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Abstract. Methane (CH4) is a potent greenhouse gas, and its global warming potential 

is 25 times higher than carbon dioxide (CO2). Various environmental factors influence 

aerobic CH4 oxidation in soil. Sulfate (SO4
2-) ion is the main component of atmospheric 

deposition and has been increasing in recent years. It promotes CH4 production and 20 

anaerobic CH4 oxidation, however, the impact of SO4
2- on aerobic CH4 oxidation in 

soils has not yet been comprehensively summarized. We synthesize current research on 

the effects of SO4
2- on aerobic CH4 oxidation, examining both its macroscopic 

manifestations and microscale pathways. Through a literature review, we found that 

SO4
2- enhances aerobic CH4 oxidation by up to 0–42%, moreover, it has been found 25 

that various physicochemical properties and processes in the soil are influenced by the 

addition of SO4
2-, which in turn affects aerobic CH4 oxidation. This review enhances 

our understanding of the role of SO4
2- in promoting aerobic CH4 oxidation and lays the 

foundation for future studies aimed at validating these findings by quantifying CH4 flux 

and oxidation rates, as well as elucidating the underlying microbial processes through 30 

experimental research, while also providing directions for further investigation of SO4
2-

's impact on aerobic CH4 oxidation. 
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CH4 is an important greenhouse gas, and its atmospheric concentration has increased 

since pre-industrial times (Place, 2024; Praeg et al., 2016). Its global warming potential 

is 28 times higher than carbon dioxide (CO2), owing to its superior heat absorption 

efficiency (IPCC, 2013). Methanotrophs (aerobic methanotrophs) consume CH4 under 60 

certain conditions (Le Mer and Roger, 2001), reducing CH4 atmospheric concentration 

(Singh et al., 2010). Consequently, methanotrophs are crucial microbes that play an 

indispensable role in regulating and mitigating the greenhouse effect on Earth. Soil 

aerobic CH4 oxidation is the sole known biological sink for atmospheric CH4 (Ho et al., 

2019; Murguia-Flores et al., 2018), contributing to 5%–7% of the global annual 65 

atmospheric CH4 uptake (Saunois et al., 2020). Upland soils are the primary biological 

CH4 sink (Bodelier, 2011; Guo et al., 2023), owing to methanotroph-mediated CH4 

consumption (Song et al., 2024). This represents the second-largest atmospheric CH4 

consumption sink, surpassed only by hydroxyl radical depletion (Deng et al., 2019). 

Aerobic CH4 oxidation in soils are influenced by many factors, such as soil water 70 

content, soil texture, soil type, temperature, soil pH, soil inorganic nitrogen content, 

metal availability, etc., many of these factors have been extensively reviewed (Shukla 

et al., 2013; Mishra et al., 2018). However, the effect of SO4
2-, a significant ion 

component of acid deposition, on aerobic CH4 oxidation has not yet been reviewed. 

 75 

Acid rain, characterized by the deposition of SO4
2- and other acidic compounds, has 

been a significant environmental issue (Chen et al., 2020; Qi et al., 2022). SO4
2- is the 

major ion in acid rain (Wright and Henriksen, 1978) and has profound impacts on 

substances and biochemical processes in soils. As a crucial component of terrestrial 

ecosystems, soils serve as the ultimate receptor of acid deposition. SO4
2- deposition 80 

induces soil acidification (Huang et al., 2019), alters soil plant diversity (Li et al., 2022), 

affects microbial properties (Wang et al., 2018), and limits grass yield potential (Klessa 

et al., 1989), as well as a reduction in the activities of soil enzymes such as cellulase, 

invertase, and polyphenol oxidase (Tie et al., 2020). SO4
2- can inhibit CH4 production 

(methanogenesis) and promote anaerobic CH4 oxidation, playing a crucial role in the 85 

