

1 Strong influence of Black Carbon on aerosol optical properties in

2 Central Amazonia during the fire season

3 Rafael Stern¹, Joel F. de Brito², Samara Carbone³, Luciana Varanda Rizzo⁴, Jonathan Daniel Muller⁵ and
4 Paulo Artaxo⁴

5 ¹Climate and Environment Department, National Institute of AmazonAmazonia Research, Manaus, 69060-001, Brazil

6 ²IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environment, 59000, Lille, France

7 ³Agrarian Sciences Institute, Federal University of Uberlândia, Uberlândia, Brazil

8 ⁴Physics Institute, University of São Paulo, 05508-090, Brazil

9 ⁵School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa

10

11

12 Correspondence to: Rafael Stern (rafa.stern@yahoo.com.br)

13 **Abstract.** During the dry season, the Amazonian atmosphere is strongly impacted by fires, even in remote areas. However,
14 there are still knowledge gaps regarding how each aerosol type affects the aerosol radiative forcing. This work characterizes
15 the chemical composition of submicrometer aerosols and source apportionment of Organic Aerosols (OA) and Equivalent
16 Black Carbon (eBC) to study their influence on light scattering and absorption at a remote site in central Amazonia during the
17 dry season (August–December 2013). We applied Positive Matrix Factorization (PMF) and multi-linear regression models to
18 estimate chemical-dependent mass scattering (MSE) and extinction (MEE) efficiencies. Mean PM1 aerosol mass loading was
19 $6.3 \pm 3.3 \mu\text{g m}^{-3}$, with 77% of organics, grouped into 3 factors: Biomass Burning OA (BBOA), Isoprene derived Epoxydiol-
20 Secondary OA (IEPOX-SOA) and Oxygenated OA (OOA). The bulk scattering and absorption coefficients at 637 nm were
21 $17 \pm 10 \text{ Mm}^{-1}$ and $3 \pm 2 \text{ Mm}^{-1}$, yielding a single scattering albedo of 0.87 ± 0.03 . Although eBC represented only 6% of the PM1
22 mass loading, MSE was highest for the eBC ($13.58 \pm 7.62 \text{ m}^2 \text{ g}^{-1}$ at 450–700 nm), followed by BBOA ($7.96 \pm 3.10 \text{ m}^2 \text{ g}^{-1}$) and
23 ammonium sulfate (AS, $4.79 \pm 4.58 \text{ m}^2 \text{ g}^{-1}$). MEE was dominated by eBC (30.8%), followed by the OOA (19.9%) and AS
24 (17.6%). The dominance of eBC over light scattering, in addition to absorption, depicts a surprisingly remarkably high role of
25 this important climate agent, indicating the need with potentially broad implications for more precise radiative forcing
26 quantification, increasing climate modelling precision, representing deep contributions to further investigate the chemical
27 processing and interaction between natural and anthropogenic aerosol sources over remote tropical forested areas. Earth's
28 climate system comprehension.

Style Definition: Normal: (Complex) Hebrew

Style Definition: Heading 2: (Complex) Hebrew

Style Definition: Heading 3: (Complex) Hebrew

Style Definition: Heading 4: (Complex) Hebrew

Style Definition: Bullets: (Complex) Hebrew, Indent: Before 0", First line: 0", Outline numbered + Level: 1 + Numbered Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned 0" + Tab after: 0.5" + Indent at: 0.5", Tab stops: 0.25", tab

Style Definition: Revision: (Complex) Hebrew, Justified, spacing: 1.5 lines

Formatted: Font: 17 pt, Bold, Font color: Black

Formatted

Formatted: Font: 12 pt, Font color: Black

Formatted: Font color: Black

Formatted: Font color: Black

Formatted: Font color: Black, English (United Kingdom)

Formatted: Font color: Black

Formatted: Font color: Black, English (United Kingdom)

Formatted: Font color: Black

Formatted: English (United Kingdom)

Formatted

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted

Formatted: Font color: Black

Formatted

29

1 Introduction

30 The Amazon is the largest hydrologic basin and contiguous tropical forest area of the planet, representing important carbon
31 reserves, sources of freshwater, and housing a large biodiversity (Andreae et al., 2015; Artaxo et al., 2013; Davidson et al.,
32 2012; Pöhlker et al., 2016). The strong coupling between climate and the biological functioning of the forest is a key factor in
33 the maintenance of the Amazonian ecosystem (Martin et al., 2010b; Pöhlker et al., 2012). The Amazonian atmosphere is
34 considered an important reactor, regulating its physical properties and chemical composition due to the high insolation and
35 humidity (Andreae, 2001). Despite the high temperatures, precipitation rates, and insolation during most of the year, an annual
36 cycle can be observed, with a wetter and less warm season and a drier and hotter season, whose length and period vary
37 depending on the region of the Amazon (Marengo et al., 2001).

38 During the wet season, the Amazonian atmosphere represents one of the few continental regions with episodic atmospheric
39 composition near pristine conditions (Andreae et al., 2015; Martin et al., 2010b; Pöhlker et al., 2018; Pöschl et al., 2010).
40 Particle number concentration during the cleanest period is a few hundred particles cm^{-3} , very similar to remote oceanic regions
41 (Andreae et al., 2015; Artaxo et al., 2013; Martin et al., 2010). However, during the dry season, forest fires are provoked in
42 order to clear forest areas for agriculture, and also as part of pasture and cropland management (Aragão et al., 2016; Berenguer
43 et al., 2021; Davidson et al., 2012). During these periods, forest fire emissions coupled with smaller rates of aerosol scavenging
44 lead to particle number concentration increases by a factor of 10 in remote forest areas (Artaxo et al., 2013; Pöhlker et al.,
45 2018). These stark seasonal differences in aerosol loading and composition have the potential to significantly modify the
46 coupling biosphere atmosphere (Zaveri et al., 2022), which is expected to be exacerbated in the future due to extreme climatic
47 events in Amazonia (Flores et al., 2024).

48 Atmospheric aerosol particles influence climate through scattering and absorption of solar radiation (aerosol radiation
49 interactions, ARI) and by affecting cloud formation and lifetime (aerosol-cloud interactions, ACI) (Forster et al., 2021).
50 However, the magnitude and the signal of global radiative forcing of aerosols still represent one of the largest uncertainties in
51 global climate models (Kuhn et al., 2010; Rizzo et al., 2013; Szopa et al., 2023). Uncertainties on the radiative forcing of
52 individual aerosol components are even higher (Myhre et al., 2013), with a direct impact on the accuracy of future climatic
53 scenarios (Forster et al., 2021). Carbonaceous aerosols (i.e. organic and black carbon) dominate the Amazonian atmosphere
54 (Artaxo et al., 2013). While Organic Aerosol (OA) originates from both primary emissions, as well as secondary formation
55 from gaseous precursors (Martin et al., 2010), black carbon is mostly primarily emitted from incomplete combustion, and in
56 remote areas of the Amazon it is associated with Amazonian or transatlantic forest fires (Artaxo et al., 2013; Holanda et al.,
57 2020). The sign and magnitude of the ARI forcing are dependent on several parameters such as particle origin, size distribution,
58 mixture and age, notably affecting the light absorbing component of OA, termed brown carbon (Laskin et al., 2015; Saturno
59 et al., 2018b).

60 The secondary component of OA (SOA) in the Amazon has been shown to be a major component, notably during the wet
61 season (Chen et al., 2015; Srivastava et al., 2019). Isoprene (2-methyl-1,3-butadiene, C_5H_8) is the most abundant VOC emitted

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

62 globally, mostly located in tropical forests such as the Amazon (Marais et al., 2016; Yáñez-Serrano et al., 2015). The formation
63 of isoprene-derived Secondary Organic Aerosol (SOA) is a sequence of complex reactions and depends on different factors,
64 such low concentrations of NO (a typical byproduct of fossil fuel combustion), and pre-existing aerosol particles where
65 isoprene can condense on (Brito et al., 2018; Caravan et al., 2024; Marais et al., 2016; Nah et al., 2019). One of the dominating
66 isoprene SOA pathways in the Amazon is through the OH attack, leading to hydroperoxy radicals and subsequently via the
67 HO₂ pathway (Shrivastava et al., 2019; Wennberg et al., 2018). This pathway can lead to different low-volatility products
68 generally termed IEPOX-SOA (Isoprene EPOXYdiols Secondary Organic Aerosol) (Allan et al., 2014; Hu et al., 2015; Surratt
69 et al., 2010). Isoprene oxidation product mixing ratios were previously shown to be higher during the dry season above the
70 forest canopy, likely due to the higher insolation and temperature during this period, which favors the oxidative capacity of
71 the atmosphere and leaf emission potential (Yáñez-Serrano et al., 2015). IEPOX-SOA mass concentrations have been shown
72 to be significantly reduced during polluted conditions, associated with suppression due to urban NO emissions (de Sá et al.,
73 2017). Alternatively, a study in polluted urban plumes in West Africa found that SO₄²⁻ increase plays a larger role in enhancing
74 IEPOX-SOA loadings than NO in suppressing it (Brito et al., 2018). Secondary oxidized aerosol particles have been
75 demonstrated to be more efficient at scattering radiation than primary particles (Kleinman et al., 2020; Paredes-Miranda et al.,
76 2009; Reid et al., 2005; Smith et al., 2020).

77 Chemical composition, processes, and sources of atmospheric aerosol particles in the Amazon have been widely studied during
78 both the wet and dry seasons, in sites representing pristine conditions (Andreae et al., 2015; Chen et al., 2015; Martin et al.,
79 2010a) as well as strongly impacted by fires and urban pollution (Brito et al., 2014; Pönczek et al., 2021; de Sá et al., 2018;
80 Zaveri et al., 2022). Physical properties of radiation absorption and scattering were described (Artaxo et al., 2013; Nascimento
81 et al., 2021; Palacios et al., 2020; Rizzo et al., 2013; de Sá et al., 2019; Sena et al., 2013). However, the intrinsic optical
82 properties of each aerosol species are still rare (Velazquez-Garcia et al., 2023), notably associated with OA origins (Pönczek
83 et al., 2021). Our study details the chemical properties of submicrometer aerosol particles in a forest site in central Amazonia
84 during the dry season and their influence on radiation scattering and absorption. We applied positive matrix factorization
85 (PMF) to the organic fraction, associated mass extinction, absorption, and scattering efficiencies to different aerosol
86 components via multi-linear regression to improve our comprehension of their intrinsic properties, as well as estimate their
87 role on aerosol-radiation interaction in Central Amazonia during the dry season.

88 The strong coupling between climate and the biological functioning of Amazonia is a key factor in the maintenance of its
89 ecosystem (Martin et al., 2010b; Pöhlker et al., 2012). The Amazonian atmosphere is considered an important reactor,
90 regulating its physical properties and chemical composition due to the high insolation and humidity (Andreae, 2001). However,
91 during the dry season, forest fire emissions coupled with smaller rates of aerosol scavenging lead to particle number
92 concentration increases by a factor of 10 in remote forest areas compared to near-pristine conditions episodes during the wet
93 season (Andreae et al., 2015; Artaxo et al., 2013; Pöhlker et al., 2018). These stark seasonal differences in aerosol loading and
94 composition have the potential to significantly modify the biosphere-atmosphere coupling (Zaveri et al., 2022). These seasonal
95 differences are expected to be exacerbated in the future due to extreme climatic events in Amazonia (Flores et al., 2024).

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between: (No border), Tab stops: 3.13", Centered + 6.27", Right

96 Carbonaceous aerosols (i.e. organic aerosols, OA and black carbon, BC) dominate the atmosphere particles chemical classes
97 in Amazonia (Artaxo et al., 2013). The secondary component of OA (SOA) has been shown to have a major contribution,
98 notably during the wet season (Chen et al., 2015; Shrivastava et al., 2019). In remote regions of Amazonia, aged and highly
99 processed oxygenated particles originated from multiple sources (forest fires, derived from volatile organic compounds –
100 VOCs...) are a major component of basin-wide haze observed during biomass burning season (Darbyshire et al., 2019).
101 Isoprene (2-methyl-1,3-butadiene, C₅H₈) is the most abundant VOC emitted globally, mostly in tropical forests (Marais et al.,
102 2016; Yáñez-Serrano et al., 2015). The formation of isoprene-derived Secondary Organic Aerosol (SOA) is a sequence of
103 complex reactions and depends on different factors, such low concentrations of NO and pre-existing aerosol particles where
104 isoprene can condense on (Brito et al., 2018; Caravan et al., 2024; Marais et al., 2016; Nah et al., 2019). One of the dominating
105 isoprene SOA pathways in Amazonia is through the OH attack, leading to hydroperoxy radicals (Shrivastava et al., 2019;
106 Wennberg et al., 2018). This pathway can lead to different low-volatility products generally termed IEPOX-SOA (Isoprene
107 EPOXydiols-Secondary Organic Aerosol) (Allan et al., 2014; Hu et al., 2015; Surratt et al., 2010). While OA originates from
108 both primary emissions, as well as secondary formation from gaseous precursors (Martin et al., 2010b), BC is mostly primarily
109 emitted from incomplete combustion, and in remote areas of Amazonia it is associated with regional or transatlantic forest
110 fires (Artaxo et al., 2013; Holanda et al., 2020; Saturno et al., 2018a).
111 Atmospheric aerosol particles influence climate through scattering and absorption of solar radiation (aerosol-radiation
112 interactions, ARI) and by affecting cloud formation and lifetime (aerosol-cloud interactions, ACI) (Forster et al., 2021).
113 However, the magnitude and the signal of global radiative forcing of aerosols still represent one of the largest uncertainties in
114 global climate models (Szopa et al., 2023). Uncertainties on the radiative forcing of individual aerosol components are even
115 higher, with a direct impact on the accuracy of future climate scenarios (Forster et al., 2021). The sign and magnitude of the
116 ARI forcing are dependent on several parameters such as particles size distribution, mixture, aging processes and
117 meteorological conditions, as well as the particle chemical composition and its effect on the complex refractive index, based,
118 among other factors, on the origin of the particles (Laskin et al., 2015; Li et al., 2024; Saturno et al., 2018a). Aerosol particles
119 known for efficiently absorbing radiation - such as BC - often also exhibit significant scattering efficiencies, which are strongly
120 influenced by their size, chemical composition, and the extent and nature of their atmospheric aging and coatings (Bond and
121 Bergstrom, 2006; Schwarz et al., 2006; Yu et al., 2010). Although chemical aging has shown to enhance light absorption due
122 to the coating of the BC core by condensing semi- and intermediate volatility organic compounds or coagulation with other
123 particles (Darbyshire et al., 2019; Metcalf et al., 2013; Saturno et al., 2018b; Tasoglou et al., 2017; Wang et al., 2016), primary
124 biomass burning aerosols have also been associated with high scattering efficiencies (Hand and Malm, 2007; Malm et al.,
125 2005). Coating by non-absorbing material, such as Organics (Romshoo et al., 2021), has been shown to increase BC scattering
126 by a factor of 3-24 depending on the size, morphology, aging stage, coating thickness and composition of the BC particles (He
127 et al., 2015). Conversely, sulfate and water coating have also shown to increase elemental carbon particle diameter, playing a
128 stronger role on its scattering efficiency, more than absorption (Cheng et al., 2008; Yu et al., 2010). Precisely quantifying
129 distinct ARI for each chemical species, and especially decreasing uncertainties on the ones with high potential to both absorb

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

130 and scatter radiation such as BC is critical to improve our understanding and prediction of the atmospheric system and improve
131 climate models.

132 Chemical composition, processes, and sources of atmospheric aerosol particles in Amazonia have been widely studied during
133 both the wet and dry seasons, in sites representing pristine conditions (Andreae et al., 2015; Cheng et al., 2015; Martin et al.,
134 2010a) as well as strongly impacted by fires and urban pollution (Brito et al., 2014; Palm et al., 2018; Ponczek et al., 2021;
135 Zaveri et al., 2022). Physical properties of radiation absorption and scattering have been described for the whole particles mass
136 loading, regardless of the specific chemical groups (Artaxo et al., 2013; Nascimento et al., 2021; Palácios et al., 2020; Rizzo
137 et al., 2013; de Sá et al., 2019; Sena et al., 2013). However, intensive optical properties of each aerosol species are still rare
138 (Velazquez-Garcia et al., 2023), notably associated with OA origins (Ponczek et al., 2021) and with BC behaviour. Our study
139 details the chemical properties of submicrometer aerosol particles in a forest site in central Amazonia during the dry season
140 and their influence on radiation scattering and absorption. We applied positive matrix factorization (PMF) to the organic
141 fraction, and associated mass extinction, absorption, and scattering efficiencies to different aerosol components via multi-
142 linear regression (MLR) to improve our comprehension of their intrinsic properties, as well as estimate their role on ARI in
143 Central Amazonia during the dry season.

144 2 Material and Methods

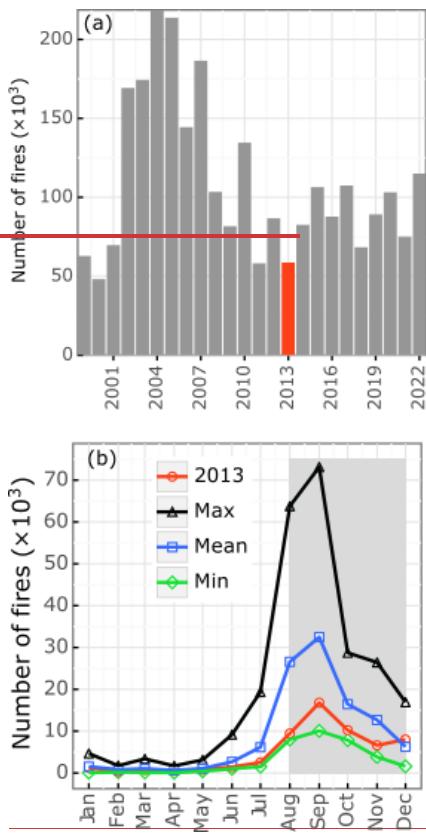
145 2.1 Sampling site

146 The measurements site is located in Central Amazonia, 60 km northwest of the city of Manaus, Brazil, in the Cuieiras biological
147 reserve (2°35'39.24"S, 60°12'33.42"W), and referred to in this study as T02. (Martin et al., 2015; Whitehead et al.,
148 2016). (Martin et al., 2015; Whitehead et al., 2016). The vegetation is characterized as *terra firme* (upland forest, not impacted
149 by seasonally floodedseasonal flooding), and the canopy is between 30 m and 35 m high (Martin et al., 2010). (Martin et al.,
150 2010a, 2010). As a result of steady northeasterly-easterly winds (Andreae et al., 2015; Araújo et al., 2002) (Andreae et al.,
151 2015; Araújo et al., 2002), only rarely the site is impacted by Manaus emissions (Chen et al., 2015). The seasonality at the
152 region of this site in central Amazonia has been previously defined as the wet season in this region is typically, from 1 December
153 – 14 June, and the dry season from 15 June – 30 November (Andreae et al., 2015). During the wet season, air masses reaching
154 the site pass over more than 1,500 km of undisturbed forest (Andreae et al., 2015; Pöschl et al., 2010). (Pöschl et al., 2010).
155 However, during the dry season, regional biomass burning pollution can be detected at the site (Artaxo et al., 2013; Rizzo et
156 al., 2013) (Artaxo et al., 2013; Rizzo et al., 2013), as well as aerosol plumes advected from African wildfires (Holanda et al.,
157 2023). Our observations comprise from 1 August until 10 December 2013, sampling the atmosphere at 38.8 meters above
158 ground level. The instrumentation was located inside an air-conditioned container at the base of the tower. A cyclone (50 %
159 cut-off at 10 μm) was used at the entrance of the inlet. An automatic diffusion dryer (Tuch et al., 2009) (Tuch et al., 2009) kept
160 the relative humidity of the sampled air between 20% and 50%. Lodging for scientists/staff and a diesel generator were located

Formatted: English (United Kingdom)

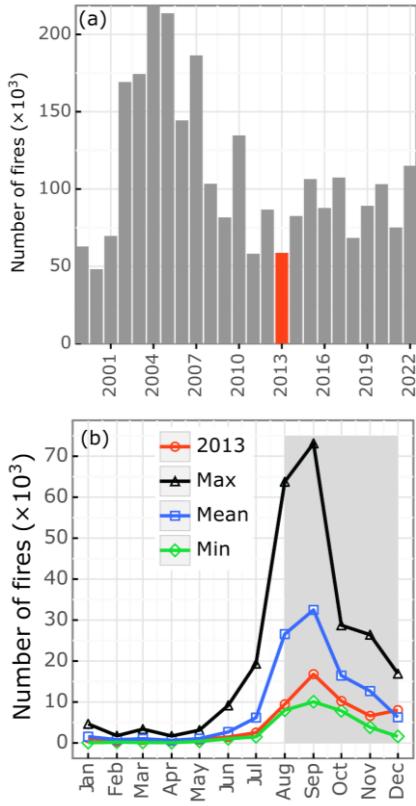
Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right


161 330m and 720m downwind (west) from the tower, respectively. The measurement tower has been shown to be practically
162 unaffected by the generator (Whitehead et al., 2016). The year of this study (2013) was characterized by a historical minimum
163 of fire detection over ~~the last~~ 20 years (Figure 1, (F. G. Assis et al., 2019)(F. G. Assis et al., 2019)), providing an interesting
164 outlook to assess the best scenarios for a dry season in recent times, and thus evaluate atmospheric composition within targets
165 and goals for the [Amazon forest](#)[Amazonia rainforest](#) preservation. The observation period here has been considered to fit
166 entirely within dry-season atmospheric conditions. The previous transitional (wet-dry) period occurred in June-July
167 (Whitehead et al., 2016),(Whitehead et al., 2016), and the subsequent (dry-wet) soon after the end of our measurements.
168

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)


Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

171
172
173 **Figure 1:** a) Number of fires in the Brazilian [Amazon forest](#)[Amazon rainforest](#) from 1999 to 2022, showing how 2013 (marked in
174 red) [is has](#) the lowest [in the past 20 years in terms of](#) total number of fires [in 20 years](#), and b) mean (blue), maximum (black), and
175 minimum (green), and for 2013 (red) monthly fires between 1999-2022 in the [Amazon](#)[Amazonian](#) Basin. The year of 2013 is marked
176 [in red](#), and it is evident how it was very close to the minimum (green) line. The gray area in b) marks the period of measurements in
177 our study (01/Aug – 10/Dec) (Instituto Nacional de Pesquisas Espaciais, 2024).

