## Supporting information

The impact of organic nitrates on summer ozone formation in Shanghai, China

Li et al.,

## S1. The description of mechanistic uptake in Zare Mechanism

Firstly, the BVOCs oxidized by OH and NO<sub>3</sub> have been refined and supplemented, and the various reactions between RO<sub>2</sub> and NO, as well as the conversion between ROx, have been updated to ensure the applicability in high/low NO<sub>x</sub> environments (Zare et al., 2018). For isoprene, the mechanism update contains refinements for oxidation reactions initiated by OH and NO<sub>3</sub> and API is represented by  $\alpha$ -pinene and  $\beta$ -pinene. Under the above updates, ANs contain a total of 24 species, of which 4 are secondarily generated. For the deposition, except the deposition rates of R<sub>4</sub>NO (C4 nitrooxycarbonyl hydroperoxide), PROPNN (propanone nitrate), and TONIH (C10 nitrooxy hydroperoxide) were set to 1.3±0.6, 1.7±0.6 and 0.8±0.4 cm/s, respectively, the rest were set to 1.5 cm/s according to ISOPN (hydroxy isoprene nitrates) (Nguyen et al., 2015). The uptake of ANs was quantified by speciation parameterization, and key parameters mainly included uptake coefficients, aerosol surface areas, and molecular motion rates. The uptake coefficients are distributed in the range of 0.005 - 0.01 according to the ANs species, the molecular speed is valued by ISO, and the aerosol surface area concentration is parameterized according to the empirical formula through the mass concentration of PM<sub>2.5</sub> (Wang et al., 2021).

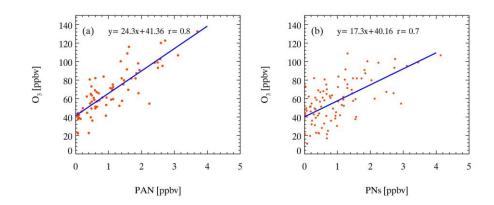
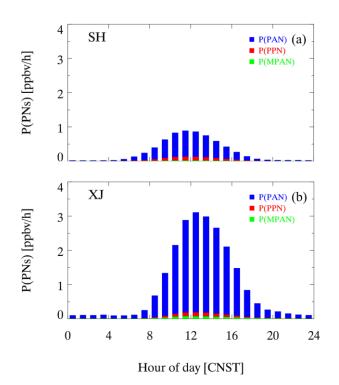




Figure S1. Correlation analyses of ozone and PAN (a) or PNs (B) during the Shanghai campaign.



**Figure S2.** The mean diurnal production rate of PNs (P(PNs)) calculated by kinetic calculation method during Shanghai campaign (a) and Shanghai campaign (b). The kinetic calculation method is to calculate the total production potential of PAN, MPAN and PPN, which is determined by VOCs distribution, reaction rate constant and OH concentration, detailed in previous study (Li et al., 2023).

| Species                 | Branching ratio | Concentration |
|-------------------------|-----------------|---------------|
| ethane                  | 0.019           | 2.858         |
| propane                 | 0.036           | 2.388         |
| n_butane                | 0.077           | 1.115         |
| n_pentane               | 0.105           | 0.384         |
| iso_butane              | 0.096           | 0.851         |
| iso_Pentane             | 0.007           | 0.522         |
| _2_2_Dimethylbutane     | 0.152           | 0.016         |
| cyclopentane            | 0.045           | 0.110         |
| _2_Methylpentane        | 0.097           | 0.086         |
| _3_Methylpentane        | 0.109           | 0.113         |
| _2_2_4_trimethylpentane | 0.14            | 0.028         |
| methylcyclopentane      | 0.14            | 0.096         |
| n_hexane                | 0.141           | 1.052         |
| Cyclohexane             | 0.16            | 0.144         |

**Table 1.** The species of ANs precursors observed during the Shanghai campaign with correspondingbranching ratio and averages of concentration (ppbv).

| methylcyclohexane       | 0.17   | 0.048 |
|-------------------------|--------|-------|
| n_heptane               | 0.178  | 0.133 |
| n_octane                | 0.226  | 0.072 |
| n_nonane                | 0.393  | 0.033 |
| n_decane                | 0.417  | 0.035 |
| ethene                  | 0.0086 | 1.169 |
| propene                 | 0.015  | 0.258 |
| _1_butene               | 0.025  | 0.077 |
| _2_methyl_1_butene      | 0.02   | 0.009 |
| _3_methyl_1_butene      | 0.059  | 0.002 |
| _2_methyl_2_butene      | 0.034  | 0.004 |
| trans_2_butene          | 0.034  | 0.049 |
| cis_2_butene            | 0.034  | 0.104 |
| _1_pentene              | 0.059  | 0.022 |
| trans_2_pentene         | 0.064  | 0.012 |
| cis_2_pentene           | 0.064  | 0.017 |
| _1_3_butadiene          | 0.007  | 0.018 |
| _1_hexene               | 0.055  | 0.010 |
| isoprene                | 0.07   | 0.154 |
| methacrolein            | 0.15   | 0.069 |
| methyl_vinyl_ketone     | 0.11   | 0.144 |
| ALPHA_PINENE            | 0.18   | 0.008 |
| BETA_PINENE             | 0.24   | 0.015 |
| D_LIMONENE              | 0.23   | 0.010 |
| Benzene                 | 0.034  | 0.235 |
| p_diethylbenzene        | 0.093  | 0.017 |
| toluene                 | 0.029  | 0.634 |
| o_Ethyltoluene          | 0.106  | 0.014 |
| m_Ethyltoluene          | 0.094  | 0.015 |
| p_Ethyltoluene          | 0.137  | 0.009 |
| o_xylene                | 0.081  | 0.139 |
| M_P_xylenes             | 0.074  | 0.311 |
| ethylbenzene            | 0.072  | 0.190 |
| _1_3_5_trimethylbenzene | 0.081  | 0.008 |
| _1_2_4_trimethylbenzene | 0.105  | 0.021 |
| _1_2_3_trimethylbenzene | 0.119  | 0.011 |
| iso_propylbenzene       | 0.11   | 0.010 |
| Weighting averages      | 0.053  | /     |

## References

- Li C, Wang H, Chen X, Zhai T, Ma X, Yang X, et al. Observation and modeling of organic nitrates on a suburban site in southwest China. Science of the Total Environment 2023; 859.
- Nguyen TB, Crounse JD, Teng AP, St. Clair JM, Paulot F, Wolfe GM, et al. Rapid deposition of oxidized biogenic compounds to a temperate forest. Proceedings of the National Academy of Sciences of the United States of America 2015; 112: E392-E401.
- Wang H, Lu K, Chen S, Li X, Zeng L, Hu M, et al. Characterizing nitrate radical budget trends in Beijing during 2013–2019. Science of The Total Environment 2021; 795.
- Zare A, Romer PS, Tran N, Keutsch FN, Skog K, Cohen RC. A comprehensive organic nitrate chemistry: insights into the lifetime of atmospheric organic nitrates. Atmospheric Chemistry and Physics 2018; 18: 15419-15436.