 2 path i and k). 

 

A positive correlation has been found between P and aerobic CH4 oxidation in soils 

(Veraart et al., 2015; Zhang et al., 2020). P can potentially enhance the activity of soil 

methanotrophs (Fig. 2 path n) (Zhang et al., 2011), with an increase in soil P content 255 

achieved through the hydrolysis of organic compounds, including nucleic acids, 

phospholipids, and phosphate esters, by acid and alkaline phosphatases (Veraart et al., 

2015). The addition of SO4
2- accelerated acid phosphatase activity, thereby increasing 

soil P content (Lv et al., 2014). Therefore, we hypothesize that SO4
2- may indirectly 

enhance aerobic CH4 oxidation through the augmentation of soil P content, 260 

subsequently promoting the activity of methanotrophs in the soil (Fig. 2 path n and o). 

It is well-established that Al3+ inhibits aerobic CH4 oxidation (Tamai et al., 2007; Tamai 

et al., 2003). Additionally, soil acidification resulting from SO4
2- addition has been 

shown to intensify the toxicity of Al3+ in forest soils (Fig. 2 ⑤) (Hu et al., 2013; Sogn 

and Abrahamsen, 1998). The increase in Al3+ can inhibit the activity of methanotrophs 265 

(Nanba and King, 2000; Shukla et al., 2013) (Fig. 2 path l), thereby inhibiting aerobic 
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CH4 oxidation (Fig. 2 path m). Therefore, SO4
2- addition may directly affect 

methanotrophs by enhancing the toxicity of Al3+ in the soil, thereby inhibiting aerobic 

CH4 oxidation (Fig. 2 path o). When NH4Cl and (NH4)2SO4 were added to the soil at 

the same molar concentration of NH4
+, the inhibitory effect of (NH4)2SO4 on aerobic 270 

CH4 oxidation was weaker than that of NH4Cl (Adamsen and King, 1993; Bradford et 

al., 2001a; King and Schnell, 1998). NH4
+ has been found to inhibit aerobic CH4 

oxidation (Bronson and Mosier, 1994; Dunfield and Knowles, 1995), and the key 

mechanism is the competition between CH4 and NH4
+ for the same MMO enzyme 

(Gulledge et al., 2004). Due to the similar molecular structures of CH4 and NH4
+, MMO 275 

can oxidize both CH4 (to CH3OH) and NH4
+ (to NO2

-). The inhibitory effect of NH4Cl 

is greater than that of (NH4)2SO4, as SO4
2- may enhance the adsorption of NH4

+ onto 

cation exchange sites in the soil (Bradford et al., 2001b; Gulledge and Schimel, 1998; 

King and Schnell, 1998) (Fig. 2 ⑥). This reduced availability of NH4
+ limits its ability 

to compete with methanotrophs for MMO enzymes, thereby increasing the availability 280 

of MMO (Fig. 2 path p), promoting aerobic CH4 oxidation (Fig. 2 path k), and further 

intensifying the inhibitory effect of NH4Cl compared to (NH4)2SO4. In conclusion, 

SO4
2- served as a facilitator of aerobic CH4 oxidation, mitigating the inhibitory effects 

of NH4
+ on this process. 

 285 

5 Conclusions 

 

This review synthesizes the double-scale mechanisms by which SO4
2- influences 

aerobic CH4 oxidation. Macroscopically, SO4
2- enhances aerobic CH4 oxidation rates 

by 0–42%. Mechanistic studies demonstrate that this regulation occurs through SO4
2--290 

driven alteration of environmental factors (e.g., pH, Cu/P availability, Al3+ toxicity, 

NH4
+ absorption), which subsequently modulate methanotroph physiology and MMO 

activity. Based on synthesized evidence, we hypothesize a net stimulatory effect of 

SO4
2- on aerobic CH4 oxidation. Validating this hypothesis requires deeper mechanistic 

insights; therefore, future research should prioritize quantifying aerobic CH4 oxidation 295 
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responses to SO4
2- exposure while elucidating underlying microbial mechanisms. This 

integrated approach is projected to advance CH4 mitigation strategies amid rising global 

SO4
2- deposition. 
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 325 

Figure 1: Diagram of the aerobic methane oxidation process, and classification of 

methanotrophs. 

