- 1 Rising atmospheric CO₂ concentrations: the overlooked factor promoting SW Iberian
- 2 Forest development across the LGM and the last deglaciation?

- 4 Gomes, Sandra.D.a,b,c*
- 5 Fletcher, William.J.a
- 6 Stone, Abia
- 7 Rodrigues, Teresa^{b,c}
- 8 Rebotim, Andreia^{b,c}
- 9 Oliveira, Dulce b,c
- 10 Sánchez Goñi, Maria. F. d,e
- 11 Abrantes, Fatimab,c
- 12 Naughton, Filipa^{b,c}

13

- ^aQuaternary Environments and Geoarchaeology, Department of Geography, School of
- 15 Environment, Education and Development, The University of Manchester, Manchester,
- Oxford Road, Manchester, M13 9PL, United Kingdom;
- 17 bDivisão de Geologia e Georecursos Marinhos, Instituto Português do Mar e da Atmosfera
- 18 (IPMA), Rua Alfredo Magalhães Ramalho 6, 1495-006 Lisboa, Portugal;
- 19 °Centro de Ciências do Mar do Algarve (CCMAR/CIMAR LA), Campus de Gambelas,
- 20 Universidade do Algarve, 8005-139 Faro, Portugal;
- ^d École Pratique des Hautes Études, EPHE, PSL Université, Paris, France;
- ^eEnvironnements et Paléoenvironnements Océaniques et Continentaux, UMR 5805,
- 23 Université de Bordeaux, Pessac, France.

2425

- 26 *Corresponding author: E-mail: sandra.domingues@manchester.ac.uk (Sandra Domingues
- 27 Gomes); Address: Quaternary Environments and Geoarchaeology, Department of
- 28 Geography, School of Environment, Education and Development, The University of
- 29 Manchester, Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom

30 31

32

33 34

35

36

3738

Abstract:

 Across the last deglaciation, the atmospheric partial pressure of carbon dioxide (pCO₂) increased substantially from ~180 to ~280 ppm – yet its impact on vegetation dynamics across this major climatic transition remains insufficiently understood. In particular, Iberian pollen records reveal an intriguing feature that can be related to an often overlooked role of pCO₂ in shaping vegetation responses during last deglaciation. These records reveal the near disappearance of forest during the cold Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS1) phases and an unexpected recovery during the Younger Dryas (YD) cold phase, when pCO₂ increased. Here, we present high-resolution tracers of terrestrial (pollen, C₂₉:C₃₁ organic biomarker) and marine (alkenone-derived Sea Surface Temperature, C_{37:4}%, and long-chain n-alkanes ratios) conditions from the southwestern (SW) Iberian margin Integrated Ocean Drilling Program Site U1385 ("Shackleton site") for the last 22 cal ka BP. This direct land-sea comparison approach allows us to investigate how the Iberian Peninsula vegetation responded to major global pCO₂ changes of the last deglaciation.

Our results show that cold and moderately humid conditions of the LGM supported a grassland-heathland mosaic ecosystem, but low pCO₂ likely caused physiological drought and suppressed forest development. HS1, the coldest and most arid period, combined with sustained low pCO₂ values almost suppress forest growth in favour of Mediterranean steppe and semi-desert vegetation. In contrast, the warmer Bølling-Allerød, characterised by a temperature optimum and variable but generally wetter conditions, along with the rising of pCO₂ above 225 ppm at ~15 cal ka BP contributed to substantial forest development. During the YD, sufficient moisture combined with increasing pCO₂ allowed the persistance of a mixed grassland-forest mosaic despite cooler temperatures. Our study suggests that during cold and low pCO₂ periods (LGM and HS1), the role of pCO₂ on SW Iberian vegetation dynamics was more pronounced compared to periods of higher pCO2. Temperature and precipitation changes during periods of relatively high pCO2 play the main role in shaping the distribution and composition of the vegetation.

68 Keywords:

Iberian margin; Deglaciation; Last Glacial Maximum; Direct land-sea comparison; Climatic parameters vs pCO₂; Forest development; Pollen analysis

1. Introduction

The last deglaciation, spanning from 20-19 cal ka BP (e.g. Denton et al., 1981; Toucanne et al., 2008; Denton, 2010) to ~7 cal ka BP (e.g. Dyke and Prest, 1987; Carlson et al., 2008) was punctuated by a series of rapid climate shifts accompanying the progressive melting of northern hemisphere glaciers. This interval was marked by a global mean temperature increase of 5-10°C, depending on latitude (Bard et al., 1987; Alley and Clark, 1999; Clark et al., 2012) interrupted by an alternation of cold and warm phases. The warmer Bølling-Allerød (BA, 15-12.5 cal ka BP) was bracketed by two major cold phases: the Heinrich Stadial 1 (HS1, 18.5-15 cal ka BP) and the Younger Dryas (YD, 12.9 - 11.6 cal ka BP). This period was also characterized by an increase in atmospheric carbon dioxide (pCO₂) concentrations from ~180 ppmv to 280 ppmv (Monnin et al., 2001; Shakun et al., 2012; Marcott et al., 2014), one of the largest shifts in pCO₂ of the last 800,000 years (Lüthi et al., 2008). High-resolution data from the West Antarctic Ice Sheet Divide ice core reveals that the rise was not gradual, but in three main rapid (< 200 years) pCO₂ rises, of ~10 to 15 ppmv, at the end of HS1, within the BA and at the onset of the YD (Marcott et al., 2014). Based on a direct comparison between terrestrial

and marine climatic indicators from the SW Iberian margin sedimentary sequences, several works focused on the mechanisms underlying the regional atmospheric and oceanic responses to the last deglaciation (Boessenkool et al., 2001; Turon et al., 2003; Chabaud et al., 2014; Oliveira et al., 2018; Naughton et al., 2019; Cutmore et al., 2021). However, few of these records span the entire deglaciation, or offer resolution or chronological precision to detect short-term vegetation and climate shifts in detail. The high temporal resolution and robust chronology of IODP Site U1385, provide a valuable opportunity to evaluate vegetation response to climate and pCO₂ changes in SW Iberia during this transitional period.

86

87

88

89

90

91

92 93

94 95

96

97

98 99

100

101102

103

104

105

106

107

108

109

110

111112

113

114

115

116

117

118

119

120

121

122

123

124

125126

127

128

129

130

The role of pCO₂ throughout time as a climate driver remains intensely debated. Studies suggest the pCO₂ acted as (1) a primary driver of the climatic changes, leading to temperature chnages in the Northern Hemisphere (Shakun et al., 2012; Marcott et al., 2014); (2) a climate amplifier, reinforcing warming that began through other processes (Alley and Clark, 1999; Clark et al., 2012); or (3) as a consequence of climate change, responding to temperature shifts rather than causing them (Denton et al., 2010). Beyond its role in shaping global climate, pCO₂ directly influences plant physiology and how vegetation responds to environmental change. The annual exchange of pCO₂ between the atmosphere and biosphere due to photosynthetic activity corresponds to more than one-third of the total pCO2 stored in the atmosphere (Farquhar and Lloyd, 1993). During photosynthesis, atmospheric pCO₂ plays a critical role in plant physiology; plants absorb pCO2 through their stomata which are small leaf pores, losing water. At lower pCO₂, such as during glacial periods, plants must open these pores wider or increase their number to capture enough pCO₂ (Royer et al., 2001). While this enhances gas exchange, it also leads to greater water loss through transpiration, reducing water-use efficiency (WUE), inducing physiological drought stress even under moderate climatic conditions (Street-Perrot et al., 1997; Körner, 2000). These effects are especially pronounced in semi-arid environments, where water limitation already constrains plant growth. While many reconstructions of past vegetation focus only on temperature and precipitation. the importance of pCO₂ as a limiting factor in plant productivity, coverage, and WUE is now widely supported by both empirical and model-based studies (e.g. Cowling and Sykes, 1999; Harrison and Prentice, 2003; Claussen et al., 2013; Piao et al., 2020).

Variations in pCO2 not only affect plant physiological function but can also influence the composition and structure of vegetation communities. Under low pCO2 conditions, species better adapted to drought and nutrient stress—such as those typical of steppes—are more likely to dominate, and typically observed in colder periods. Conversely, higher pCO₂ levels promote forest expansion and higher plant productivity, particularly in trees that benefit from improved WUE (Huang et al., 2007; Randall et al., 2013). However, the response to CO2 is not globally uniform. Regional differences in water and nutrient availability, along with other environmental constraints, mediate how vegetation responds to pCO₂ shifts (e.g. Tognetti et al., 2008). Recent coupled vegetation-climate modelling and multiproxy reconstructions have demonstrated that pCO2 significantly impacts vegetation extent and productivity across glacial-interglacial transitions (Wu et al., 2007; Wei et al., 2021; Koutsodendris et al., 2023, Clément et al., 2024). These findings underscore the need to include pCO₂ changes when interpreting pollen data or evaluating biome shifts (Prentice et al., 2017; Cao et al., 2019). While the current pCO₂ fertilization has received considerable attention (e.g. Piao et al., 2020) studies focusing on the effects of low pCO₂ on vegetation, or major transitions from low to high pCO₂, are equally critical.

