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Abstract. During the dry season, the Amazonian atmosphere is strongly impacted by fires, even in remote areas. However,
there are still knowledge gaps regarding how each aerosol type affects the aerosol radiative forcing. This work characterizes
the chemical composition of submicrometer aerosols and source apportionment of Organic Aerosols (OA) and Equivalent
Black Carbon (eBC) to study their influence on light scattering and absorption at a remote site in central Amazonia during the
dry season (August-December 2013). We applied Positive Matrix Factorization (PMF) and multi-linear regression models to
estimate chemical-dependent mass scattering (MSE) and extinction (MEE) efficiencies. Mean PM1 aerosol mass loading was
6.3+3.3 pug m3, with 77% of organics, grouped into 3 factors: Biomass Burning OA (BBOA), Isoprene derived Epoxydiol-
Secondary OA (IEPOX-SOA) and Oxygenated OA (OOA). The bulk scattering and absorption coefficients at 637 nm were
17410 Mm* and 3+2 Mm%, yielding a single scattering albedo of 0.87+0.03. Although eBC represented only 6% of the PM1
mass loading, MSE was highest for the eBC (13.58-7.62 m? g -at 450-700 nm), followed by BBOA (7.96-3.10 m? g*) and

ammonium sulfate (AS, 4.79:4.58 m? g), MEE was dominated by eBC (30.8%), followed by the OOA (19.9%) and AS
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1 Introduction
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The strong coupling between climate and the biological functioning of Amazonia is a key factor in the maintenance of its

ecosystem (Martin et al., 2010b; Pohlker et al., 2012). The Amazonian atmosphere is considered an important reactor

regulating its physical properties and chemical composition due to the high insolation and humidity (Andreae, 2001). However,

during the dry season, forest fire emissions coupled with smaller rates of aerosol scavenging lead to particle number

concentration increases by a factor of 10 in remote forest areas compared to near pristine conditions episodes during the wet

season (Andreae et al., 2015; Artaxo et al., 2013; Pohlker et al., 2018). These stark seasonal differences in aerosol loading and

composition have the potential to significantly modify the biosphere-atmosphere coupling (Zaveri et al., 2022). These seasonal

differences are expected to be exacerbated in the future due to extreme climatic events in Amazonia (Flores et al., 2024).
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Carbonaceous aerosols (i.e. organic aerosols, OA and black carbon, BC) dominate the atmosphere particles chemical classes

in Amazonia (Artaxo et al., 2013). The secondary component of OA (SOA) has been shown to have a major contribution,

notably during the wet season (Chen et al., 2015; Shrivastava et al., 2019). In remote regions of Amazonia, aged and highly

processed oxygenated particles originated from multiple sources (forest fires, derived from volatile organic compounds —

VOCs...) are a major component of basin-wide haze observed during biomass burning season (Darbyshire et al., 2019).

Isoprene (2-methyl-1,3-butadiene, CsHs) is the most abundant VOC emitted globally, mostly in tropical forests (Marais et al.,

2016; Yéfiez-Serrano et al., 2015). The formation of isoprene-derived Secondary Organic Aerosol (SOA) is a sequence of

complex reactions and depends on different factors, such low concentrations of NO and pre-existing aerosol particles where

isoprene can condense on (Brito et al., 2018; Caravan et al., 2024; Marais et al., 2016; Nah et al., 2019). One of the dominating

isoprene SOA pathways in Amazonia is through the OH attack, leading to hydroperoxy radicals (Shrivastava et al., 2019;

Wennberg et al., 2018). This pathway can lead to different low-volatility products generally termed IEPOX-SOA (lsoprene

EPOXydiols-Secondary Organic Aerosol) (Allan et al., 2014; Hu et al., 2015; Surratt et al., 2010). While OA originates from

both primary emissions, as well as secondary formation from gaseous precursors (Martin et al., 2010b), BC is mostly primarily

emitted from incomplete combustion, and in remote areas of Amazonia it is associated with regional or transatlantic forest
fires (Artaxo et al., 2013; Holanda et al., 2020; Saturno et al., 2018a).

Atmospheric aerosol particles influence climate through scattering and absorption of solar radiation (aerosol-radiation

interactions, ARI) and by affecting cloud formation and lifetime (aerosol-cloud interactions, ACI) (Forster et al., 2021).

However, the magnitude and the signal of global radiative forcing of aerosols still represent one of the largest uncertainties in

global climate models (Szopa et al., 2023). Uncertainties on the radiative forcing of individual aerosol components are even

higher, with a direct impact on the accuracy of future climate scenarios (Forster et al., 2021). The sign and magnitude of the

ARI forcing are dependent on several parameters such as particles size distribution, mixture, aging processes and

meteorological conditions, as well as the particle chemical composition and its effect on the complex refractive index, based

among other factors, on the origin of the particles (Laskin et al., 2015; Li et al., 2024; Saturno et al., 2018a). Aerosol particles

known for efficiently absorbing radiation - such as BC - often also exhibit significant scattering efficiencies, which are strongly
influenced by their size, chemical composition, and the extent and nature of their atmospheric aging and coatings (Bond and
Bergstrom, 2006; Schwarz et al., 2006; Yu et al., 2010). Although chemical aging has shown to enhance light absorption due

to the coating of the BC core by condensing semi- and intermediate volatility organic compounds or coagulation with other
particles (Darbyshire et al., 2019; Metcalf et al., 2013; Saturno et al., 2018b; Tasoglou et al., 2017; Wang et al., 2016), primary

biomass burning aerosols have also been associated with high scattering efficiencies (Hand and Malm, 2007; Malm et al.

2005). Coating by non-absorbing material, such as Organics (Romshoo et al., 2021), has been shown to increase BC scattering

by a factor of 3-24 depending on the size, morphology, aging stage, coating thickness and composition of the BC particles (He

et al., 2015). Conversely, sulfate and water coating have also shown to increase elemental carbon particle diameter, playing a

stronger role on its scattering efficiency, more than absorption (Cheng et al., 2008; Yu et al., 2010). Precisely quantifying

distinct ARI for each chemical species, and especially decreasing uncertainties on the ones with high potential to both absorb
4
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130 and scatter radiation such as BC is critical to improve our understanding and prediction of the atmospheric system and improve

131 climate models.