178 2.2 Instrumentation

179 Non-refractory submicrometer aerosol composition was measured using a quadrupole Aerosol Chemical Speciation Monitor
180 (ACSM, Aerodyne Research Inc) (Ng et al., 2011), which is a compact version of the Aerosol Mass Spectrometer (AMS).

171
172
173 Formatted: English (United Kingdom)
174 Formatted: English (United Kingdom)
175 Formatted: English (United Kingdom)
176 Formatted: English (United Kingdom)
177 Formatted: English (United Kingdom)
178 Formatted: English (United Kingdom)
179 Formatted: English (United Kingdom)
180 Formatted: English (United Kingdom)
181 Formatted: English (United Kingdom)
182 Formatted: English (United Kingdom)
183 Formatted: English (United Kingdom)
184 Formatted: English (United Kingdom)
185 Formatted: English (United Kingdom)
186 Formatted: English (United Kingdom)
187 Formatted: English (United Kingdom)
188 Formatted: Font color: Black
189 Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

181 Instrument calibration consisted of injecting monodispersed (300 nm) aerosol particles of ammonium nitrate (AN) and
182 ammonium sulfate (AS). ~~Aerosol particles were~~ generated using an atomizer and subsequently dried, and size selected using
183 a Differential Mobility Analyzer. A collection efficiency of 0.5 has been adopted (Middlebrook et al., 2012), yielding a very
184 good agreement ~~in~~ of particle mass considering measurements from different collocated instruments (S1). This method was
185 successfully used in previous studies (Brito et al., 2014; Sun et al., 2010) (Brito et al., 2014; Sun et al., 2010), and the value of
186 0.5 agrees with other studies in the Amazon~~Amazonia~~ during the dry season (de Sá et al., 2019) and during the transition from
187 wet to dry season (Poneczek et al., 2021) (Poneczek et al., 2021; de Sá et al., 2019). The measured ammonium (NH₄) mass
188 concentrations were close to, or often lower than the detection limit of 0.28 μm^3 (Pöhlker et al., 2018; Whitehead et al.,
189 2016) $\mu\text{g m}^{-3}$ (Pöhlker et al., 2018; Whitehead et al., 2016), and were therefore calculated based on nitrate (NO₃) and sulfate
190 (SO₄) molar masses and their mass concentrations, assuming neutralization as in Equation 1:

$$192 \text{NH}_4, \text{predicted} = 18 \times \left(\frac{\text{SO}_4}{96} \times 2 + \frac{\text{NO}_3}{62} \right) \quad (1)$$

194 Furthermore, the SO₄ and NO₃ ions were used to estimate AS and AN (Equations 2 and 3) for the chemical-dependent optical
195 properties analyses (Section 3.3), assumed here to be their most abundant form given the very low NH₄ levels:

$$197 \text{AS} = 132 \times \frac{\text{SO}_4}{96} \quad (2)$$

$$199 \text{AN} = 80 \times \frac{\text{NO}_3}{62} \quad (3)$$

201 Size-resolved particle number size distribution from 10 to 450 nm was measured with a Scanning Mobility Particle Sizer
202 (SMPS, model 3081, TSI Inc.) coupled to a Condensation Particle Counter (CPC, model 3772, TSI Inc.) to provide equivalent
203 mobility particle diameter for singly charged particles (D_{pm}, (Wiedensohler et al., 2012)). Aerosol light scattering coefficient
204 (σ_s) at 450 nm, 550 nm, and 700 nm (Anderson and Ogren, 1998) was measured using a Nephelometer (model 3563, TSI Inc.).
205 Calibration was performed using CO₂ as the high-span gas and filtered air as the low-span gas. The averaging time applied
206 was 60 minutes, and therefore the detection limits, (defined as a signal-to-noise ratio of 2), for scattering coefficients are 0.08,
207 0.03, and 0.05 Mm⁻¹ for 450, 550, and 700 nm, respectively (Anderson and Ogren, 1998). Since a PM10 inlet was used, the
208 "no-cut" factors were used for the truncation corrections (Anderson and Ogren, 1998). Scattering coefficients at 637 nm were
209 calculated from interpolation, assuming a power law spectral dependency. As since a PM10 inlet was used, the "no-cut" factors
210 were used for the truncation corrections. We used a Multi Angle Absorption Photometer (MAAP, model 5012, Thermo
211 Electron Group, Waltham, USA) (Müller et al., 2011) measured to measure aerosol light absorption coefficient (σ_a) at 637 nm,
212 and was used to estimate equivalent Black Carbon (eBC) concentration, assuming an absorption cross-section value of 6.6 m²
213 g⁻¹. Considering the conditions of the experiment, the MAAP detection limit for σ_a was of 0.13 Mm⁻¹ (Petzold et al., 2005).

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: Font: Times New Roman, English (United Kingdom)

Formatted: Font: Times New Roman, English (United Kingdom)

Formatted: Font: Times New Roman, English (United Kingdom), Pattern: Clear, Highlight

Formatted: English (United Kingdom)

Field Code Changed

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: Font: Gungsuh, English (United Kingdom)

Formatted: Font: Gungsuh, English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between: (No border), Tab stops: 3.13", Centered + 6.27", Right

214 Episodes of possible contamination from the city of Manaus and from the diesel generator were removed by filtering the
215 datapoints when either the wind direction was between 270-340° (from our local wind direction measurements) or when the
216 calculated backtrajectories from the Hysplit model (Draxler and Hess, 1998) passed over Manaus coordinates, as in (Whitehead
217 et al., 2016) (Supplement S2).

218 2.3 Optical properties

219 Single Scattering Albedo (SSA, Equation 4) is a measure of the ratio of σ_s to the total radiation extinction coefficient ($\sigma_e = \sigma_s$
220 $+ \sigma_a$) by aerosol particles (Rizzo et al., 2013). Since the MAAP instrument only measures the σ_a at 637 nm wavelength, the σ_e
221 was calculated only for this wavelength using σ_s at 637 nm from the nephelometer, estimated using the scattering Angstrom
222 exponent (α_s , Equation 5).

$$223 SSA = \frac{\sigma_s}{\sigma_s + \sigma_a} \quad (4)$$

224 The α_s is a measure of the dependence of radiation scattering on the light wavelength (λ), and it is an indication of particle size
225 (Rizzo et al., 2013; Saturno et al., 2018b; Schuster et al., 2006):

$$227 \ln \sigma_s = -\alpha_s \ln \lambda + \ln (\text{constant}) \quad (5)$$

229 Scattering coefficients at 637 nm were calculated from interpolation using the scattering Angström exponent (α_s , Equation 4),
230 assuming a power-law spectral dependency. The α_s is a measure of the dependence of radiation scattering on the light
231 wavelength (λ), and it is an indication of particle size (Rizzo et al., 2013; Saturno et al., 2018b; Schuster et al., 2006):

$$233 \ln \sigma_s = -\alpha_s \ln \lambda + \ln (\text{constant}) \quad (4)$$

235 Single Scattering Albedo (SSA, Equation 5) is a measure of the ratio of σ_s to the total radiation extinction coefficient ($\sigma_e = \sigma_s$
236 $+ \sigma_a$) by aerosol particles (Rizzo et al., 2013). Since the MAAP instrument only measures the σ_a at a wavelength of 637 nm,
237 the σ_e was calculated using σ_s at 637 nm interpolated from the nephelometer.

$$239 SSA = \frac{\sigma_s}{\sigma_s + \sigma_a} \quad (5)$$

241 After rain events and other moments when the atmosphere is very clean, both α_s for σ_e values all the optical parameters are very
242 low close to zero, and therefore the ratio between them (SSA, Equation 4) becomes unrealistically high. We therefore calculated
243 SSA for α_s for only when σ_s and $\sigma_e > 1 \text{ Mm}^{-1}$.

244 Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

245 **2.4 Statistical Analyses**

246 **2.4.1 Positive Matrix Factorization (PMF)**

247 The PMF (Positive Matrix Factorization) was used on the submicrometer non-refractory organic mass spectra in order to group
248 m/z ratios with similar temporal variability, supporting the identification of sources and processes that formed and transformed
249 atmospheric particles. A detailed description of the PMF can be found in (Paatero & Tapper, 1994; Ulbrich et al., 2009), and
250 it is an established methodology for aerosol source apportionment (Zhang et al., 2011). The model can be represented by the
251 following Equation. (6):

252 We used Positive Matrix Factorization (PMF) in order to group the submicrometer non-refractory organic mass spectra (m/z
253 ratios) with similar temporal variability, supporting the identification of sources and processes that formed and transformed
254 atmospheric particles (Paatero and Tapper, 1994; Ulbrich et al., 2009; Zhang et al., 2011). The model can be represented by
255 the following Equation. (6):

256 ▲

257
$$X_{(m \times n)} = \sum_{k=1}^p G_{(m \times p)_k} F_{(p \times n)} + E \quad (6)$$

258

259 Where X is the input matrix of n (elements – m/z ratios) lines and m (number of samples) columns (Ulbrich et al., 2009).
260 (Ulbrich et al., 2009). In this study, the X matrix had 2901 lines (1-hour averages for more than 4 months of measurements)
261 and 70 columns (m/z ratios). The receptor model aims to determine the number of p factors, representing sources or processes,
262 their chemical composition, and the relative contribution of each factor. G is a matrix in which columns are the time series of
263 the factors. F is a matrix in which lines are the profiles of the factors (mass spectra). E represents the residuals, the part of the
264 data that was not modeled by any factor p . We used an IGOR™-based interface to apply the PMF analysis (Ulbrich
265 et al., 2009). The PMF ions were normalized to the organics concentration.

266 **2.4.2 Multilinear Regression (MLR)**

267 We used a Multilinear Regression (MLR) model to estimate the contribution of each aerosol chemical component to scattering,
268 absorption, and extinction coefficients, deriving the corresponding efficiencies (MSE, MAE, and MEE, respectively). The σ_s
269 and σ_a were the dependent variables (response) and the species/factors were the independent (predictor) variables.

270 We used a Multilinear Regression (MLR) model to estimate the contribution of each aerosol chemical component to scattering,
271 absorption, and extinction coefficients, deriving the corresponding efficiencies (MSE, MAE, and MEE, respectively) (Yu et
272 al., 2010). The scattering (σ_s) and extinction (σ_a) coefficients (Mm^{-1}) were the dependent variables (response) and the ACSM
273 species/PMF factors were the independent (predictor) variables.

274 A generalization of the mass efficiency (ME) calculation is presented in Equation 7:

275

276
$$ME = \sum_i a_i x_i + r \quad (7)$$

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

b77

278 Where ME can be MSE, MAE or MEE; x is the chemical species mass concentration; a_i is the efficiency of each component,
 279 and r are the residuals. We used NNLS (Non-Negative Least Squares) from Python package Scipy version 1.5.2 ([Virtanen et al., 2020](#)). To constrain the model to produce results with physical meaning, the coefficients a_i were constrained to be positive, as in (Velazquez-Garcia et al., 2023). Since eBC is assumed to be the only absorbing component measured in this study with the MAAP, a MLR could not be applied, ([Virtanen et al., 2020](#)). To constrain the model to produce results with physical meaning, the coefficients a_i were constrained to be positive, as in (Velazquez-Garcia et al., 2023). Since eBC is assumed to be the only absorbing component measured in this study with the MAAP, a MLR could not be applied for σ_{a_x} and the MAE
 280 was considered to be equivalent to the cross-section value (6.6 $\text{m}^{-2} \text{g}^{-1}$, Section 2.2).

Formatted: English (United Kingdom)

286 3 Results and Discussion

287 3.1 Aerosol chemical composition

The concentrations of organics and inorganics aerosols follow similar variation patterns during the measurement period (Figure 2a). This can be an indication that the total mass loading consists of well-mixed biomass burning and secondary aerosols, associated with large and regional-scale processes (Darbyshire et al., 2019). The total submicrometer (PM1 = Organics + NO₃ + NH₄ + SO₄ + eBC) mean mass concentration during the observation period was $6.3 \pm 3.3 \mu\text{g m}^{-3}$ (Table 1, Figure 4a2a). This represents about half of what was measured during the dry season of the following year (2014, with much more fires, Figure 1) at a nearby site (ATTO tower, Amazon Tall Tower Observatory), with similar conditions (Central Amazonia, isolated from major biomass burning focus or Manaus urban plume) ($10.5 \mu\text{g m}^{-3}$ (ATTO, (de Sá et al., 2019)) and regions directly impacted by fires during the dry season ($12.4, 13.7 \mu\text{g m}^{-3}$ (Bruto et al., 2014; Poncek et al., 2021)).

Formatted: English (United Kingdom)

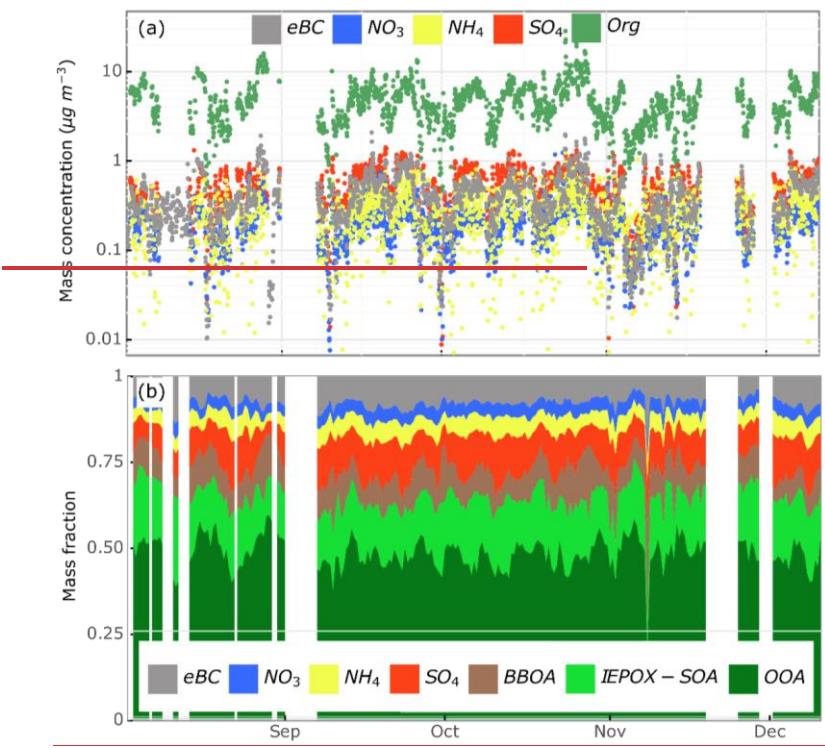
The PM1 aerosol composition was dominated by the organic fraction, representing a mass fraction of 77±5% (Table 1, Figure 2b). This is very similar to the wet season and wet to dry season transition in the same site (> 80% (Artaxo et al., 2013; Chen et al., 2015; Whitehead et al., 2016)), but high compared to other continental urban areas, such as across Europe (~30–50%, and regions directly impacted by fires during the dry season (Brito et al., 2014; Ponczek et al., 2021). The PM1 aerosol composition was dominated by the organic fraction (77±5%, Table 1, Figure 2b), similar to what was found in the same site in wetter conditions (Artaxo et al., 2013; Chen et al., 2015; Whitehead et al., 2016), but lower than what was found in a region highly impacted by biomass burning in southwestern Amazonia (Brito et al., 2014). In continental urban areas, such as across Europe, the organic particles represented a much lower fraction of the total particles mass (Chen et al., 2022) and lower than the strongly impacted by biomass burning region in Southwestern Amazonia (90%, (Brito et al., 2014). Sulfate is the main soluble inorganic component of the aerosol mass fraction in the Amazon. Sulfate is the main soluble inorganic component of the aerosol mass fraction in Amazonia, both during the wet and dry seasons (Fuzzi et al., 2007; Yamasoe et al., 2000) (Fuzzi et al., 2007; Yamasoe et al., 2000). In our study, the mean SO_4^{2-} mass fraction was 9±3% (Table 1, Figure 2b), which is

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

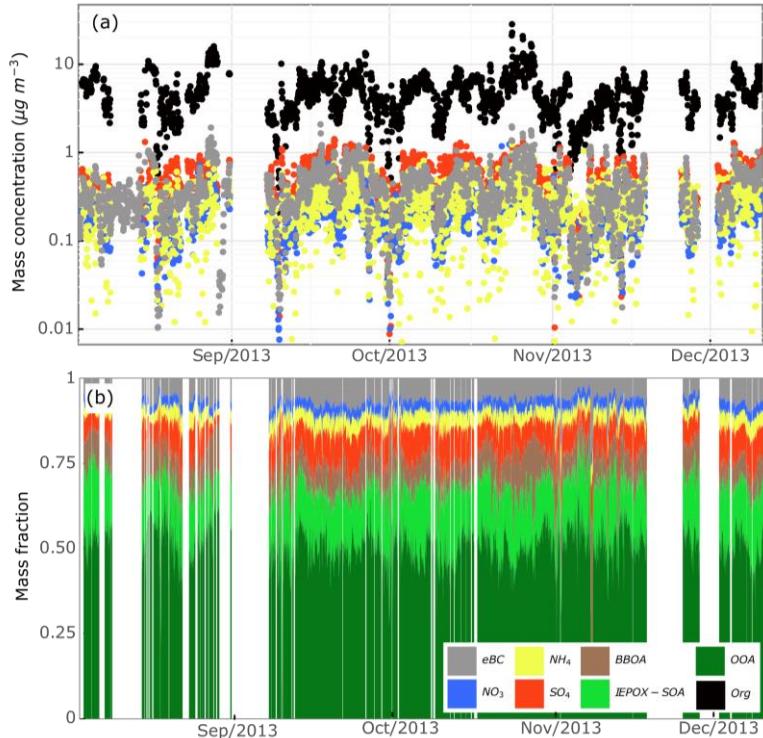
Formatted: English (United Kingdom)

Formatted: Font color: Black


Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : border), Tab stops: 3.13", Centered + 6.27", Right

308 comparable to the ATTO site (Andreae et al., 2015). However, in Southwestern Amazonia, in areas impacted by fresh biomass
309 burning, the average SO_4 mass fraction was significantly lower (2-3% (Brito et al., 2014; Ponczek et al., 2021)).(Brito et al.,
310 2014; Ponczek et al., 2021)).
311 The eBC mass fraction was $6\pm2\%$ (Table 1, Figure 2b), which is half ~~than of~~ the fraction observed in the wet season at the same
312 site (11%), ~~despite the much lower total submicrometer aerosol mass loading~~ (Chen et al., 2015).~~despite the much lower total~~
313 ~~submicrometer aerosol mass loading~~. Occasional urban pollution from Manaus, long-range transport from Africa, and potential
314 artifacts combined with much lower overall aerosol loading are possible causes for this ~~relatively~~ higher eBC mass fraction
315 ~~found~~ in the wet season (Chen et al., 2015). ~~In Southwestern Amazonia, during the transition from dry to wet season, the~~ contribution of eBC to PM1 reached 15% (Ponczek et al., 2021). Nitrate had a minor contribution during our observations
316 (3±1%), with concentration levels comparable to the ATTO site (Pöhlker et al., 2018), as well as Southwestern Amazonia
317 (Brito et al., 2014; Ponczek et al., 2021)). The concentrations of organics and inorganics follow similar patterns during the
318 measurement period (Figure 2a). This can be an indication that the total mass loading consists of well mixed biomass burning
319 and secondary aerosols, associated with large and regional scale processes (Darbyshire et al., 2019). ~~In Southwestern~~
320 ~~Amazonia, highly impacted by fresh biomass burning, the contribution of eBC to PM1 reached 15%~~ (Ponczek et al., 2021).
321 Nitrate had a minor contribution during our observations (3±1%), with concentration levels comparable to the ATTO site
322 (Pöhlker et al., 2018), as well as Southwestern Amazonia (Brito et al., 2014; Ponczek et al., 2021).
323

Formatted: English (United Kingdom)


Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

326
327 **Figure 2: Non-refractory submicrometer aerosol species and eBC mass (a) concentrations and (b) fractions at T0₂. In (a) the vertical**
328 **axis is the logarithm scale to facilitate the visualization of different species. In (a), data is shown in the original time stamp of 1 hour,**
329 **while in (b) it was averaged to 12 hours in order to facilitate visualization.**

330
331 The PMF analysis yielded 4 factors, although 2 statistical factors, although 2 of them were closely related to the Oxygenated
332 Organic Aerosol (OOA) fraction, and the. Their mass spectra, diurnal/daily profile, and time series of these factors did not
333 present enough differences to justify their separation (Supplements S3 and S4). Therefore, these 2 factors were manually
334 summed in order to generate a 3 factors solution, which was different from the factors found in the 3 factors solution presented
335 by the PMF. In (Ulbrich et al., 2009), the authors describe how one PMF resulting statistical factor can split into various other
336 factors which, after added, represent the real factor. The recombination often considers similarities between the statistical
337 factors in the mass spectra, diurnal/daily profile and time series (Carbone et al., 2013). In our study, the identification of the
338 factors was further confirmed with the correlation between the PMF statistical factors and the inorganic aerosols, with the eBC

Formatted: English (United Kingdom)

Field Code Changed

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Field Code Changed

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

339 (Supplement S4) and diurnaldaily profile analyses. The 3 factors were identified as BBOA (Biomass Burning Organic
340 Aerosol), OOA (Oxygenated Organic Aerosol) and IEPOX-SOA (Isoprene derived Epoxydiol–Secondary Organic Aerosol),
341 and they represent together 99% of the measured submicrometer organic aerosol mass, with 1% of residuals. The correlation
342 between BBOA and NO_3 and SO_4 is comparable with findings in Southwestern Amazonia (Brito et al., 2014).