CH4 cycle. SO4
2- suppresses methanogenesis primarily due to its thermodynamic and 
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kinetic preference as an electron acceptor (Granberg et al., 2001; Schimel, 2004), 

leading to decreased CH4 emissions (Gauci et al., 2004). SO4
2- has been shown to 

facilitate anaerobic CH4 oxidation by anaerobic methanotrophic archaea in diverse 110 

ecosystems, such as oceans (Boetius et al., 2000), wetlands (La et al., 2022), and paddy 

fields (Fan et al., 2021), acting as a crucial electron acceptor. Despite these well-

documented effects on anaerobic CH4 cycling, the influence of SO4
2- on aerobic CH4 

oxidation, particularly in upland soils, remains underexplored. Given the increasing 

global deposition of SO4
2- due to industrial activities, understanding its impact on 115 

aerobic CH4 oxidation is essential for predicting future CH4 dynamics and developing 

effective climate mitigation strategies. 

 

In this review, we have analyzed the literature on the effects of SO4
2- on aerobic CH4 

oxidation. Our analysis not only reveals evidence suggesting that SO4
2- promotes 120 

aerobic CH4 oxidation but also identifies supporting evidence from related studies. In 

this review, we reviewed references about the influence of SO4
2- on soil properties, 

substances, or biochemical processes, aiming to elucidate any microscale pathways on 

aerobic CH4 oxidation through variations in soil substances or processes. Our analysis 

reveals that SO4
2- may affect aerobic CH4 oxidation. Based on the available literature, 125 

we infer that SO4
2- favors aerobic CH4 oxidation. This review summarizes the 

microscale pathways by which SO4
2- influences aerobic CH4 oxidation and highlights 

the importance of future research in this area. By providing a comprehensive synthesis 

of existing knowledge, this work serves as a valuable reference for future experimental 

studies. Furthermore, the findings of this review will contribute to a deeper 130 

understanding of global CH4 cycling, particularly in the context of increasing SO4
2- 

deposition. Moving forward, we aim to experimentally validate the impact of aerobic 

CH4 oxidation following SO4
2- addition and elucidate the underlying microbial 

mechanisms involved. 

 135 

2 The microbial aerobic CH4 oxidation processes 
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2.1 Aerobic CH4 oxidation processes 

Aerobic CH4 oxidation is mediated by methanotrophs, a group of specialized 

microorganisms (Chistoserdova et al., 2005). In soils, aerobic CH4 oxidation can be 

classified into two distinct forms based on the concentration of CH4 (Walsh et al., 2009). 

The first form, known as high-affinity oxidation, occurs at CH4 concentrations close to 175 

atmospheric levels (<2ppm) and is carried out by high-affinity methanotrophs 

(Chowdhury and Dick, 2013). This process is commonly observed in upland soils, 

particularly in environments with high NH4
+ concentrations (Ho et al., 2019; Le Mer 

and Robért, 2001). The second form, referred to as low-affinity oxidation, occurs at 

CH4 concentrations exceeding 40 ppm and is mediated by low-affinity methanotrophs 180 

(Chowdhury and Dick, 2013). This form is typically found in wetland environments, 

where CH4 concentrations are significantly higher than atmospheric levels (Bechtold et 

al., 2025). Aerobic CH4 oxidation processes can be further classified into assimilatory 

and dissimilatory pathways. In the dissimilatory pathways, CH4 is sequentially oxidized 

to CO2 by multiple enzymes (Fig. 1② ). (Mancinelli, 1995). In the assimilation 185 

pathways, methanotrophs convert formaldehyde, an intermediate product of aerobic 

CH4 oxidation, into biomass and other organic compounds mainly through the ribulose 

monophosphate pathway (RuMP pathway) (Fig. 1③), serine pathway (Fig. 1④), and 

xylulose monophosphate pathway (XyMP pathway) (Fig. 1①)(Yang et al., 2023). 

