10

15

20

25

30

Contribution of sulfate to aerobic methane oxidation in upland soils:

a mini-review

Rui Su!, Kexin Li>3, Nannan Wang?, Fenghui Yuan?, Ying Zhao!, Yunjiang Zuo?, Ying Sun?, Liyuan
He*, Xiaofeng Xu*', Lihua Zhang!>**

!College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China

?Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and
Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China

3University of Chinese Academy of Sciences, Beijing, 100049, China

“Biology Department, San Diego State University, San Diego, CA, 92182, USA

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese
Academy of Sciences, Beijing 100093, China

Corresponding authors: L.Z. (zhanglihua@muc.edu.cn); X.X. (xxu@sdsu.edu)

Abstract. Methane (CHs) is a potent greenhouse gas, and its global warming potential
is 25 times higher than carbon dioxide (CO»). Various environmental factors influence
aerobic CH4 oxidation in soil. Sulfate (SO4*) ion is the main component of atmospheric
deposition and has been increasing in recent years. It promotes CH4 production and
anaerobic CHs oxidation, however, the impact of SO4>* on aerobic CH4 oxidation in
soils has not yet been comprehensively summarized. We synthesize current research on
the effects of SO4+* on aerobic CHs oxidation, examining both its macroscopic
manifestations and microscale pathways. Through a literature review, we found that
SO4* enhances aerobic CH4 oxidation by up to 0-42%, moreover, it has been found
that various physicochemical properties and processes in the soil are influenced by the
addition of SO4*, which in turn affects aerobic CH4 oxidation. This review enhances
our understanding of the role of SO4* in promoting aerobic CH4 oxidation and lays the
foundation for future studies aimed at validating these findings by quantifying CH4 flux
and oxidation rates, as well as elucidating the underlying microbial processes through
experimental research, while also providing directions for further investigation of SO4*

's impact on aerobic CH4 oxidation.

1 Introduction


mailto:zhanglihua@muc.edu.cn

35

40

45

50

55

60

CHj4 is an important greenhouse gas, and its atmospheric concentration has increased
since pre-industrial times (Place, 2024; Praeg et al., 2016). Its global warming potential
is 28 times highet than carbon dioxide (COz), owing to its superior heat absorption
efficiency (IPCC, 2013). Methanotrophs (aerobic methanotrophs) consume CH4 under
certain conditions (Le Mer and Roger, 2001), reducing CH4 atmospheric concentration
(Singh et al., 2010). Consequently, methanotrophs are crucial microbes that play an
indispensable role in regulating and mitigating the gréenhouse effect on Earth. Soil
aerobic CH4 oxidation is the sole known biological sink for atmospheric CH4 (Ho et al.,
2019; Murguia-Flores et al., 2018), contributing to 5%—7% of the global annual
atmospheric CHy uptake (Saunois et al., 2020). Upland soils are the primary biological
CHs4 sink (Bodelier, 2011; Guo et al., 2023), owing to methanotroph-mediated CH4
consumption (Song et al., 2024). This represents the second-largest atmospheric CHy4
consumption sink, surpassed only by hydroxyl radical depletion (Deng et al., 2019).
Aerobic CH4 oxidation in soils are influenced by many factors, such as soil water
content, soil texture, soil type, temperature, soil pH, soil inorganic nitrogen content,
metal availability, etc., many of these factors have been extensively reviewed (Shukla
et al., 2013; Mishra et al., 2018). However, the effect of SO4*, a significant ion

component of acid deposition, on aerobic CH4 oxidation has not yet been reviewed.