343 **Table 1 - Dry season (01/Aug – 10/Dec) mean mass concentration ($\mu \text{ m}^{-3}$), standard deviations, and percentile range**
344 **(10-90, in parenthesis) of the species measured by the ACSM and MAAP (eBC).**

	Mass concentration ($\mu \text{ g m}^{-3}$)	Mass fraction
Total PM1	6.3 ± 3.3 (2.7-10.3)	100%
Organics	4.9 ± 2.7 (2.1-7.9)	$77 \pm 5\%$
BBOA	0.6 ± 0.6 (0.2-1.1)	$9 \pm 5\%$
IEPOX-SOA	1.0 ± 0.5 (0.4-1.7)	$17 \pm 5\%$
OOA	3.2 ± 1.5 (1.3-5.5)	$51 \pm 6\%$
NO_3	0.2 ± 0.1 (0.1-0.3)	$3 \pm 1\%$
NH_4	0.3 ± 0.1 (0.0-0.5)	$4 \pm 1\%$
SO_4	0.5 ± 0.3 (0.2-0.9)	$9 \pm 3\%$
eBC	0.4 ± 0.3 (0.1-0.7)	$6 \pm 2\%$

345
346 The largest contributiondominant PMF-derived statistical factor in our study was OOA, which contributed to $51 \pm 6\%$ of the
347 PM1 (Table 1), and 65% of the organic mass. It presented the largest m/z 44 fraction (Figure 3), and therefore, this is the factor
348 This agrees with the highest estimated O:C ratio (Chen et al., 2015). The high oxidation level indicates highly aged particles
349 and may lose some of their original chemical signatures, in terms of elementary ratios, during the aging process (Jimenez et
350 al., 2009). The m/z 44 is formed mainly by the fragment CO_2^+ , typical of the thermal decarboxylation of the organic acids
351 groups (Alfarra et al., 2004); previous studies showing that highly processed SOA are a The more aged the aerosols, the more
352 chemically similar they become, which makes the task of separating them into different factors with distinctive characteristics
353 very difficult. Therefore, the OOA factor probably groups aerosol particles from different sources, and their common
354 characteristic is that they are probably originating relatively distant from the sampling site. This factor is a major component
355 of basin wide haze observed during biomass burning season, associated with the transport from eastern Amazonia into the
356 atmospheric particles in remote central regions at the center of the basinAmazonia (Darbyshire et al., 2019). This factor has
357 the highest estimated O:C ratio, which is evident in the observed m/z 44 fraction (Figure 3, note the different scales). The high
358 oxidation level indicates highly aged particles and may lose some of their original chemical signatures, in terms of elementary
359 ratios, during the aging process (Jimenez et al., 2009). The m/z 44 signal predominantly arises from the CO_2^+ ion fragment,
360 which is typically generated by thermal decarboxylation of carboxylic acid functional groups in organic aerosols (Alfarra et
361 al., 2004). Therefore, m/z 44 serves as a valuable marker for the extent of aerosol oxidation and the presence of oxygenated

Formatted: English (United Kingdom)

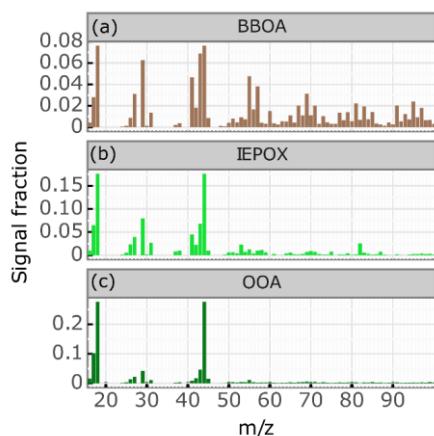
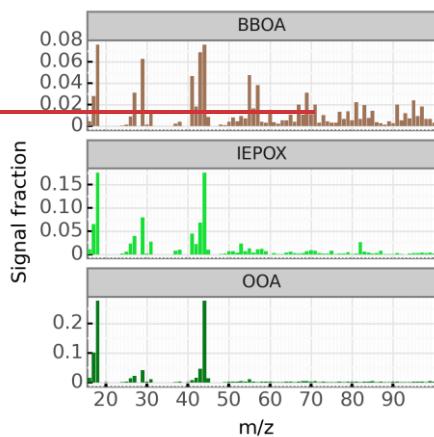
Formatted Table

Formatted: English (United Kingdom)

Formatted: Portuguese (Brazil)

Formatted: English (United Kingdom)

Formatted: Font: 10 pt, Portuguese (Brazil)



Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

362 organic compounds, providing insight into aerosol aging and secondary organic aerosol formation processes. The more aged
363 the aerosols, the more chemically similar they become, which makes the task of separating them into different factors with
364 distinctive characteristics very difficult. Therefore, the OOA factor probably groups aerosol particles from different sources,
365 and their common characteristic is that they are probably originating relatively distant from the sampling site.

Formatted: English (United Kingdom)

367
368
369 Figure 3: PMF Mass spectra composition of each statistical factor and its relative contribution to the total submicrometer organic
370 aerosol mass. It is possible to observe typical tracer ions such as m/z 60 and m/z 73 that characterize the BBOA factor, and also the

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

371 **m/z 82 in the IEPOX-SOA factor. The scale of the Y axis is different in order to facilitate visualisation of m/z signal fractions mainly**
372 **of (a) and (b).**

Formatted: English (United Kingdom)

374 The production of IEPOX-SOA generally leads to the production of markers in the atmosphere, such as the 2-methyltetrol
375 and the 3-methylfuran (m/z 82, $C_5H_6O^+$). These markers may not originally exist in the IEPOX-SOA molecule due to their
376 extremely high volatility, but they can be formed during the decomposition of some IEPOX-SOA species, such as 3-
377 methyltetrahydrofuran 3,4-diols (3-MeTHF 3,4-diols) (Lin et al., 2012;^a) (Lin et al., 2012). The organic fraction in the m/z

378 82 is therefore important for the identification of the IEPOX-SOA factor (Figure 3b, despite its low contribution to the

379 submicrometer organic aerosol mass fraction (usually below 4%). Beyond that, most% of submicrometer organic aerosol).

380 Most of the other m/z are common to other factors, making the m/z 82 distinctive of the IEPOX-SOA, which can also be
381 identified by the m/z 53 ($C_4H_5^+$) and m/z 75 ($C_3H_7O_2^+$) (Allan et al., 2014; Lin et al., 2012; Xu et al., 2015a). The lifetime of

382 IEPOX-SOA in the boundary layer is estimated to be about 2 weeks (Hu et al., 2016). The IEPOX-SOA mean mass
383 concentration in our study was $1.0 \pm 0.5 \mu\text{g m}^{-3}$ (Table 1, Figure 4). Previous studies reported $0.26 \mu\text{g m}^{-3}$ during the wet
384 season (Figure 3b) (Allan et al., 2004; Lin et al., 2012; Xu et al., 2015). IEPOX-SOA mean mass concentration in our study
385 was $1.0 \pm 0.5 \mu\text{g m}^{-3}$ (Table 1). Previous studies reported $0.26 \mu\text{g m}^{-3}$ during the wet season at the same site (Chen et al., 2015),

386 while downwind of Manaus it was around $0.5 \mu\text{g m}^{-3}$ during background conditions, and $0.1 \mu\text{g m}^{-3}$ during polluted conditions
387 (de Sá et al., 2017)(de Sá et al., 2017). It is important to note that at T0z, while

388 While the organic particle loading typically increases by an order of magnitude from the wet to the dry season (Artaxo et al.,
389 2013), we estimated that IEPOX-SOA increases about a factor ~3. The relative contribution of IEPOX-SOA to organics during
390 the wet season was estimated to be 34%, in contrast to the 17% found in this study (Table 1), which IEPOX-SOA increases by
391 about a factor ~3 (Table 1 and (Chen et al., 2015), while its relative contribution to the organic aerosols drops by half (from
392 34% (Chen et al., 2015) to 17%, Table 1). This is likely the result of a complex balance between increased isoprene emissions
393 (Yáñez-Serrano et al., 2015)(Yáñez-Serrano et al., 2015), sulfate abundance and increased pollution levels (including NO_x

394 from forest fires, and biomass-burning related aerosol particles). The relative contribution of IEPOX-SOA to the total PM1
395 mass was relatively constant during the whole measurement period (Figure 2b), as well as most of the other species (with the
396 exception of some episodes). This indicates that an atmospheric dynamics of rain/dilution controlling the chemical composition
397 could be more important than the influence of local sources of particles, confirming the regional haze hypothesis raised by
398 (Darbyshire et al., 2019).

399 The correlation (Pearson coefficient = 0.7) observed between the IEPOX-SOA factor and AS (Supplement S4.1) is similar to
400 the correlation measured in regions affected by urban pollution in the Amazon, Africa and USA ($R^2 = 0.37-0.48$ (Brito et al.,
401 2018; Budisulistiorini et al., 2013; de Sá et al., 2017)). Sulfate is the main aqueous phase particle in which isoprene products
402 use to condense on (Budisulistiorini et al., 2013; Kroll et al., 2006; Lin et al., 2012; Marais et al., 2016; Surratt et al., 2010;
403 Xu et al., 2015b), and therefore a positive and moderate high correlation is expected. eBC presents a similar correlation with
404 IEPOX-SOA as AS (Supplement S4), but the correlation is even higher with the other PMF statistical factors, especially OOA

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

405 (Pearson coefficient = 0.85, Supplement S4). Since OOA corresponds to more than half of PM1 (Table 1), this high correlation
406 indicates that most of the submicrometer aerosols measured during the dry season in Central Amazonia are, in general,
407 influenced by biomass burning emissions, since eBC is an important combustion tracer. However, the fact that the eBC
408 correlation is higher with the OOA factor than with BBOA (which constitutes only 9% of PM1, Table 1, Supplement S4)
409 indicates that long-range transport of aged and internally well mixed biomass burning plumes plays a more important role than
410 nearby fire sources. The correlation (Pearson coefficient = 0.7) observed between the IEPOX-SOA factor and AS (Supplement
411 S4.1) is similar to the correlation measured in regions affected by urban pollution in Amazonia, Africa and USA (Brito et al.,
412 2018; Budisulistiorini et al., 2013; de Sá et al., 2017). Sulfate is the main aqueous phase particle in which isoprene products
413 condense on, and therefore a positive and moderate-high correlation is expected (Budisulistiorini et al., 2013; Kroll et al.,
414 2006; Lin et al., 2012; Marais et al., 2016; Surratt et al., 2010; Xu et al., 2015). eBC presents a similar correlation with IEPOX-
415 SOA as AS (Supplement S4), but the correlation is even higher with the other PMF factors, especially OOA (Pearson
416 coefficient = 0.85, Supplement S4). This suggests that a significant fraction of the aged submicrometer aerosols measured
417 during the dry season in Central Amazonia is largely influenced by biomass burning emissions, in combination with other
418 combustion sources such as sporadic urban plumes transported from Manaus. In addition, co-variability between aerosol
419 species is expected due to strong washout events that, although less frequent, can still occur during the dry season and impact
420 multiple aerosol components simultaneously. The fact that the eBC correlation is higher with the OOA factor than with BBOA
421 (which constitutes only 9% of PM1, Table 1, Supplement S4) indicates that long-range transport of aged and internally well
422 mixed biomass burning plumes plays a more important role than nearby sources (Darbyshire et al., 2019).

423 The BBOA factor can be identified by the presence of the m/z 60 and m/z 73 (Figure 3a), which are dominated by the $C_2H_4O_2^+$
424 and the $C_3H_5O_2^+$ fragments. These fragments are originated from levoglucosan and other similar anhydro-sugars (such as
425 manosan and galactosan). Levoglucosan (1,6- α -D-anhydroglucopyranose, $C_6H_{10}O_5$) is known as a biomarker of biomass
426 burning emissions due to its production from the pyrolysis of carbohydrates as cellulose (Alfarra et al., 2007; Artaxo et al.,
427 2013; Chen et al., 2009; Lee et al., 2010) (Alfarra et al., 2007; Artaxo et al., 2013; Chen et al., 2009; Lee et al., 2010). The
428 signal fraction of m/z 60 for the BBOA factor in our study was 1.5%, which is 5 times higher than the 0.3% threshold typically
429 used as an appropriate background fraction for biomass burning (Cubison et al., 2011). OOA presented a m/z 60 signal fraction
430 of 0.2%, while IEPOX-SOA presented a negligible signal.

431 The BBOA diurnal profile is different from that of the other PMF factors (Figure 4). While the OOA and IEPOX-SOA mass
432 concentrations increase during the daytime due to photochemical oxidation processes, the BBOA mass concentration is fairly
433 constant (Figure 4). Since the BBOA is a biomass-burning indicator, it is composed of mostly primary particles, so its
434 concentration does not depend on photochemical activity. This pattern is different than the stark decrease in mass
435 concentrations of fresh biomass-burning particles during daytime, observed. The daily profile of BBOA differs significantly
436 from other factors (Figure 4). While OOA and IEPOX-SOA mass loadings increase during the day, likely due to
437 photochemically driven oxidation processes, BBOA remains relatively constant throughout the day, despite the daytime
438 dilution effect of a rising boundary layer (Andreae et al., 2015). Interestingly, this pattern contrasts with the pronounced

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

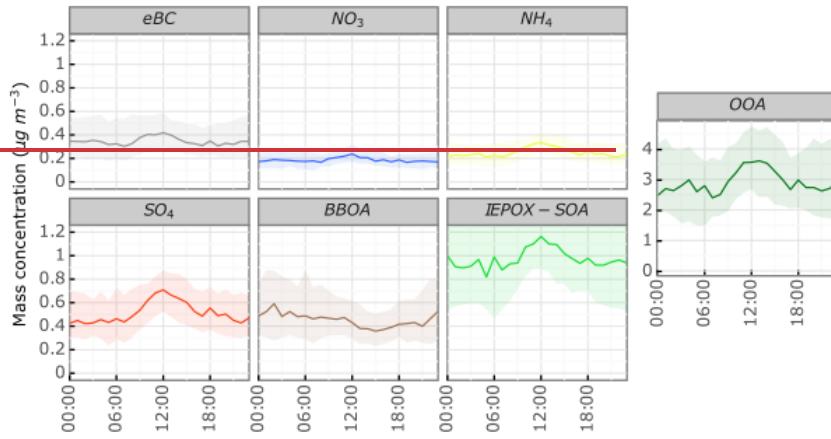
Formatted: English (United Kingdom)

Formatted: Font: Times New Roman, English (United Kingdom)

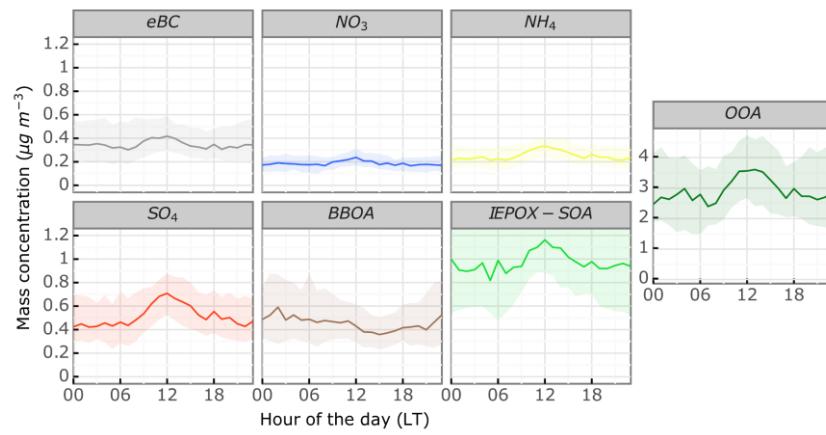
Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: Font color: Black


Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

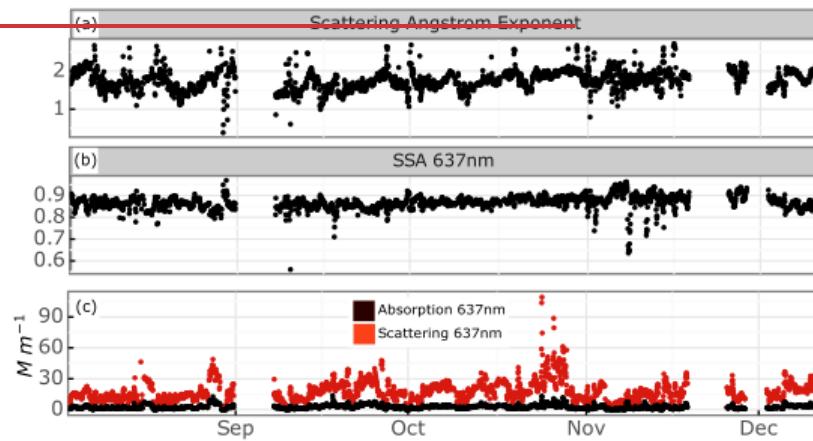
439 daytime decrease in fresh biomass-burning aerosol concentrations reported in southwestern Amazonia (Brito et al., 2014),
440 where there were constant local sources of fires and the diurnal cycle was mostly determined by the boundary layer increasing
441 and diluting the particles in a bigger area during daytime (Andreae et al., 2015). The lack of a clear diurnal pattern in our study
442 for BBOA seems to confirm the regional origin of the aerosol particles, likely transported from distant biomass burning sources
443 in the eastern parts of the basin, and long-range transport with complex local fire emissions were more prevalent. The absence
444 of a clear diurnal cycle for BBOA in our study corroborates a regional, rather than local, origin—likely from biomass-burning
445 sources located in the eastern Amazon. The flat variability of this primary factor reflects transport over long distances and the
446 influence of complex vertical mixing, including interactions between residual and nocturnal layers (Darbyshire et al., 2019).
447 An additional confirmation of the long-range transport
448 Further supporting this hypothesis is the relatively flat pattern of the eBC diel daily cycle of eBC, although there is a small but
449 noticeable slight daytime increase in the eBC diurnal mass concentration during daytime is observed (Figure 4), which may
450 indicate some possibly due to lensing effect due to the increase in the particle coating effects as particles acquire coatings
451 during transport (Denjean et al., 2020). While the diel cycle of the Unlike eBC, NH₄ and NO₃ show practically no minimal
452 diurnal variation, the while SO₄ indicates the influence of exhibits a daytime increase, consistent with secondary production via
453 photochemical processes (Figure 4) reactions from biogenic sources, or atmospheric transport processes. The higher rise in the
454 boundary layer during the afternoon (Fisch et al., 2004) may favor the downward transport of long-distance particles (Fisch
455 et al., 2004) may facilitate the entrainment of particles from above the boundary layer (Darbyshire et al., 2019). An additional
456 possible explanation for this observed increase in SO₄ during the afternoon is biogenic sources of SO₄ precursors.
457 As the OOA and the IEPOX SOA factors represent together around 68% of the total mass fractions of the submicron particles
458 during our study, and conversely, eBC and BBOA represent only 15%, the importance of the atmospheric photochemical
459 activity in Central Amazonia becomes evident. Well-preserved parts of the Amazon are strongly affected by the regional
460 transport of well-processed biomass-burning plumes, overwhelming the local biogenic processes that usually modulate the
461 diurnal behavior of secondary aerosol development (Artaxo et al., 2013; Darbyshire et al., 2019).


Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

462
463 As the OOA and the IEPOX-SOA factors represent together around 68% of the total mass fractions of the submicron particles
464 during our study (Table 1), and conversely, eBC and BBOA represent only 15%, the importance of the atmospheric
465 photochemical activity in Central Amazonia becomes evident. Well-preserved parts of Amazonia are strongly affected by the
466 regional transport of well-processed biomass burning plumes, overwhelming the local biogenic processes that usually modulate
467 the daily behavior of secondary aerosol development (Artaxo et al., 2013; Darbyshire et al., 2019).


468 Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

469 **Figure 4:** Diurnal daily profile (local time) of the PMF derived statistical factors, the inorganic chemical species and eBC mass
470 concentrations for the whole period of measurements (1 August – 10 December, 2013). The lines represent mean values, and the
471 shaded areas represent the standard deviations. The OOA factor, shown separately, has a different vertical scale to improve
472 visualisation.

473 3.2 Physical properties

474 The mean scattering coefficient at 637 nm in our study was $17 \pm 10 \text{ Mm}^{-1}$ (Table 2), which is similar to the values reported for
475 the same site and at the ATTO site during the dry season in previous years (Rizzo et al., 2013) and lower than observations
476 close to biomass burning sources ($32-80 \text{ Mm}^{-1}$ (Artaxo et al., 2013; Ponczek et al., 2021)). In the dry season, fine mode particles
477 predominate and are more efficient at scattering radiation than coarse mode dominated biogenic particles in the wet season
478 (Rizzo et al., 2013). The absorption coefficient mean value was $3 \pm 2 \text{ Mm}^{-1}$ (Table 2, Figure 5, Section 2.2). (Rizzo et al., 2013).
479 The σ_a mean value was $3 \pm 2 \text{ Mm}^{-1}$ (Table 2, Figure 5c, Section 2.2), in accordance with low values previously reported for
480 aged biomass burning haze (Formenti et al., 2003).

Formatted: Font: 9 pt, Bold, Font color: Black

Formatted: Font: 9 pt, Bold, Font color: Black

Formatted: Normal, Space After: 10 pt, Line spacing: single, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Formatted: Font: 9 pt, Bold, Font color: Black, English (United Kingdom)

Formatted: Font: 9 pt, Bold, Font color: Black, English (United Kingdom)

Formatted: Font: 9 pt, Bold, Font color: Black

Formatted: English (United Kingdom)

Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

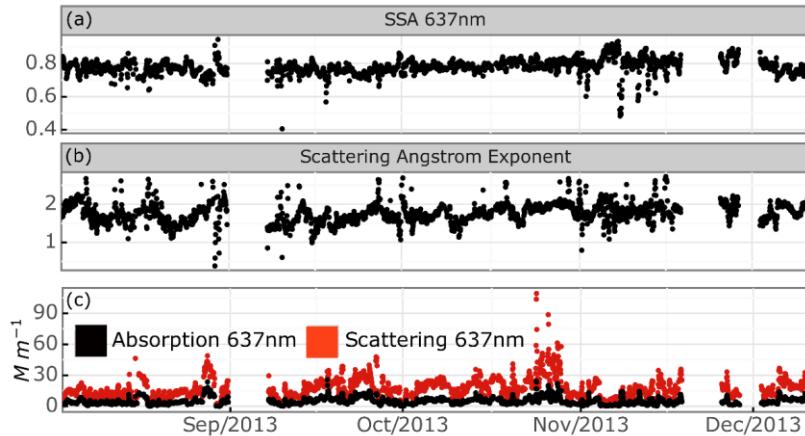


Figure 5: Time series of: a) the Scattering Angstrom Exponent (unitless SAE), b) Single Scattering Albedo (SSA) at 637 nm (unitless), and c) absorption and scattering coefficients at 637 nm (Mm^{-1}).

The mean SSA observed in our study (0.87 ± 0.03 , Table 2) was very similar to the SSA reported for the nearby ATTO site (Saturno et al., 2018b). In previous years (2009–2012) at the same site as in our study, SSA varied from 0.84 to 0.91 from the wet to the dry season respectively. The dominance of organics and the relatively high SO_4^{2-} fraction in our study (9%, Table 1) are probably important factors for the high SSA (Artaxo et al., 2013; Rizzo et al., 2013). SSA was lower (0.77 ± 0.08 at 637 nm) during the transition from dry to wet season in a site highly impacted by fires in southwestern Amazonia (Poneczek et al., 2021).

The mean value for the scattering Angstrom exponent was 1.08±0.02, and the mean SSA observed in our study (0.87 ± 0.03 , Table 2) was very similar to the SSA reported for a nearby site in Amazonia, as well as sites impacted by fires or urban pollution (Carrico et al., 2003; Deng et al., 2016; Kim, 2015; Kleinman et al., 2020; Nakayama et al., 2010; Saturno et al., 2018b; Wang et al., 2017; Zhu et al., 2015). The dominance of organics and the relatively high SO_4^{2-} fraction in our study (9%, Table 1) are probably important factors contributing to the high SSA (Artaxo et al., 2013; Rizzo et al., 2013), and aged biomass burning plumes have been demonstrated to be more efficient in scattering radiation than freshly emitted particles (Formenti et al., 2003). Mean SSA was lower (0.77 ± 0.08 at 637 nm) in a site highly impacted by fires in southwestern Amazonia (Ponczek et al., 2021). In urban environments impacted by pollution, SSA was 0.92–0.89 (Tian et al., 2022), and 0.75–0.84 when the urban pollution was mixed with biomass burning (Pani et al., 2023). Slightly higher SSA values are related to urban haze episodes with high AS contributions, rural areas dominated by dust plumes, or high altitude regions influenced by clean maritime air masses (Fan et al., 2010; Han et al., 2015; Park et al., 2019). Lower SSA values were influenced by highly absorbing urban pollution (Andreae et al., 2005; Artaxo et al., 2013; Rizzo et al., 2013).

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: Adjust space between Latin and Asian text,
Adjust space between Asian text and numbers

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: border, Left: (No border), Right: (No border), Between border, Tab stops: 3.13", Centered + 6.27", Right

505 et al., 2008; Cho et al., 2017; Gao et al., 2015; Jing et al., 2015; Ma et al., 2011; Ram et al., 2016; Soni et al., 2010; Titos et
506 al., 2012) or maritime regions impacted by biomass burning from Africa (Dobraki et al., 2023).

507 The mean value for the scattering Angström exponent in our study was 1.76 ± 0.26 (Table 2), which is very similar to the
508 1.70 ± 0.41 and the 1.71 ± 0.24 measured in the dry seasons of previous years at the same site and at the nearby ATTO station
509 (Rizzo et al., 2013; Saturno et al., 2018b) (Rizzo et al., 2013; Saturno et al., 2018b), and the 1.65 ± 0.37 measured during the dry
510 season at a site more impacted by forest fires (Ponezek et al., 2021) (Ponczeck et al., 2021). However, it was higher than the
511 1.48 ± 1.12 (although within the high variability range) and the 1.29 ± 0.50 measured in wet seasons of previous years at the
512 same station and the ATTO site (Rizzo et al., 2013; Saturno et al., 2018b) (Rizzo et al., 2013; Saturno et al., 2018b). Higher
513 scattering Angström exponent values are usually related to a greater proportion of fine mode particles in the aerosol
514 population (Andreae et al., 2015), and in our case, it is probably related to the occurrence of fresh biomass burning particles.

515
516 **Table 2 – Optical properties mean and standard deviation (in parentheses) for the whole study period for**
517 **different wavelengths.**

Optical property	Wavelength (nm)	Mean
Scattering coefficient (Mm^{-1})	450	32 ± 19
Scattering coefficient (Mm^{-1})	550	22 ± 13
Scattering coefficient (Mm^{-1})	637	17 ± 10
Scattering coefficient (Mm^{-1})	700	14 ± 8
Absorption coefficient (Mm^{-1})	637	3 ± 2
Single Scattering Albedo (Mm^{-1})	637	0.87 ± 0.03
Scattering Angstrom exponent		1.76 ± 0.26

518 519 3.3 Chemical-dependent optical properties

520 We applied the multiple linear regression (Section 2.4.2) to our dataset and the resulting coefficients successfully predicted
521 the observed scattering (Figure 6), confirming the validation of this methodology to estimate the specific contribution of each
522 chemical group to the optical properties. All the coefficients of the multilinear regression of all the wavelengths were
523 statistically significant ($p < 0.001$) for both MSE and MEE. The MSE of the PMF factors decreased as a function of wavelength
524 (Figure 7), in agreement with a previous study (Ponezek et al., 2021). Regarding the inorganic species, this decrease was also
525 observed in the AN, but absent in the AS, which showed no wavelength dependency (Figure 7). The highest MSE values were
526 attributed to eBC (Table 3, Figure 7a), followed by the BBOA. The MSE values of the eBC, BBOA and OOA components
527 calculated in our study at 637 nm were *circa* 180%, 67% and 43% respectively compared to (Ponezek et al., 2021). MSE of

Formatted: English (United Kingdom)

Formatted: Default Paragraph Font, Font: Times New Roman, 8 pt

Formatted: English (United Kingdom)

Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted Table

Formatted: Font: 10 pt, English (United Kingdom)

Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Font: 10 pt, English (United Kingdom)

Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Font: 10 pt, English (United Kingdom)

Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Font: 10 pt, English (United Kingdom)

Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Font: 10 pt, English (United Kingdom)

Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Font: 10 pt, English (United Kingdom)

Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Font: 10 pt, English (United Kingdom)

Formatted: Font: 10 pt, English (United Kingdom)

Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

528 AS in our study was between 4.58 – $4.79 \text{ m}^2 \text{ g}^{-1}$ (considering wavelengths from 450 – 700 nm , Table 4), which is almost double
529 of the $2.5 \pm 0.6 \text{ m}^2 \text{ g}^{-1}$ fine mode average of 93 observations of a variety of regions (urban, remote, rural continental,
530 ocean/marine) and seasons, and using different methods, mostly at 550 nm (Hand and Malm, 2007). Despite the small
531 variability, lower MSE was reported for drier and cleaner environments, and higher MSE was found in more polluted regions
532 and larger particle sizes (Hand and Malm, 2007), which may partially explain the higher values found in our study—in a wet
533 climate and during the forest fires season when the atmosphere can resemble that of highly polluted regions (Artaxo et al.,
534 2013). A recent study in an area highly impacted by urban pollution in France reported MSE for AS ranging from 4.8 – 7.1 m^2
535 g^{-1} (450 – 635 nm) (Velazquez-Garcia et al., 2023), resembling more similar results to our study for the lower wavelengths.
536 Concerning the contribution of AN to the PM1 mass concentration, we tested the MLR removing AN, and the results were
537 comparable, especially for eBC (Supplement Table S5.1). We also tested the robustness of the method by running 100 times
538 MLR on random 50% of the data, yielding similar results (Supplement Table S5.2).
539 Aerosol particles which typically absorb radiation are also known to have significant scattering efficiencies, highly dependent
540 on their sizes (Bond and Bergstrom, 2006). Biomass burning aerosols have been previously associated with high scattering
541 efficiencies (Hand and Malm, 2007; Malm et al., 2005). However, no clear particle size dependency was observed for the
542 radiation scattering in our study (Figure 6). Our result of a pronounced MSE of the eBC represents an opposite trend than the
543 observed in the transition from the dry to the wet season at a site more impacted by the fires, where the MSE of BBOA was
544 higher than eBC's (Poneczek et al., 2021).
545 When the mass concentration is considered, the relative contribution of eBC to the scattering in all the measured wavelengths
546 is about 20–25% of the total scattering (Figure 7b), comparable to Southwestern Amazonia (Poneczek et al., 2021), despite our
547 site having a significantly lower eBC concentration. The contribution of AS and AN to MSE was from 20% to 30% with
548 increasing wavelength (Figure 7b), less than half of that in urban sites in Europe (e.g. 67% in Northern France, (Velazquez-
549 Garcia et al., 2023), but about twice as high as during an extreme pollution haze episode in Beijing (Wang et al., 2015).
550 We applied the multiple linear regression (Section 2.4.2) to our dataset, and the resulting coefficients successfully predicted
551 the observed scattering ($R^2 = 0.86$, Figure 6), confirming the validation of this methodology to estimate the specific
552 contribution of each chemical group to the optical properties. We tested the MLR removing AN (due to its low contribution to
553 the PM1 mass concentration, close to the ACSM detection limit, and therefore, possible artifacts), and the results were
554 comparable, especially for eBC (Supplement Table S5.1). We also tested the robustness of the method by running 100 times
555 MLR on randomly selected 50% of the data, yielding similar results (Supplement Table S5.2). All standard errors were small
556 (Table 3), and the Variance Inflation Factor was around 3 for IEPOX-SOA, BBOA, AS and AN; 5.20 for OOA, and 6.19 for
557 eBC. The abovementioned tests suggest that typical MLR caveats such as collinearity had minimal effect on the observed final
558 results. No clear particle size dependency was observed for the radiation scattering in most of the cases (regression fitting
559 under typical conditions, of aerosol sizes in the range of 100 – 150 nm), except at events dominated by ultra fine particles, at
560 around 50 nm (Figure 6). This is notably an underestimation of observed scattering at lower particle diameters.

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

561 The highest MSE values were attributed to eBC (Table 3, Figure 7a), followed by the BBOA. Previous studies on plumes
562 dominated by either urban pollution or mixed with biomass burning presented MSE around $4.4 \text{ m}^2 \text{ g}^{-1}$, dominated by organic
563 particles (Cheng et al., 2015; Pani et al., 2023; Tao et al., 2019). The MSE values of the eBC, BBOA and OOA components
564 calculated in our study at 637 nm were *circa* 180%, 67% and 43% respectively compared to previous measurements in
565 Amazonia, highly impacted by biomass burning (Ponczek et al., 2021). MSE of AS in our study was between $4.58\text{--}4.79 \text{ m}^2 \text{ g}^{-1}$
566 (Table 3, Figure 7a), in very good agreement with the MSE described for fine-mode ambient AS particles in an urban
567 environment (Tao et al., 2019). Our result is in the lower range of the MSE described in regions impacted by urban pollution
568 ($4.8\text{--}7.1 \text{ m}^2 \text{ g}^{-1}$, (Velazquez-Garcia et al., 2023), probably due to the smaller mean diameter found in our study (Figure 6).
569 However, other regions (urban, remote, rural continental, ocean/marine) presented much smaller MSE values for AS (Cheng
570 et al., 2015; Hand and Malm, 2007). MSE for AN at 550 nm in our study ($4.79 \text{ m}^2 \text{ g}^{-1}$, Table 3) is in very good agreement with
571 the MSE found in AN in a urban pollution plume (Tao et al., 2019), and within the range previously described in regions highly
572 impacted by urban pollution (Cheng et al., 2015; Tian et al., 2022) and a mixture of urban pollution and biomass burning (Pani
573 et al., 2023).
574 The organic particles presented higher MSE for freshly emitted aerosols (BBOA) than for oxygenated particles (OOA) (Table
575 3), an opposite trend to what was found at PM2.5 in a region impacted by urban pollution (Tian et al., 2022). However, previous
576 studies in Amazonia demonstrated that the size distribution of the particles is mainly below 200 nm, and even aging processes
577 do not appear to cause an overall increase in total particles diameter, probably due to the type of the vegetation, the precursors
578 of SOA, disintegration of larger particles, and other factors (Artaxo et al., 2013; Brito et al., 2014). Fresh biomass burning
579 plumes at 532 nm presented a MSE range of $1.5\text{--}5.7 \text{ m}^2 \text{ g}^{-1}$, depending on the fuel type, and plume age (Levin et al., 2010),
580 and the MSE of BBOA found in our study for 550 nm is $5.33 \text{ m}^2 \text{ g}^{-1}$ (Table 3). A review of MSE biomass burning plumes
581 revealed higher MSE values for more aged plumes (Reid et al., 2005). Fine-mode organic aerosols in an urban environment
582 presented a mean MSE of $4.6 \text{ m}^2 \text{ g}^{-1}$ at wavelength 550 nm (Tao et al., 2019), closer to our BBOA MSE (Table 3).
583 The pronounced MSE of the eBC ($7.62\text{--}13.58 \text{ m}^2 \text{ g}^{-1}$, Table 3) is strongly corroborated by other studies which found remarkably
584 high scattering efficiency related to BC, especially when the particles undergo atmospheric processing and aging, such as in
585 the case of our study (Bond and Bergstrom, 2006; He et al., 2015; Malm et al., 2005; Pitchford et al., 2007; Romshoo et al.,
586 2021; Schwarz et al., 2006). It has been demonstrated that while aerosol scattering efficiency increases with increasing size,
587 age and distance from the source, the absorption efficiency remains nearly constant (Kleinman et al., 2020; Zhang et al., 2020).
588 MSE of elemental carbon in a rural area ranged from $5.4\text{--}66.2 \text{ m}^2 \text{ g}^{-1}$, and the high increase was found to be related to sulfate
589 addition during cloud processing (Yu et al., 2010). Recently, on a comparable method, MSE for eBC has been estimated at $6 \text{ m}^2 \text{ g}^{-1}$
590 in a site located in Western Amazonia. Located within the deforestation arc, the site is strongly impacted by fresh,
591 sometimes local emissions, in contrast to regional or long-range transport of fires impacting Central Amazonia (Ponczek et
592 al., 2021). In regions impacted by urban pollution MSE of eBC was $2.6 \text{ m}^2 \text{ g}^{-1}$ (Tao et al., 2019), and found not to influence
593 MSE for coarse mode particles (Titos et al., 2012).

594 When the mass concentration is considered, the relative contribution of eBC to the scattering in all the measured wavelengths
595 in our study is about 20-25% of the total scattering (Figure 7b), comparable to Southwestern Amazonia (Ponczek et al., 2021),
596 despite our site having a significantly lower eBC concentration (but higher MSE for eBC). In this same Southwestern
597 Amazonia site, the contributions of the OOA and BBOA to MSE were about twice as high than in our study. The contribution
598 of AS and AN to MSE was from 20% to 30% with increasing wavelength (Figure 7b), less than half of that in urban sites in
599 Europe (e.g. 67% in Northern France, (Velazquez-Garcia et al., 2023), but about twice as high as during an extreme pollution
600 haze episode (Wang et al., 2015)). As shown in Figure 7a, the MSE of all components except AS decreases with increasing
601 wavelength, which is consistent with the typical behavior of submicrometric aerosols. This spectral dependence can be
602 attributed to Mie scattering theory, where smaller particles scatter shorter wavelengths more efficiently (Hand and Malm,
603 2007; Malm et al., 2005). Nonetheless, the variability in the MSE slopes among the different components reflects a complex
604 interplay between aerosol mixing state, refractive index, and size distribution dynamics—particularly the diurnal evolution of
605 each factor's contribution to the total aerosol population (Figure 4). It is particularly interesting that AS exhibits a distinct
606 spectral behavior, typically associated with coarse-mode aerosols, denoting stark differences in its sources and atmospheric
607 processing compared to the other components. Sulfate in Amazonia has been associated with secondary production from
608 biogenic emissions and mixing with primary biogenic organic aerosols (PBOA) (Martin et al., 2010b; Pöhlker et al., 2012), as
609 well as with coarse-mode particles such as dust and sea salt transported over long distances (Brito et al., 2014; Wu et al., 2019).
610 It is remarkable that the MLR analysis captured this behavior, considering that the ACSM is limited to non-refractory species
611 in the submicron range and is not particularly efficient at detecting the sources likely involved. This highlights the sensitivity
612 of the MLR approach to broader aerosol population dynamics, which were captured by the optical instruments operating with
613 a PM₁₀ inlet, suggesting the influence of coarse-mode aerosol sources.