Last deglaciation vegetation changes have been widely studied across the Iberian Peninsula from palaeoecological records (e.g. Peyron et al., 1998; Carrión et al., 2002; Chabaud et al., 2014; Combourieu Nebout et al., 2009; Dormoy et al., 2009; Fletcher et al., 2010a; Arranbari et al., 2014; Bartlein et al., 2011; Naughton et al., 2011; 2019; Tarroso et al., 2016) and, alongside ecological niche modeling (Casas-Gallego et al., 2025), are traditionally interpreted as a result of the combined effects of temperature, precipitation and evaporation changes. However, growing evidence shows that many climate reconstructions for glacial periods based on vegetation records may be biased as they neglect the influence of pCO2 on WUE. Neglecting this influence may contribute to the underestimation of past precipitation under full glacial conditions (Jolly and Haxeltine, 1997; Cowling and Skyes, 1999; Gerhart and Ward, 2010; Prentice et al., 2017; Cleator et al., 2020; Izumi and Bartlein, 2016; Chevalier et al., 2021), a concern still highlighted by recent studies (e.g. Wei et al., 2021; Prentice et al., 2022). To address pCO₂-related biases, inverse modelling studies to account for CO₂ correction have been evolving for a while (e.g. Guiot et al., 2000; 2007; Wu et al., 2007; Izumi and Bartlein, 2016) and compared with reconstructions using Modern Analogue Techniques (Davis et al., 2024). However, the inverse modelling approach has some limitations relating to low taxonomic resolution, and dependence on the vegetation model that is not always comparable with pollen assemblages (Chevalier et al., 2020; Prentice et al., 2022). Recently, quantitative reconstructions using methods like Tolerance Weighted Averaging Partial Least Squares show that pCO₂ constraints on plant growth can make glacial conditions appear drier than they likely were (Wei et al., 2021). By contrast, under interglacial conditions with higher pCO₂ levels, model experiments suggest that forest expansion in SW Iberia is mostly controlled by precipitation than by pCO₂ levels (Oliveira et al., 2018; 2020).

Despite these advances, there is a need for additional regional-based palaeoecological research. This need was highlighted in a recent model-data comparison using the BIOME4 model and a biome-scale reconstruction compiled from pollen records across the Northern Hemisphere (> 30°N), which reveals a level of unexplained variability in patterns across both space and time (Cao et al., 2019). Detailed pollen assemblage datasets may provide key insights into other factors than temperature, precipitation and potential evapotranspiration that drive changes in vegetation dynamics and composition, such as pCO₂ (Ludwig et al., 2018; Cao et al., 2019). Recognising the role of pCO₂ is a key issue not only to interpret the drivers of past ecosystems accurately, but also to anticipate the future responses of semi-arid landscapes to ongoing climate change.

The new multiproxy study of IODP Site U1385 allows the direct comparison between terrestrial and marine climatic indicators across the LGM and deglaciation at high (centennial-scale) temporal resolution, and therefore, the detailed reconstruction of vegetation changes in SW Iberia along with sea surface temperature (SST) trends in its margin during the LGM, HS1, B-A and the YD. This new paleoenvironmental record will serve to explore the main factors driving forest development during the LGM and the last deglaciation, and evaluate the potential pCO₂ thresholds for western Mediterranean forest development.

2. Materials and environmental setting [Figure 1]

IODP Site U1385 is a composite record of five drillings in the SW Iberian margin (37°34.285′N; 10°7.562′W, 2587 m below sea level - mbsl) located on a spur at the continental slope of the Promontório dos Príncipes de Avis, which is elevated above the abyssal plain and free from turbidite influence (Hodell et al., 2015) (Fig. 1). This work focuses on Hole A, a continuous record of 10 corrected revised meter composite depth (crmcd) mainly composed of hemipelagic silt alternating with clay (Hodell et al., 2015). For this study, Hole A was sampled

181 from 3.84 to 1.08 crmcd, which corresponds to the period between ~21.5 and 6.4 cal ka BP. 182

The sediment supply, including pollen grains, to Site 1385 is mainly derived via fluvial transport

from the the Tagus and Sado hydrographic basins, providing a reliable signature of the 183

vegetation of the adjacent continent (Naughton et al., 2007; Morales-Molino et al., 2020). 184

The present-day climate of southwestern Iberia is characterised by a Mediterranean climate 185 strongly influenced by the Atlantic Ocean, Köppen classification CSa with warm summers 186 (around 22°C as the average temperature of the warmest month) mean annual temperatures 187 188 between 12.5°C and 17.5°C, and mean annual precipitation from 400 to 1000 mm/yr. The rainy season peaks in the winter between November and January and drought occurs in the 189

summer generally from June to September (AEMET, 2011). 190

The present-day vegetation of southwestern Iberia reflects a transitional biogeographical zone between temperate and Mediterranean climates (Rivaz-Martinez et al., 2017). Coastal areas, influenced by oceanic humidity and milder winters, support thermophilous evergreen species such as Quercus suber, Olea europaea var. sylvestris, Myrtus communis, and Pistacia lentiscus (Asensi and Díez-Garretas et al., 2017). Inland, as elevation increases and oceanic influence diminishes, Mesomediterranean forests dominate, composed of both evergreen (Q. suber, Q. rotundifolia, Q. coccifera) and deciduous oaks (Q. faginea, Q. robur), often combined with heathlands or aromatic scrublands (e.g. Cistus spp.). Distinctive oak-juniper woodlands appear in drier zones, and pine forests (Pinus pinaster, P. pinea) are common on sandy coastal soils. Riparian zones feature Alnus glutinosa and Salix spp., while widespread Cistus and Erica shrublands reflect the area's susceptibility to fire.

202 203

191

192

193 194

195

196 197

198

199

200 201

3. Methods

204 205

3.1. Chronological framework [Table 1, Figure 2, Figure 3, SM Figure S1]

206 207 208

209

210

211

212

213 214

215

216

217 218

219

220

Sixteen AMS ¹⁴C dates were used to generate a new age-model for the last deglaciation at Site U1385 (Table 1 and Fig. 2). Five of these were previously published by Oliveira et al., (2018), based on monospecific Globigerina bulloides samples and analysed at the Vienna Environmental Research Accelerator (VERA), University of Vienna, Austria. A new set of eleven samples for AMS ¹⁴C were selected from monospecific foraminifer samples of G. bulloides, and a mixed assemblage of G. bulloides and G. inflata processed at the Keck Carbon Cycle AMS Facility, University of California, Irvine (Table 1). The new age-model was calculated using a Bayesian approach, through the software Bacon implemented in R (Blaauw and Christen, 2011; R Development Core Team, 2020) using the Marine20 calibration curve (Heaton et al., 2020). The studied interval encompasses the period from ~22 to 6 ka, as shown by the radiocarbon age model (Fig. 2). The average temporal resolution for the pollen and organic biomarkers across the deglaciation is 110 and 104 years, respectively, or slightly lower (174 and 135 years, respectively) when including the Holocene section (Fig. 3 and SM Fig. S1).

221 222

3.2. Pollen analysis

223 224 225

226 227

228

A total of 97 samples (including 25 previously published by Oliveira et al., 2018) were analysed between 3.84 to 1.08 crmcd in Hole A, and prepared at the University of Bordeaux, France using the standard protocol of the UMR EPOC laboratory (Georget et al., 2025). The sediment was firstly separated using coarse-sieving at 150 µm, retaining the fine fraction. A sequence of chemical treatments, starting with cold HCI (hydrochloric acid) at increasing concentrations (10%, 25%, 50%) eliminated calcium carbonate particles. Cold HF (hydrofluoric acid). at increasing strength (45% and 70%) eliminated silicates. The remaining residue was microsieved (10 µm mesh), retaining the coarse fraction. Exotic *Lycopodium* spore tablets of known concentration were added to each sample to calculate pollen concentrations (Stockmarr, 1971). The obtained residue was mounted in a mobile medium composed of phenol and glycerol 1% (w/v), to allow pollen/spore rotation and accurate identification. Samples were counted using a transmitted light microscope at 400X and 1000X (oil immersion) magnifications. To perform pollen identification, we used identification keys (Faegri and Iversen, 1989; Moore et al., 1991), photographic atlases (Reille, 1992; 1995) and the SW Mediterranean modern reference collection.

The total count ranged from 198 to 1545 pollen and spores per sample, with a minimum of 100 terrestrial pollen grains and 20 pollen morphotypes to provide statistical reliability of the pollen spectra (McAndrews and King, 1976; Heusser and Balsam, 1977). The main pollen sum was calculated following previous palynological studies of Site U1385 (e.g. Oliveira et al., 2016) that excluded *Pinus*, *Cedrus*, aquatic plants, Pteridophyte and other spores, and indeterminable pollen. The pollen percentages are calculated against the main pollen sum; but the percentages of over-represented taxa were calculated on the basis of the main sum plus the counts for that particular individual taxon; for example: 100 * Pinus / (Main sum + Pinus) and 100* Cedrus / (main sum + Cedrus). Pinus pollen is generally overrepresented in marine deposits and therefore excluded from the main sum (Naughton et al., 2007). Cedrus, being an exotic component transported by wind from the Atlas or Rif mountain chains (Morocco), is also excluded. PSIMPOLL 4.27 (Bennett, 2009) was used to plot percentages for selected taxa, grouped by ecological affinities (Gomes et al., 2020). Stratigraphically constrained cluster analysis by Sum of Squares determined the five statistically significant pollen assemblage zones (U1385-1 to 5 in Fig. 3, SM Fig.1 and Table S1) based on a dissimilarity matrix of Euclidean distances with pollen taxa ≥ 1% (Grimm, 1987; Bennet et al., 2009).

In addition to the pollen-based ecological groups, we calculated the sum of Poaceae and Cyperaceae (Fig. 3g), to check the potential importance of C4 plants in the Iberian Peninsula. While most of the present-day Poaceae and Cyperaceae in this region belongs to the C3 plants type (Casas-Gallego et al., 2025), it is possible that C4 plants were more important at other moments in recent Earth history. Pollen analysis, is a core method in palaeoclimatology and palaeoecology, used to assess past climate conditions based on the ecological affinities of specific taxa grouped into pollen-based ecological groups. These groups reflect present-day vegetation—climate relationships, allowing inferences about dry, cold, warm, or moist conditions. As such, our pollen data reflect ecological responses rather than absolute quantitative climate parameters (Williams et al., 2001). A pollen diagram with clustering analysed (SM Fig. S1) was produced revealing four main episodes over the LGm and the Last deglaciation (Fig. 3, further details in SM Table S1).