Acid rain, characterized by the deposition of SO4* and other acidic compounds, has
been a significant environmental issue (Chen et al., 2020; Qi et al., 2022). SO+ is the
major ion in acid rain (Wright and Henriksen, 1978) and has profound impacts on
substances and biochemical processes in soils. As a crucial component of terrestrial
ecosystems, soils serve as the ultimate receptor of acid deposition. SO4>" deposition
induces soil acidification (Huang et al., 2019), alters soil plant diversity (Li et al., 2022),
affects microbial properties (Wang et al., 2018), and limits grass yield potential (Klessa
et al., 1989), as well as a reduction in the activities of soil enzymes such as cellulase,
invertase, and polyphenol oxidase (Tie et al., 2020). SO4* can inhibit CHs production
(methanogenesis) and promote anaerobic CH4 oxidation, playing a crucial role'in the
CHz eyele. SO4* suppresses methanogenesis primarily due to its thermodynamic and
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kinetic preference as an electron acceptor (Granberg et al., 2001; Schimel, 2004),
leading to decreased CH4 emissions (Gauci et al., 2004). SO4* has been shown to
facilitate anaerobic CH4 oxidation by anaerobic methanotrophic archaea in diverse
ecosystems, such as oceans (Boetius et al., 2000), wetlands (La et al., 2022), and paddy
fields (Fan et al., 2021), acting as a crucial electron acceptor. Despite these well-
documented effects on anaerobic CHa ¢yeling, the influence of SO4> on aerobic CHy
oxidation, particularly in upland soils, remains underexplored. Given the increasing
global deposition of SO4>* due to industrial activities, understanding its impact on
aerobic CHy oxidation is essential for predicting future CH4 dynamics and developing

effective climate mitigation strategies.

In this review, we have analyzed the literature on the effects of SO4*" on aerobic CHa
oxidation. Our analysis not only reveals evidence suggesting that SO4* promotes
aerobic CH4 oxidation but also identifies supporting evidence from related studies. In
this review, we reviewed references about the influence of SO4>" on soil properties,
substances, or biochemical processes, aiming to elucidate any microscale pathways on
aerobic CH4 oxidation through variations in soil substances or processes. Our analysis
reveals that SO4* may affect aerobic CHy4 oxidation. Based on the available literatiire;
we infer that SO4> favors aerobic CHa oxidation. This review summarizes the
microscale pathways by which SO4* influences aerobic CHs oxidation and highlights
the importance of future research in this area. By providing a comprehensive synthesis
of existing knowledge, this work serves as a valuable reference for future experimental
studies. Furthermore, the findings of this review will contribute to a deeper
understanding of global CH4 cycling, particularly in the context of increasing SO4*
deposition. Moving forward, we aim to experimentally validate the impact of aerobic
CH4 oxidation following SO4* addition and elucidate the underlying microbial

mechanisms involved.

2 The microbial aerobic CH4 oxidation processes
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2.1 Aerobic CH4 oxidation processes

Aerobic CH4 oxidation is mediated by methanotrophs, a group of specialized
microorganisms (Chistoserdova et al., 2005). In soils, aerobic CH4 oxidation can be
classified into two distinct forms based on the concentration of CH4 (Walsh et al., 2009).
The first form, known as high-affinity oxidation, occurs at CHs concentrations close to
atmospheric levels (<2ppm) and is carried out by high-affinity methanotrophs
(Chowdhury and Dick, 2013). This process is commonly observed in upland soils,
particularly in environments with high NH4" concentrations (Ho et al., 2019; Le Mer
and Robért, 2001). The second form, referred to as low-affinity oxidation, occurs at
CH4 concentrations exceeding 40 ppm and is mediated by low-affinity methanotrophs
(Chowdhury and Dick, 2013). This form is typically found in wetland environments,
where CH4 concentrations are significantly higher than atmospheric levels (Bechtold et
al., 2025). Aerobic CH4 oxidation processes can be further classified into assimilatory
and dissimilatory pathways. In the dissimilatory pathways, CHs is sequentially oxidized
to CO, by multiple enzymes (Fig. 1®). (Mancinelli, 1995). In the assimilation
pathways, methanotrophs convert formaldehyde, an intermediate product of aerobic
CHy4 oxidation, into biomass and other organic compounds mainly through the ribulose
monophosphate pathway (RuMP pathway) (Fig. 1®), serine pathway (Fig. 1@), and
xylulose monophosphate pathway (XyMP pathway) (Fig. 1D)(Yang et al., 2023).