 190 

 

2.2 Methanotrophs 

Methanotrophs constitute a distinct subset of methylotrophs, primarily dependent on 

the one-carbon compound CH4 as their sole source of carbon and energy (Hanson and 

Hanson, 1996). In the traditional classification system, Proteobacterial methanotrophs 195 

were categorized into type Ⅰ (Methylococcaceae and Crenotrichaceae), type Ⅱ 

(Methylocystaceae and Beijerinckiaceae), and type Ⅹ (Methylococcaceae) (Li et al., 

2020) based on their cell membrane arrangement, chemotaxonomic properties, 

physiological characteristics, and phylogenetic location. However, due to the discovery 

of non-canonical methanotrophs, the traditional classification system has become 200 
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outdated. Consequently, methanotrophs are now classified into seven categories based 

on phylogenetic analysis: Type I-A (Methylomonadacea), I-B (Methylococcaceae), I-C 260 

(Methylothermaceae), I-D (Crenotrichaceae), II-A (Methylocystaceae), II-B 

(Beijerinckiaceae), III (Methylacidiphilaceae), and NC10 (Fenibo et al., 2023). 

Methylomonadaceae, Methylococcaceae, Methylothermaceae, and Crenotrichaceae 

belong to the class Gammaproteobacteria, while Methylocystaceae and 

Beijerinckiaceae are classified under Alphaproteobacteria. Methylacidiphilaceae 265 

belongs to the phylum Verrucomicrobia. The composition of different types of 

methanotrophs is shown in Figure 1 (Fenibo et al., 2023). Notably, only four genera–

Methylocella, Methyacidimicrobium, Methylacidiphilum, and Methanomirabilis—are 

capable of carbon fixation via the Calvin-Benson-Bassham (CBB) cycle (Fenibo et al., 

2023; Op den Camp et al., 2009). Among Actinobacterial methanotrophs, Candidatus 270 

Mycobacterium methanotrophicum is classified with the Mycobacterium genus (van 

Spanning et al., 2022). Methanotrophs utilize two forms of methane monooxygenase 

(MMOs): soluble cytoplasmic monooxygenase (sMMO) and particulate membrane–

bound monooxygenase (pMMO). The expression of these enzymes is regulated by 

copper (Cu) concentration (Hakemian and Rosenzweig, 2007). 275 

 

3 Soil CH4 oxidation in response to SO4
2- addition 

Sulfates, including SO4
2- and sulfuric acid (H2SO4), enhance aerobic CH4 oxidation 

within a range of 0–42% (Table 1), thus, we hypothesize that SO4
2- may stimulate 

aerobic CH4 oxidation. For example, in a temperate mixed deciduous woodland, the 280 

cumulative uptake of aerobic CH4 oxidation was 25% higher in the experimental group 

with H2SO4 addition compared to the control group during the final quarter of the study 

period (Bradford et al., 2001b). Similar results were reported by Sitaula et al. (1995). 

In another study, King and Schell (1998) found that adding SO4
2- (Na2SO4) increased 

aerobic CH4 oxidation by 3% at a CH4 concentration of 250 ppm compared to the 285 

control group, although this result was not statistically significant. The lack of 

significance may be attributed to the insufficient concentration gradient of Na2SO4 in 
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the experimental setup, which limited the ability to fully assess the effects of SO4
2- on 

aerobic CH4 oxidation. Therefore, we propose that the observed enhancement of 

aerobic CH4 oxidation following H2SO4 addition is primarily due to the increase in 

SO4
2- concentration. 

 665 

The promotional effect of SO4
2- on aerobic CH4 oxidation is further supported by 

comparisons with other anions under similar cationic conditions. Benstead and King 

(2001) observed that HNO3 exerted a stronger inhibitory effect on aerobic CH4 

oxidation under equivalent soil acidic conditions than H2SO4. This finding is consistent 

with the results of Bradford et al. (2001a), who experimentally confirmed the inhibitory 670 

effect of nitrate (NO3
-) on aerobic CH4 oxidation (Dunfield and Knowles, 1995; Wang 

and Ineson, 2003). When H2SO4 and HNO3 were added to the soil to achieve H+ 

concentrations of 10 and 1 μmol H+ per gram of fresh weight (gfw), respectively, both 

acids inhibited aerobic CH4 oxidation to a similar extent. However, H2SO4 exhibited a 

lesser inhibitory effect than HNO3. We hypothesize that SO4
2- may promote aerobic 675 