3.3. Compilation of Iberian margin pollen records

In order to assess vegetation and climate changes more widely in the Iberian Peninsula region across the LGM and last deglaciation, we compiled available marine records along the Iberian margin covering the period from 23 to 6 ka. Pollen count datasets from eight marine pollen records (D13882 - Gomes et al., 2020; MD03-2697 - Naughton et al., 2016; MD95-2039 - Roucoux et al., 2005; MD95-2043 Fletcher and Sánchez Goñi, 2008; MD95-2042 - Chabaud

et al., 2014; ODP Site 976 – Comborieut Nebout et al., 1998; 2002; 2009; SU81-18 Turon et al., 2003; Site U1385 – this study) were used with the original published chronologies. Pollen percentages were recalculated against the main pollen sum. A uniform calculation of the pollen-based ecological group TMF (Temperate and Mediterranean forest) was made for each record, integrating the following taxa of 1) Temperate trees and shrubs: deciduous *Quercus*, *Acer*, *Betula*, *Cannabis/Humulus*, *Carpinus*, *Castanea*, *Fraxinus* excelsior-type, *Hedera helix*, *Hippophae*, *Ilex*, *Juglans*, *Myrica and Vitis*; and 2) Mediterranean taxa: evergreen *Quercus*, *Quercus suber*, *Arbutus type*, *Buxus*, *Daphne*, *Jasminum*, *Ligustrum*, *Myrtus*, *Olea*, *Phillyrea*, *Pistacia*, *Rhamnus*, *Rhus*.

To assess the general trend of vegetation patterns throughout the deglaciation, we applied a Generalised Additive Model (GAM), considered as a more robust statistical approach than loess curves (Wood, 2017; Simpson, 2018). The GAM model was fitted using the gam() function of the mgcv package (version 1.8.24; Wood, 2017) for R (version 3.6.3; R Core Team, 2020). We fitted the model using a standard GAM with REML smoothness selection, with 30 basis functions (k=30) and a smoothing parameter of 0.0001 (sp=0.0001). To check the validity of the smooth terms and if the used basis functions captured the wiggliness, we applied a test using the gam.check() function of the mgcv package. The k-index obtained higher than 1, and the p-value supported the hypothesis that in both cases, enough basin functions were used. The curve shows the fitted GAMs for TMF with an approximate 95% confidence interval (Simpson, 2018).

3.4. Molecular biomarkers

Marine biomarker analyses were carried out in 123 levels, including 30 already published by Oliveira et al., (2018). All analyses were performed following the extraction and analytical methods (Villanueva et al.,1997; Rodrigues et al.,2017). Marine coccolithophorid algae synthesise organic compounds including alkenones (Volkman et al., 1980) (Fig. 3i and j). Seawater temperature changes influence the amounts of di-, tri- and tetra-unsaturated alkenones produced by algae (Brassell et al., 1986). The use of organic solvents to separate the total lipid fraction from sediments allows the sea surface temperature alkenone-based reconstruction (Ukr₃₇ - SST) (e.g. Villanueva and Grimalt, 1997; Rodrigues et al., 2017). The Ukr₃₇ index (Prahl and Wakeman, 1987) was converted to temperatures values using the global calibration equation defined by Müller et al., (1998) with an uncertainty of 0.5°C (Grimalt et al., 2001). Additionally, tetra-unsaturated alkenone (C_{37:4}) percentages were calculated due to their potential to identify the occurrence of cold freshwater pulses associated with iceberg discharges (Bard et al., 2000; Martrat et al., 2007; Rodrigues et al., 2011; 2017) and therefore, changes in the reorganisation of surface water masses in the North Atlantic (Rodrigues et al., 2017).

The ratio between C_{29} and C_{31} n-alkanes was also calculated to understand how epicuticular wax production in terrestrial plants varied through the time (Eglinton and Hamiltom 1967). This index is generally considered to encompass the dynamic between woody plants vs grasses plants of the adjacent continent (Cranwell 1973, Tareq et al., 2005, Bush et al., 2013; Struck et al., 2020). This relation encompasses the adaptation of plants, by increasing leaf wax long chain production, to reduce water loss during the photosynthetic processes and prevent desiccation promoted by harsh winds or more arid conditions (Bush and McInerney, 2013). Index values >1 are typically considered to reflect higher quantities of C_{29} *n*-alkanes produced by trees and shrubs, while values <1 are generally considered to indicate higher quantities of C_{31} *n*-alkanes by grasses and herbaceous plants (Cranwell, 1973; Rodrigues et al., 2009; Ortiz

et al., 2010;). However, the interpretation of this index may vary across biomes and dependent on source vegetation types (Carr et al., 2014; Diefendorf and Freimuth, 2017).

326327328

325

4. Results and discussion

[Figure 4, Figure 5, Table S1, SM Figure S2]

329 330

4.1. The effect of pCO₂ on biome changes during the LGM and deglaciation

331332333

334

335

336

337338

339

340

Whilst a classic interpretation of ecosystem dynamics as described for Site U1385 can be proposed solely considering the variation of the main climatic parameters (temperature, precipitation), we hypothesise that changes in pCO₂ played an essential role in vegetation change, specifically in the deglacial forest expansion. Here, we evaluate the drivers of vegetation change by explicitly considering the evolution of pCO₂ through the deglaciation. Our discussion is supported by the present-day environmental and climatic space, considering the temperature and precipitation in which different taxa exist in Iberian Peninsula and characterising the TMF – *Quercus* sp., the Heathland (ERI) - Ericaceae family and the semi-desert (STE) landscapes (SM Fig. 2).

341342

4.1.1. LGM

343344345

346347

348

349350

351

352

353

354

355356

357358

359

360

361

362

363

364

365366

367

368

369

370371

372

The pollen-based vegetation record from Site U1385 shows that during the LGM (pollen zone U1385-1: 21.500 - 17990 cal yr BP, SM Fig. S1) a grassland-heathland mosaic dominated the landscape, with semi-desert taxa (STE, ~40%) and heathland taxa (ERI, ~10-20%) (Fig. 3d, e; Fig. 4d), forming a distinctive non-analogue glacial vegetation cover. The prevalence of heath (Erica spp.) in Iberian pollen records underpins the classic view of the LGM in Iberia as a fairly humid interval, certainly compared with the extreme aridity of Heinrich stadials (Roucoux et al., 2005; Naughton et al., 2007; Fletcher and Sánchez-Goñi, 2008; Combourieu-Nebout et al., 2009; Sánchez-Goñi et al., 2009). Nevertheless there is a somewhat complex picture with respect to the prevailing moisture availability for vegetation during this interval. Semi-desert taxa, typically found in arid conditions are abundant, while heathland taxa, associated with more humid environments, reach their maximum in the record (Fig. 3; SM Fig. S2c). Forest taxa were represented in low percentages (5-15%) (Fig. 3c), suggesting cold and relatively dry conditions over the continent. The TMF values are consistent across the U1385 record and GAM-fitting to the data compilation (Fig. 3c), being consistently observed across the marine records in southerly locations off the Iberian Peninsula (MD95-2043 - Fletcher and Sánchez Goñi, 2008 and ODP Site 976 - Comborieut Nebout et al., 1998; 2002; 2009 in the Mediterranean Sea, and SU81-18- Turon et al., 2003 in the Atlantic Ocean) as well as further North off the Iberian Peninsula (MD99-2331 and MD03-2697- Naughton et al., 2007; 2016). Interestingly, the environmental space for the Ericaceae group (namely Erica arborea, E. australis, Calluna vulgaris) coincides with that occupied by the Quercus genus, the main constituent of the TMF group (SM Fig. S2b). This begs the question, if the environmental conditions that support heathland overlap with those for Quercus sp., then why were forests not thriving during the LGM? A possible explanation could be associated with cold atmospheric temperatures (SST's average ~14.5°C, Fig. 3j), even if during the LGM the temperatures were not as extreme as the ones observed during the HS1 (Bond et al., 1993; Rasmussen et al., 1996). Hence, in addition to temperature the low levels of pCO₂ during the LGM ranging between 180-190 ppmv, could have been another important controlling factor which are among the lowest concentrations recorded during the history of land plants (Pearson and Palmer, 2000; Tripati et al., 2009). The global distribution of different vegetation types as a function of temperature and precipitation was modelled under modern conditions and for LGM pCO₂ (185 ppm), showing qualitative differences in the distribution of vegetation types (Shao et al., 2018). Under low pCO₂ grasslands were favoured to the detriment of evergreen broadleaf, evergreen and deciduous needle leaf forest. This study, however, did not include heathlands specifically, and it is not known whether this group has adaptations permitting better functioning under low pCO₂ levels. We speculate that drought-adapted traits in Mediterranean Ericaceae especially *E. arborea* including thick cuticles, small leaf size, large photosynthetic thermal window and deep root system with large diameter and a massive underground lignotuber (Gratani and Varone, 2004) may have been beneficial in coping with the challenging trade-off between photosynthesis and water loss under very low pCO₂. As such, the Ericaceae of the LGM may represent part of vegetation that coped well with physiological constraints of the low pCO₂.