132 Chemical composition, processes, and sources of atmospheric aerosol particles in Amazonia have been widely studied during

133 both the wet and dry seasons, in sites representing pristine conditions (Andreae et al., 2015; Cheng et al., 2015; Martin et al.,

134 2010a) as well as strongly impacted by fires and urban pollution (Brito et al., 2014; Palm et al., 2018; Ponczek et al., 2021;

135 Zaveri et al., 2022). Physical properties of radiation absorption and scattering have been described for the whole particles mass

136 loading, regardless of the specific chemical groups (Artaxo et al., 2013; Nascimento et al., 2021; Palécios et al., 2020; Rizzo

137 etal., 2013; de Sa et al., 2019; Sena et al., 2013). However, intensive optical properties of each aerosol species are still rare
138  (Velazquez-Garcia et al., 2023), notably associated with OA origins (Ponczek et al., 2021) and with BC behaviour. Our study

139 details the chemical properties of submicrometer aerosol particles in a forest site in central Amazonia during the dry season

140 and their influence on radiation scattering and absorption. We applied positive matrix factorization (PMF) to the organic

141 fraction, and associated mass extinction, absorption, and scattering efficiencies to different aerosol components via multi-

142 linear regression (MLR) to improve our comprehension of their intrinsic properties, as well as estimate their role on ARI in

143 Central Amazonia during the dry season.

144 2 Material and Methods [Formatted: English (United Kingdom)

145 2.1 Sampling site

146  The measurementssite is located in Central Amazonia, 60 km northwest of the city of Manaus, Brazil, in the Cuieiras biological [ Formatted: English (United Kingdom)
147 reserve (2°35°39.24°°S, 60°12°33.42>°W),—and-referred—to—in-this—study-as—F0z), (Martin—et-al;—2015;\Whitehead—et-al; [Formatted: English (United Kingdom)
148  2016)(Martin et al., 2015; Whitehead et al., 2016), The vegetation is characterized as terra firme (upland forest, not impacted [ Formatted: English (United Kingdom)
149 by seasenally-floodedseasonal flooding), and the canopy is between 30 m and 35 m high (Martin-etal 2010} (Martin et al., [Formatted: English (United Kingdom)
150 2010a), 2010), As a result of steady northeasterly-easterly winds {(Andreae-etal—2015-Aratjo-et-al—2002)(Andreae et al., [Formatted: English (United Kingdom)
151 2015; Aradjo et al., 2002), only rarely the site is impacted by Manaus emissions (Chen et al., 2015), The seasenality-at-the [Formatted: English (United Kingdom)
152 egion-of thissite-in-central-Amazenia-hasbeen-previously-defined-asthe wet season in this region is typically, from 1 December [Formatted: English (United Kingdom)
153  — 14 June, and the dry season from 15 June — 30 November (Andreae et al., 2015). During the wet season, air masses reaching ( Formatted: English (United Kingdom)
154  the site pass over more than 1,500 km of undisturbed forest {Andreaeet-al,2015;Pésehl-et-al—2010).(Poschl et al., 2010), [Forma&ed: English (United Kingdom)
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155  However, during the dry season, regional biomass burning pollution can be detected at the site (Artaxeo-et-al-2013;-Rizzo-et

) . o [Formatted: English (United Kingdom)

156 al-2013)(Artaxo et al., 2013; Rizzo et al., 2013), as well as aerosol plumes advected from African wildfires (Holanda et al., [Formatted: English (United Kingdom)
157 2023). Our observations comprise from 1 August until 10 December 2013, sampling the atmosphere at 38.8 meters above
158 ground level. The instrumentation was located inside an air-conditioned container at the base of the tower. A cyclone (50 % ,[Formatted: English (United Kingdom)
159  cut-off at 10 pm) was used at the entrance of the inlet. An automatic diffusion dryer (Fueh-et-al-2009)(Tuch et al., 2009), kept [ Formatted: Font color: Black
160 the relative humidity of the sampled air between 20% and 50%. Lodging for scientists/staff and a diesel generator were located Formatted: Normal, Border: Top: (No border), Bottom: (]
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161 330m and 720m downwind (west) from the tower, respectively. The measurement tower has been shown to be practically
162 unaffected by the generator (Whitehead et al., 2016). The year of this study (2013) was characterized by a historical minimum

163 of fire detection over-the-last 20 years (Figure 1, (F-G-Assiset-al2019)(F. G. Assis et al., 2019)), providing an interesting [Formatted: English (United Kingdom)
164  outlook to assess the best scenarios for a dry season in recent times, and thus evaluate atmospheric composition within targets [ Formatted: English (United Kingdom)
165  and goals for the Amazen-forestAmazonia rainforest, preservation. The observation period here has been considered to fit [Formatted: English (United Kingdom)
166  entirely within dry-season atmospheric conditions. The previous transitional (wet-dry) period occurred in June-July
167  (Whitehead-etal;2016);(Whitehead et al., 2016), and the subsequent (dry-wet) soon after the end of our measurements. [Formatted: English (United Kingdom)
168
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JFigure 1: a) Number of fires in the Brazilian Amazen-ferestAmazonia rainforest, from 1999 to 2022, showing how 2013 (marked in

red) ishas the lowest in-the-past20-years-in-terms-of total number of fires_in 20 years, and b) mean (blue), maximum (blacky);) and, [
N [Formatted: English (United Kingdom)

minimum (green),-and-for2013(red) monthly fires between 1999-2022 in the AmazenAmazonian,Basin. The year of 2013 is marked
in red, and it is evident how it was very close to the minimum (green) line, The gray area in b) marks the period of measurements in
our study (01/Aug — 10/Dec) (Instituto Nacional de Pesquisas Espaciais, 2024).