CH4 oxidation, as evidenced by the findings of Benstead and King (2001) and Bradford 

et al. (2001a). Consequently, when H2SO4 and HNO3 are added to the soil, resulting in 

equivalent acidic conditions, the inhibitory effect of H2SO4 is less pronounced than that 

of HNO3. 

 680 

However, not all studies support the hypothesis that SO4
2- promotes aerobic CH4 

oxidation. For instance, Bradford et al. (2001a) observed no significant difference in 

aerobic CH4 oxidation between low (564 μM) and high (1408 μM) concentrations of 

H2SO4 compared to the control group. This discrepancy may be due to differences in 

H2SO4 concentration across studies. Similarly, Hu et al. (2018) reported no significant 685 

effect of SO4
2- on aerobic CH4 oxidation. Based on the available evidence, SO4

2- 

promotes aerobic CH4 oxidation within a range of 0–42%. Although the mechanisms 

by which SO4
2- influences aerobic CH4 oxidation are not yet fully understood, we have 

identified potential microscopic pathways through which SO4
2- may affect this aerobic 

process by reviewing relevant literature. 690 
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4 Microscale pathways by which SO4
2- addition influences aerobic CH4 755 

oxidation 

 

At present, the impact of SO4
2- on aerobic CH4 oxidation is not fully understood, and 

its role in this process remains unclear, particularly regarding its potential enhancing 

effects. To address this knowledge gap, we conducted a literature review focusing on 760 

studies involving the addition of SO4
2-. Through this review, we have identified several 

potential microscopic pathways through which SO4
2- may promote aerobic CH4 

oxidation. One possible pathway involves changes in methanotroph activity and 

community structure in response to SO4
2- (Fig. 2 path d) (Bradford et al., 2001b; Sitaula 

et al., 1995). Alternatively, SO4
2- may affect aerobic CH4 oxidation by altering soil 765 

physical properties (Fan et al., 2017), microbial substrates availability (Bjorneras et al., 

2019; Palmer et al., 2013; Xu et al., 2017), and soil nutrition content (Islam, 2012) (Fig. 

2). 

 

First, the addition of SO4
2- alters soil physical properties (Fig. 2 path a), i.e., particularly 770 

by reducing soil pH (Fig. 2 ). Soil acidification increases due to enhanced base cation 

leaching associated with SO4
2- addition (Hu et al., 2013), leading to a decrease in the 

pH of forest soils (Fasth et al., 1991; Tie et al., 2020). The addition of H2SO4 has been 

shown to promote aerobic CH4 oxidation by altering the activity or community structure 

of methanotrophs (Bradford et al., 2001b; Sitaula et al., 1995). However, in experiments 775 

involving H2SO4 addition, it remains unclear whether the observed enhancement in 

aerobic CH4 oxidation is primarily due to the decreased pH (Fig. 2 path e) or the 

increase in SO4
2- concentration (Fig. 2 path d). Generally, CH4 consumption is greater 

at higher pH conditions in forest soils (Brumme and Borken, 1999; Silver et al., 1999). 

Therefore, the reduction in soil pH caused by SO4
2- addition may lead to a decrease in 780 

aerobic CH4 oxidation. However, in acidic soils, a decrease in pH has been shown to 
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increase aerobic CH4 oxidation (Sitaula et al., 1995). Consequently, when evaluating 840 

the impact of SO4
2- addition on aerobic CH4 oxidation, it is essential to consider the 

initial soil pH (Fig. 2 path e), as methanotrophs exhibit different pH preferences in 

acidic and alkaline environments (Shukla et al., 2013). 