At the same time, we note that the LGM corresponds to a maximum in the precession cycle, which is recognised to promote a weakening of seasonal contrasts (reduced summer dryness) favourable for heathland development in the Iberian Peninsula (Fletcher and Sánchez-Goñi, 2008; Sánchez-Goñi et al., 2008; Margari et al., 2014), in both glacials and interglacials (e.g. Oliveira et al., 2017), including the Middle to Late Holocene (Chabaud et al., 2014; Oliveira et al., 2018; Gomes et al., 2020). Furthermore, in addition of requiring less humidity than forests, heathland ecosystems thrive on acidic, low-nutrient soils, which can develop as a result of altered hydrological cycles during precession maxima. The ecological advantages of *Erica* also include less demanding edaphic requirements (low nutrient demand), more competitive resprouting strategy after disturbance, including fires, as well as a higher dispersal capacity compared with *Quercus* sp. for example (Pausas, 2008). However, these observations do not rule out a key impact of low pCO2 on vegetation composition during the LGM.

Diverse vegetation models have been used to understand the influence of climatic parameters and pCO₂ during the LGM (e.g. Harrison and Prentice, 2003; Woillez et al., 2011; Izumi and Bartlein, 2016; Shao et al., 2018). However, there is a disagreement about the magnitude of the pCO₂ influence, from being considered to have an equal influence (Izumi and Lezine, 2016) to being thought to be less critical than climatic parameters (Woillez et al., 2011; Shao et al., 2018; Chen et al., 2019). Harrison and Prentice (2003) also highlight model differences and the variable regional expression of the influence of pCO₂ (with higher impact in tropical areas). However, these studies agree that low pCO₂ had a negative physiological impact on forest development during the LGM in different continents (Jolly and Haxeltine, 1997; Cowling, 1999; Harrison and Prentice, 2003; Woillez et al., 2011; Shao et al., 2018; Chen et al., 2019). Jolly and Haxeltine (1997) used BIOMOD to simulate LGM vs pre-industrial CO2 levels under different climatic conditions scenarios (temperature and precipitation) in tropical Africa; CO2 was considered the primary driver of biome change from tropical montane forests to shrubby heathland ecosystems. This model included a photosynthetic scheme able to simulate plant response to different levels of CO₂ and its impact on stomatal conductance and water stress. This study showed that increasing pCO₂ (above ~190 ppmv), offsets the lower temperatures (changes of -4 to -6 °C), allowing the forest to thrive and replace heathland. However, plants with higher climatic demands (temperature and precipitation), which is the case of most temperate trees, are less competitive under low pCO₂ conditions, compared with evergreen microphyllous species (e.g. Erica spp.).

Long-term studies considering CO₂ limitations on vegetation contrast in their perspectives; Gosling et al., (2022) argue that during the last 500k, precipitation and fire exert the main controls on woody cover in tropical Africa while CO₂ effects were relatively small. In Asia,

Clément et al., (2024) also emphasize the role of precipitation as the driver of vegetation distribution during interglacials, and that vegetation is not sensitive to CO2 above 250 ppmv (value characterizing most of the interglacials); however during glacial CO₂ conditions (<~185 ppmv), CO₂ is an important factor, favouring the increase of C₄ plants. The inclusion of pCO₂ in climatic reconstructions for LGM for Africa and Europe yields a wetter LGM compared with reconstructions assuming pCO₂ present-day concentrations (Wu et al., 2007). A similar impact is evident in the Last Glacial moisture reconstruction based on the pollen record of El Cañizar de Villarquemado in eastern Iberia; including a correction for the direct physiological effects of low pCO₂ yields a wetter reconstruction of glacial climate (Wei et al., 2021). The implications of these experiments are important for the SW Iberian region and may help to resolve the apparent contradiction between vegetation (abundance of semi-desertic plants and presence of heathland) and climate simulations which indicate enhanced winter precipitation over southern Iberian and Northwest Africa due to southward shifting of the wintertime westerlies (Beghin et al., 2016). In the absence of pCO₂ correction, temperature could also be misinterpreted; the LGM vegetation for Mediterranean sites was simulated and associated with warmer summer under LGM pCO₂, instead of the colder conditions simulated with present-day levels of CO₂ (Guiot et al., 2000). In Europe, pollen reconstruction with steppe vegetation indicated warmer winter temperature for LGM pCO₂ compared with the modern pCO₂ (Wu et al., 2007). The bias could extend to simulations of glacial vegetation; without the pCO₂ effect, the cover of boreal and temperate forests is reduced, and evergreen forests are overestimated for the LGM (Woillez et al., 2011).

Experiments determining plant thresholds in response to low pCO₂ have not received as much attention as research on the impact of high pCO₂ levels (Gerhart and Ward, 2010; Dusenge et al., 2019). When we assess the relationship between pCO₂, SST and TMF across the LGM and deglaciation events we observe that the LGM (i) corresponds to SSTs below 15.5°C and pCO₂ below 225 ppmv, and (ii) that TMF values remain below 20% (Fig. 5). In African mountain environments, a pCO₂ threshold of approximately 220 ppmv has been suggested as the minimum above which forests could develop (Dupont et al., 2019). Therefore, extremely low pCO₂ below a critical threshold of ~220-225 ppmv may have been the critical determinant of low forest development in the LGM. These pCO₂ threshold values, despite differences in baseline conditions such as insolation, are broadly consistent with other time intervals where Mediterranean forest expansion occurred, for example during MIS13 at ~216 ppmv (Oliveira et al., 2020) and MIS18 at ~215 ppmv under relatively high temperatures and increased winter rainfall (Sánchez-Goñi et al., 2023). Temperatures during the LGM in southwestern Iberia may have been sufficiently mild for forest development with sea surface temperatures of ~15.5 °C (Fig. 3j) aligned with the broader threshold for forest development (Sánchez-Goñi et al., 2008). For this reason, one could speculate that a hypothetical increase in pCO₂ above the observed critical threshold during the LGM could have permitted forest development in southwestern Iberia.

4.1.2. HS1

421

422

423

424

425

426

427 428

429

430

431

432 433

434

435

436 437

438

439 440

441

442443

444

445

446

447

448

449

450

451

452

453

454 455

456

457

458

459 460 461

462

463 464

465

466

467

468

During HS1 (Pollen zone U1385-2: 17990 - 15230 cal yr BP, SM Fig. S1), a Mediterranean steppe landscape (Fig. 3d) with minimum arboreal development (Fig. 3c) corresponded to the lowest SSTs of the record (SST~12°C, Fig. 3j), and highest levels of aridity are suggested by the maximum of semi-desert taxa and minimum TMF (Fig. 3 and 5c). Additionally, high $C_{37:4}$ values (~8.2%, Fig. 3i) reflect major meltwater pulses, associated with extreme cold conditions of HS1 in the Atlantic Ocean. The notable decrease in heaths (ERI, Fig.3e) as well as

terrestrial marshes and wetlands (decrease in *Isoetes* undiff.) further support increased moisture stress (SM Table S1 and SM Fig. S1). The dominance of STE during HS1 is consistent across the majority of the Iberian Peninsula records (Roucoux et al., 2005; Naughton et al., 2007; 2016; MD95-2043 - Fletcher and Sánchez Goñi, 2008; ODP Site 976 – Comborieut Nebout et al., 2002), reflected also in the long-term minimum in modelled forest levels (Fig. 3c).

Throughout HS1, the potential effect of increasing pCO₂ (from ~185 to ~225 ppm) from 18.1 to ~16 cal ka BP (Fig. 3b) was not enough to counteract the limiting effect of extreme cold and dry atmospheric conditions. Regional models - Weather and Research Forecast Model simulating the potential vegetation with a pCO₂ correction show a reduction in arboreal vegetation and increase of sparsely vegetated soil for the Iberian region during HS1 compared with the LGM (Ludwig et al., 2018). The simulated precipitation values for SW Iberia (Tagus hydrographic basin catchment), show values below 700 mm/yr for HS1, which agrees with the pollen evidence for widespread semi-desert taxa development. Interestingly, the differences between HS1 and LGM concerning temperature, precipitation and pCO2 are quite relevant. The climatic extremes of HS1, despite rising pCO2, were most likely responsible for the loss of heathland following the LGM. Besides, the forest development was constrained across the territory, and based on pollen data from marine and terrestrial records we do not observe any significant (<5% TMF) latitudinal difference when comparing northern (e.g. Peñalba et al., 1997; Perez-Obiol and Julia, 1984; Roucoux et al., 2005; Naughton et al., 2007) with southern (e.g. this study; Comborieu Nebout et al., 2002; Fletcher and Sánchez Goñi, 2008) pollen records. Furthermore, the relationship between pCO2, SST and TMF across the HS1 show scattered values of TMF (below 20%) occurring at SST below 15.5°C and pCO2 below 225 ppmv (Fig. 5).

4.1.3. BA

The BA (Pollen zone U1385-3: 15230 - 12780 cal yr BP; SM Fig. S1) was characterised broadly by favourable climatic conditions (higher temperatures, higher moisture availability) for TMF development (Fig. 3c) including a minor increase in thermophilous Mediterranean elements (Fig. 3c and f) and a reduction of STE (Fig. 3d). The combination of warming (SST above 16° C, Fig. 3 j) and a dry to wet trend are likely the primary drivers of progressive forest development during the BA. Additionally, the increase of pCO₂ from ~230 to 245 ppmv should have promoted a "fertilisation effect" during this time interval (Fig. 3b). The simulations produced by BIOME3 for African Biomes (Tropical forest/Ericaceous scrub) with a present climate showed that above 190 ppmv, the increase of pCO₂ at intervals <20 ppmv, gradually offsets the negative effect of temperature changes; above 250 ppmv with a maximum temperature change of ~-6°C the development of forest will be promoted to the detriment of the ericaceous scrubland (Jolly and Haxeltine, 1997).