2.2 Instrumentation

Non-refractory submicrometer aerosol composition was measured using a quadrupole Aerosol Chemical Speciation Monitor
(ACSM, Aerodyne Research Inc) (Ng et al., 2011), which is a compact version of the Aerosol Mass Spectrometer (AMS).
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Instrument calibration consisted of injecting monodispersed (300 nm) aerosol particles of ammonium nitrate (AN) and
ammonium sulfate (AS)-Aeresel-particles-were), generated using an atomizer and subsequently dried, and size selected using
a Differential Mobility Analyzer. A collection efficiency of 0.5 has been adopted (Middlebrook et al., 2012), yielding a very
good agreement #of, particle mass considering measurements from different collocated instruments (S1). This method was
successfully used in previous studies {Brite-et-ak-2014;-Sun-et-ak2010)(Brito et al., 2014; Sun et al., 2010), and the value of
0.5 agrees with other studies in the-AmazenAmazonia during the dry season {de-Sa-et-al2019)-and-during-the-transition-from
wet-to-dry-season-{Ponezek-et-al—2021).(Ponczek et al., 2021; de S4 et al., 2019). ,The measured ammonium (NH4) mass
concentrations were close to, or often lower than the detection limit of 0.28 pm>-(Péhlkeret-al,-2018; Whitehead-et-al;
2018)ug m (Pohlker et al., 2018; Whitehead et al., 2016), and were therefore calculated based on nitrate (NO3) and sulfate

(SO4) molar masses and their mass concentrations, assuming neutralization as in Equation 1:

SO. NO.
NHy, preaieea =18 % (53 X2+ °31) &N

JFurthermore, the SO4 and NOj3 ions were used to estimate AS and AN (Equations 2 and 3),for the chemical-dependent optical

properties analyses (Section 3.3), assumed here to be their most abundant form given the very low NH4 levels:

A
AS = 132 X % 0)

AN = 80 x == ©)
Size-resolved particle number size distribution from 10 to 450 nm was measured with a Scanning Mobility Particle Sizer
(SMPS, model 3081, TSI Inc.) coupled to a Condensation Particle Counter (CPC, model 3772, TSI Inc.) to provide equivalent
mobility particle diameter for singly charged particles (Dpg, (Wiedensohler et al., 2012)-), Aerosol light scattering coefficient
(o) at 450 nm, 550 nm, and 700 nm (Anderson and Ogren, 1998),was measured using a Nephelometer (model 3563, TSI Inc.). |

Calibration was performed using CO; as the high-span gas and filtered air as the low-span gas. The averaging time applied

was 60 minutes, and therefore the detection limits;- (defined as a signal-to-noise ratio of 2;), for scattering coefficients are 0.08, |
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0.03, and 0.05 Mm;lAfor 450, 550, and 700 nm, respectively (Anderson and Ogren, 1998). Since-a-PM10-inlet-was-tsed,-the

“no <) orswere used for the truncation-corrections (Anderson-and Oaren 1008 erina coefficients at 637 nm-were

and-was-used, to estimate equivalent Black Carbon (eBC) concentration, assuming an absorption cross-section value of 6.6 m?

g™. Considering the conditions of the experiment, the MAAP detection limit for g, was of 0.13 Mm:lA(PetzoId et al., 2005).
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Episodes of possible contamination from the city of Manaus and from the diesel generator were removed by filtering the
datapoints when either the wind direction was between 270-340° (from our local wind direction measurements) or when the
calculated backtrajectories from the Hysplit model (Draxler and Hess, 1998) passed over Manaus coordinates, as in (Whitehead
et al., 2016) (Supplement S2).

2.3 Optical properties

Scattering coefficients at 637 nm were calculated from interpolation using the scattering Angstrom exponent (a.s, Equation 4),

assuming a power-law spectral dependency. The as is a measure of the dependence of radiation scattering on the light

wavelength (M), and it is an indication of particle size (Rizzo et al., 2013; Saturno et al., 2018b; Schuster et al., 2006):

Ino; = —asInd + In (constant) @

Single Scattering Albedo (SSA, Equation 5) is a measure of the ratio of o to the total radiation extinction coefficient (ce = o

+ oq) by aerosol particles (Rizzo et al., 2013). Since the MAAP instrument only measures the o, at a wavelength of 637 nm,

the o was calculated using csat 637 nm interpolated from the nephelometer.

SSA = = (5)

o5+ 0og

After rain events and other moments when the atmosphere is very clean, beth-es-foreevaluesall the optical parameters are very
lewclose to zero, and therefore the ratio between them (SSA;-Equation-4)-becomes unrealistically high. We therefore calculated
SSA for-esforonly when os and 6e> 1 Mm%,
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P45 2.4 Statistical Analyses
P46  2.4.1 Positive Matrix Factorization (PMF)

RAT
248
249
250
251

252 We used Positive Matrix Factorization (PMF) in order to group the submicrometer non-refractory organic mass spectra (m/z

253 ratios) with similar temporal variability, supporting the identification of sources and processes that formed and transformed

254 atmospheric particles (Paatero and Tapper, 1994; Ulbrich et al., 2009; Zhang et al., 2011). The model can be represented by
255 the following Equation. (6):

P56 A [Formatted: English (United Kingdom)
P57 Ximxny == 2 Gmxpy: Epxmy, T EE, (6) [Formatted: English (United Kingdom)
b58 \ [Formatted: English (United Kingdom)
259  Where X is the input matrix of n (elements — m/z ratios) lines and m (number of samples) columns (Ulbrich-et-al-2009) %meatted: English (United Kingdom)
i i ) ) Formatted: English (United Kingdom)
260 (Ulbrich et al., 2009). In this study, the X matrix had 2901 lines (1-hour averages for more than 4 months of measurements) [Fo matted: English (United Kingdom)
i H I I {
261 and 70 columns (m/z ratios). The receptor model aims to determine the number of p factors, representing sources or processes, [ Formatted: English (United Kingdom)
P62  their chemical composition, and the relative contribution of each factor. G is a matrix in which columns are the time series of [ Formatted: English (United Kingdom)
P63  the factors. F is a matrix in which lines are the profiles of the factors (mass spectra). E represents the residuals, the part of the [ Formatted: English (United Kingdom)
P64  data that was not medeledmodelled, by any factor p. We used an IGOR™-based interface to apply the PMF analysis (Ulbrich [FOTmatted: English (United Kingdom)
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P70 We used a Multilinear Regression (MLR) model to estimate the contribution of each aerosol chemical component to scattering,