2.2 Methanotrophs

Methanotrophs constitute a distinct subset of methylotrophs, primarily dependent on
the one-carbon compound CHjs as their sole source of carbon and energy (Hanson and
Hanson, 1996). In the traditional classification system, Proteobacterial methanotrophs
were categorized into type I (Methylococcaceae and Crenotrichaceae), type 11
(Methylocystaceae and Beijerinckiaceae), and type X (Methylococcaceae) (Li et al.,
2020) based on their cell membrane arrangement, chemotaxonomic properties,
physiological characteristics, and phylogenetic location. However, due to the discovery
of non-canonical methanotrophs, the traditional classification system has become
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outdated. Consequently, methanotrophs are now classified into seven categories based
on phylogenetic analysis: Type I[-A (Methylomonadacea), 1-B (Methylococcaceae), 1-C
(Methylothermaceae), 1-D (Crenotrichaceae), 11-A (Methylocystaceae), 11-B
(Beijerinckiaceae), 111 (Methylacidiphilaceae), and NC10 (Fenibo et al., 2023).
Methylomonadaceae, Methylococcaceae, Methylothermaceae, and Crenotrichaceae
belong to the class Gammaproteobacteria, while Methylocystaceae and
Beijerinckiaceae are classified under Alphaproteobacteria. Methylacidiphilaceae
belongs to the phylum Verrucomicrobia. The composition of different types of
methanotrophs is shown in Figure 1 (Fenibo et al., 2023). Notably, only four genera—
Methylocella, Methyacidimicrobium, Methylacidiphilum, and Methanomirabilis—are
capable of carbon fixation via the Calvin-Benson-Bassham (CBB) cycle (Fenibo et al.,
2023; Op den Camp et al., 2009). Among Actinobacterial methanotrophs, Candidatus
Mycobacterium methanotrophicum is classified with the Mycobacterium genus (van
Spanning et al., 2022). Methanotrophs utilize two forms of methane monooxygenase
(MMOs): soluble cytoplasmic monooxygenase (SMMO) and particulate membrane—
bound monooxygenase (pMMO): The expression of these enzymes is regulated by

copper (Cu) concentration (Hakemian and Rosenzweig, 2007).

3 Soil CH4 oxidation in response to SO4* addition

Sulfates, including SO4>" and sulfuric acid (H2SO4), enhance aerobic CH4 oxidation
within a range of 0-42% (Table 1), thus, we hypothesize that SO4*> may stimulate
aerobic CH4 oxidation. For example, in a temperate mixed deciduous woodland, the
cumulative uptake of aerobic CH4 oxidation was 25% higher in the experimental group
with H>SO4 addition compared to the control group during the final quarter of the study
period (Bradford et al., 2001b). Similar results were reported by Sitaula et al. (1995).
In another study, King and Schell (1998) found that adding SO4* (Na2SOa) increased
aerobic CH4 oxidation by 3% at a CH4 concentration of 250 ppm compared to the
control group, although this result was not statistically significant. The lack of

significance may be attributed to the insufficient concentration gradient of Na;SOj4 in
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the experimental setup, which limited the ability to fully assess the effects of SO4* on
aerobic CH4 oxidation. Therefore, we propose that the observed enhancement of
aerobic CH4 oxidation following H>SO4 addition is primarily due to the increase in

SO4% concentration.

The promotional effect of SO4> on aerobic CH4 oxidation is further supported by
comparisons with other anions under similar cationic conditions. Benstead and King
(2001) observed that HNOs exerted a stronger inhibitory effect on aerobic CH4
oxidation under equivalent soil acidic conditions than H>SO4. This finding is consistent
with the results of Bradford et al. (2001a), who experimentally confirmed the inhibitory
effect of nitrate (NO3") on aerobic CH4 oxidation (Dunfield and Knowles, 1995; Wang
and Ineson, 2003). When H>SO4 and HNO3 were added to the soil to achieve H'
concentrations of 10 and 1 umol H" per gram of fresh weight (gfw), respectively, both
acids inhibited aerobic CH4 oxidation to a similar extent. However, H>SO4 exhibited a
lesser inhibitory effect than HNOs. We hypothesize that SO4* may promote aerobic
CHy4 oxidation, as evidenced by the findings of Benstead and King (2001) and Bradford
et al. (2001a). Consequently, when H2SO4 and HNOs are added to the soil, resulting in
equivalent acidic conditions, the inhibitory effect of H>SOys is less pronounced than that

of HNO:s.