Within age uncertainties of the archives, abrupt increases in pCO $_2$ at 16.3 ka and 14.8 ka (Marcott et al., 2014) (Fig. 3b) could tentatively be associated with the slight increase of forest at the onset of the BA and the subsequent highest peaks of forest development observed during the BA, respectively (Fig. 3c). Cao et al. (2019), using pollen-based biome reconstruction, suggested that worldwide expansion of forests was a consequence of the increasing pCO $_2$ superimposed over the temperature increase between 21 ka and 14 ka. Cao et al. (2019) further emphasise the role of CO $_2$ after the LGM driving a general northward expansion of forests and replacement of grassland by temperate forests in Europe. During the BA, considering that temperature and moisture availability in SW Iberia was favourable,

increases in pCO₂ levels (>225 ppmv) may have amplified TMF expansion during this period (Fig. 4b and Fig. 5).

4.1.4. YD

517

518519520

521

522

523524

525

526

527

528529

530

531

532533

534

535

536

537

538539

540

541

542

543

544545

546

547

548

549550

551

552

553554

555

556

557558

559

560

561

562563

564

The YD (pollen zone U1385-4: 12780 – 11190 cal yr BP, SM Fig. S1) is characterised by an initial weak forest contraction followed by its progressive expansion (Fig. 3c). At the regional scale, the landscape likely consisted of a forest-grassland mosaic, as suggested by the relatively high presence of forest elements coexisting with semi-desert taxa (Fig. 3c, d and Fig. 4a). Strong SST cooling (Fig. 3j), (equivalent to LGM SSTs or even cooler), with a minimum of 13.2 °C in the record, without signiifcant freshwater pulses, may have been associated with cooler land surface temperatures. However, this impact may have been muted by the positive effect of higher moisture availability (based on the presence of TMF, Naughton et al. 2019) and/or the increasing trend of pCO₂ (Fig. 3b). The fairly weak reduction in TMF observed in our record and corroborated by the compiled records (Fig 3c) contrasts with the steppe environment described for this interval, especially in the southeast of the Iberian Peninsula (Carrión et al., 2002; Camuera et al., 2019). A more pronounced forest contraction is observed in the high altitude terrestrial/lacustrine cores (Quintanar de la Sierra II – Peñalba et al., 1997; and La Roya - Allen et al., 1996) in which the near-disappearance of the forest might reflect the altitudinal adjustments in vegetation belts (Aranbarri et al., 2014). However, the U1385 record and other Iberian margin and Iberian Peninsula records (e.g. Lake de Banyoles - Perez-Obiol and Julià, 1994; MD03-2697 - Naughton et al., 2007; MD95-2039 -Roucoux et al., 2005; Charco da Candieira – van der Knaap and van Leeuwen, 1997; MD95-2042 - Chabaud et al., 2014; D13882 - Naughton et al., 2019; MD95-2043- Fletcher and Sánchez Goñi, 2008; ODP Site 976 - Comborieut Nebout et al., 2002) show a relatively high percentage of TMF during the YD when compared with the previous HS1 in the SW Iberian Peninsula (Fig. 3c).

Unfortunately, there is a lack of independent precipitation proxies for SW Iberia, and Dennison et al. (2018) highlight a lack of reliability in the speleothem proxies for precipitation in this region for this time interval. More widely in the Iberian Peninsula, a double hydrological structure with a drier first phase and wetter second phase was proposed, the latter favouring the expansion of mountain glaciers (García-Ruiz et al., 2016; Baldini et al., 2019). We observe that the notable YD forest development occurred, counterintuitively, in association with similar SSTs to those of the LGM and only slightly higher than those of HS1. Alongside higher summer insolation, higher pCO₂ (>240 ppmv, Fig. 5) may have been a key factor supporting forest development. A climate simulation from transient experiments using LOVECLIM, for the site SHAK06-5K / MD01-2444 located nearby U1385, obtained a weaker AMOC, colder winter temperature, and lower precipitation for the YD compared with the LGM (Cutmore et al., 2021). This supports the scrutiny of additional factors, notably pCO₂ influence on moisture availability for plants, to explain the substantial levels of TMF observed in the Iberian margin records (Fig. 3c). The increase in pCO2 may have enhanced plant productivity and WUE (Cowling and Sykes, 1999; Ward et al., 2005) during the YD, partially compensating for the impact of atmospheric cooling and drying. Schenk et al. (2018) suggest pCO₂ may play an essential role in the forest development if enough moisture is available. It may be that the tree cover was restricted to suitable, moist microhabitats and close to refuge zones, but it certainly was not as restricted as in previous cold periods (Svenning et al., 2011), as TMF abundances support (Fig. 3c). Simultations from vegetation-climate models based on pollen records for biome reconstruction (Shao et al., 2018) and in a dynamic vegetation model (ORCHIDEE) driven by outputs from an AOGCM (Woillez et al., 2011) emphasise the influence of increasing pCO₂ as a critical factor for worldwide forest development during the period including the YD (Shao et al., 2018). Underlying these changes the increase in summer insolation (Fig. 3a), which contributed to the increase of summer temperatures and winter precipitation in the Mediterranean region (Meijer and Tuenter, 2007) cannot be neglected as a promotor of forest development, at least where trees were not excessively water-stressed. However disentangling the contribution of insolation vs pCO₂ requires sensitivity experiments, not yet performed. In summary, the persistence of TMF during the YD, despite colder winters and drier summer conditions compared to the B-A, seems to be best explained by the combined interaction between precipitation variability, maximum insolation and increasing pCO₂ (between ~245 and 265 ppmv) (Fig. 4a).

4.1.5 Early to Middle Holocene

Pollen zone U1385-5 (11190 – 4260 cal yr BP) corresponds to the Early to Middle Holocene. This zone is marked by the expansion of TMF and warm-loving Mediterranean elements, reflecting a regional increase in temperature and precipitation alongside warm SSTs (>18°C). Despite the low temporal resolution for this interval, the U1385 record is consistent with nearby records showing a maximum forest development at around 9000 cal yr B.P. (Fig. 3c), noting that the specific timing of the Holocene forest maximum varied across the Iberian Peninsula along a gradient of regional moisture availability (Gomes et al., 2020). The Early Holocene pCO₂ exceeded 260 ppmv, representing full interglacial conditions. The combination of coupled interglacial ocean-atmosphere conditions (reflected in high SSTs) and high pCO₂ supported maximum forest development (Fig. 5). The impact on moisture availability for plants compared to the preceding glacial conditions would have been profound, supporting high productivity and further increases in WUE. The progressive lifting of CO₂ constraints on photosynthesis across the Last Deglaciation thus may represent an important factor underlying the forest development in SW Iberia.

4.2. C₂₉/C₃₁ ratio and C₃/C₄ dynamics: potential and limitations

Insights into the dominance of different plant physiological pathways in response to contrasting levels of pCO₂ and humidity can be potentially gained using C₂₉/C₃₁ n-alkanes of Site U1385. The C₂₉/C₃₁ curve shows important variability between climatic phases, with increasing values during the LGM, high values during HS1 and the YD, and lower values during the BA and Holocene (Fig. 3h). The C_{29}/C_{31} is positively correlated (Pearson's correlation coefficient, r =0.52, p-value = 2.473e-08) with the semidesert pollen group and negatively correlated (r = -0.63, p-value = 2.821e-12) with TMF (Fig. 3c, d and h). These observations support a coherent link between pollen-based vegetation changes on the adjacent continent and n-alkane chainlengths. In general, C₂₉ and C₃₁, as well as other long-chain alkanes with odd carbon numbers (e.g. C₂₉, C₃₁, C₃₃), are epicuticular waxes produced by terrestrial plants, from which C₂₉ could represent woody plants and C₃₁ grasses (Meyers, 2003). However, caution in interpreting the C₂₉/C₃₁ ratio in terms of taxonomic groups is required since woody plants and grasses are both capable of producing C₂₉ and C₃₁ chain lengths (Ortiz et al., 2010; Bush and McInerney, 2013). Furthermore, differences are observed between global regions and biomes in terms of what long-chain n-alkanes a species produces (Bush and McInerney, 2013). Here, we do not find that the anticipated general interpretation of the C₂₉/C₃₁ ratio as an indicator of the relative abundance of trees vs grasses holds for our datasets. Instead, we offer two possible