614 While the MSE of eBC does decrease with increasing wavelength (Figure 7a), its slope (or more precisely, its SAE) is lower
615 than that of other aerosol components. As a result, eBC retains a relatively higher fractional contribution to total scattering at
616 longer wavelengths compared to components with steeper MSE declines (Figure 7b). The absolute contribution to scattering
617 is determined by both MSE and mass concentration, and although eBC mass concentrations are generally lower, its weaker
618 wavelength dependence allows it to contribute proportionally more at longer wavelengths.

619 When considering the total light extinction (scattering + absorption), the relative contribution of eBC reaches about 3031%
620 (Figure 8), which is comparable to the work in highly urbanized region in Europe (Velazquez-Garcia et al., 2023), however
621 significantly lower than the 76±20% observed in urban pollution in China (Yu et al., 2010), and an episodic biomass burning
622 event in a rural area (Yu et al., 2010). However, it is less than half of the MEE relative contribution of BC observed during
623 urban pollution episodes (Tian et al., 2022; Yu et al., 2010). The comparison with urban pollution particles contribution to
624 MEE reveals that the contribution of highly oxygenated particles is very similar (*circa* 20%, Figure 8, (Tian et al., 2022)), and
625 the most evident difference is the nitrate-based particles, with a much larger contribution in the urban pollution region (Figure
626 8, (Tian et al., 2022)). MEE has been shown to increase by a factor of 3 while freshly emitted smoke from fires ages in the
627 atmosphere, reaching up to 7m² g⁻¹ at 532 wavelength (Saide et al., 2022). The OOA factor presented a relatively high

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

628 contribution to MSE and MEE (Figures 8b and 9) due to its high fraction of the total PM1 mass (Table 1), although its MSE
629 is relatively low (Figure 7a). The contribution of AS to MSE increases with increasing wavelength (from 10% to 20%, Figure
630 7b), while OOA decreased (from 30% to 20%, Figure 7b).

Formatted: English (United Kingdom)

631 By using the MSE and MEE ratios, we calculated specific SSA for the eBC, obtaining a value of 0.57. This means that 57%
632 of the light extinction provoked by the eBC is scattered rather than absorbed, which is higher than the eBC specific SSA of
633 0.46 based on previous studies in more polluted conditions (Ponczek et al., 2021; Velazquez-Garcia et al., 2023). SSA of eBC
634 has been described as typically ranging from 0.3 to 0.4, with higher values associated ~~to with~~ heavy coating (Luo et al., 2020).
635 Evidence of coating increasing elemental carbon scattering efficiency has been found in the past (He et al., 2015; Yu et al.,
636 2010), however other studies found that thick coating in eBC lowered scattering coefficients (Darbyshire et al., 2019), and
637 below 0.3 for pure black carbon (Wang et al., 2021).

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

638 A previous study found that eBC absorption cross-section for the Amazon was $12.3 \text{ m}^2 \text{ g}^{-1}$ (Saturno et al., 2018b), and we
639 tested our dataset applying this value. The result is that eBC mass concentrations would become half of what they are reported,
640 with no change in σ_a , SSA, but MSE would double, while eBC contribution to MEE (Figure 8) would remain unchanged. Due
641 to some methodology differences between our study and (Saturno et al., 2018a) (they measured refractory Black Carbon using
642 a single-particle soot photometer SP2, with a higher cut-off, possibly leading to a sub-estimation of the mass), and the fact that
643 applying the absorption cross-section value they found would make MSE of eBC be an order of magnitude higher than the
644 others (Supplement Figure S6), we opted to remain with the more established value of $6.6 \text{ m}^2 \text{ g}^{-1}$.

Formatted: English (United Kingdom)

645 The OOA factor presented a relatively high relative contribution to MSE and MEE (Figures 8b and 9) due to its high mass
646 relative contribution to the total PM1 mass (Table 1), although its MSE is relatively low (Figure 7a). Our results show an
647 increase in AS relative fraction of contribution to MSE with increasing wavelength (from 10% to 20%, Figure 7b), while OOA
648 decreased (from 30% to 20%, Figure 7b). The relative contributions to MSE of the OOA and BBOA were about twice as high
649 in a site more directly impacted by fires during the dry season than in our study (Poneczek et al., 2021).

650 **Table 3 — MEE, MAE and MSE for different wavelengths and aerosol components with standard errors. All the**
651 **coefficients were statistically significant for all the wavelengths for MSE and MEE ($p < 0.001$)**

652 A previous study found an eBC absorption cross-section in Amazonia of $12.3 \text{ m}^2 \text{ g}^{-1}$ (Saturno et al., 2018b), and we tested our
653 dataset applying this value (Supplement, Figure S6.1). The result is that eBC mass concentrations would decrease by half, with
654 no change in σ_a and SSA, but MSE would double, while eBC contribution to MEE (Figure 8, Figure S6.2) would remain
655 unchanged. Due to some methodology differences between our study and (Saturno et al., 2018b) (they measured refractory
656 Black Carbon using a single-particle soot photometer SP2, with a higher cut-off, possibly leading to a sub-estimation of the
657 mass), and the fact that applying the absorption cross-section value they found would make MSE of eBC be an order of
658 magnitude higher than the others (Supplement Figure S6.1), we opted to remain with the more established value of $6.6 \text{ m}^2 \text{ g}^{-1}$.

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

660 **Table 3 – MSE for different wavelengths and aerosol components with standard errors. The Variance Inflation Factor**
 661 **was around 3 for IEPOX-SOA, BBOA, AS and AN; 5.20 for OOA, and 6.19 for eBC, suggesting that typical MLR**
 662 **caveats such as collinearity had minimal effect on the observed final results.**

	MSE (m ² g ⁻¹)		MAE	MEE	
Wavelength (nm)	450	550	637	700	637
eBC	13.58± 1.08	10.67± 0.70	8.68±0.52	7.62±0 .44	6.6 15.28± 0.52
BBOA	7.96±0 .33	5.33±0 .21	3.83±0.16	3.10±0 .13	
IEPOX-SOA	5.61±0 .41	3.84±0 .27	2.87±0.20	2.37±0 .17	
OOA	3.58±0 .15	1.94±0 .10	1.24±0.07	0.90±0 .06	
AS	4.79±0 .62	4.79±0 .41	4.77±0.30	4.58±0 .25	
AN	7.07±1 .41	5.17±0 .92	4.41±0.68	3.93±0 .58	

Deleted Cells

Deleted Cells

Formatted: Font: Times New Roman, 10 pt, English (United Kingdom)

Formatted Table

Deleted Cells

Deleted Cells

Formatted: Font: Times New Roman, 10 pt, English (United Kingdom)

Formatted: Font: Times New Roman, 10 pt, English (United Kingdom)

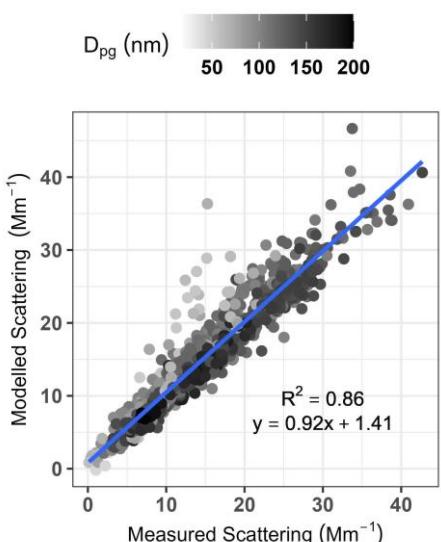
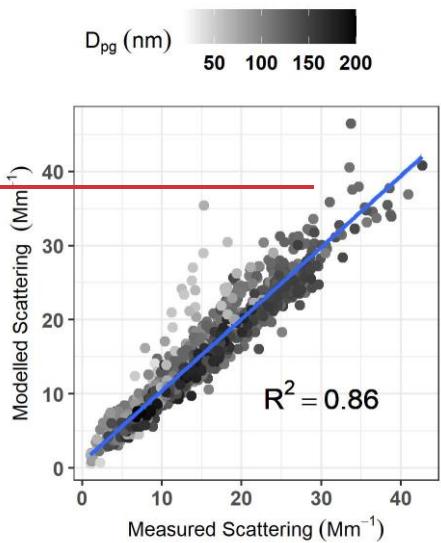
Formatted: Font: Times New Roman, 10 pt, English (United Kingdom)

Formatted: Font: Times New Roman, 10 pt, English (United Kingdom)

Formatted: Font: Times New Roman, 10 pt, English (United Kingdom)

Formatted: Font: Times New Roman, 10 pt, English (United Kingdom)

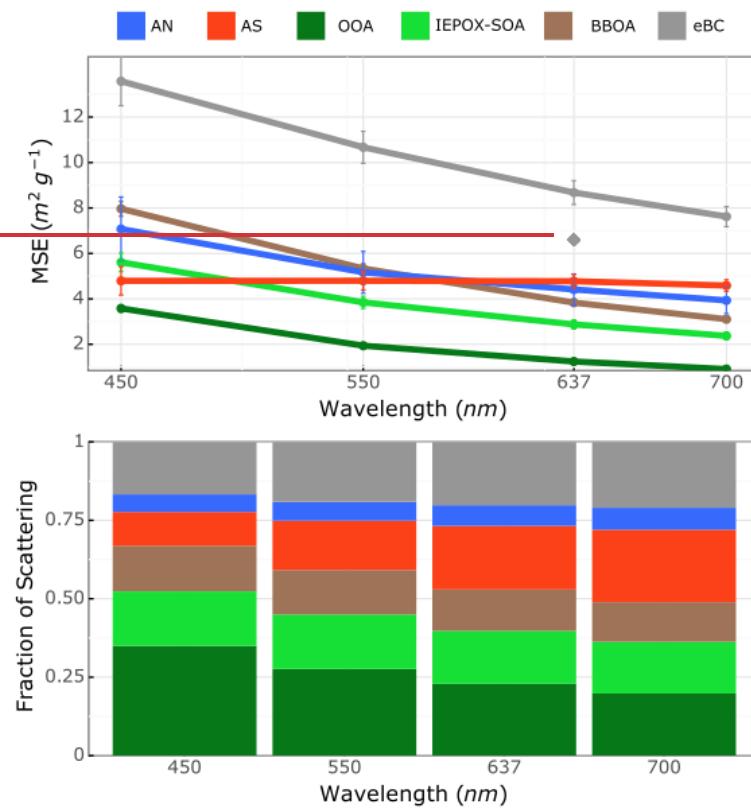
Formatted: Font: Times New Roman, 10 pt, English (United Kingdom)



Formatted: Font: Times New Roman, 10 pt, English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: Tab stops: 3.11", Left

Formatted: Font color: Black


Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

Formatted: Font color: Black

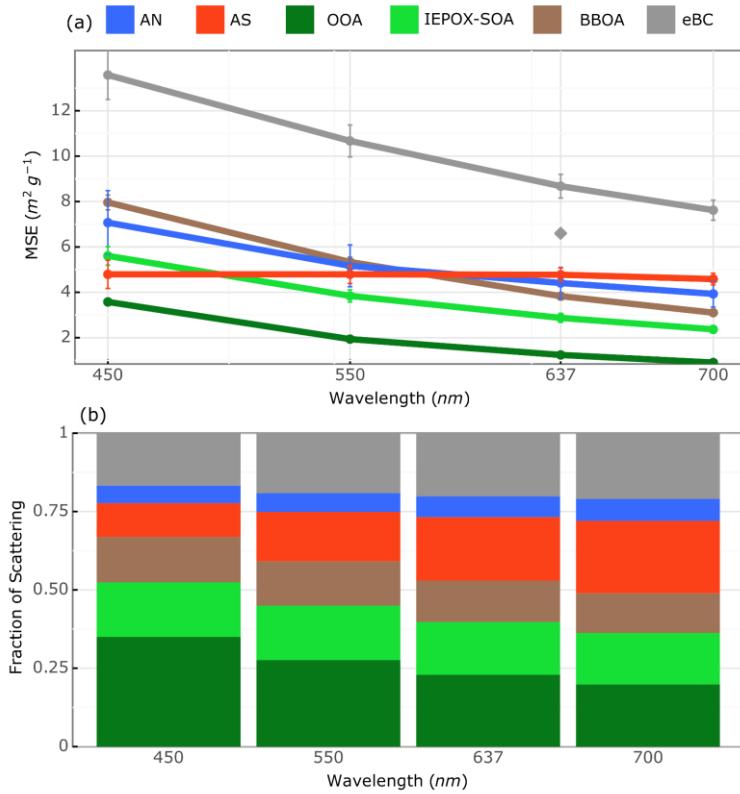
Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

669 **Figure 6:** Measured ~~radiations~~ modelled aerosol light scattering at 637 nm ~~vs~~ modeled scattering (MSE). The gray scale
670 corresponds to the equivalent mobility particle diameter for singly charged particles (D_{pe} , section 2.2). The blue line ~~indicates~~ shows
671 the linear correlation regression (slope = 0.92).

Formatted: English (United Kingdom)

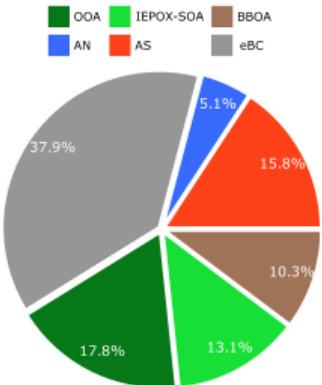
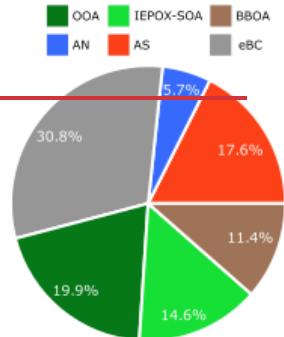
Formatted: English (United Kingdom)

Formatted: English (United Kingdom)


Formatted: Adjust space between Latin and Asian text,
Adjust space between Asian text and numbers

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)



Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

673
674 **Figure 7: a)** Mass scattering efficiencies (MSE) for each of individual chemical component (color components (colored lines) at each
675 wavelength, where the dots are the coefficients obtained from the multi-linear regression, the with bars are indicating the standard
676 errors, and the diamond shape is denotes the value of absorption efficiency of the eBC at 637 nm; and b) the fraction fractional
677 contribution of each component to total light scattering of each component at each wavelength, considering its mass fraction to the
678 total mass of submicrometer particles.

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2190
2191
2192<br

681
682
683 **Figure 8: The relative contribution (%) of extinction coefficient (scattering + absorption) MEE of each component considering its
684 mass fraction to the total mass of submicrometer particles: (Table 1).**

685
686 **Formatted:** English (United Kingdom)
687 **Formatted:** English (United Kingdom)
688 **Formatted:** Adjust space between Latin and Asian text,
689 **Formatted:** Adjust space between Asian text and numbers
Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

690 followed by IEPOX-SOA (isoprene SOA following a low-NO route, $17\pm 5\%$), while the factor more directly associated with
691 fresh biomass burning emissions (BBOA) represents $9\pm 5\%$ of PM1.

Formatted: English (United Kingdom)

692 The mean radiation scattering coefficient at 637 nm was $17\pm 10 \text{ Mm}^{-1}$, and the mean absorption coefficient was $3\pm 2 \text{ Mm}^{-1}$,
693 which ~~are is higher than what was observed in the wet season, but~~ lower than ~~the respective coefficients measured~~ at sites
694 much more impacted by the proximity to fresh forest fires ~~but exceed those observed during the wet season~~. The SSA of
695 0.87 ± 0.03 was elevated compared to values previously described in the wet season, but generally in good agreement with SSA
696 values of previous dry seasons~~— likely an indication of the scattering efficiency of eBC following atmospheric processing and~~
697 ~~coating~~. The mean scattering ~~Angstrom~~^{Angström} exponent was 1.76 ± 0.26 , surpassing the values previously measured during
698 the wet season, likely due to the greater relative proportion of smaller particles in the aerosol population measured in our study,
699 compared to the primary biogenic aerosols, Saharan dust and sea salt typical of the wet season in central Amazonia.

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

700 An MLR analysis of optical properties and different species/factors yielded the highest MSE for eBC in all wavelengths ($7.62\pm$
701 $13.58 \text{ m}^2 \text{ g}^{-1}$), followed by the BBOA and AN in the shorter wavelengths (450 and 550 nm), ~~with the addition of and by~~ AS in
702 the longer wavelengths (637 and 700 nm). Despite having a small mass contribution (6%), eBC dominated the MEE relative
703 contribution ($30.8\pm 7.9\%$), followed by the OOA ($19.9\pm 7.8\%$). The high MSE of eBC (and a calculated specific SSA of 0.57)
704 is ~~surprising~~^{remarkable}, and more studies concerning the chemical processing of those particles after their emission are needed
705 in order to understand the processes behind the outstanding efficiency of light scattering of this highly absorbing particle. A
706 special focus should be given to the role of aerosol coating in this process.

Formatted: English (United Kingdom)

707 ~~While previous studies show a significant contribution of organic particles to light~~^{Aerosol} observations at the heart of
708 ~~Amazonia are extremely challenging. Although our analysis during the dry season yielded robust results, limitations remain—~~
709 ~~particularly concerning the size distribution of BC and its absorption (brown carbon) our study shows that the eBC can also~~
710 ~~have a significant contribution to light across multiple wavelengths. To advance our understanding, future studies should~~
711 ~~prioritize extensive field and laboratory observations aimed at better constraining aerosol coating formation mechanisms and~~
712 ~~their impact on the radiative scattering~~. The properties of BC particles in Amazonia. Increasing the precision of the
713 quantification of the eBC contribution to light scattering has the potential to improve models and decrease uncertainties in
714 global radiative forcing estimations.

Formatted: English (United Kingdom)

715 **Code availability**

716 **Codes and Data availability**

717 Data will be made ~~Codes and data are currently~~ available upon acceptance of the article in this link:
718 <https://zenodo.org/records/15345166>; DOI: 10.5281/zenodo.15345166

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

719 **Author Contribution**

720 RS, JFB, and PA conceptualized and designed the methodology. RS performed the field measurements, with the support of
721 JFB. RS, JFB, SC, LVR and JDM applied the methodology. RS ~~wrote~~ the original draft, and all the authors discussed
722 the results and commented on the paper.

Formatted: English (United Kingdom)

723

724 **Competing Interests**

725 Some authors are members of the editorial board of ACP.

Formatted: Font color: Black, Kern at 16 pt

726 **Acknowledgments**

727 We thank the Large-scale Biosphere-Atmosphere (LBA) project group and the Clima e Ambiente (CLIAMB) department at
728 Instituto Nacional de Pesquisas da Amazônia (INPA) for continuous support. The Brazil-UK Network for Investigation of
729 Amazonian Atmospheric Composition and Impacts on Climate (BUNIAACIC) project was funded by the UK Natural
730 Environment Research Council (NERC; grant NE/I030178/1) and FAPESP (2012/14437-9, 2013/05014-0). J. Brito was
731 funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; project 2013/25058-1), by the Labex CaPPA
732 project, which is funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement
733 d'Avenir) under contract ANR-11-LABX-0005-01; the CLIMIBIO and ECRIN projects, all financed by the Regional Council
734 "Hauts-de-France" and the European Regional Development Fund (ERDF), and the COST COLOSSAL Action (CA16109).
735 L. Rizzo acknowledges the support of the Brazilian National Council for Research (CNPq, 304819/2022-0). We thank A.
736 Ribeiro, F. Morais, F. Jorge and S. Morais for technical and logistics support.

Formatted: Font color: Black, English (United Kingdom),
Kern at 16 pt

Formatted: English (United Kingdom)

738 **References**

739 Alfarra, M. R., Coe, H., Allan, J. D., Bower, K. N., Boudries, H., Canagaratna, M. R., Jimenez, J. L., Jayne, J. T., Garforth, A. a., Li, S.-M.
740 and Worsnop, D. R.: Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass
741 Spectrometers, *Atmos. Environ.*, 38(34), 5745–5758, doi:10.1016/j.atmosenv.2004.01.054, 2004.

Formatted: Font: 9 pt, Bold, Font color: Black, English
(United States)

742 Alfarra, M. R., Prevot, A. S. H., Szidat, S., Sandradewi, J., Weimer, S., Lanz, V. a., Schreiber, D., Mohr, M. and Baltensperger, U.:
743 Identification of the Mass Spectral Signature of Organic Aerosols from Wood Burning Emissions, *Environ. Sci. Technol.*, 41(16), 5770–
744 5777, doi:10.1021/es062289b, 2007.

745 Allan, J. D., Bower, K. N., Coe, H., Boudries, H., Jayne, J. T., Canagaratna, M. R., Millet, D. B., Goldstein, A. H., Quinn, P. K., Weber, R.
746 J. and Worsnop, D. R.: Submicron aerosol composition at Trinidad Head, California, during ITCT 2K2: Its relationship with gas phase
747 volatile organic carbon and assessment of instrument performance, *J. Geophys. Res. Atmos.*, 109(D23), n/a--n/a,
748 doi:10.1029/2003JD004208, 2004.