P71 absorption, and extinction coefficients, deriving the corresponding efficiencies (MSE, MAE, and MEE, respectively) (Yu et

R72 al., 2010). The scattering (os) and extinction (oe) coefficients (Mm™) were the dependent variables (response) and the ACSM

[Formatted: English (United Kingdom)

273 species/PMF factors were the independent (predictor) variables. [Formatted: English (United Kingdom)
P74 A generalization of the mass efficiency (ME) calculation is presented in Equation 7: [ Formatted: Font color: Black
P75 Formatted: Normal, Border: Top: (No border), Bottom: (!
border), Left: (No border), Right: (No border), Between : (
276 ME =Y,a;x; + 7, O] border), Tab stops: 3.13", Centered + 6.27", Right
10




77
278
279
280
281
282
283
284
285

286

287

288
289
290
291
292
293
294
295
296
297
298
299
800
801
802
803
804
805
806
807

Where ME can be MSE, MAE or MEE; x is the chemical species mass concentration; a; is the efficiency of each component,
and r are the residuals. We used NNLS (Non-Negative Least Squares) from Python package Scipy version 1.5.2 {\irtanen-et

the- MAAPRa-MLR could-net-be-applied;(Virtanen et al., 2020). To constrain the model to produce results with physical

meaning, the coefficients a; were constrained to be positive, as in (Velazquez-Garcia et al., 2023). Since eBC is assumed to

be the only absorbing component measured in this study with the MAAP, a MLR could not be applied for ¢,,,and the MAE

was considered to be equivalent to the cross-section value (6.6 m2 g, Section 2.2).

3 Results and Discussion
3.1 Aerosol chemical composition

The concentrations of organics and inorganics aerosols follow similar variation patterns during the measurement period (Figure

2a). This can be an indication that the total mass loading consists of well-mixed biomass burning and secondary aerosols

associated with large and regional-scale processes (Darbyshire et al., 2019). The total submicrometer (PM1 = Organics +NOs

represents about half of what was measured during the dry season of the following year (2014, with much more fires, Figure
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comparable to the ATTO site (Andreae et al., 2015). However, in Southwestern Amazonia, in areas impacted by fresh biomass
burning, the average SO, mass fraction was significantly lower (2-3% (Brito-et-al;2014:-Ponczek-et-al2021)).(Brito et al.
2014; Ponczek et al., 2021)),
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Amazonia, highly impacted by fresh biomass burning, the contribution of eBC to PM1 reached 15% (Ponczek et al., 2021).

Nitrate had a minor contribution during our observations (3+19%), with concentration levels comparable to the ATTO site
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Figure 2: Non-refractory submicrometer aerosol species and eBC mass (a) concentrations and (b) fractions-at 10z, In (a) the vertical

axis is the logarithm scale to facilitate the visualization of different species.ta-{a)-data-isshewn-intheoriginal- time stamp-of Lhour,

The PMF analysis yielded 4 factors;-although-2 statistical factors, although 2 of them, were closely related to the Oxygenated ,

Organic Aerosol (OOA) fraction,-and-the. Their, mass spectra, diurnaldaily, profile, and time series of these factors did not |

present enough differences to justify their separation (Supplements S3 and S4). Therefore, these 2 factors were manually

summed in order to generate a 3 factors solution, which was different from the factors found in the 3 factors solution presented

by the PMF. In (Ulbrich et al., 2009), the authors describe how one PMF resulting statistical factor can split into various other ,

factors which, after added, represent the real factor. The recombination often considers similarities between the statistical
factors in the mass spectra, diurnaldaily, profile and time series (Carbone et al., 2013), In our study, the identification of the

factors was further confirmed with the correlation between the PMF statistical factors and the inorganic aerosols, with the eBC
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339 (Supplement S4) and diurnatdaily, profile analyses. The 3 factors were identified as BBOA (Biomass Burning Organic [Formatted: English (United Kingdom)

B40  Aerosol), OOA (Oxygenated Organic Aerosol) and IEPOX-SOA (Isoprene derived Epoxydiol-Secondary Organic Aerosol),
B41  and they represent together 99% of the measured submicrometer organic aerosol mass, with 1% of residuals. The correlation
342 between BBOA and NO3 and SO4 is comparable with findings in Southwestern Amazonia (Brito et al., 2014).

843  Table 1 - Dry season (01/Aug — 10/Dec) mean mass concentration (U m=), standard deviations, and percentile range
B44  (10-90, in parenthesis) of the species measured by the ACSM and MAAP (eBC).

Mass concentration (ug m) Mass fraction « [ Formatted Table
Total PM1 6.3£3.3 (2.7-10.3) 100% [Formatted: English (United Kingdom)
Organics A.9+2.7 (2.1-7.9) 77£5% [Formatted: Portuguese (Brazil)
BBOA 0.6£0.6 (0.2-1.1) 9+5% ( Formatted: English (United Kingdom)
IEPOX-SOA 1.0£0.5 (0.4-1.7) 17+£5%
00A 3.2+15(13-55) 51+6% ( Formatted: Font: 10 pt, Portuguese (Brazi)
NO3 0.2+0.1 (0.1-0.3) 3+1% [Formatted: English (United Kingdom)
NH,4 0.3+0.1 (0.0-0.5) 4+1% [Formatted: English (United Kingdom)
SO4 0.5+0.3 (0.2-0.9) 9+3% [Formatted: English (United Kingdom)
£BC 0.4+0.3 (0.1-0.7) 6+2% [Formatted: English (United Kingdom)
R45 . [Formatted: English (United Kingdom)
. . . . . . . [Formatted: English (United Kingdom)
B46  The largestcontributiondominant PMF-derived statistical factor in our study was OOA, which contributed to 51+6% of the
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B47  PML1 (Table 1), and 65% of the organic mass. MMW@MMM&H%@%}—MM@M&M
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356 atmospheric particles in,remote eentral-regions at-the-centerof the-basinAmazonia, (Darbyshire et al., 2019). This factor has
357 the highest estimated O:C ratio, which is evident in the observed m/z 44 fraction (Figure 3, note the different scales). The high
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358 oxidation level indicates highly aged particles and may lose some of their original chemical signatures, in terms of elementary
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359 ratios, during the aging process (Jimenez et al., 2009). The m/z 44 signal predominantly arises from the CO»* ion fragment
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362 organic compounds, providing insight into aerosol aging and secondary organic aerosol formation processes., The more aged [Formatted: English (United Kingdom)