 

Second, SO4
2- addition can alter the soil microbial substrate (Fig. 2 path b), particularly 845 

by decreasing soil di-O-alkyl C content (Fig. 2 ) (Xu et al., 2017). In a subtropical 

forest, SO4
2- addition has been shown to increase the activity of gram-negative bacteria 

in soil by reducing the litter di-O-alkyl carbon (di-O-alkyl C) (Fig. 2 ② and path g) 

(Xu et al., 2017). Di-O-alkyl C is a component of soil organic carbon (SOC). SOC 

degradation is accelerated when the percentage of di-O-alkyl C is high (Huang et al., 850 

2021). Conversely, when the content of di-O-alkyl C is low, SOC degradation slows 

down, leading to a greater availability of substrates for microorganisms, including 

methanotrophs. Methanotrophs, which are gram-negative bacteria (Schimel and 

Gulledge, 1998), may exhibit increased activity in response to SO4
2- addition. This 

enhancement of methanotrophs activity (Fig. 2 path h) can ultimately promote aerobic 855 

CH4 oxidation (Fig. 2 path o). 

 

Third, SO4
2- can alter soil nutrition content (Fig. 2 path c), specifically increasing soil 

Cu availability (Fig. 2 ) (Islam, 2012), phosphorus (P) content (Fig. 2 ④) by 

enhancing acid phosphatase activity (Lv et al., 2014; Veraart et al., 2015), (aluminum 860 

ion) Al3+ toxicity (Fig. 2 ) (Hu et al., 2013; Sogn and Abrahamsen, 1998), and NH4
+ 

absorption (Bradford et al., 2001b; Gulledge and Schimel, 1998; King and Schnell, 

1998) (Fig. 2 ⑥). Cu is a crucial component in aerobic CH4 oxidation processes, as it 

is utilized by methanotrophs in their molecular machinery, synthesized from 

metabolized CH4 through the secretion of methanobactin into the environment. This 865 

process facilitates the oxidation of CH4 to methanol (Dassama et al., 2016). It was 

anticipated that methanobactin secreted by methanotrophs during aerobic CH4 

oxidation would facilitate Cu uptake (Knapp et al., 2007); however, the specific 
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2005), requiring MMO to bind O2 for the initial step of CH4 

oxidation (Mancinelli, 1995; Shukla et al., 2013). 

Additionally, CH4 oxidation exhibited a significant positive 

correlation with O2 levels (Mancinelli, 1995). Consequently, 1025 

the increase in soil Eh and OC, resulting from the elevated O2 

content due to SO4
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mechanism by which methanobactin affects Cu uptake remains unclear (Fig. 2 path j). 

For methanotrophs capable of expressing both sMMO and pMMO, the expression of 

these enzymes is regulated by the availability of Cu, a phenomenon known as the classic 

"copper switch" (Stanley et al., 1983). Under Cu-deficient conditions, these 1085 

methanotrophs express sMMO. However, as the ratio of Cu to biomass increases, the 

expression of sMMO significantly decreases, while the expression of pMMO increases 

(Semrau et al., 2018). Notably, nearly all methanotrophs possess pMMO (Koo and 

Rosenzweig, 2021); therefore, increased Cu availability can enhance the expression of 

pMMO. Research indicates that Cu can serve as a promoter of aerobic CH4 oxidation 1090 

(Ho et al., 2013). Therefore, SO4
2- addition may promote aerobic CH4 oxidation by 

increasing the availability of soil Cu, thereby enhancing the expression of pMMO (Fig. 

2 path i and k).  

 

A positive correlation has been found between P and aerobic CH4 oxidation in soils 1095 

(Veraart et al., 2015; Zhang et al., 2020). P can potentially enhance the activity of soil 

methanotrophs (Fig. 2 path n) (Zhang et al., 2011), with an increase in soil P content 

achieved through the hydrolysis of organic compounds, including nucleic acids, 

phospholipids, and phosphate esters, by acid and alkaline phosphatases (Veraart et al., 

2015). The addition of SO4
2- accelerated acid phosphatase activity, thereby increasing 1100 

soil P content (Lv et al., 2014). Therefore, we hypothesize that SO4
2- may indirectly 

enhance aerobic CH4 oxidation through the augmentation of soil P content, 

subsequently promoting the activity of methanotrophs in the soil (Fig. 2 path n and o). 