interpretations. First, C₂₉/C₃₁ ratio in this setting may reflect an adaptation of plants to aridity. The n-alkanes of leaf waxes are produced to protect plants against the loss of water during the photosynthetic process (Post-Beittenmiller, 1996; Jetter et al., 2006). We could expect arid, cold and windy conditions to be more disturbing for woody plants; with demanding physiological requirments compared to grasses. Therefore, such harsh environments could exert greater stress on woody plants than on herbaceous taxa. Consequently the increase of the C₂₉/C₃₁ during HS1 and YD, could suggest a climatic adaptation of woody plants (TMF and ERI) by increasing the production of leaf wax C₂₉ as a protective strategy to survive under these challenging conditions (Fig. 3h). Second, the shifts in chain-lengths may primarily reflect compositional shifts between woody-dominated vegetation that includes diverse ecological tolerances, from semi-desert dwarf shrubs such as Artemisia to mesophyll broad-leaved trees. As such, a prevailing "trees vs grasses" interpretative structure may not be adequate for the Iberian Peninsula setting. The traditional taxonomic generalisation of C₂₉ woody versus C₃₁ grasses (Meyers, 2003), still needs some caution and further research to develop a fuller picture of the leaf-wax characteristics of contributing species in the region is required (Cutmore, 2021). However, the coherent climate signature evident in the U1385 is encouraging for this endeavour. Other hypotheses to be explored for understanding the role of different forcing on the Mediterranean forest development during deglaciations include the connection between the long-chain n-alkanes and the dynamic between C₃ and C₄ plants. Nowadays, African savannahs are dominated by C₄ plants, and biomarkers (including C₃₁ nalkanes) can be used to infer their presence in past landscapes (Dupont et al., 2019). Worldwide, 80% of Poaceae (grasses) and Cyperaceae (sedges) present a C₄ photosynthetic pathway that is favoured by arid conditions (Sage, 2017). Unfortunately, pollen analysis cannot discriminate Poaceae and Cyperaceae pollen morphotypes from exclusively or in its majority C₄ plants. We have grouped the Poaceae and the Cyperaceae pollen taxa, noting the inherent limitations of this grouping to represent C4 plants in Iberia as we know that less than 10% of the grasses in this region belong to C4 plants at present (Casas-Gallego et al., 2025) (Fig. 3q). Across the last deglaciation, this group (Poaceae + Cyperaceae) presents relatively high values with considerable oscillations between the LGM and the BA and more stable behaviour onwards. No particular correlation with other indicators (TMF or STE or C₂₉/C₃₁) was evident, apart from the apparent instability before the Holocene. Therefore, we do not observe particular evidence to suggest an increased importance of grasses and sedges during arid intervals or low pCO2 intervals of the LGM and deglaciation. In laboratory studies, C3 grasses outperform C4 grasses when temperatures rise by 5 to 15°C at a low CO2 concentration of 200 ppm. Research on the quantum yield of photosynthesis identified a "crossover temperature"—the point at which C3 and C4 plants perform equally. This crossover depends on both temperature and CO₂ levels. Modeling across 0–45°C and CO₂ levels from 150–700 ppm shows that whether C3 or C4 plants are favored is determined by the interaction between these two factors, unfortunately humidty was not considered (Ehleringer et al., 1997; Edwards et al., 2010). Furthermore, most of the C4 plants are confined to the tropical grasslands and savannahs; being better adapted to environments with higher temperatures, aridity, poor nutrient soils, and intensive disturbance caused by animals or fire regimes (Bond et al., 2005; Edwards et al., 2010). Likewise, one should expect that vegetation in SW Iberia after the LGM (Fig. 3 and 5) should be mainly composed of C₃ plants; considering the estimated SSTs indicating relatively cold temperatures (Fig. 5) and the high percentages of Artemisia spp (C₃ plant) (SM Fig. S1).

613

614

615

616

617

618

619 620

621

622

623

624

625 626

627

628 629

630

631

632

633

634 635

636 637

638

639

640 641

642

643

644

645

646 647

648

649

650

651

652

653

654

655

656

657

However, it is not currently possible to entirely rule out an increased importance of C_4 plants in the glacial vegetation of SW Iberia, because pollen morphology does not allow the separation of these groups. The discrimination of C_3/C_4 grasses has been made on the basis of stable isotopes of ancient grass pollen (Nelson et al., 2016) although the single grain isotopic measurements employed remain challenging to implement. There is important scope for further study of biomarker proxies to clarify the dynamic between C_3/C_4 plants in the Temperate/Mediterranean (Warm-temperate) biomes. This highlights the fact that C_3/C_4 plant dynamic observed in Africa (e.g. Dupont et al., 2019) and other savannahs ecosystems is not replicable in our study area so far. Biomarker species/groups fingerprinting studies are required in order to distinguish between C_3 and C_4 plants and test for an increased abundance of C_4 plants within Iberian Mediterranean ecosystems during the last deglaciation.

5. Conclusion

This study presents high-resolution pollen and SST records from Site U1385 off the SW Iberian Margin, offering valuable data for understanding past vegetation dynamics during key climate transitions and pCO2 changes of the LGM and deglaciation. We applied a biomarker proxy (leaf wax C₂₉/C₃₁ ratio) which is positively correlated with the semi-desert pollen curve and negatively with TMF, revealing its potential as a proxy of aridity in the Mediterranean region). The high temporal resolution analysis and robust radiocarbon chronology allow consistent and more accurate comparisons with regional datasets, making this study a valuable contribution for future palaeonvironmental reconstructions and model simulations. Rather than simply interpreting our dataset in terms of past temperature and precipitation changes, we examine the U1385 record in light of the growing corpus of modern and palaeo observational and modelling studies that support a significant influence of pCO2 on past vegetation distribution and composition. We suggest that low pCO2 acted as a modulator of vegetation response during the LGM. Cold temperatures, low seasonality, and exacerbated drought stress resulting from plant physiological impacts of low pCO2 likely restricted forest growth while favoring heathlands. Traits of Mediterranean Ericaceae, such as deep roots and thick waxy leaves, may have given these plants a competitive advantageDuring HS1, woody vegetation was significantly suppressed due to cold and arid conditions, exacerbated by low atmospheric pCO₂ levels. The subsequent notable expansion of temperate Mediterranean forests (TMF) during the Bølling-Allerød (BA) was driven by warmer and moister conditions, and also favoured by rising pCO₂ concentrations. During the Younger Dryas (YD), despite a return to colder temperatures, forest-grassland mosaics persisted-primarily supported by increased moisture availability and sustained higher pCO₂ levels.

Furthermore, our study supports a critical pCO₂ threshold for forest expansion during the deglaciation at ~225 ppmv. Below this value, arboreal populations were generally restricted in their development (e.g. LGM) and the impact of climatic aridification and cooling (e.g. HS1) was detrimental. Above this value, arboreal populations developed strongly (e.g. BA) and the impact of climatic deterioration (e.g. YD) was moderated. This value aligns with several observations from Mediterranean to the tropical African environments (e.g. Dupont et al., 2019; Oliveira et al., 2020; Koutsodendris et al., 2023; Sánchez-Goñi et al., 2023). The concept should be further tested in regional vegetation models to determine the vegetation response to pCO2 fluctuations during past cold periods. Our findings highlight the importance of pCO₂ as a key driver of vegetation change in the Mediterranean region through its influence on moisture availability in plants (Koutsodendris et al., 2023). The paleo-data offer valuable context for elucidating vegetation responses under future climate scenarios involving rising

 ${\rm CO_2}$ and shifting precipitation patterns. They also highlight the need for further investigation of the relationship between long-chain n-alkanes and present-day vegetation and ${\rm C_3/C_4}$ plants ratio as the long-chain alkanes do not yet provide a reliable basis to disentangle the dynamic between woody plants and grasses in the Mediterranean domain.

710 711

Author contribution

712713

714

715

716

717

706

707

708

709

SDG, WF, FN and AS contributed to the conception and design of the study, data analysis and interpretation. Also they were responsible for the grant application to NERC. SDG performed pollen analysis. TR performed biomarkers analysis. AR perfomed assemblage foraminifers picking for radiocarbon dating and draw figure 1. SDG prepared the original draft and wrote the manuscript including figures with the critical input (edition and revision) from all co-authors.

718719720

Competing interests

721 722

The authors declare that they have no conflict of interest.

723 724

Acknowledgements

725 726

727

728

729

730 731

732

733

734

735736

This research was supported by the Portuguese Foundation for Science and Technology (FCT) SFRH/BD/128984/2017 PhD grant to SDG, the ULTImATum (IF/01489/2015) and, the Hydroshifts (PTDC/CTA-CLI/4297/2021) projects; CCMAR FCT Research Unit - project UIDB/04326/2020, CCMAR BCC grant (Incentivo/MAR/LA00015/2014) to FN, FCT contract (CEECIND/02208/2017) to DO, WarmWorld Project (PTDC/CTA-GEO/29897/2017) for Biomarker analyses, and grant (SFRH/BPD/108600/2015) to TR. The sixteen radiocarbon dates were obtained through the NERC radiocarbon allocations 2136.1018 and 2199.1019. The contributions of L. Devaux are gratefully acknowledged (Bordeaux 1 University, EPOC, UMR-CNRS 5805) for his assistance in palynological treatments. This study received Portuguese national funds from FCT - Foundation for Science and Technology through projects UIDB/04326/2020 (DOI:10.54499/UIDB/04326/2020) and LA/P/0101/2020 (DOI:10.54499/LA/P/0101/2020).

737738739

References

740741742

743

744

745

746

747

748

749

750

- Agencia Estatal de Meteorología (AEMET) and Instituto de Meteorologia (IM, Portugal): Atlas Climático Ibérico: Temperatura del aire y precipitación (Experiment Normais 1971–2000), AEMET & IM, Gobierno de España, Madrid and Lisbon, ISBN 978-84-7837-079-5, 2011.
- Allen, J.R., Huntley, B., and Watts, W.A.: The vegetation and climate of northwest Iberia over the last 14,000 years, J Quaternary Sci., 11,125-147, https://doi.org/10.1002/(SICI)1099-1417(199603/04)11: 2<125:AID-JQS232>3.0. C.O.;2-U, 1996.
- Alley, R.B. and Clark, P.U.: The deglaciation of the northern hemisphere: a global perspective, Annu Rev Earth PI Sc, 27, 149-182, https://doi.org/10.1146/annurev.earth.27.1.149, 1999.
- Aranbarri, J., González-Sampériz, P., Valero-Garcés, B., Moreno, A., Gil-Romera, G., Sevilla-Callejo, M., García-Prieto, E., Di Rita, F., Mata, M.P., Morellón, M., and Magri, D.: Rapid climatic changes and resilient vegetation during the Lateglacial and Holocene in a