363 the aerosols, the more chemically similar they become, which makes the task of separating them into different factors with

364 distinctive characteristics very difficult. Therefore, the OOA factor probably groups aerosol particles from different sources

365 and their common characteristic is that they are probably originating relatively distant from the sampling site.
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m/z 82 in the IEPOX-SOA factor. The scale of the Y axis is different in order to facilitate visualisation of m/z signal fractions mainly

of (a) and (b),

The production of IEPOX-SOA generally leads to the production of markers in the atmosphere, such as the 2-methylthetrol

and the 3-methylfuran (m/z 82, CsHsO")—Fhese-markers-may-not-originathye r-the JEPOX-SOA-moleculedue-to-the

methyltetrahydrofuran-3.4-diels(3-MeTHF-3,4-diols)-(Lin-et-al-—2012):") (Lin et al., 2012), The organic fraction in the m/z

82 is therefore important for the identification of the IEPOX-SOA factor (Figure 3b, despite its low contribution to the

submicrometer-organic-aeroselmass fraction (usually below 4%).—Beyond-that—mest% of submicrometer organic aerosol).

Most, of the other m/z are common to other factors, making the m/z 82 distinctive of the IEPOX-SOA, which can also be
identified by the m/z 53 (C4Hs") and m/z 75 (CsH70:") i

season(Figure 3b) (Allan et al., 2004; Lin et al., 2012; Xu et al., 2015). IEPOX-SOA mean mass concentration in our study
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was 1.0+0.5 pg m (Table 1). Previous studies reported 0.26 ug m during the wet season at the same site, (Chen et al., 2015), [Formatted: English (United Kingdom)
while downwind of Manaus it was around 0.5 pug m- during background conditions, and 0.1 pg m-2 during polluted conditions
{de-Saetal2017)(de Sa et al., 2017), Htis-importantto-notethatat T0zwhile [Formatted: English (United Kingdom)
While, the organic particle loading typically increases by an order of magnitude from the wet to the dry season (Artaxo et al., [ Formatted: English (United Kingdom)
2013), we-estimated-that 1EPO OA-increases-abouta-factor~3TFherelative contribution-of HERO OA-to-organics-durin
about a factor ~3 (Table 1 and (Chen et al., 2015), while its relative contribution to the organic aerosols drops by half (from
34% (Chen et al., 2015) to 17%, Table 1). Thisis likely the result of a complex balance between increased isoprene emissions [ Formatted: English (United Kingdom)
{Yahez-Serrano-et-al—2015)(Yafiez-Serrano et al., 2015), sulfate abundance and increased pollution levels (including NOx [Formatted: English (United Kingdom)
from forest fires, and biomass-burning related aerosol particles). The relative contribution of IEPOX-SOA to the total PM1
mass was relatively constant during the whole measurement period (Figure 2b), as well as most of the other species (with the
exception of some episodes). This indicates that an atmospheric dynamics of rain/dilution controlling the chemical composition
could be more important than the influence of local sources of particles, confirming the regional haze hypothesis raised by
(Darbyshire et al., 2019).
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nearby-fire-seurces-The correlation (Pearson coefficient = 0.7) observed between the IEPOX-SOA factor and AS (Supplement

S4.1) is similar to the correlation measured in regions affected by urban pollution in Amazonia, Africa and USA (Brito et al.,

2018; Budisulistiorini et al., 2013; de Sa et al., 2017). Sulfate is the main aqueous phase particle in which isoprene products

condense on, and therefore a positive and moderate-high correlation is expected (Budisulistiorini et al., 2013; Kroll et al.,
2006; Lin etal., 2012; Marais et al., 2016; Surratt et al., 2010; Xu et al., 2015). eBC presents a similar correlation with IEPOX-
SOA as AS (Supplement S4), but the correlation is even higher with the other PMF factors, especially OOA (Pearson

coefficient = 0.85, Supplement S4). This suggests that a significant fraction of the aged submicrometer aerosols measured

during the dry season in Central Amazonia is largely influenced by biomass burning emissions, in combination with other

combustion sources such as sporadic urban plumes transported from Manaus. In addition, co-variability between aerosol

species is expected due to strong washout events that, although less frequent, can still occur during the dry season and impact

multiple aerosol components simultaneously. The fact that the eBC correlation is higher with the OOA factor than with BBOA

(which constitutes only 9% of PM1, Table 1, Supplement S4) indicates that long-range transport of aged and internally well

mixed biomass burning plumes plays a more important role than nearby sources (Darbyshire et al., 2019).

The BBOA factor can be identified by the presence of the m/z 60 and m/z 73 (Figure 333), which are dominated by the C,H4O,*

and the CsHsO2* fragments. These fragments are originated from levoglucosan and other similar anhydro-sugars (such as
manosan and galactosan). Levoglucosan (1,6-a-D-anhydroglucopyranose, CsH10Os) is known as a biomarker of biomass
burning emissions due to its production from the pyrolysis, of carbohydrates as cellulose {(Alfarra-et-al;2007-Artaxo-etal;

2013:Chen-etak—2009;Lee-et-ak—2010)(Alfarra et al., 2007; Artaxo et al., 2013; Chen et al., 2009; Lee et al., 2010), The

signal fraction of m/z 60 for the BBOA factor in our study was 1.5%, which is 5 times higher than the 0.3% threshold typically
used as an appropriate background fraction for biomass burning (Cubison et al., 2011). OOA presented a m/z 60 signal fraction
of 0.2%, while IEPOX-SOA presented a negligible signal.