However, not all studies support the hypothesis that SO4>" promotes aerobic CHa
oxidation. For instance, Bradford et al. (2001a) observed no significant difference in
aerobic CH4 oxidation between low (564 uM) and high (1408 uM) concentrations of
H>SO4 compared to the control group. This discrepancy may be due to differences in
H>SO4 concentration across studies. Similarly, Hu et al. (2018) reported no significant
effect of SO4> on aerobic CHs oxidation. Based on the available evidence, SO4*
promotes aerobic CH4 oxidation within a range of 0—42%. Although the mechanisms
by which SO+ influences aerobic CH4 oxidation are not yet fully understood, we have
identified potential microscopic pathways through which SO4* may affect this aerobic

process by reviewing relevant literature.
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4 Microscale pathways by which SO4>- addition influences aerobic CHy

oxidation

At present, the impact of SO4* on aerobic CH4 oxidation is not fully understood, afid

by reducing soil pH (Fig:2 (D):Soil acidification increases due to enhanced base cation

leaching associated with SO4>" addition (Hu et al., 2013), leading to a decrease in the
pH of forest soils (Fasth et al., 1991; Tie et al., 2020). The addition of H>SO4 has been
shown to promote aerobic CH4 oxidation by altering the activity or community structure
of methanotrophs (Bradford et al., 2001b; Sitaula et al., 1995). However, in experiments
involving H2SO4 addition, it remains unclear whether the observed enhancement in

aerobic CH4 oxidation is primarily due to the decreased pH (Fig. 2 path e) or the

increase in SO4>" concentration (Fig. 2 path d). Generally, CH4 consumption is greatet
at higher pH conditions in forest soils (Brumme and Borken, 1999; Silver et al., 1999).
Therefore, the reduction in soil pH caused by SO+> addition may lead to a decrease in
aerobic CH4 oxidation. However, in acidic soils, a decrease in pH has been shown to
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increase aerobic CH4 oxidation (Sitaula et al., 1995). Consequently, when evaluating
the impact of SO4> addition on aerobic CHs oxidation, it is essential to consider the
initial soil pH (Fig. 2 path e), as methanotrophs exhibit different pH preferences in

acidic and alkaline environments (Shukla et al., 2013).

Second, SO4* addition can alter the soil microbial substrate (Fig. 2 path b), particularly
by decreasing soil di-O-alkyl C content (Fig. 2 @) (Xu et al., 2017). In a subtropical

forest, SO4>" addition has been shown to increase the activity of gram-negative bacteria
in soil by reducing the litter di-O-alkyl carbon (di-O-alkyl C) (Fig. 2 @ and path g)
(Xu et al., 2017). Di-O-alkyl C is a component of soil organic carbon (SOC). SOC
degradation is accelerated when the percentage of di-O-alkyl C is high (Huang et al.,
2021). Conversely, when the content of di-O-alkyl C is low, SOC degradation slows
down, leading to a greater availability of substrates for microorganisms, including
methanotrophs. Methanotrophs, which are gram-negative bacteria (Schimel and
Gulledge, 1998), may exhibit increased activity in response to SO4> addition. This
enhancement of methanotrophs activity (Fig. 2 path h) can ultimately promote aerobic

CHj4 oxidation (Fig. 2 path o).

Third, SO4> can alter soil nutrition content (Fig. 2 path c), specifically increasing soil
Cu availability (Fig. 2 ®) (Islam, 2012), phosphorus (P) content (Fig. 2 @) by
enhancing acid phosphatase activity (Lv et al., 2014; Veraart et al., 2015), (aluminum
ion) AI** toxicity (Fig. 2 (®) (Hu et al., 2013; Sogn and Abrahamsen, 1998), and NH4"

absorption (Bradford et al., 2001b; Gulledge and Schimel, 1998; King and Schnell,
1998) (Fig. 2 ®). Cu is a crucial component in aerobic CH4 oxidation processes, as it
is utilized by methanotrophs in their molecular machinery, synthesized from
metabolized CH4 through the secretion of methanobactin into the environment. This
process facilitates the oxidation of CH4 to methanol (Dassama et al., 2016). It was
anticipated that methanobactin secreted by methanotrophs during aerobic CHy
oxidation would facilitate Cu uptake (Knapp et al., 2007); however, the specific