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

749 [Allan, J. D.](#), Morgan, W. T., Derbyshire, E., Flynn, M. J., Williams, P. I., Oram, D. E., Artaxo, P., Brito, J., Lee, J. D. and Coe, H.: Airborne
 750 observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA, *Atmos. Chem. Phys.*, 14(20), 11393–11407,
 751 doi:10.5194/acp-14-11393-2014, 2014.

752 Anderson, T. L. and Ogren, J. A.: Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer, *Aerosol Sci.
 753 Technol.*, 29(1), 57–69, doi:10.1080/02786829808965551, 1998.

754 Andreae, M. O.: The Biosphere: Pilot or passenger on spaceship Earth?, *Contrib. to Glob. Chang. Res.*, (January 2001), 59–66, 2001.

755 Andreae, M. O., [Schmid, O.](#), [Yang, H.](#), [Chand, D.](#), [Zhen Yu, J.](#), [Zeng, L. M.](#) and [Zhang, Y. H.](#): Optical properties and chemical composition
 756 of the atmospheric aerosol in urban Guangzhou, China, *Atmos. Environ.*, 42(25), 6335–6350, doi:10.1016/j.atmosenv.2008.01.030, 2008.

757 [Andreae, M. O.](#), Acevedo, O. C., Araújo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B.
 758 L., da Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, a. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T.,
 759 Kesselmeier, J., Könenmann, T., Krüger, M. L., Lavric, J. V., Manzi, a. O., Lopes, a. P., Martins, D. L., Mikhailov, E. F., Moran-Zuluaga,
 760 D., Nelson, B. W., Nölscher, a. C., Santos Nogueira, D., Piedade, M. T. F., Pöhlker, C., Pöschl, U., Quesada, C. a., Rizzo, L. V., Ro, C.-U.,
 761 Ruckteschler, N., Sá, L. D. a., de Oliveira Sá, M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Schöngart, J., Sörgel, M., de Souza, C. M.,
 762 de Souza, R. a. F., Su, H., Targhetta, N., Tóta, J., Trebs, I., Trumbore, S., van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J.,
 763 Winderlich, J., Wittmann, F., Wolff, S. and Yáñez-Serrano, a. M.: The Amazon Tall Tower Observatory (ATTO): overview of pilot
 764 measurements on ecosystem ecology, meteorology, trace gases, and aerosols, *Atmos. Chem. Phys.*, 15(18), 10723–10776, doi:10.5194/acp-
 765 15-10723-2015, 2015.

766 [Aragão, L. E. O. C.](#), [Anderson, L. O.](#), [Lima, A.](#) and [Arai, E.](#): Fires in Amazonia, pp. 301–329., 2016.

767 Araújo, A. C., Nobre, A. D., Krujitz, B., Elbers, A., Dallarosa, R., Stefani, P., von Randow, C., Manzi, A. O., Culf, A. D., Gash, J. H. C.,
 768 Valentini, R. and Kabat, P.: Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest:
 769 The Manaus LBA site, *J. Geophys. Res.*, 107(D20), doi:10.1029/2001JD000676, 2002.

770 Artaxo, P., Rizzo, L. V., Brito, J. F., Barbosa, H. M. J., Arana, A., Sena, E. T., Cirino, G. G., Bastos, W., Martin, S. T. and Andreae, M. O.:
 771 Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions, *Faraday Discuss.*, 165, 203,
 772 doi:10.1039/c3fd00052d, 2013.

773 [Berenguer, E.](#), [Armenteras, D.](#), [Lees, A. C.](#), [Smith, C. C.](#), [Fearnside, P.](#), [Nascimento, N.](#), [Alencar, A.](#), [Almeida, C.](#), [Aragão, L. E. O.](#), [Barlow, J.](#), [Bilbao, B.](#), [Brando, P. M.](#), [Bynoe, P.](#), [Finer, M.](#), [Flores, B. M.](#), [Jenkins, C. N.](#), [Silva Junior, C. H. L.](#), [Souza, C.](#) and [Garcia-Villacorta, R.](#):
 774 Chapter 19: Drivers and ecological impacts of deforestation and forest degradation., 2021.

775 Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, *Aerosol Sci. Technol.*, 40(1), 27–
 776 67, doi:10.1080/02786820500421521, 2006.

777 Brito, J., Rizzo, L. V., Morgan, W. T., Coe, H., Johnson, B., Haywood, J., Longo, K., Freitas, S., Andreae, M. O. and Artaxo, P.: Ground-
 778 based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment, *Atmos. Chem. Phys.*,
 779 14(22), 12069–12083, doi:10.5194/acp-14-12069-2014, 2014.

780 Brito, J., Freney, E., Dominutti, P., Borbon, A., Haslett, S. L., Batenburg, A. M., Colomb, A., Dupuy, R., Denjean, C., Burnet, F., Bourriane,
 781 T., Deroubaix, A., Sellegrí, K., Borrmann, S., Coe, H., Flamant, C., Knippertz, P. and Schwarzenboeck, A.: Assessing the role of
 782 anthropogenic and biogenic sources on PM 1 over southern West Africa using aircraft measurements, *Atmos. Chem. Phys.*, 18, 757–772,
 783 doi:10.5194/acp-18-757-2018, 2018.

784 Budisulistiorini, S. H., Canagaratna, M. R., Croteau, P. L., Marth, W. J., Baumann, K., Edgerton, E. S., Shaw, S. L., Knipping, E. M.,
 785 Worsnop, D. R., Jayne, J. T., Gold, A. and Surratt, J. D.: Real-time continuous characterization of secondary organic aerosol derived from
 786 isoprene epoxydiols in downtown Atlanta, Georgia, using the aerodyne aerosol chemical speciation monitor, *Environ. Sci. Technol.*, 47(11),
 787 5686–5694, doi:10.1021/es400023n, 2013.

788 Caravan, R. L., Bannan, T. J., Winiberg, F. A. F., Khan, M. A. H., Rouso, A. C., Jasper, A. W., Worrall, S. D., Bacak, A., Artaxo, P., Brito,
 789 J., Priestley, M., Allan, J. D., Coe, H., Ju, Y., Osborn, D. L., Hansen, N., Klippenstein, S. J., Shallcross, D. E., Taatjes, C. A. and Percival,
 790 C. J.: Observational evidence for Criegee intermediate oligomerization reactions relevant to aerosol formation in the troposphere, *Nat.*
 791

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

792 Geosci., 1, doi:10.1038/s41561-023-01361-6, 2024.

793 Carbone, S., Saarikoski, S., Frey, A., Reyes, F., Reyes, P., Castillo, M., Gramsch, E., Oyola, P., Jayne, J., Worsnop, D. R. and Hillamo, R.:
794 Chemical Characterization of Submicron Aerosol Particles in Santiago de Chile, *Aerosol Air Qual. Res.*, 462–473,
795 doi:10.4209/aaqr.2012.10.0261, 2013.

796 Carrico, C. M., Bergin, M. H., Xu, J., Baumann, K. and Maring, H.: Urban aerosol radiative properties: Measurements during the 1999
797 Atlanta supersite experiment, *J. Geophys. Res. Atmos.*, 108(7), 1–17, doi:10.1029/2001jd001222, 2003.

798 Chen, G., Canonaco, F., Tobler, A., Aas, W., Alastuey, A., Allan, J., Atabakhsh, S., Aurela, M., Baltensperger, U., Bougiatioti, A., De Brito,
799 J. F., Ceburnis, D., Chazeau, B., Chebaicheb, H., Daellenbach, K. R., Ehn, M., El Haddad, I., Eleftheriadis, K., Favez, O., Flentje, H., Font,
800 A., Fossum, K., Freney, E., Gini, M., Green, D. C., Heikkinen, L., Herrmann, H., Kalogridis, A.-C., Keernik, H., Lhotka, R., Lin, C., Lunder,
801 C., Maasikmets, M., Manousakas, M. I., Marchand, N., Marin, C., Marmureanu, L., Mihalopoulos, N., Močnik, G., Nęcki, J., O'Dowd, C.,
802 Ovadnevaite, J., Peter, T., Petit, J.-E., Pikridas, M., Matthew Platt, S., Pokorná, P., Poulain, L., Priestman, M., Riffault, V., Rinaldi, M.,
803 Różański, K., Schwarz, J., Sciai, J., Simon, L., Skiba, A., Slowik, J. G., Sosedova, Y., Stavroulas, I., Styszko, K., Teinemaa, E., Timonen,
804 H., Tremper, A., Vasilescu, J., Via, M., Vodička, P., Wiedensohler, A., Zografou, O., Cruz Minguillón, M. and Prévôt, A. S. H.: European
805 aerosol phenomenology – 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets, *Environ. Int.*,
806 166(May), 107325, doi:10.1016/j.envint.2022.107325, 2022.

807 Chen, Q., Farmer, D. K., Schneider, J., Zorn, S. R., Heald, C. L., Karl, T. G., Guenther, a., Allan, J. D., Robinson, N., Coe, H., Kimmel, J.
808 R., Pauliquevis, T., Borrmann, S., Pöschl, U., Andreae, M. O., Artaxo, P., Jimenez, J. L. and Martin, S. T.: Mass spectral characterization of
809 submicron biogenic organic particles in the Amazon Basin, *Geophys. Res. Lett.*, 36(20), L20806, doi:10.1029/2009GL039880, 2009.

810 Chen, Q., Farmer, D. K., Rizzo, L. V., Pauliquevis, T., Kuwata, M., Karl, T. G., Guenther, a., Allan, J. D., Coe, H., Andreae, M. O., Pöschl,
811 U., Jimenez, J. L., Artaxo, P. and Martin, S. T.: Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-
812 08), *Atmos. Chem. Phys.*, 15(7), 3687–3701, doi:10.5194/acp-15-3687-2015, 2015.

813 Cheng, Y. F., Wiedensohler, A., Eichler, H., Su, H., Gnauk, T., Brügmann, E., Herrmann, H., Heintzenberg, J., Slanina, J., Tuch, T., Hu,
814 M. and Zhang, Y. H.: Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China, *Atmos.
815 Environ.*, 42(25), 6351–6372, doi:10.1016/j.atmosenv.2008.02.034, 2008.

816 Cheng, Z., Jiang, J., Chen, C., Gao, J., Wang, S., Watson, J. G., Wang, H., Deng, J., Wang, B., Zhou, M., Chow, J. C., Pitchford, M. L. and
817 Hao, J.: Estimation of aerosol mass scattering efficiencies under high mass loading: Case study for the megacity of Shanghai, China, *Environ.
818 Sci. Technol.*, 49(2), 831–838, doi:10.1021/es504567q, 2015.

819 Cho, C., Kim, S. W., Rupakheti, M., Park, J. S., Panday, A., Yoon, S. C., Kim, J. H., Kim, H., Jeon, H., Sung, M., Mann Kim, B., Hong, S.,
820 K., Park, R. J., Rupakheti, D., Singh Mahata, K., Siva Praveen, P., Lawrence, M. G. and Holben, B.: Wintertime aerosol optical and radiative
821 properties in the Kathmandu Valley during the SusKat-ABC field campaign, *Atmos. Chem. Phys.*, 17(20), 12617–12632, doi:10.5194/acp-
822 17-12617-2017, 2017.

823 Cubison, M. J., Ortega, a. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. a.,
824 Fuelberg, H. E., Hecobian, a., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, a. J.,
825 Wisthaler, a. and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies,
826 *Atmos. Chem. Phys.*, 11(23), 12049–12064, doi:10.5194/acp-11-12049-2011, 2011.

827 Darbyshire, E., Morgan, W. T., Allan, J. D., Liu, D., Flynn, M. J., Dorsey, J. R., O'Shea, S. J., Lowe, D., Szpek, K., Marenco, F., Johnson,
828 B. T., Bauguitte, S., Haywood, J. M., Brito, J. F., Artaxo, P., Longo, K. M. and Coe, H.: The vertical distribution of biomass burning pollution
829 over tropical South America from aircraft in situ measurements during SAMBBA, *Atmos. Chem. Phys.*, 19(9), 5771–5790, doi:10.5194/acp-
830 19-5771-2019, 2019.

831 Davidson, E. a., de Araújo, A. C., Artaxo, P., Balch, J. K., Brown, I. F., C Bustamante, M. M., Cœ, M. T., DeFries, R. S., Keller, M., Longo,
832 M., Munger, J. W., Schroeder, W., Soares Filho, B. S., Souza, C. M. and Wofsy, S. C.: The Amazon basin in transition., *Nature*, 481(7381),
833 321–8, doi:10.1038/nature10717, 2012.

834 Deng, J., Zhang, Y., Hong, Y., Xu, L., Chen, Y., Du, W. and Chen, J.: Optical properties of PM2.5 and the impacts of chemical compositions
835 in the coastal city Xiamen in China, *Sci. Total Environ.*, 557–558, 665–675, doi:10.1016/j.scitotenv.2016.03.143, 2016.

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

836 Denjean, C., Brito, J., Libois, Q., Mallet, M., Bourrianne, T., Burnet, F., Dupuy, R., Flamant, C. and Knippertz, P.: Unexpected Biomass
 837 Burning Aerosol Absorption Enhancement Explained by Black Carbon Mixing State, *Geophys. Res. Lett.*, 47(19), 1–11,
 838 doi:10.1029/2020GL089055, 2020.

839 Dobrucki, A., Zuidema, P., Howell, S. G., Saide, P., Freitag, S., Aiken, A. C., Burton, S. P., Sedlacek, A. J., Redemann, J. and Wood, R.:
 840 [An attribution of the low single-scattering albedo of biomass burning aerosol over the southeastern Atlantic, *Atmos. Chem. Phys.*, 23\(8\), 4775–4799, doi:10.5194/acp-23-4775-2023, 2023.](#)

842 Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition, *Aust. Meteorol. Mag.*, 47(4), 295–308, 1998.

844 F. G. Assis, L. F., Ferreira, K. R., Vinhas, L., Maurano, L., Almeida, C., Carvalho, A., Rodrigues, J., Maciel, A. and Camargo, C.:
 845 TerraBrasilis: A Spatial Data Analytics Infrastructure for Large-Scale Thematic Mapping, *ISPRS Int. J. Geo-Information*, 8(11), 513,
 846 doi:10.3390/ijgi8110513, 2019.

847 Fan, X., Chen, H., Xia, X., Li, Z. and Cribb, M.: [Aerosol optical properties from the Atmospheric Radiation Measurement Mobile Facility at Shouxian, China, *J. Geophys. Res. Atmos.*, 115\(24\), doi:10.1029/2010JD014650, 2010.](#)

849 Fisch, G., Tota, J., Machado, L. a. T., Silva Dias, M. a. F., da F. Lyra, R. F., Nobre, C. a., Dolman, a. J. and Gash, J. H. C.: The convective
 850 boundary layer over pasture and forest in Amazonia, *Theor. Appl. Climatol.*, 78(1–3), 47–59, doi:10.1007/s00704-004-0043-x, 2004.

851 Flores, B. M., Montoya, E., Sakschewski, B., Nascimento, N., Staal, A., Betts, R. A., Levis, C., Lapola, D. M., Esquivel-Muelbert, A.,
 852 Jakovac, C., Nobre, C. A., Oliveira, R. S., Borma, L. S., Nian, D., Boers, N., Hecht, S. B., ter Steege, H., Arieira, J., Lucas, I. L., Berenguer,
 853 E., Marengo, J. A., Gatti, L. V., Mattos, C. R. C. and Hirota, M.: Critical transitions in the Amazon forest system, *Nature*, 626(7999), 555–
 854 564, doi:10.1038/s41586-023-06970-0, 2024.

855 Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S. and Andreae, M. O.: [Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative \(SAFARI 2000\) experiment: Chemical characteristics, physical properties, and emission data or smoke from African biomass burning, *J. Geophys. Res. D Atmos.*, 108\(13\), doi:10.1029/2002jd002408, 2003.](#)

856 Forster, P. M., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M.,
 857 Wild, M. and Zhang, H.: The Earth's Energy Budget, Climate Feedbacks and Climate Sensitivity, in *Climate Change 2021 – The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change* [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, pp. 923–1054, Cambridge University Press, Cambridge
 858 and New York., 2021.

859 Fuzzi, S., Decesari, S., Facchini, M. C., Cavalli, F., Emblico, L., Mircea, M., Andreae, M. O., Trebs, I., Hoffer, A., Guyon, P., Artaxo, P.,
 860 Rizzo, L. V., Lara, L. L., Pauliquevis, T., Maenhaut, W., Raes, N., Chi, X., Mayol-Bracero, O. L., Soto-García, L. L., Claeys, M., Kourtchev,
 861 I., Rissler, J., Swietlicki, E., Tagliavini, E., Schkolnik, G., Falkovich, A. H., Rudich, Y., Fisch, G. and Gatti, L. V.: [Overview of the inorganic
 862 and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass-burning period to the onset of the wet season, *J. Geophys. Res.*, 112\(D1\), D01201, doi:10.1029/2005JD006741, 2007.](#)

863 Gao, Y., Lai, S., Lee, S. C., Yau, P. S., Huang, Y., Cheng, Y., Wang, T., Xu, Z., Yuan, C. and Zhang, Y.: [Optical properties of size-resolved
 864 particles at a Hong Kong urban site during winter, *Atmos. Res.*, 155, 1–12, doi:10.1016/j.atmosres.2014.10.020, 2015.](#)

865 Han, T., Qiao, L., Zhou, M., Qu, Y., Du, J., Liu, X., Lou, S., Chen, C., Wang, H., Zhang, F., Yu, Q. and Wu, Q.: [Chemical and optical
 866 properties of aerosols and their interrelationship in winter in the megacity Shanghai of China, *J. Environ. Sci. \(China\)*, 27\(C\), 59–69,
 867 doi:10.1016/j.jes.2014.04.018, 2015.](#)

868 Hand, J. L. and Malm, W. C.: Review of aerosol mass scattering efficiencies from ground-based measurements since 1990, *J. Geophys. Res. Atmos.*, 112(16), doi:10.1029/2007JD008484, 2007.

869 He, C., Liou, K. N., Takano, Y., Zhang, R., Levy Zamora, M., Yang, P., Li, Q. and Leung, L. R.: Variation of the radiative properties during
 870 black carbon aging: Theoretical and experimental intercomparison, *Atmos. Chem. Phys.*, 15(20), 11967–11980, doi:10.5194/acp-15-11967-
 871 2015, 2015.

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

878 Holanda, B. A., Pöhlker, M. L., Walter, D., Saturno, J., Sörgel, M., Ditas, J., Ditas, F., Schulz, C., Franco, M. A., Wang, Q., Donth, T.,
 879 Artaxo, P., Barbosa, H. M. J., Borrmann, S., Braga, R., Brito, J., Cheng, Y., Dollner, M., Kaiser, J. W., Klimach, T., Knote, C., Krüger, O.,
 880 Fütterer, D., Lavrič, J. V., Ma, N., Machado, L. A. T., Ming, J., Morais, F. G., Paulsen, H., Sauer, D., Schläger, H., Schneider, J., Su, H.,
 881 Weinzierl, B., Walser, A., Wendisch, M., Ziereis, H., Zöger, M., Pöschl, U., Andreae, M. O. and Pöhlker, C.: Influx of African biomass
 882 burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke, *Atmos. Chem. Phys.*,
 883 20(8), 4757–4785, doi:10.5194/acp-20-4757-2020, 2020.

884 Holanda, B. A., Franco, M. A., Walter, D., Artaxo, P., Carbone, S., Cheng, Y., Chowdhury, S., Ditas, F., Gysel-Beer, M., Klimach, T.,
 885 Kremer, L. A., Krüger, O. O., Lavrič, J. V., Lelieveld, J., Ma, C., Machado, L. A. T., Modini, R. L., Morais, F. G., Pozzer, A., Saturno, J.,
 886 Su, H., Wendisch, M., Wolff, S., Pöhlker, M. L., Andreae, M. O., Pöschl, U. and Pöhlker, C.: African biomass burning affects aerosol cycling
 887 over the Amazon, *Commun. Earth Environ.*, 4(1), 1–15, doi:10.1038/s43247-023-00795-5, 2023.

888 Hu, W., Palm, B. B., Day, D. A., Campuzano-Jost, P., Krechmer, J. E., Peng, Z., De Sa Suzane, S., Martin, S. T., Alexander, M. L., Baumann,
 889 K., Hacker, L., Kiendler-Scharr, A., Koss, A. R., De Gouw, J. A., Goldstein, A. H., Seco, R., Sjostedt, S. J., Park, J. H., Guenther, A. B.,
 890 Kim, S., Canonaco, F., Prévôt, A. S. H., Brune, W. H. and Jimenez, J. L.: Volatility and lifetime against OH heterogeneous reaction of
 891 ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA), *Atmos. Chem. Phys.*, 16(18), 11563–11580,
 892 doi:10.5194/acp-16-11563-2016, 2016.