- continental region of south-western Europe, Global Planet. Change, 114, 50-65, https://doi.org/10.1016/j.gloplacha.2014.01.003, 2014.
- Asensi, A. and Díez-Garretas, B.: Coastal Vegetation, in The Vegetation of the Iberian Peninsula, edited by: Loidi, J., Plant and Vegetation, vol. 13, Springer, Cham, Switzerland, pp. 397–432, https://doi.org/10.1007/978-3-319-54867-8_8, 2017.
- Bard, E., Arnold, M., Maurice, P., Duprat, J., Moyes, J., and Duplessy, J.C.: Retreat velocity of the North Atlantic polar front during the last deglaciation determined by ¹⁴C accelerator mass spectrometry, Nature, 328, 791, https://doi.org/10.1038/328791a0, 1987.
- Bard, E., Rostek, F., Turon, J.L., and Gendreau, S.: Hydrological impact of Heinrich events in the subtropical northeast Atlantic, Science, 289, 1321-1324, 10.1126/science.289.5483.1321, 2000.
- Bartlein, P.J., Harrison, S.P., Brewer, S., Connor, S., Davis, BAS., Gajewski, K., Guiot, J., Harrison-Prentice, T.I., Henderson, A., Peyron, O., and Prentice, I.C.: Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis, Clim. Dynam., 37, 775-802, https://doi.org/10.1007/s00382-010-0904-1, 2011.
- Beghin, P., Charbit, S., Kageyama, M., Combourieu-Nebout, N., Hatté, C., Dumas, C., and Peterschmitt, J.-Y.: What drives LGM precipitation over the western Mediterranean? A study focused on the Iberian Peninsula and northern Morocco, Clim. Dynam., 46, 2611-2631, https://doi.org/10.1007/s00382-015-2720-0, 2016.
- Bennett, K.D.: Documentation for psimpoll 4.27 and pscomb 1.03: C programs for plotting and analysing pollen data, http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html,2009.
- Blaauw, M. and Christen, J.A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457-474, 10.1214/ba/1339616472, 2011.
- Boessenkool, K. P., Brinkhuis, H., Schönfeld, J., and Targarona, J.: North Atlantic sea-surface temperature changes and the climate of western Iberia during the last deglaciation; a marine palynological approach, Global Planet. Change, 30, 33-39, 10.1016/S0921-8181(01)00075-3, 2001.
- Bond, W.J., Woodward, F.I. and Midgley, G.F.: The global distribution of ecosystems in a world without fire, New phytologist, 165, 525-538, https://doi.org/10.1111/j.1469-8137.2004.01252.x, 2005
- Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U., and Sarnthein, M.: Molecular stratigraphy: a new tool for climatic assessment, Nature, 320, 129-133, https://doi.org/10.1038/320129a0, 1986.
- Bush, R.T. and McInerney, F.A.: Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy, Geochim. Cosmochim. Ac., 117, 161-179, 2013.
- Camuera, J., Jiménez-Moreno, G., Ramos-Román, M.J., García-Alix, A., Toney, J.L.,
 Anderson, R.S., Jiménez-Espejo, F., Bright, J., Webster, C., Yanes, Y., and Carrión, J.S.:
 Vegetation and climate changes during the last two glacial-interglacial cycles in the western
 Mediterranean: A new long pollen record from Padul (southern Iberian Peninsula),
 Quaternary Sci. Rev., 205, 86-105, https://doi.org/10.1016/j.quascirev.2018.12.013, 2019.
- 794 Quaternary Sci. Rev., 205, 86-105, https://doi.org/10.1016/j.quascirev.2018.12.013, 2019. 795 Cao, X., Tian, F., Dallmeyer, A., and Herzschuh, U.: Northern Hemisphere biome changes (>
- 30° N) since 40 cal ka BP and their driving factors inferred from model-data comparisons,
 Quaternary Sci. Rev., 220, 291-309, https://doi.org/10.1016/j.quascirev.2019.07.034,
 2019.
- Carlson, A. E., LeGrande, A. N., Oppo, D. W., Came, R. E., Schmidt, G. A., Anslow, F. S., Licciardi, J. M., and Obbink, E. A.: Rapid early Holocene deglaciation of the Laurentide ice

- sheet, Nature Geosci., 1, 620–624, https://doi.org/10.1038/ngeo285, 2008.
- Carr, A. S., Boom, A., Grimes, H. L., Chase, B. M., Meadows, M. E., and Harris, A.: Leaf wax n-alkane distributions in arid zone South African flora: environmental controls, chemotaxonomy and palaeoecological implications. Org. Geochem., 67, 72–84, https://doi.org/10.1016/j.orggeochem.2013.12.004, 2014.
- Carrión, J.S.: Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe, Quaternary Sci. Rev., 21, 2047-2066. 10.1016/S0277-3791(02)00010-0, 2002.
- Casas-Gallego, M., Postigo-Mijarra, J. M., Sánchez-de Dios, R., Barrón, E., Bruch, A. A., Hahn, K., and Sainz-Ollero, H. (2025). Changes in distribution of the Iberian vegetation since the Last Glacial Maximum: A model-based approach. Quaternary Sci. Rev., 351, 109162, https://doi.org/10.1016/j.quascirev.2024.109162, 2025.
- Chabaud, L., Sánchez Goñi, M.F., Desprat, S., and Rossignol, L.: Land-sea climatic variability in the eastern North Atlantic subtropical region over the last 14,200 years: Atmospheric and oceanic processes at different timescales, The Holocene, 24, 787-797, https://doi.org/10.1177/0959683614530439, 2014.
- Chen, W., Zhu, D., Ciais, P., Huang, C., Viovy, N., and Kageyama, M.: Response of vegetation cover to CO2 and climate changes between Last Glacial Maximum and pre-industrial period in a dynamic global vegetation model, Quaternary Sci. Rev., 218, 293-305, https://doi.org/10.1016/j.quascirev.2019.06.003, 2019.
- Chevalier, M., Davis, B. A. S., Heiri, O., Seppä, H., Chase, B. M., Gajewski, K., Lacourse, T., Telford, R. J., Finsinger, W., Guiot, J., Kühl, N., Maezumi, S. Y., Tipton, J. R., Carter, V. A., Brussel, T., Phelps, L. N., Dawson, A., Zanon, M., Vallé, F., Nolan, C., Mauri, A., de Vernal, A., Izumi, K., Holm ström, L., Marsicek, J., Goring, S., Sommer, P. S., Chaput, M., and Kupriyanov, D.: Pollen-based climate reconstruction tech niques for late Quaternary studies, Earth Sci. Rev., 210, 103384, https://doi.org/10.1016/j.earscirev.2020.103384, 2020.
- Chevalier, M., Chase, B. M., Quick, L. J., Dupont, L. M., and Johnson, T. C.: Temperature change in subtropical southeastern Africa during the past 790,000 yr, Geology, 49, 71–75, https://doi.org/10.1130/G47841.1, 2021.
- Clark, P.U., Shakun, J.D., Baker, P.A., Bartlein, P.J., Brewer, S., Brook, E., Carlson, A.E., 831 Cheng, H., Kaufman, D.S., Liu, Z., and Marchitto, T.M.: Global climate evolution during the 832 last deglaciation. Ρ. Natl. Acad. Sci. USA, 109, E1134-E1142, 833 834 https://doi.org/10.1073/pnas.1116619109, 2012
- Claussen, M., Selent, K., Brovkin, V., Raddatz, T., and Gayler, V.: Impact of CO2 and climate on Last Glacial Maximum vegetation - A factor separation, Biogeosciences, 10, 3593-3604, 10.5194/bg-10-3593-2013, 2013.
- Cleator, S.F., Harrison, S.P., Nichols, N.K., Prentice, I.C., and Roulstone, I.: A new multivariable benchmark for Last Glacial Maximum climate simulations. Clim. Past, 16, 699-712, https://doi.org/10.5194/cp-16-699-2020, 2020.
- Clément, C., Martinez, P., Yin, Q., Clemens, S. C., Thirumalai, K., Prasad, S., Anupama, K., Su, Q., Lyu, A., Grémare, A., & Desprat, S.: Greening of India and revival of the South Asian summer monsoon in a warmer world. Commun. Earth Environ., 5(1), 685, 2024.
- Combourieu Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C., Kotthoff, U., and Marret, F.: Rapid climatic variability in the west Mediterranean during the last 25 000 years from high resolution pollen data, Clim. Past, 5, 503-521, https://doi.org/10.5194/cp-5-503-

847 2009, 2009.