It is well-established that Al3+ inhibits aerobic CH4 oxidation (Tamai et al., 2007; Tamai 

et al., 2003). Additionally, soil acidification resulting from SO4
2- addition has been 1105 

shown to intensify the toxicity of Al3+ in forest soils (Fig. 2 ⑤) (Hu et al., 2013; Sogn 

and Abrahamsen, 1998). The increase in Al3+ can inhibit the activity of methanotrophs 

(Nanba and King, 2000; Shukla et al., 2013) (Fig. 2 path l), thereby inhibiting aerobic 

CH4 oxidation (Fig. 2 path m). Therefore, SO4
2- addition may directly affect 

methanotrophs by enhancing the toxicity of Al3+ in the soil, thereby inhibiting aerobic 1110 

CH4 oxidation (Fig. 2 path o). When NH4Cl and (NH4)2SO4 were added to the soil at 
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the same molar concentration of NH4
+, the inhibitory effect of (NH4)2SO4 on aerobic 

CH4 oxidation was weaker than that of NH4Cl (Adamsen and King, 1993; Bradford et 1135 

al., 2001a; King and Schnell, 1998). NH4
+ has been found to inhibit aerobic CH4 

oxidation (Bronson and Mosier, 1994; Dunfield and Knowles, 1995), and the key 

mechanism is the competition between CH4 and NH4
+ for the same MMO enzyme 

(Gulledge et al., 2004). Due to the similar molecular structures of CH4 and NH4
+, MMO 

can oxidize both CH4 (to CH3OH) and NH4
+ (to NO2

-). The inhibitory effect of NH4Cl 1140 

is greater than that of (NH4)2SO4, as SO4
2- may enhance the adsorption of NH4

+ onto 

cation exchange sites in the soil (Bradford et al., 2001b; Gulledge and Schimel, 1998; 

King and Schnell, 1998) (Fig. 2 ⑥). This reduced availability of NH4
+ limits its ability 

to compete with methanotrophs for MMO enzymes, thereby increasing the availability 

of MMO (Fig. 2 path p), promoting aerobic CH4 oxidation (Fig. 2 path k), and further 1145 

intensifying the inhibitory effect of NH4Cl compared to (NH4)2SO4. In conclusion, 

SO4
2- served as a facilitator of aerobic CH4 oxidation, mitigating the inhibitory effects 

of NH4
+ on this process. 

 

5 Conclusions 1150 

 

SO4
2- plays a pivotal role in global acid deposition, with annual deposition rates ranging 

from 141.64 ± 120.04 TgS a-1 year-1 (Gao et al., 2022). By synthesizing the available 

literature and exploring both its macroscopic effects and microscopic mechanisms, we 

investigated how SO4
2- affects aerobic CH4 oxidation. We observed that SO4

2- enhances 1155 

aerobic CH4 oxidation by up to 0–42% on a macro scale. At the microscopic mechanism 

level, SO4
2- can influence methanotrophs or MMO by modulating pH, di-O-alkyl C 

content, Cu availability, P content, Al3+ toxicity, and NH4
+ absorption, thereby 

promoting or inhibiting aerobic CH4 oxidation. Based on these findings, we hypothesize 

that SO4
2- would promote aerobic CH4 oxidation. If this hypothesis is validated in the 1160 

future, it could provide significant benefits for CH4 mitigation, particularly in the 

context of increasing global sulfur deposition. Therefore, future research in this field 
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should focus on investigating the response of aerobic CH4 oxidation and its influencing 

factors under increasing SO4
2- conditions, as well as clarifying the underlying microbial 

mechanisms. 1225 
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Figure 1: Diagram of the complete aerobic methane oxidation process, including 1255 

methane assimilation and dissimilation, and classification of methanotrophs. 