893 Hu, W. W., Campuzano-Jost, P., Palm, B. B., Day, D. A., Ortega, A. M., Hayes, P. L., Krechmer, J. E., Chen, Q., Kuwata, M., Liu, Y. J., de
 894 Sá, S. S., Martin, S. T., Hu, M., Budisulistiorini, S. H., Riva, M., Surratt, J. D., St. Clair, J. M., Isaacman-Van Wertz, G., Yee, L. D.,
 895 Goldstein, A. H., Carbone, S., Artaxo, P., de Gouw, J. A., Koss, A., Wisthaler, A., Mikoviny, T., Karl, T., Kaser, L., Jud, W., Hansel, A.,
 896 Docherty, K. S., Robinson, N. H., Coe, H., Allan, J. D., Canagaratna, M. R., Paulot, F. and Jimenez, J. L.: Characterization of a real-time
 897 tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements, *Atmos.
 898 Chem. Phys. Discuss.*, 15(8), 11223–11276, doi:10.5194/acpd-15-11223-2015, 2015.

899 Instituto Nacional de Pesquisas Espaciais: Portal do Monitoramento de Queimadas e Incêndios Florestais, [online] Available from:
 900 http://terrabrasilis.dpi.inpe.br/queimadas/situacao-atual/estatisticas/estatisticas_estados/#afooter, 2024.

901 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, a. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N.
 902 L., Aiken, a. C., Docherty, K. S., Ulbrich, I. M., Grieshop, a. P., Robinson, a. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. a.,
 903 Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M.,
 904 Collins, D. R., Cubison, M. J., Dunlea, J., Huffman, J. a., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider,
 905 J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S.,
 906 Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, a. M., Williams, L.
 907 R., Wood, E. C., Middlebrook, a. M., Kolb, C. E., Baltensperger, U. and Worsnop, D. R.: Evolution of Organic Aerosols in the Atmosphere,
 908 *Science* (80–), 326(5959), 1525–1529, doi:10.1126/science.1180353, 2009.

909 Jing, J., Wu, Y., Tao, J., Che, H., Xia, X., Zhang, X., Yan, P., Zhao, D. and Zhang, L.: Observation and analysis of near-surface atmospheric
 910 aerosol optical properties in urban Beijing, *Particuology*, 18, 144–154, doi:10.1016/j.partic.2014.03.013, 2015.

911 Kim, K. W.: Optical properties of size-resolved aerosol chemistry and visibility variation observed in the urban site of seoul, korea, *Aerosol
 912 Air Qual. Res.*, 15(1), 271–283, doi:10.4209/aaqr.2013.11.0347, 2015.

913 Kleinman, L. I., Sedlacek, A. J., Adachi, K., Buseck, P. R., Collier, S., Dubey, M. K., Hodshire, A. L., Lewis, E., Onasch, T. B., Pierce, J.
 914 R., Shilling, J., Springston, S. R., Wang, J., Zhang, Q., Zhou, S. and Yokelson, R. J.: Rapid evolution of aerosol particles and their optical
 915 properties downwind of wildfires in the western US, *Atmos. Chem. Phys.*, 20(21), 13319–13341, doi:10.5194/acp-20-13319-2020, 2020.

916 Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C. and Seinfeld, J. H.: Secondary Organic Aerosol Formation from Isoprene
 917 Photooxidation, *Environ. Sci. Technol.*, 40(6), 1869–1877, doi:10.1021/es0524301, 2006.

918 Kuhn, U., Ganzeveld, L., Thielmann, A., Dindorf, T., Schebeske, G., Welling, M., Sciare, J., Roberts, G., Meixner, F. X., Kesselmeier, J.,
 919 Lelieveld, J., Kölle, O., Ciccioli, P., Lloyd, J., Trentmann, J., Artaxo, P. and Andreae, M. O.: Impact of Manaus City on the Amazon Green
 920 Ocean atmosphere: Ozone production, precursor sensitivity and aerosol load, *Atmos. Chem. Phys.*, 10(19), 9251–9282, doi:10.5194/acp-10-
 921 9251-2010, 2010.

922 Laskin, A., Laskin, J. and Nizkorodov, S. A.: Chemistry of Atmospheric Brown Carbon, *Chem. Rev.*, 115(10), 4335–4382,

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

923 doi:10.1021/cr5006167, 2015.

924 Lee, T., Sullivan, A. P., Mack, L., Jimenez, J. L., Kreidenweis, S. M., Onasch, T. B., Worsnop, D. R., Malm, W., Wold, C. E., Hao, W. M.
925 and Collett, J. L.: Chemical Smoke Marker Emissions During Flaming and Smoldering Phases of Laboratory Open Burning of Wildland
926 Fuels, *Aerosol Sci. Technol.*, 44(9), i–v, doi:10.1080/02786826.2010.499884, 2010.

927 Levin, E. J. T., McMeeking, G. R., Carrico, C. M., Mack, L. E., Kreidenweis, S. M., Wold, C. E., Moosmüller, H., Arnott, W. P., Hao, W.
928 M., Collett, J. L. and Malm, W. C.: Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments
929 (FLAME), *J. Geophys. Res. Atmos.*, 115(18), 1–15, doi:10.1029/2009JD013601, 2010.

930 Li, W., Riemer, N., Xu, L., Wang, Y., Adachi, K., Shi, Z., Zhang, D., Zheng, Z. and Laskin, A.: Microphysical properties of atmospheric
931 soot and organic particles: measurements, modeling, and impacts, *npj Clim. Atmos. Sci.*, 7(1), 65, doi:10.1038/s41612-024-00610-8, 2024.

932 Lin, Y. H., Zhang, Z., Docherty, K. S., Zhang, H., Budisulistiorini, S. H., Rubitschun, C. L., Shaw, S. L., Knipping, E. M., Edgerton, E. S.,
933 Kleindienst, T. E., Gold, A. and Surratt, J. D.: Isoprene Epoxydiol_nepoxydiol_m as Precursors_nprecursors_m to Secondary_nOrganic_mAerosol
934 Formation_nsecondary_morganic_naerosol_mformation_nAcid_mCatalyzed_nReactive_mUptake_nStudies_mcatalyzed_nreactive_muptake_nstudies_mwith_nAuthentic
935 Compounds_m, authentic compounds_n, Environ. Sci. Technol., 46(1), 250–258, doi:10.1021/es202554c, 2012.

936 Luo, J., Zhang, Y. and Zhang, Q.: The Ångström Exponent and Single-Scattering Albedo of Black Carbon: Effects of Different Coating
937 Materials, *Atmosphere (Basel.)*, 11(10), 1103, doi:10.3390/atmos11101103, 2020.

938 Ma, N., Zhao, C. S., Nowak, A., Müller, T., Pfeifer, S., Cheng, Y. F., Deng, Z. Z., Liu, P. F., Xu, W. Y., Ran, L., Yan, P., Göbel, T.,
939 Hallbauer, E., Mildenberger, K., Henning, S., Yu, J., Chen, L. L., Zhou, X. J., Stratmann, F. and Wiedensohler, A.: Aerosol optical properties
940 in the North China Plain during HaChi campaign: An in-situ optical closure study, *Atmos. Chem. Phys.*, 11(12), 5959–5973,
941 doi:10.5194/acp-11-5959-2011, 2011.

942 Malm, W. C., Day, D. E., Carrico, C., Kreidenweis, S. M., Collett, J. L., McMeeking, G., Lee, T., Carrillo, J. and Schichtel, B.:
943 Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite aerosol
944 characterization study, *J. Geophys. Res. D Atmos.*, 110(14), 1–21, doi:10.1029/2004JD005494, 2005.

945 Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Krechmer, J., Zhu, L., Kim, P. S., Miller, C. C., Fisher,
946 J. A., Travis, K., Yu, K., Hanisco, T. F., Wolfe, G. M., Arkinson, H. L., Pye, H. O. T., Froyd, K. D., Liao, J. and McNeill, V. F.: Aqueous-
947 phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO₂
948 emission controls, *Atmos. Chem. Phys.*, 16(3), 1603–1618, doi:10.5194/acp-16-1603-2016, 2016.

949 Marengo, J. A., Liebmann, B., Kousky, V. E., Filizola, N. P. and Wainer, I. C.: Onset and End of the Rainy Season in the Brazilian Amazon
950 Basin, *J. Clim.*, 14(5), 833–852, doi:10.1175/1520-0442(2001)014<0833:OAEOTR>2.0.CO;2, 2001.

951 Martin, S. T., Andreae, M. O., Althausen, D., Artaxo, P., Baars, H., Borrmann, S., Chen, Q., Farmer, D. K., Guenther, A., Gunthe, S. S.,
952 Jimenez, J. L., Karl, T., Longo, K., Manzi, A., Müller, T., Pauliquevis, T., Petters, M. D., Prenni, A. J., Pöschl, U., Rizzo, L. V., Schneider,
953 J., Smith, J. N., Swietlicki, E., Tota, J., Wang, J., Wiedensohler, A. and Zorn, S. R.: An overview of the Amazonian Aerosol Characterization
954 Experiment 2008 (AMAZE-08), *Atmos. Chem. Phys.*, 10(23), 11415–11438, doi:10.5194/acp-10-11415-2010, 2010a.

955 Martin, S. T., Andreae, M. O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein, A. H., Guenther, A., Heald, C. L., Mayol-Bracero, O. L.,
956 McMurry, P. H., Pauliquevis, T., Pöschl, U., Prather, K. A., Roberts, G. C., Saleska, S. R., Silva Dias, M. A., Spracklen, D. V., Swietlicki,
957 E. and Trebs, I.: Sources and properties of Amazonian aerosol particles, *Rev. Geophys.*, 48(2), RG2002, doi:10.1029/2008RG000280, 2010b.

958 Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Andreae, M. O., Barbosa, H. M. J.,
959 Fan, J., Fisch, G., Goldstein, A. H., Guenther, A., Jimenez, J. L., Pöschl, U., Silva Dias, M. A., Smith, J. N. and Wendisch, M.: Introduction:
960 Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5), *Atmos. Chem. Phys. Discuss.*, 15(21), 30175–30210,
961 doi:10.5194/acpd-15-30175-2015, 2015.

962 Metcalf, A. R., Loza, C. L., Coggon, M. M., Craven, J. S., Jonsson, H. H., Flagan, R. C. and Seinfeld, J. H.: Secondary organic aerosol
963 coating formation and evaporation: Chamber studies using black carbon seed aerosol and the single-particle soot photometer, *Aerosol Sci.
964 Technol.*, 47(3), 326–347, doi:10.1080/02786826.2012.750712, 2013.

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

965 Middlebrook, A. M., Bahreini, R., Jimenez, J. L. and Canagaratna, M. R.: Evaluation of Composition-Dependent Collection Efficiencies for
 966 the Aerodyne Aerosol Mass Spectrometer using Field Data, *Aerosol Sci. Technol.*, 46(3), 258–271, doi:10.1080/02786826.2011.620041,
 967 2012.

968 Müller, T., Henzing, J. S., De Leeuw, G., Wiedensohler, A., Alastuey, A., Angelov, H., Bizjak, M., Collaud Coen, M., Engström, J. E.,
 969 Gruening, C., Hillamo, R., Hoffer, A., Imre, K., Ivanow, P., Jennings, G., Sun, J. Y., Kalivitis, N., Karlsson, H., Komppula, M., Laj, P., Li,
 970 S. M., Lunder, C., Marinoni, A., Martins Dos Santos, S., Moerman, M., Nowak, A., Ogren, J. A., Petzold, A., Pichon, J. M., Rodriguez, S.,
 971 Sharma, S., Sheridan, P. J., Teinilä, K., Tuch, T., Viana, M., Virkkula, A., Weingartner, E., Wilhelm, R. and Wang, Y. Q.: Characterization
 972 and intercomparison of aerosol absorption photometers: Result of two intercomparison workshops, *Atmos. Meas. Tech.*, 4(2), 245–268,
 973 doi:10.5194/amt-4-245-2011, 2011.

974 Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C.,
 975 Feichter, J., Gan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J. F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma,
 976 X., Van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu,
 977 L., Yu, H., Yu, F., Yoon, J. H., Zhang, K., Zhang, H. and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II
 978 simulations, *Atmos. Chem. Phys.*, 13(4), 1853–1877, doi:10.5194/acp-13-1853-2013, 2013.

979 Nah, T., Xu, L., Osborne-Benthaus, K. A., White, S. M., France, S. and Lee Ng, N.: Mixing order of sulfate aerosols and isoprene epoxydiols
 980 affects secondary organic aerosol formation in chamber experiments, *Atmos. Environ.*, 217(September),
 981 doi:10.1016/j.atmosenv.2019.116953, 2019.

982 Nakayama, T., Hagino, R., Matsumi, Y., Sakamoto, Y., Kawasaki, M., Yamazaki, A., Uchiyama, A., Kudo, R., Moteki, N., Kondo, Y. and
 983 Tonokura, K.: Measurements of aerosol optical properties in central Tokyo during summertime using cavity ring-down spectroscopy:
 984 Comparison with conventional techniques, *Atmos. Environ.*, 44(25), 3034–3042, doi:10.1016/j.atmosenv.2010.05.008, 2010.

985 Nascimento, J. P., Bela, M. M., Meller, B. B., Banducci, A. L., Rizzo, L. V., Liduvino Vara-Vela, A., Barbosa, H. M. J., Gomes, H., Rafee,
 986 S. A. A., Franco, M. A., Carbone, S., Cirino, G. G., Souza, R. A. F., McKeen, S. A. and Artaxo, P.: Aerosols from anthropogenic and biogenic
 987 sources and their interactions-modeling aerosol formation, optical properties, and impacts over the central Amazon basin, *Atmos. Chem.
 988 Phys.*, 21(9), 6755–6779, doi:10.5194/acp-21-6755-2021, 2021.

989 Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y.
 990 L. and Jayne, J. T.: An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring of the composition and mass concentrations
 991 of ambient aerosol, *Aerosol Sci. Technol.*, 45(7), 780–794, doi:10.1080/02786826.2011.560211, 2011.

992 Paatero, P. and Tapper, U.: Positive Matrix Factorization: a non-negative factor model with optimal utilization of error estimates of data
 993 values, *Environmetrics*, 5, 111–126, 1994.

994 Palacios, R. da S., Romera, K. S., Curado, L. F. A., Banga, N. M., Rothmund, L. D., Sallo, F. da S., Moraes, D., Santos, A. C. A., Moraes,
 995 T. J., Moraes, F. G., Landulfo, E., Franco, M. A. de M., Kuhnen, I. A., Marques, J. B., Nogueira, J. de S., Júnior, L. C. G. D. V. and Rodrigues,
 996 T. R.: Long term analysis of optical and radiative properties of aerosols in the amazon basin, *Aerosol Air Qual. Res.*, 20(1), 139–154,
 997 doi:10.4209/aaqr.2019.04.0189, 2020.

998 Paredes-Miranda, G., Arnott, W. P., Jimenez, J. L., Aiken, A. C., Gaffney, J. S. and Marley, N. A.: Primary and secondary contributions to
 999 aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign, *Atmos. Chem. Phys.*, 9(11), 3721–3730,
 1000 doi:10.5194/acp-9-3721-2009, 2009.

1001 Palm, B. B., De Sá, S. S., Day, D. A., Campuzano-Jost, P., Hu, W., Seco, R., Sjostedt, S. J., Park, J. H., Guenther, A. B., Kim, S., Brito, J.,
 1002 Wurm, F., Artaxo, P., Thalman, R., Wang, J., Yee, L. D., Wernis, R., Isaacman-VanWertz, G., Goldstein, A. H., Liu, Y., Springston, S. R.,
 1003 Souza, R., Newburn, M. K., Elizabeth Alexander, M., Martin, S. T. and Jimenez, J. L.: Secondary organic aerosol formation from ambient
 1004 air in an oxidation flow reactor in central Amazonia, *Atmos. Chem. Phys.*, 18(1), 467–493, doi:10.5194/acp-18-467-2018, 2018.

1005 Pani, S. K., Lin, N. H., Wang, S. H., Chantara, S., Griffith, S. M. and Chang, J. H. W.: Aerosol mass scattering efficiencies and single
 1006 scattering albedo under high mass loading in Chiang Mai valley, Thailand, *Atmos. Environ.*, 308(April), 119867,
 1007 doi:10.1016/j.atmosenv.2023.119867, 2023.

1008 Park, S., Kim, S. W., Lin, N. H., Pani, S. K., Sheridan, P. J. and Andrews, E.: Variability of aerosol optical properties observed at a polluted

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

1009 [marine \(Gosan, korea\) and a high-altitude mountain \(Lulin, Taiwan\) site in the asian continental outflow, Aerosol Air Qual. Res., 19\(6\), 1272–1283, doi:10.4209/aaqr.2018.11.0416, 2019.](#)

1010 [Petzold, A., Schloesser, H., Sheridan, P. J., Arnott, W. P., Ogren, J. A. and Virkkula, A.: Evaluation of Multiangle Absorption Photometry for Measuring Aerosol Light Absorption, Aerosol Sci. Technol., 39\(1\), 40–51, doi:10.1080/027868290901945, 2005.](#)

1011 [Pöhlker, C., Wiedemann, K. T., Sinha, B., Shiraiwa, M., Gunthe, S. S., Smith, M., Su, H., Artaxo, P., Chen, Q., Cheng, Y., Elbert, W., Gilles, M. K., Kilcoyne, A. L. D., Moffet, R. C., Weigand, M., Martin, S. T., Poschl, U., Andreae, M. O., Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D. and Hand, J.: Revised algorithm for estimating light extinction from IMPROVE particle speciation data, J. Air Waste Manag. Assoc., 57\(11\), 1326–1336, doi:10.3155/1047-3289.57.11.1326, 2007.](#)

1012 [Pöhlker, C., Wiedemann, K. T., Sinha, B., Shiraiwa, M., Gunthe, S. S., Smith, M., Su, H., Artaxo, P., Chen, Q., Cheng, Y., Elbert, W., Gilles, M. K., Kilcoyne, A. L. D., Moffet, R. C., Weigand, M., Martin, S. T., Pöschl, U. and Andreae, M. O.: Biogenic potassium salt particlesPotassium Salt Particles as seedsSeeds for secondary organic aerosolSecondary Organic Aerosol in the Amazon, Science, 337\(6098\), 1075–1078, doi:10.1126/science.1223264, 2012.](#)

1013 [Pöhlker, M. L., Pöhlker, C., Ditas, F., Klimach, T., De Angelis, I. H., Araújo, A., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditz, R., Gunthe, S. S., Kesselmeier, J., Könemann, T., Lavrič, J. V., Martin, S. T., Mikhailev, E., Moran-Zuloaga, D., Rose, D., Saturno, J., Su, H., Thalman, R., Walter, D., Wang, J., Wolff, S., Barbosa, H. M. J., Artaxo, P., Andreae, M. O. and Pöschl, U.: Long term observations of cloud condensation nuclei in the Amazon rain forest - Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction, Atmos. Chem. Phys., 16\(24\), 15709–15740, doi:10.5194/acp-16-15709-2016, 2016.](#)

1014 [Pöhlker, M. L., Ditas, F., Saturno, J., Klimach, T., Hrabě De Angelis, I., Araújo, A. C., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditz, R., Gunthe, S. S., Holanda, B. A., Kandler, K., Kesselmeier, J., Könemann, T., Krüger, O. O., Lavrič, J. V., Martin, S. T., Mikhailev, E., Moran-Zuloaga, D., Rizzo, L. V., Rose, D., Su, H., Thalman, R., Walter, D., Wang, J., Wolff, S., Barbosa, H. M. J., Artaxo, P., Andreae, M. O., Pöschl, U. and Pöhlker, C.: Long-term observations of cloud condensation nuclei over the Amazon rain forest - Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols, Atmos. Chem. Phys., 18\(14\), 10289–10331, doi:10.5194/acp-18-10289-2018, 2018.](#)

1015 [Ponczek, M., Franco, M. A., Carbone, S., Rizzo, L. V., Monteiro dos Santos, D., Moraes, F. G., Duarte, A., Barbosa, H. M. J. and Artaxo, P.: Linking the chemical composition and optical properties of biomass burning aerosols in Amazonia, Environ. Sci. Atmos., 2\(2\), 252–269, doi:10.1039/d1ea00055a, 2021.](#)

1016 [Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., Jimenez, J. L., King, S. M., Manzi, A., Mikhailev, E., Pauliquevis, T., Petters, M. D., Prenni, A. J., Roldin, P., Rose, D., Schneider, J., Su, H., Zorn, S. R., Artaxo, P. and Andreae, M. O.: Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon, Science \(80-. \), 329\(5998\), 1513–1516, doi:10.1126/science.1191056, 2010.](#)

1017 [Ram, K., Singh, S., Sarin, M. M., Srivastava, A. K. and Tripathi, S. N.: Variability in aerosol optical properties over an urban site, Kanpur, in the Indo-Gangetic Plain: A case study of haze and dust events, Atmos. Res., 174–175, 52–61, doi:10.1016/j.atmosres.2016.01.014, 2016.](#)

1018 [Reid, J. S., Koppmann, R., Eck, T. F. and Christopher, S. A., Koppman, R., Dubovik, O., Eleuterio, D. P., Holben, B. N., Reid, E. A. and Zhang, J.: A review of biomass burning emissions part II: intensive physicalIII: Intensive optical properties of biomass burning particles, Atmos. Chem. Phys., 5\(3\), 799–825827–849, doi:10.5194/acp-5-799827-2005, 2005.](#)

1019 [Rizzo, L. V., Artaxo, P., Müller, T., Wiedensohler, A., Paixão, M., Cirino, G. G., Arana, A., Swietlicki, E., Roldin, P., Fors, E. O., Wiedemann, K. T., Leal, L. S. M. and Kulmala, M.: Long term measurements of aerosol optical properties at a primary forest site in Amazonia, Atmos. Chem. Phys., 13\(5\), 2391–2413, doi:10.5194/acp-13-2391-2013, 2013.](#)

1020 [Romshoo, B., Müller, T., Pfeifer, S., Saturno, J., Nowak, A., Ciupék, K., Quincey, P. and Wiedensohler, A.: Optical properties of coated black carbon aggregates: Numerical simulations, radiative forcing estimates, and size-resolved parameterization scheme, Atmos. Chem. Phys., 21\(17\), 12989–13010, doi:10.5194/acp-21-12989-2021, 2021.](#)

1021 [de Sá, S. S., Palm, B. B., Campuzano-Jost, P., Day, D. A., Newburn, M. K., Hu, W., Isaacman-VanWertz, G., Yee, L. D., Thalman, R., Brito, J., Carbone, S., Artaxo, P., Goldstein, A. H., Manzi, A. O., Souza, R. A. F., Mei, F., Shilling, J. E., Springston, S. R., Wang, J., Surratt, J. D., Alexander, M. L., Jimenez, J. L. and Martin, S. T.: Influence of urban pollution on the production of organic particulate matter from](#)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

1053 isoprene epoxydiols in central Amazonia, *Atmos. Chem. Phys.*, 17(11), 6611–6629, doi:10.5194/acp-17-6611-2017, 2017.