① CH4 is oxidized to methanol (CH3OH) by MMO; ② CH3OH is oxidized to 

formaldehyde (HCHO) by methanol dehydrogenase (MDH); ③HCHO is oxidized to 

formate (HCOOH) by formaldehyde dehydrogenase (FADH); ④HCOOH is oxidized 330 

to CO2 by formate dehydrogenase (FDH); ⑤Cu controls two MMOs expression; ⑥

High Cu concentration regulates pMMO expression in soil; ⑦Low Cu concentration 

regulates sMMO expression in soil. 

 

  335 
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Figure 2. Conceptual diagram of the potential microscopic mechanisms by which 

sulfate influences aerobic methane oxidation in upland soil.  

①SO4
2- decreases soil pH (Fasth et al., 1991; Tie et al., 2020);②SO4

2- decreases soil 340 

di-O-alkyl C amount (Xu et al., 2017);③SO4
2- increases soil Cu availability (Islam, 

2012); ④SO4
2- increases soil P content by increasing soil acid phosphatase activity (Lv 

et al., 2014; Veraart et al., 2015); ⑤SO4
2- increases soil Al3+ toxicity (Hu et al., 2013; 

Sogn and Abrahamsen, 1998); ⑥SO4
2- increases NH4

+ absorption (Bradford et al., 

2001b; Gulledge and Schimel, 1998; King and Schnell, 1998); a. Changes in soil 345 

physical properties due to increased soil SO4
2- content; b. Changes in soil microbial 

substrate due to increased soil SO4
2- content; c. SO4

2- may promote CH4 oxidation; d. 

SO4
2- affects the activity or community size of methanotrophs in soils (Bradford et al., 

2001b; Sitaula et al., 1995); e. Decreased pH may inhibit or stimulate soil CH4 oxidation 

(Sitaula et al., 1995); f. Decreased pH may inhibit or stimulate soil CH4 oxidation 350 

(Sitaula et al., 1995); g. Decreased di-O-alkyl C amount increases soil gram-negative 

bacteria activity (Xu et al., 2017); h. The increased activity of gram-negative bacteria 

may stem from the enhanced activity of methanotrophs.; i. Elevated Cu availability 

stimulates soil aerobic CH4 oxidation (Ho et al., 2013); j. mb (methanobactin) is 

expected to accelerate Cu uptake (Knapp et al., 2007); k. Enhanced MMO activity 355 

facilitates  aerobic CH4 oxidation. l. Elevated Al3+ toxicity inhibits soil methanotrophs 

activity (Nanba and King, 2000; Shukla et al., 2013); m. Decreased methanotrophs 



 14

activity inhibits soil CH4 oxidation. n. Elevated P content increases soil methanotrophs 

activity (Zhang et al., 2011); o. Elevated methanotrophs activity stimulates soil CH4 

oxidation (Bradford et al., 2001b; Sitaula et al., 1995); p. The increased adsorption of 360 

NH4
+ enhances the availability of MMO to soil methanotrophs. 

 

Study site Sulfate concentration CH4  

concentration 

Effect Reference 

Perridge Forest H2SO4 (50 Kg S ha-1) Ambient air 25 % increased Bradford et al., 

2001b 

Perridge Forest H2SO4 (5mM) 

(NH4)2SO4 (5mM) 

Ambient air 

Ambient air 

no effect 

no effect 

Bradford et al., 

2001a 

Maine forest Na2SO4 0.5μg S g-1 soil 250ppm 3% increased King and Schell, 

1998 

Norway Scots 

Pine forest 

H2SO4 pH3 Ambient air 42% increased Sitaula et al., 1995 

Birch taiga Na2SO4 2.8 μmol S g-1 soil 

K2SO4 2.8 μmol S g-1 soil 

4ppm 

4ppm 

no effect 

no effect 

Gulledge and 

Schimel, 1998 

Table 1. Promotion effect of sulfates on methane oxidation in diverse upland soils. 
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