①Xylulose monophosphate pathway (XyMP pathway) of formaldehyde assimilation; 

②CH4 is oxidized to CO2 under the sequential action of multiple enzymes; ③Ribulose 

monophosphate pathway (RuMP pathway)of formaldehyde assimilation; ④Serine 

pathway of formaldehyde assimilation. 1260 
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Figure 2. Conceptual diagram of the potential microscopic mechanisms by which 1285 

sulfate influences aerobic methane oxidation in upland soil.  

①SO4
2- decreases soil pH (Fasth et al., 1991; Tie et al., 2020);②SO4

2- decreases soil 

di-O-alkyl C amount (Xu et al., 2017);③SO4
2- increases soil Cu availability (Islam, 

2012); ④SO4
2- increases soil P content by increasing soil acid phosphatase activity (Lv 

et al., 2014; Veraart et al., 2015); ⑤SO4
2- increases soil Al3+ toxicity (Hu et al., 2013; 1290 

Sogn and Abrahamsen, 1998); ⑥SO4
2- increases NH4

+ absorption (Bradford et al., 

2001b; Gulledge and Schimel, 1998; King and Schnell, 1998); a. Changes in soil 

physical properties due to increased soil SO4
2- content; b. Changes in soil microbial 

substrate due to increased soil SO4
2- content; c. SO4

2- may promote CH4 oxidation; d. 

SO4
2- affects the activity or community size of methanotrophs in soils (Bradford et al., 1295 

2001b; Sitaula et al., 1995); e. Decreased pH may inhibit or stimulate soil CH4 oxidation 

(Sitaula et al., 1995); f. Decreased pH may inhibit or stimulate soil CH4 oxidation 

(Sitaula et al., 1995); g. Decreased di-O-alkyl C amount increases soil gram-negative 

bacteria activity (Xu et al., 2017); h. The increased activity of gram-negative bacteria 

may stem from the enhanced activity of methanotrophs.; i. Elevated Cu availability 1300 

stimulates soil aerobic CH4 oxidation (Ho et al., 2013); j. mb (methanobactin) is 

expected to accelerate Cu uptake (Knapp et al., 2007); k. Enhanced MMO activity 

facilitates  aerobic CH4 oxidation. l. Elevated Al3+ toxicity inhibits soil methanotrophs 

activity (Nanba and King, 2000; Shukla et al., 2013); m. Decreased methanotrophs 

activity inhibits soil CH4 oxidation. n. Elevated P content increases soil methanotrophs 1305 
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activity (Zhang et al., 2011); o. Elevated methanotrophs activity stimulates soil CH4 

oxidation (Bradford et al., 2001b; Sitaula et al., 1995); p. The increased adsorption of 

NH4
+ enhances the availability of MMO to soil methanotrophs. 1340 

 

Study site Sulfate concentration CH4  

concentration 

Effect Reference 

Perridge Forest H2SO4 (50 Kg S ha-1) Ambient air 25 % increased Bradford et al., 

2001b 

Perridge Forest H2SO4 (5mM) 

(NH4)2SO4 (5mM) 

Ambient air 

Ambient air 

no effect 

no effect 

Bradford et al., 

2001a 

Maine forest Na2SO4 0.5μg S g-1 soil 250ppm 3% increased King and Schell, 

1998 

Norway Scots 

Pine forest 

H2SO4 pH3 Ambient air 42% increased Sitaula et al., 1995 

Birch taiga Na2SO4 2.8 μmol S g-1 soil 

K2SO4 2.8 μmol S g-1 soil 

4ppm 

4ppm 

no effect 

no effect 

Gulledge and 

Schimel, 1998 

Table 1. Promotion effect of sulfates on methane oxidation in diverse upland soils. 
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