from other factors (Figure 4). While OOA and IEPOX-SOA mass loadings increase during the day, likely due to

photochemically driven oxidation processes, BBOA remains relatively constant throughout the day, despite the daytime

dilution effect of a rising boundary layer (Andreae et al., 2015). Interestingly, this pattern contrasts with the pronounced
18
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daytime decrease in fresh biomass-burning aerosol concentrations reported, in southwestern Amazonia (Brito et al., 2014),

where there-were-constantlocal-sources-of fires-and-the-diurnal-cycle was mostly determined-by-the boundarny layer-increasin

of a clear diurnal cycle for BBOA in our study corroborates a regional, rather than local, origin—TIikely from biomass-burning

sources located in the eastern Amazon. The flat variability of this primary factor reflects transport over long distances and the

influence of complex vertical mixing, including, interactions between residual and nocturnal layers (Darbyshire et al., 2019).
Further supporting this hypothesis, is the relatively flat pattern-eftheeBC-dieldaily, cycle of eBC, although there-isa smat-but
noticeable-slight daytime jincrease in-the-eBC-diurnal-mass-concentration-during-daytime-is observed (Figure 4), which-may
indicate-seme-possibly due to Jensing effect-due-to-the-increase-in-theparticlecoatingeffects as particles acquire coatings
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during transport, (Denjean et al., 2020). While-the-diel-eyecleof-theUnlike eBC, NH4 and NOg show pmeﬁea#y—neminimi\
diurnal, variation, thewhile, SO, indicates the-influence-ofexhibits a daytime increase, consistent with secondary production vi

photochemical processes{Figure4jreactions from biogenic sources, or atmospheric transport processes, The higherrise in the,
boundary layer induring, the afternoon (Fiseh-et-al--—2004)-may-favor-the-downward-transport-of-long-distance-particles-(Fisch

etal., 2004) may facilitate the entrainment of particles from above the boundary layer (Darbyshire et al., 2019)-An-additional
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As the OOA and the IEPOX-SOA factors represent together around 68% of the total mass fractions of the submicron particles

during our study (Table 1), and conversely, eBC and BBOA represent only 15%, the importance of the atmospheric

photochemical activity in Central Amazonia becomes evident. Well-preserved parts of Amazonia are strongly affected by the

regional transport of well-processed biomass burning plumes, overwhelming the local biogenic processes that usually modulate

the daily behavior of secondary aerosol development (Artaxo et al., 2013; Darbyshire et al., 2019).
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Figure 4: Biurnaldaily, profile (local time) of the PMF derived statistical factors, the inorganic chemical species and eBC mass+

concentrations for the whole period of measurements (1 August — 10 December, 2013). The lines represent mean values, and the
shaded areas represent the standard deviations. The OOA factor, shown separately, has a different vertical scale_to improve
visualisation,

3.2 Physical properties

The mean scattering coefficient at 637 nm in our study was 17+10 Mm (Table 2), which is similar to the values reported for<
the same site and at the ATTO site during the dry season in previous years (Rizzo et al., 2013) and lower than observations
close to biomass burning sources (32-80 Mm™* (Artaxo et al., 2013; Ponczek et al., 2021)). In the dry season, fine mode particles
predominate and are more efficient at scattering radiation than coarse mode dominated biogenic particles in the wet season

{Rizzo-etal2013)-The-absorption-coefficient mean-value was-3+2 Mm~(Table 2 Figure 5;-Section-2:2)-(Rizzo et al., 2013).

The o, mean value was 3+2 Mm™ (Table 2, Figure 5c, Section 2.2), in accordance with low values previously reported for

aged biomass burning haze (Formenti et al., 2003),
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nm-{unitless);, and c) absorption and scattering coefficients at 637 nm-(Mm ).,

TFhe-mean-value forthe-scattering-AngstromThe mean SSA observed in our study (0.87+0.03, Table 2) was very similar to the

SSA reported for a nearby site in Amazonia, as well as sites impacted by fires or urban pollution (Carrico et al., 2003; Deng
et al., 2016; Kim, 2015; Kleinman et al., 2020; Nakayama et al., 2010; Saturno et al., 2018b; Wang et al., 2017; Zhu et al.,
2015). The dominance of organics and the relatively high SO, fraction in our study (9%, Table 1) are probably important

factors contributing to the high SSA (Artaxo et al., 2013; Rizzo et al., 2013), and aged biomass burning plumes have been

demonstrated to be more efficient in scattering radiation than freshly emitted particles (Formenti et al., 2003). Mean SSA was

lower (0.77+0.08 at 637 nm) in a site highly impacted by fires in southwestern Amazonia (Ponczek et al., 2021). In urban

environments impacted by pollution, SSA was 0.92-0.89 (Tian et al., 2022), and 0.75-0.84 when the urban pollution was mixed

with biomass burning (Pani et al., 2023). Slightly higher SSA values are related to urban haze episodes with high AS

contributions, rural areas dominated by dust plumes, or high altitude regions influenced by clean maritime air masses (Fan et
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et al., 2008; Cho et al., 2017; Gao et al., 2015; Jing et al., 2015; Ma et al., 2011; Ram et al., 2016; Soni et al., 2010; Titos et

al., 2012) or maritime regions impacted by biomass burning from Africa (Dobracki et al., 2023).

The mean value for the scattering Angstrom, exponent in our study was 1.76+0.26 (Table 2), which is very similar to the

1.70£0.41 and the 1.71+0.24 measured in the dry seasons of previous years at the same site and at the nearby ATTO station

{Rizzo-etal2013;-Saturne-et-al2018b)(Rizzo et al., 2013; Saturno et al., 2018b), and the 1.65+0.37 measured during the dry
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season at a site more impacted by forest fires (Porczek-et-al—2021)(Ponczek et al., 2021), However, it was higher than the
1.48+1.12 (although within the high variability range) and the 1.29+0.50 measured in wet seasons of previous years at the

same station and the ATTO site {Rizzo-et-al2013;-Saturno-et-al-2018b)-(Rizzo et al., 2013; Saturno et al., 2018b), Higher

scatterin Angstrom, exponent values are usually related to a greater proportion of fine mode particles in the aerosol
g ANgstrom, exp! y g prop! p

population (Andreae et al., 2015), and in our case, it is probably related to the occurrence of fresh biomass burning particles.