1054 de Sá, S. S., Palm, B. B., Campuzano-Jost, P., Day, D. A., Hu, W., Isaacman-VanWertz, G., Yee, L. D., Brito, J., Carbone, S., Ribeiro, I.,
1055 Cirino, G. G., Liu, Y., Thalman, R., Sedlacek, A., Funk, A., Schumacher, C., Shilling, J. E., Schneider, J., Artaxo, P., Goldstein, A. H.,
1056 Souza, R. A. F., Wang, J., McKinney, K. A., Barbosa, H., Alexander, M. L., Jimenez, J. L. and Martin, S. T.: Urban influence on the
1057 concentration and composition of submicron particulate matter in central Amazonia, *Atmos. Chem. Phys.*, 18(16), 12185–12206,
1058 doi:10.5194/acp-18-12185-2018, 2018.

1059 de Sá, S. S., Rizzo, L. V., Palm, B. B., Campuzano-Jost, P., Day, D. A., Yee, L. D., Wernis, R., Isaacman-VanWertz, G., Brito, J., Carbone,
1060 S., Liu, Y. J., Sedlacek, A., Springston, S., Goldstein, A. H., Barbosa, H. M. J., Alexander, M. L., Artaxo, P., Jimenez, J. L. and Martin, S.
1061 T.: Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate
1062 matter in central Amazonia during the dry season, *Atmos. Chem. Phys.*, 19(12), 7973–8001, doi:10.5194/acp-19-7973-2019, 2019.

1063 Saide, P. E., Thapa, L. H., Ye, X., Pagonis, D., Campuzano-Jost, P., Guo, H., Schuneman, M. L., Jimenez, J. L., Moore, R., Wiggins, E.,
1064 Winstead, E., Robinson, C., Thornhill, L., Sanchez, K., Wagner, N. L., Ahern, A., Katich, J. M., Perring, A. E., Schwarz, J. P., Lyu, M.,
1065 Holmes, C. D., Hair, J. W., Fenn, M. A. and Shingler, T. J.: Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field
1066 Campaign Measurements, *Geophys. Res. Lett.*, 49(18), 1–12, doi:10.1029/2022GL099175, 2022.

1067 Saturno, J., Ditas, F., De Vries, M. P., Holanda, B. A., Pöhlker, M. L., Carbone, S., Walter, D., Bobrowski, N., Brito, J., Chi, X., Gutmann,
1068 A., De Angelis, I. H., Machado, L. A. T., Moran-Zuloaga, D., Rüdiger, J., Schneider, J., Schulz, C., Wang, Q., Wendisch, M., Artaxo, P.,
1069 Wagner, T., Pöschl, U., Andreae, M. O. and Pöhlker, C.: African volcanic emissions influencing atmospheric aerosols over the Amazon rain
1070 forest, *Atmos. Chem. Phys.*, 18(14), 10391–10405, doi:10.5194/acp-18-10391-2018, 2018a.

1071 Saturno, J., Holanda, B. A., Pöhlker, C., Ditas, F., Wang, Q., Moran-Zuloaga, D., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditas, J.,
1072 Hoffmann, T., Hrabe De Angelis, I., Könemann, T., Lavrič, J. V., Ma, N., Ming, J., Paulsen, H., Pöhlker, M. L., Rizzo, L. V., Schlag, P.,
1073 Su, H., Walter, D., Wolff, S., Zhang, Y., Artaxo, P., Pöschl, U. and Andreae, M. O.: Black and brown carbon over central Amazonia: Long-
1074 term aerosol measurements at the ATTO site, *Atmos. Chem. Phys.*, 18(17), 12817–12843, doi:10.5194/acp-18-12817-2018, 2018b.

1075 Schuster, G. L., Dubovik, O. and Holben, B. N.: Angstrom exponent and bimodal aerosol size distributions, *J. Geophys. Res. Atmos.*,
1076 111(D7), D07207, doi:10.1029/2005JD006328, 2006.

1077 Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts, L. A., Wilson, J. C., Reeves, J. M., Darbeheshti, M., Baumgardner, D. G.,
1078 Kok, G. L., Chung, S. H., Schulz, M., Hendricks, J., Lauer, A., Kärcher, B., Slowik, J. G., Rosenlof, K. H., Thompson, T. L., Langford, A.,
1079 O., Loewenstein, M. and Aikin, K. C.: Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the
1080 boundary layer to the lower stratosphere, *J. Geophys. Res. Atmos.*, 111(16), 1–15, doi:10.1029/2006JD007076, 2006.

1081 Sena, E. T., Artaxo, P. and Correia, a. l.: Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of
1082 land use change in Amazonia, *Atmos. Chem. Phys.*, 13(3), 1261–1275, doi:10.5194/acp-13-1261-2013, 2013.

1083 Shrivastava, M., Andreae, M. O., Artaxo, P., Barbosa, H. M. J., Berg, L. K., Brito, J., Ching, J., Easter, R. C., Fan, J., Fast, J. D., Feng, Z.,
1084 Fuentes, J. D., Glasius, M., Goldstein, A. H., Alves, E. G., Gomes, H., Gu, D., Guenther, A., Jathar, S. H., Kim, S., Liu, Y., Lou, S., Martin,
1085 S. T., McNeill, V. F., Medeiros, A., de Sá, S. S., Shilling, J. E., Springston, S. R., Souza, R. A. F., Thornton, J. A., Isaacman-VanWertz, G.,
1086 Yee, L. D., Ynoue, R., Zaveri, R. A., Zelenyuk, A. and Zhao, C.: Urban pollution greatly enhances formation of natural aerosols over the
1087 Amazon rainforest, *Nat. Commun.*, 10(1), doi:10.1038/s41467-019-08909-4, 2019.

1088 Smith, D. M., Fiddler, M. N., Pokhrel, R. P. and Bililign, S.: Laboratory studies of fresh and aged biomass burning aerosol emitted from east
1089 African biomass fuels Part 1: Optical properties, *Atmos. Chem. Phys.*, 20(17), 10149–10168, doi:10.5194/acp-20-10149-2020, 2020.

1090 Soni, K., Singh, S., Bano, T., Tanwar, R. S., Nath, S. and Arya, B. C.: Variations in single scattering albedo and Angstrom absorption
1091 exponent during different seasons at Delhi, India, *Atmos. Environ.*, 44(35), 4355–4363, doi:10.1016/j.atmosenv.2010.07.058, 2010.

1092 Sun, J., Zhang, Q., Canagaratna, M. R., Zhang, Y., Ng, N. L., Sun, Y., Jayne, J. T., Zhang, X., Zhang, X. and Worsnop, D. R.: Highly time-
1093 and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer, *Atmos. Environ.*,
1094 44(1), 131–140, doi:10.1016/j.atmosenv.2009.03.020, 2010.

1095 Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O. and

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

1096 Seinfeld, J. H.: Reactive intermediates revealed in secondary organic aerosol formation from isoprene, Proc. Natl. Acad. Sci., 107(15), 6640–
1097 6645, doi:10.1073/pnas.0911114107, 2010.

1098 Szopa, S., Naik, V., Artaxo, P., Berntsen, T., Collins, W. D., Fuzzi, S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., Liao, H., Unger, N.
1099 and Zanis, P.: Short-lived Climate Forcers, in Climate Change 2021 – The Physical Science Basis, pp. 817–922, Cambridge University
1100 Press., 2023.

1101 Tao, J., Zhang, Z., Wu, Y., Zhang, L., Wu, Z., Cheng, P., Li, M., Chen, L., Zhang, R. and Cao, J.: Impact of particle number and mass size
1102 distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China, Atmos. Chem.
1103 Phys., 19(13), 8471–8490, doi:10.5194/acp-19-8471-2019, 2019.

1104 Tasoglou, A., Saliba, G., Subramanian, R. and Pandis, S. N.: Absorption of chemically aged biomass burning carbonaceous aerosol, J.
1105 Aerosol Sci., 113(April), 141–152, doi:10.1016/j.jaerosci.2017.07.011, 2017.

1106 Tian, J., Wang, Q., Liu, H., Ma, Y., Liu, S., Zhang, Y., Ran, W., Han, Y. and Cao, J.: Measurement report: The importance of biomass
1107 burning in light extinction and direct radiative effect of urban aerosol during the COVID-19 lockdown in Xi'an, China, Atmos. Chem. Phys.,
1108 22(12), 8369–8384, doi:10.5194/acp-22-8369-2022, 2022.

1109 Titos, G., Foyo-Moreno, I., Lyamani, H., Querol, X., Alastuey, A. and Alados-Arboledas, L.: Optical properties and chemical composition
1110 of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies, J. Geophys. Res. Atmos.,
1111 117(4), 1–12, doi:10.1029/2011JD016671, 2012.

1112 Tuch, T. M., Haudke, A., Müller, T., Nowak, A., Wex, H. and Wiedensohler, A.: Design and performance of an automatic regenerating
1113 adsorption aerosol dryer for continuous operation at monitoring sites, Atmos. Meas. Tech., 2(2), 417–422, doi:10.5194/amt-2-417-2009,
1114 2009.

1115 Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R. and Jimenez, J. L.: Interpretation of organic components from Positive Matrix
1116 Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9(9), 2891–2918, doi:10.5194/acp-9-2891-2009, 2009.

1117 Velazquez-Garcia, A., Crumeyrolle, S., de Brito, J. F., Tison, E., Bourrianne, E., Chiapello, I. and Riffault, V.: Deriving composition-
1118 dependent aerosol absorption, scattering and extinction mass efficiencies from multi-annual high time resolution observations in Northern
1119 France, Atmos. Environ., 298(December 2022), 119613, doi:10.1016/j.atmosenv.2023.119613, 2023.

1120 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright,
1121 J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat,
1122 I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,
1123 A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A., Pietro, Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz,
1124 A., Lee, A., Rokem, A., Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R., Pasechnik,
1125 D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold, G. L., Allen, G. E., Lee, G.
1126 R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T., Slavić, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J. L., de
1127 Miranda Cardoso, J. V., Reimer, J., Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville,
1128 M., Kümmeler, M., Bolingbroke, M., Tarte, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P. A., Lee, P.,
1129 McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., et al.: SciPy 1.0: fundamental
1130 algorithms for scientific computing in Python, Nat. Methods, 17(3), 261–272, doi:10.1038/s41592-019-0686-2, 2020.

1131 Wang, Y. H., Liu, Z., Shi, G., Tian, M., Zhang, J. K., Hu, B., Ji, D. S., Yu, Y.-C. L., Chen, Y., Yang, F. and Wang, Y.-S. Cao, X.: Aerosol
1132 physiochemical optical properties and implications for visibility during an intense haze episode during winter chemical composition
1133 apportionment in Beijing, Atmos. Chem. Phys., 15(6), 3205–3215, doi:10.5194/acp-15-3205-2015, 2015.

1134 Sichuan Basin, China, Sci. Total Environ., 577, 245–257, doi:10.5194/acp-15-3205-2015, 2015.

1135 Wang, Q., Sun, Y., Jiang, Q., Du, W., Sun, C., Fu, P. and Wang, Z.: Chemical composition of aerosol particles and light extinction
1136 apportionment before and during the heating season in Beijing, China, J. Geophys. Res. Atmos., 120(24), 12708–12722,
1137 doi:10.1002/2015JD023871, 2015.

1138 Wang, Q., Saturno, J., Chi, X., Walter, D., Lavric, J. V., Moran-Zuloaga, D., Ditas, F., Pöhler, C., Brito, J., Carbone, S., Artaxo, P. and
1139 Andreae, M. O.: Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season, Atmos. Chem. Phys., 16(22),

1140 [14775–14794, doi:10.5194/acp-16-14775-2016, 2016.](https://doi.org/10.5194/acp-16-14775-2016)

1141 [Wang, Y., Pang, Y., Huang, J., Bi, L., Che, H., Zhang, X. and Li, W.: Constructing Shapes and Mixing Structures of Black Carbon Particles With Applications to Optical Calculations, *J. Geophys. Res. Atmos.*, 126\(10\), 1–15, doi:10.1029/2021JD034620, 2021.](https://doi.org/10.1029/2021JD034620)

1143 Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A., Nguyen, T. B., Praske, E., Schwantes, R. H.,
1144 Smarce, M. D., St Clair, J. M., Teng, A. P., Zhang, X. and Seinfeld, J. H.: Gas-Phase Reactions of Isoprene and Its Major Oxidation Products,
1145 *Chem. Rev.*, 118(7), 3337–3390, doi:10.1021/acs.chemrev.7b00439, 2018.

1146 Whitehead, J. D., Darbyshire, E., Brito, J., Barbosa, H. M. J., Crawford, I., Stern, R., Gallagher, M. W., Kaye, P. H., Allan, J. D., Coe, H.,
1147 Artaxo, P. and McMiggans, G.: Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season, *Atmos. Chem. Phys.*,
1148 16(15), 9727–9743, doi:10.5194/acp-16-9727-2016, 2016.

1149 Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, a.,
1150 M., Asmi, E., Sellegri, K., Depuy, R., Venizac, H., Villani, P., Laj, P., Aalton, P., Ogren, J. a., Swietlicki, E., Williams, P., Roldin, P., Quincey,
1151 P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grünig, C., Faloon, K., Beddows, D.,
1152 Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H.,
1153 Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G. and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size
1154 distributions, *Atmos. Meas. Tech.*, 5(3), 657–685, doi:10.5194/amt-5-657-2012, 2012.

1155 [Wu, L., Li, X., Kim, H., Geng, H., Godoi, R. H. M., Barbosa, C. G. G., Godoi, A. F. L., Yamamoto, C. I., Souza, R. A. F. De, Pöhlker, C.,
1156 Andreae, M. O. and Ro, C.: Single-particle characterization of aerosols collected at a remote site in the Amazonian rainforest and an urban
1157 site in Manaus, *Brazil. Atmos. Chem. Phys.*, 1221–1240, doi:10.5194/acp-19-1221-2019, 2019.](https://doi.org/10.5194/acp-19-1221-2019)

1158 [Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C.,
1159 Olson, K., Koss, A., Goldstein, A. H., Hering, S. V., de Gouw, J., Baumann, K., Lee, S.-H., Nenes, A., Weber, R. J. and Ng, N. L.: Effects
1160 of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States, *Proc. Natl. Acad. Sci.*,
1161 112\(1\), 37–42, doi:10.1073/pnas.1417609112, 2015a2015.](https://doi.org/10.1073/pnas.1417609112)

1162 [Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C.,
1163 Olson, K., Koss, A., Goldstein, A. H., Hering, S. V., de Gouw, J., Baumann, K., Lee, S. H., Nenes, A., Weber, R. J. and Ng, N. L.: Effects
1164 of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States, *Proc. Natl. Acad. Sci.*,
1165 112\(1\), 37–42, doi:10.1073/pnas.1417609112, 2015b.](https://doi.org/10.1073/pnas.1417609112)

1166 [Yamasoe, H. A., Artaxo, P., Miguel, A. H. and Allen, A. G.: Chemical composition of aerosol particles from direct emissions of vegetation
1167 "res in the Amazon Basin: water-soluble species and trace elements, *Atmos. Environ.*, 34, 2000.](https://doi.org/10.1029/2000at0110)

1168 [Yáñez-Serrano, A. M., Nölscher, A., C., Williams, J., Wolff, S., Alves, E., Martins, G. a., Bourtsoukidis, E., Brito, J., Jardine, K., Artaxo,
1169 P. and Kesselmeier, J.: Diel and seasonal changes of biogenic volatile organic compounds within and above an Amazonian rainforest, *Atmos.*
1170 *Chem. Phys.*, 15\(6\), 3359–3378, doi:10.5194/acp-15-3359-2015, 2015.](https://doi.org/10.5194/acp-15-3359-2015)

1171 [Yu, H., Wu, C., Wu, D. and Yu, J. Z.: Size distributions of elemental carbon and its contribution to light extinction in urban and rural
1172 locations in the pearl river delta region, China, *Atmos. Chem. Phys.*, 10\(11\), 5107–5119, doi:10.5194/acp-10-5107-2010, 2010.](https://doi.org/10.5194/acp-10-5107-2010)

1173 [Zaveri, R. A., Wang, J., Fan, J., Zhang, Y., Shilling, J. E., Zelenyuk, A., Mei, F., Newsom, R., Pekour, M., Tomlinson, J., Comstock, J. M.,
1174 Shrivastava, M., Fortner, E., Machado, L. A. T., Artaxo, P. and Martin, S. T.: Rapid growth of anthropogenic organic nanoparticles greatly
1175 alters cloud life cycle in the Amazon rainforest, *Sci. Adv.*, 8\(2\), 1–17, doi:10.1126/sciadv.abj0329, 2022.](https://doi.org/10.1126/sciadv.abj0329)

1176 [Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop, D. R. and Sun, Y.: Understanding atmospheric organic
1177 aerosols via factor analysis of aerosol mass spectrometry: A review, *Anal. Bioanal. Chem.*, 401\(10\), 3045–3067, doi:10.1007/s00216-011-
1178 5355-y, 2011.](https://doi.org/10.1007/s00216-011-5355-y)

1179 [Zhang, Y., Zhi, G., Jin, W., Wang, L., Guo, S., Shi, R., Sun, J., Cheng, M., Bi, F., Gao, J., Zhang, B., Wu, J., Shi, Z., Liu, B., Wang, Z. and
1180 Li, S.: Differing effects of escalating pollution on absorption and scattering efficiencies of aerosols: Toward co-beneficial air quality
1181 enhancement and climate protection measures, *Atmos. Environ.*, 232\(April\), 117570, doi:10.1016/j.atmosenv.2020.117570, 2020.](https://doi.org/10.1016/j.atmosenv.2020.117570)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

1183
1184 [Zhu, C. S., Cao, J. J., Ho, K. F., Antony Chen, L. W., Huang, R. J., Wang, Y. C., Li, H., Shen, Z. X., Chow, J. C., Watson, J. G., Su, X. li,
1185 \[Wang, Q. yuan and Xiao, S.: The optical properties of urban aerosol in northern China: A case study at Xi'an, Atmos. Res., 160, 59–67,
doi:10.1016/j.atmosres.2015.03.008, 2015.\]\(#\)](#)

1186

Formatted: Normal, Space After: 10 pt, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border)

Formatted: Font color: Black

Formatted: Normal, Border: Top: (No border), Bottom: (No border), Left: (No border), Right: (No border), Between : (No border), Tab stops: 3.13", Centered + 6.27", Right

45
45