8
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mechanism by which methanobactin affects Cu uptake remains unclear (Fig. 2 path j).
For methanotrophs capable of expressing both sSMMO and pMMO, the expression of
these enzymes is regulated by the availability of Cu, a phenomenon known as the classic
"copper switch" (Stanley et al., 1983). Under Cu-deficient conditions, these
methanotrophs express sSMMO. However, as the ratio of Cu to biomass increases, the
expression of sMMO significantly decreases, while the expression of pMMO increases
(Semrau et al., 2018). Notably, nearly all methanotrophs possess pMMO (Koo and
Rosenzweig, 2021); therefore, increased Cu availability can enhance the expression of
pMMO. Research indicates that Cu can serve as a promoter of aerobic CH4 oxidation
(Ho et al., 2013). Therefore, SO4>" addition may promote aerobic CH4 oxidation by
increasing the availability of soil Cu, thereby enhancing the expression of pMMO (Fig.
2 path i and k).

A positive correlation has been found between P and aerobic CH4 oxidation in soils
(Veraart et al., 2015; Zhang et al., 2020). P can potentially enhance the activity of soil
methanotrophs (Fig. 2 path n) (Zhang et al., 2011), with an increase in soil P content
achieved through the hydrolysis of organic compounds, including nucleic acids,
phospholipids, and phosphate esters, by acid and alkaline phosphatases (Veraart et al.,
2015). The addition of SO4* accelerated acid phosphatase activity, thereby increasing
soil P content (Lv et al., 2014). Therefore, we hypothesize that SO4* may indirectly
enhance aerobic CH4 oxidation through the augmentation of soil P content,
subsequently promoting the activity of methanotrophs in the soil (Fig. 2 path n and o).
It is well-established that A1*" inhibits aerobic CH4 oxidation (Tamai et al., 2007; Tamai
et al., 2003). Additionally, soil acidification resulting from SO4>" addition has been
shown to intensify the toxicity of A" in forest soils (Fig. 2 ®) (Hu et al., 2013; Sogn
and Abrahamsen, 1998). The increase in AI*" can inhibit the activity of methanotrophs
(Nanba and King, 2000; Shukla et al., 2013) (Fig. 2 path 1), thereby inhibiting aerobic
CH4 oxidation (Fig. 2 path m). Therefore, SO4* addition may directly affect

methanotrophs by enhancing the toxicity of Al**

in the soil, thereby inhibiting aerobic
CH4 oxidation (Fig. 2 path 0). When NH4Cl and (NH4)2SO4 were added to the soil at

9
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the same molar concentration of NH4", the inhibitory effect of (NH4).SO4 on aerobic
CH4 oxidation was weaker than that of NH4Cl (Adamsen and King, 1993; Bradford et
al., 2001a; King and Schnell, 1998). NH4+" has been found to inhibit aerobic CHa
oxidation (Bronson and Mosier, 1994; Dunfield and Knowles, 1995), and the key
mechanism is the competition between CH4 and NH4" for the same MMO enzyme
(Gulledge et al., 2004). Due to the similar molecular structures of CHs and NH4*, MMO
can oxidize both CH4 (to CH30OH) and NH4" (to NOy"). The inhibitory effect of NH4Cl
is greater than that of (NH4)2SO4, as SO4>” may enhance the adsorption of NH4" onto
cation exchange sites in the soil (Bradford et al., 2001b; Gulledge and Schimel, 1998;
King and Schnell, 1998) (Fig. 2 ©). This reduced availability of NH4" limits its ability
to compete with methanotrophs for MMO enzymes, thereby increasing the availability
of MMO (Fig. 2 path p), promoting aerobic CH4 oxidation (Fig. 2 path k), and further
intensifying the inhibitory effect of NH4Cl compared to (NH4)2SO4. In conclusion,
SO4* served as a facilitator of acrobic CH4 oxidation, mitigating the inhibitory effects

of NH4" on this process.