Table 2 — Optical properties mean and standard deviation {in-parentheses)for the whelestudystudied, period for
different wavelengths.
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We applied the multiple linear regression (Section 2.4.2) to our dataset, and the resulting coefficients successfully predicted

the observed scattering (R?> = 0.86, Figure 6), confirming the validation of this methodology to estimate the specific

contribution of each chemical group to the optical properties. We tested the MLR removing AN (due to its low contribution to

the PM1 mass concentration, close to the ACSM detection limit, and therefore, possible artifacts), and the results were

comparable, especially for eBC (Supplement Table S5.1). We also tested the robustness of the method by running 100 times

MLR on randomly selected 50% of the data, yielding similar results (Supplement Table S5.2). All standard errors were small
(Table 3), and the Variance Inflation Factor was around 3 for IEPOX-SOA, BBOA, AS and AN; 5.20 for OOA, and 6.19 for

eBC. The abovementioned tests suggest that typical MLR caveats such as collinearity had minimal effect on the observed final

results. No clear particle size dependency was observed for the radiation scattering in most of the cases (regression fitting

under typical conditions, of aerosol sizes in the range of 100-150 nm), except at events dominated by ultra fine particles, at

around 50 nm (Figure 6). This is notably an underestimation of observed scattering at lower particle diameters.
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The highest MSE values were attributed to eBC (Table 3, Figure 7a), followed by the BBOA. Previous studies on plumes

dominated by either urban pollution or mixed with biomass burning presented MSE around 4.4 m? g, dominated by organic
particles (Cheng et al., 2015; Pani et al., 2023; Tao et al., 2019). The MSE values of the eBC, BBOA and OOA components

calculated in our study at 637 nm were circa 180%, 67% and 43% respectively compared to previous measurements in

Amazonia, highly impacted by biomass burning (Ponczek et al., 2021). MSE of AS in our study was between 4.58-4.79 m? g-

! (Table 3, Figure 7a), in very good agreement with the MSE described for fine-mode ambient AS particles in an urban

environment (Tao et al., 2019). Our result is in the lower range of the MSE described in regions impacted by urban pollution

(4.8-7.1 m? g%, (Velazquez-Garcia et al., 2023), probably due to the smaller mean diameter found in our study (Figure 6).

However, other regions (urban, remote, rural continental, ocean/marine) presented much smaller MSE values for AS (Cheng
etal., 2015; Hand and Malm, 2007). MSE for AN at 550 nm in our study (4.79 m? g, Table 3) is in very good agreement with

the MSE found in AN in a urban pollution plume (Tao et al., 2019), and within the range previously described in regions highly

impacted by urban pollution (Cheng et al., 2015; Tian et al., 2022) and a mixture of urban pollution and biomass burning (Pani

etal., 2023).
The organic particles presented higher MSE for freshly emitted aerosols (BBOA) than for oxygenated particles (OOA) (Table

3), an opposite trend to what was found at PM2.5 in a region impacted by urban pollution (Tian et al., 2022). However, previous

studies in Amazonia demonstrated that the size distribution of the particles is mainly below 200 nm, and even aging processes

do not appear to cause an overall increase in total particles diameter, probably due to the type of the vegetation, the precursors

of SOA, disintegration of larger particles, and other factors (Artaxo et al., 2013; Brito et al., 2014). Fresh biomass burning

plumes at 532 nm presented a MSE range of 1.5-5.7 m? g%, depending on the fuel type, and plume age (Levin et al., 2010),
and the MSE of BBOA found in our study for 550 nm is 5.33 m? g (Table 3). A review of MSE biomass burning plumes
revealed higher MSE values for more aged plumes (Reid et al., 2005). Fine-mode organic aerosols in an urban environment
presented a mean MSE of 4.6 m? g* at wavelength 550 nm (Tao et al., 2019), closer to our BBOA MSE (Table 3).

The pronounced MSE of the eBC (7.62-13.58 m? g, Table 3) is strongly corroborated by other studies which found remarkably

high scattering efficiency related to BC, especially when the particles undergo atmospheric processing and aging, such as in
the case of our study (Bond and Bergstrom, 2006; He et al., 2015; Malm et al., 2005; Pitchford et al., 2007; Romshoo et al.,

2021; Schwarz et al., 2006). It has been demonstrated that while aerosol scattering efficiency increases with increasing size,

age and distance from the source, the absorption efficiency remains nearly constant (Kleinman et al., 2020; Zhang et al., 2020).

MSE of elemental carbon in a rural area ranged from 5.4-66.2 m? g, and the high increase was found to be related to sulfate

addition during cloud processing (Yu et al., 2010). Recently, on a comparable method, MSE for eBC has been estimated at 6

m? g in a site located in Western Amazonia. Located within the deforestation arc, the site is strongly impacted by fresh,

sometimes local emissions, in contrast to regional or long-range transport of fires impacting Central Amazonia (Ponczek et

al., 2021). In regions impacted by urban pollution MSE of eBC was 2.6 m? g* (Tao et al., 2019), and found not to influence

MSE for coarse mode particles (Titos et al., 2012).
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When the mass concentration is considered, the relative contribution of eBC to the scattering in all the measured wavelengths

in our study is about 20-25% or the total scattering (Figure 7b), comparable to Southwestern Amazonia (Ponczek et al., 2021),

despite our site having a significantly lower eBC concentration (but higher MSE for eBC). In this same Southwestern

Amazonia site, the contributions of the OOA and BBOA to MSE were about twice as high than in our study. The contribution

of AS and AN to MSE was from 20% to 30% with increasing wavelength (Figure 7b), less than half of that in urban sites in

Europe (e.g. 67% in Northern France, (VVelazquez-Garcia et al., 2023), but about twice as high as during an extreme pollution

haze episode (Wang et al., 2015)). As shown in Figure 7a, the MSE of all components except AS decreases with increasing

wavelength, which is consistent with the typical behavior of submicrometric aerosols. This spectral dependence can be

attributed to Mie scattering theory, where smaller particles scatter shorter wavelengths more efficiently (Hand and Malm,