5 Conclusions

SO4* plays a pivotal role in global acid deposition, with annual deposition rates ranging
from 141.64 + 120.04 TgS a! year! (Gao et al., 2022). By synthesizing the available
literature and exploring both its macroscopic effects and microscopic mechanisms, we
investigated how SO4?" affects aerobic CH4 oxidation. We observed that SO4>~ enhances
aerobic CH4 oxidation by up to 0—42% on a macro scale. At the microscopic mechanism
level, SO4* can influence methanotrophs or MMO by modulating pH, di-O-alkyl C

1" toxicity, and NH4" absorption, thereby

content, Cu availability, P content, A
promoting or inhibiting aerobic CHz oXidation! Based on these findings, we hypothesize
that SO4* would promote aerobic CH4 oxidation. If this hypothesis is validated in the
future, it could provide significant benefits for CH4 mitigation, particularly in the

context of increasing global sulfur deposition. Therefore, future research in this field
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should focus on investigating the response of aecrobic CH4 oxidation and its influencing
factors under increasing SO4> conditions, as well as clarifying the underlying microbial

mechanisms.
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Figure 1: Diagram of the complete aerobic methane oxidation process, includinE

methane assimilation and dissimilation, and classification of methanotrophs.

(DXylulose monophosphate pathway (XyMP pathway) of formaldehyde assimilation;

(2)CHy is oxidized to CO under the sequential action of multiple enzymes; @Ribulose

monophosphate pathway (RuMP pathway)of formaldehyde assimilation; (4 Serine

pathway of formaldehyde assimilation.
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Figure 2. Conceptual diagram of the potential microscopic mechanisms by which
sulfate influences aerobic methane oxidation in upland soil.

(DSO4* decreases soil pH (Fasth et al., 1991; Tie et al., 2020);@S04+* decreases soil
di-O-alkyl C amount (Xu et al., 2017);@S04* increases soil Cu availability (Islam,
2012); @S04* increases soil P content by increasing soil acid phosphatase activity (Lv
et al., 2014; Veraart et al., 2015); 5S04> increases soil Al*" toxicity (Hu et al., 2013;
Sogn and Abrahamsen, 1998); ©S04* increases NH4" absorption (Bradford et al.,
2001b; Gulledge and Schimel, 1998; King and Schnell, 1998); a. Changes in soil
physical properties due to increased soil SO4* content; b. Changes in soil microbial
substrate due to increased soil SO4> content; c. SO4*" may promote CHa4 oxidation; d.
SO4* affects the activity or community size of methanotrophs in soils (Bradford et al.,
2001b; Sitaula et al., 1995); e. Decreased pH may inhibit or stimulate soil CH4 oxidation
(Sitaula et al., 1995); f. Decreased pH may inhibit or stimulate soil CH4 oxidation
(Sitaula et al., 1995); g. Decreased di-O-alkyl C amount increases soil gram-negative
bacteria activity (Xu et al., 2017); h. The increased activity of gram-negative bacteria
may stem from the enhanced activity of methanotrophs.; i. Elevated Cu availability
stimulates soil aerobic CH4 oxidation (Ho et al., 2013); j. mb (methanobactin) is
expected to accelerate Cu uptake (Knapp et al., 2007); k. Enhanced MMO activity
facilitates aerobic CH4 oxidation. 1. Elevated AI** toxicity inhibits soil methanotrophs
activity (Nanba and King, 2000; Shukla et al., 2013); m. Decreased methanotrophs

activity inhibits soil CH4 oxidation. n. Elevated P content increases soil methanotrophs
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activity (Zhang et al., 2011); o. Elevated methanotrophs activity stimulates soil CH4
oxidation (Bradford et al., 2001b; Sitaula et al., 1995); p. The increased adsorption of
NH4" enhances the availability of MMO to soil methanotrophs.

Study site Sulfate concentration CH4 Effect Reference
concentration

Perridge Forest ~ H2SO4 (50 Kg S ha'!) Ambient air 25 % increased Bradford et al.,
2001b

Perridge Forest ~ H2SO4 (5mM) Ambient air no effect Bradford et al.,

(NH4)2SO4 (5SmM) Ambient air no effect 2001a

Maine forest Na2S04 0.5ug S g soil 250ppm 3% increased King and Schell,
1998

Norway Scots H>SO4 pH3 Ambient air 42% increased Sitaula et al., 1995

Pine forest
Birch taiga Na2S04 2.8 umol S g soil 4ppm no effect Gulledge and

K2S04 2.8 pmol S g'! soil 4ppm no effect Schimel, 1998
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