2007; Malm et al., 2005). Nonetheless, the variability in the MSE slopes among the different components reflects a complex

interplay between aerosol mixing state, refractive index, and size distribution dynamics—particularly the diurnal evolution of

each factor's contribution to the total aerosol population (Figure 4). It is particularly interesting that AS exhibits a distinct

spectral behavior, typically associated with coarse-mode aerosols, denoting stark differences in its sources and atmospheric

processing compared to the other components. Sulfate in Amazonia has been associated with secondary production from

biogenic emissions and mixing with primary biogenic organic aerosols (PBOA) (Martin et al., 2010b; Pohlker et al., 2012), as

well as with coarse-mode particles such as dust and sea salt transported over long distances (Brito et al., 2014; Wu et al., 2019).

It is remarkable that the MLR analysis captured this behavior, considering that the ACSM is limited to non-refractory species

in the submicron range and is not particularly efficient at detecting the sources likely involved. This highlights the sensitivity

of the MLR approach to broader aerosol population dynamics, which were captured by the optical instruments operating with

a PMq inlet, suggesting the influence of coarse-mode aerosol sources.

While the MSE of eBC does decrease with increasing wavelength (Figure 7a), its slope (or more precisely, its SAE) is lower

than that of other aerosol components. As a result, eBC retains a relatively higher fractional contribution to total scattering at

longer wavelengths compared to components with steeper MSE declines (Figure 7b). The absolute contribution to scattering

is determined by both MSE and mass concentration, and although eBC mass concentrations are generally lower, its weaker

wavelength dependence allows it to contribute proportionally more at longer wavelengths.

When considering the total light extinction (scattering + absorption), the relative contribution of eBC reaches about 3631%

(Figure 8), which is comparable to the work in highly urbanized region in-Europe(Velazquez-Garcia et al., 2023),-however
ignificanthy-lower-than-the 76+20%-observed-in-urban-poHutionin-China-(Yu-et-al-2010)—, and an episodic biomass burning
event in a rural area (Yu et al., 2010). However, it is less than half of the MEE relative contribution of BC observed during

urban pollution episodes (Tian et al., 2022; Yu et al., 2010). The comparison with urban pollution particles contribution to

MEE reveals that the contribution of highly oxygenated particles is very similar (circa 20%, Figure 8, (Tian et al., 2022)), and

the most evident difference is the nitrate-based particles, with a much larger contribution in the urban pollution region (Figure
8, (Tian et al., 2022)). MEE has been shown to increase by a factor of 3 while freshly emitted smoke from fires ages in the

atmosphere, reaching up to 7m? g* at 532 wavelength (Saide et al., 2022). The OOA factor presented a relatively high
26
26
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contribution to MSE and MEE (Figures 8b and 9) due to its high fraction of the total PM1 mass (Table 1), although its MSE
is relatively low (Figure 7a). The contribution of AS to MSE increases with increasing wavelength (from 10% to 20%, Figure
7b), while OOA decreased (from 30% to 20%, Figure 7b).

By using the MSE and MEE ratios, we calculated specific SSA for the eBC, obtaining a value of 0.57. This means that 57%

of the light extinction provoked by the eBC is scattered rather than absorbed, which is higher than the eBC specific SSA of

A previous study found an eBC absorption cross-section in Amazonia of 12.3 m? g (Saturno et al., 2018b), and we tested our

dataset applying this value (Supplement, Figure S6.1). The result is that eBC mass concentrations would decrease by half, with

no change in o, and SSA, but MSE would double, while eBC contribution to MEE (Figure 8, Figure S6.2) would remain

unchanged. Due to some methodology differences between our study and (Saturno et al., 2018b) (they measured refractory

Black Carbon using a single-particle soot photometer SP2, with a higher cut-off, possibly leading to a sub-estimation of the

mass), and the fact that applying the absorption cross-section value they found would make MSE of eBC be an order of

magnitude higher than the others (Supplement Figure S6.1), we opted to remain with the more established value of 6.6 m? g%,
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Table 3 — MSE for different wavelengths and aerosol components with standard errors. The Variance Inflation Factor

was around 3 for IEPOX-SOA, BBOA, AS and AN; 5.20 for OOA, and 6.19 for eBC, suggesting that typical MLR

caveats such as collinearity had minimal effect on the observed final results.

N MSE (m? g MAE MEE
Waveleng 450 550 637 700 637 637
th (nm)
£BC 13.58+ | 10.67+ 8.68+0.52 7.62+0 833 AL
1.08 0.70 44 e
BBOA | 7.96+0 | 5.33+0 3.83+0.16 3.10+0
.33 21 A3
JEPOX- | 5.61+0 | 3.84+0 2.87+0.20 2.37+0
SOA 41 .27 17
OO0A 3.58+0 | 1.94+0 1.24+0.07 0.90+0
.15 .10 .06
AS 4.79+0 | 4.79+0 4.77+0.30 4.58+0
.62 41 .25,
AN 7.07+1 | 5.17+0 4.41+0.68 3.93+0
41 .92 .58
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4 Conclusions

The results have shown that the submicrometer particle mass concentration during the dry season (6.3+3.3 pug m), which is
about an order of magnitude higher than typically observed at this site during the wet season, is highly dominated by the
organic fraction (77+5%). The organic aerosols were separated into 3 PMF statistical factors, identified as BBOA, OOA, and
IEPOX-SOA. The OOA, associated with highly processed and oxidized particles is the dominant factor (51+6% of the PMy),
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followed by IEPOX-SOA (isoprene SOA following a low-NO route, 17+5%), while the factor more directly associated with
fresh biomass burning emissions (BBOA) represents 9+5% of PM1.

The mean radiation scattering coefficient at 637 nm was 17+10 Mm™, and the mean absorption coefficient was 3+2 Mm,
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compared to the primary biogenic aerosols, Saharan dust and sea salt typical of the wet season in central Amazonia.
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