- Cowling, S.A. and Sykes, M.T.: Physiological significance of low atmospheric CO₂ for plantclimate interactions, Quaternary Res., 52, 237-242, https://doi.org/10.1006/qres.1999.2065, 1999.
- Cowling, S.A.: Simulated effects of low atmospheric CO2 on structure and composition of North American vegetation at the Last Glacial Maximum, Global Ecol. Biogeogr., 8, 81-93, https://doi.org/10.1046/j.1365-2699.1999.00136.x, 1999.
- Cranwell, P.A.: Chain-length distribution of n-alkanes from lake sediments in relation to postglacial environmental change, Freshwater Biology, 3, 259-265, https://doi.org/10.1111/j.1365-2427.1973.tb00921.x, 1973.
- Cruz-Silva, E., Harrison, S. P., Prentice, I. C., Marinova, E., Bartlein, P. J., Renssen, H., and Zhang, Y.: Pollen-based reconstructions of Holocene climate trends in the eastern Mediterranean region. Clim Past, 19(11), 2093-2108, https://doi.org/10.5194/cp-19-2093-2023, 2023.
- Cutmore, A. V.: Insights into the nature of climate and vegetation changes over the last 28,000 years using combined pollen and leaf-wax biomarker analyses from the SW Iberian Margin, Doctoral dissertation, UCL (University College London), 2021.
- 864 Cutmore, A., Ausín, B., Maslin, M., Eglinton, T., Hodell, D., Muschitiello, F., ... & Tzedakis, P. 865 C.: Abrupt intrinsic and extrinsic responses of southwestern Iberian vegetation to millennial-866 scale variability over the past 28 ka. J. Quat. Sci., 37(3), 420-440, https://doi.org/10.1002/jqs.3392, 2022. 867
- Davis, B. A. S., Fasel, M., Kaplan, J. O., Russo, E., and Burke, A.: The climate and vegetation of Europe, North Africa and the Middle East during the Last Glacial Maximum (21 000 yr BP) based on pollen data, Clim. Past, 20, 1939–1988, https://doi.org/10.5194/cp-20-1939-2024, 2024.
- Denniston, R.F., Houts, A.N., Asmerom, Y., Wanamaker Jr, A.D., Haws, J.A., Polyak, V.J., Thatcher, D.L., Altan-Ochir, S., Borowske, A.C., Breitenbach, S.F. and Ummenhofer, C.C., 2018. A stalagmite test of North Atlantic SST and Iberian hydroclimate linkages over the last two glacial cycles. Climate of the Past, 14. Doi: 10.5194/cp-14-1893-2018
- Denton, G. H. and Hughes, T. J.: The Last Great Ice Sheet, Wiley Interscience, New York, 484 pp., ISBN 9780471065383, 1981.
- Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefer, J.M., and Putnam,
 A.E.: The last glacial termination, Science, 328, 1652-1656, 10.1126/science.1184119,
 2010.
- Diefendorf, A. F., & Freimuth, E. J.: Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review. Org. Geochem., 103, 1–21, https://doi.org/10.1016/j.orggeochem.2016.10.016, 2017.
- Dormoy, I., Peyron, O., Combourieu Nebout, N., Goring, S., Kotthoff, U., Magny, M., and Pross, J.: Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records, Clim. Past, 5, 615-632, https://doi.org/10.5194/cp-5-615-2009, 2009.
- Dupont, L.M., Caley, T., and Castañeda, I.S.: Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa, Clim. Past, 15, 1083-1097, https://doi.org/10.5194/cp-15-1083-2019, 2019.
- Dusenge, M.E., Duarte, A.G., and Way, D.A.: Plant carbon metabolism and climate change: elevated CO₂ and temperature impacts on photosynthesis, photorespiration and respiration, New Phytologist, 221, 32-49, https://doi.org/10.1111/nph.15283, 2019.
- Dyke, A. S. and Prest, V. K.: Late Wisconsinan and Holocene history of the Laurentide Ice Sheet, Géogr. Phys. Quat., 41, 237–263, https://doi.org/10.7202/032681ar, 1987.

- Edwards, E.J., Osborne, C.P., Strömberg, C.A., Smith, S.A. and C4 Grasses Consortium: The origins of C4 grasslands: integrating evolutionary and ecosystem science, Science, 328, 587-591, https://doi.org/10.1126/science.1177216, 2010.
- Ehleringer, J.R., Cerling, T.E., and Helliker, B.R.: C4 photosynthesis, atmospheric CO₂, and climate, Oecologia, 112, 285-299, 1997.
- Faegri, K., Kaland, P.E. and Krzywinski, K., Textbook of pollen analysis, 4thEdition, John Wiley
 & Sons Ltd., Chichester, 1989.
- Farquhar, G.D. and Lloyd, J.: Carbon and Oxygen Isotope Effects in the Exchange of Carbon Dioxide between Terrestrial Plants and the Atmosphere, in: Stable Isotopes and Plant Carbon/Water Relations, edited by: Ehleringer, J.R., Hall, A.E., and Farquhar, G.D., Academic Press, New York, 47-70, https://doi.org/10.1016/C2009-0-03312-1,1993.
- Fletcher, W.J. and Sánchez Goñi, M.F.: Orbital-and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr, Quaternary Res., 70, 451-464, https://doi.org/10.1016/j.yqres.2008.07.002, 2008.
- Fletcher, W.J., Goñi, M.S., Peyron, O., and Dormoy, I.: Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record, Clim. Past, 6, 245-264, https://doi.org/10.5194/cp-6-245-2010, 2010a.
- Fletcher, W.J., Sánchez Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu-Nebout, N., 913 Huntley, B., Lawson, I., Londeix, L., Magri, D., Margari, V., Müller, U.C., Naughton, F., 914 915 Novenko, E., Roucoux, K., Tzedakis, P.C.: Millennial-scale variability during the last glacial 916 vegetation records from Europe, Quat. Sci. Rev. 29, 2839-2864. https://doi.org/10.1016/j.quascirev.2009.11.015, 2010b. 917
- García-Ruiz, J. M., Palacios, D., González-Sampériz, P., De Andrés, N., Moreno, A., Valero-Garcés, B., and Gómez-Villar, A.: Mountain glacier evolution in the Iberian Peninsula during the Younger Dryas, Quat. Sci. Rev., 138, 16–30, https://doi.org/10.1016/j.quascirev.2016.02.012, 2016.
- Georget, M., Castéra, M.-H., Devaux, L., Turon, J.-L., Desprat, S., and Sánchez Goñi, M. F.:
 Protocol for pollen and dinocyst analysis in marine sediments, Protocols.io, https://doi.org/10.17504/protocols.io.x54v92qz4l3e/v1, 2025.
- 925 Gerhart, L.M. and Ward, J.K.: Plant responses to low [CO₂] of the past, New Phytol., 188, 674-926 695, https://doi.org/10.1111/j.1469-8137.2010.03441.x, 2010.
- Gomes, S.D., Fletcher, W.J., Rodrigues, T., Stone, A., Abrantes, F., and Naughton, F.: Timetransgressive Holocene maximum of temperate and Mediterranean forest development across the Iberian Peninsula reflects orbital forcing, Palaeogeogr. Palaeocl., 550, 109739, https://doi.org/10.1016/j.palaeo.2020.109739, 2020.
- Gosling, William D., Charlotte S. Miller, Timothy M. Shanahan, Philip B. Holden, Jonathan T.
 Overpeck, and Frank van Langevelde: A Stronger Role for Long-Term Moisture Change
 Than for CO₂ in Determining Tropical Woody Vegetation Change. Science 376 (6593):
 653–56. https://doi.org/10.1126/science.abg4618, 2022.
- Gratani, L. and Varone, L.: Leaf key traits of Erica arborea L., Erica multiflora L. and Rosmarinus officinalis L. co-occurring in the Mediterranean maquis. Flora-Morphology, Distribution, Functional Ecology of Plants, 199, 58-69, https://doi.org/10.1078/0367-2530-00130, 2004.
- 939 Grimalt, J. O., Calvo, E., and Pelejero, C.: Sea surface paleotemperature errors in U^k'37 940 estimation due to alkenone measurements near the limit of detection, Paleoceanography, 941 16, 226-232, 10.1029/1999PA000440, 2001.

- Grimm, E. C.: CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Comput. Geosci., 13, 13–35, https://doi.org/10.1016/0098-3004(87)90022-7, 1987.
- Guiot, J., Torre, F., Jolly, D., Peyron, O., Boreux, J.J., and Cheddadi, R.: Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimates under changed precipitation seasonality and CO2 conditions: application to glacial climate in Mediterranean region, Ecol. Model., 127, 119-140, https://doi.org/10.1016/S0304-3800(99)00219-7, 2000.
- Harrison, S.P. and Prentice, C.I.: Climate and CO₂ controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations, Glob. Chang. Biol., 9, 983-1004, https://doi.org/10.1046/j.1365-2486.2003.00640.x, 2003.
- Heaton, T.J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W., Austin, W.E., Ramsey, C.B, Grootes, P.M., Hughen, K.A, Kromer, B., Reimer, P.J., Adkins, J., Burke, A., Cook, M.S., Olsen, J., Skinner, L.C.: Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP), Radiocarbon,62(4), 779-820, https://doi.org/10.1017/RDC.2020.68, 2020.
- Heusser, L. and Balsam, WL: Pollen distribution in the northeast Pacific Ocean, Quaternary Res., 7, 45-62, https://doi.org/10.1016/0033-5894(77)90013-8, 1977.
- Hodell, D., Lourens, L., Crowhurst, S., Konijnendijk, T., Tjallingii, R., Jiménez-Espejo, F.,
 Skinner, L., Tzedakis, P.C., Members, T.S.S.P., Abrantes, F., and Acton, G.D.: A reference
 time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin, Global and Planet.
 Change, 133, 49-64, https://doi.org/10.1016/j.gloplacha.2015.07.002, 2015.

- Huang, J.G., Bergeron, Y., Denneler, B., Berninger, F., and Tardif, J.: Response of forest trees to increased atmospheric CO₂, Critical Reviews in Plant Sciences, 26, 265-283, 2007.
- Izumi, K. and Lézine, A.M.: Pollen-based biome reconstructions over the past 18,000 years
 and atmospheric CO₂ impacts on vegetation in equatorial mountains of Africa, Quat. Sci.
 Rev., 152, 93-103, https://dx.doi.org/10.1016/j.quascirev.2016.09.023, 2016.
- Izumi, K., and Bartlein, P. J.: North American paleoclimate reconstructions for the Last Glacial Maximum using an inverse modeling through iterative forward modeling approach applied to pollen data. Geophys. Res. Lett, 43(20), 10-965, https://doi.org/10.1002/2016GL070152, 2016.
- Jetter, R., Kunst, L., and Samuels, A.L.: Composition of plant cuticular waxes, in: Biology of the Plant Cuticle, Annual Plant Reviews, edited by: Riederer, M., Müller, C., Blackwell, Oxford, 145-181, https://doi.org/10.1002/9780470988718.ch4, 2006.
- Jolly, D. and Haxeltine, A.: Effect of Low Glacial Atmospheric CO₂ on Tropical African Montane Vegetation, Science, 276, 786-788, https://doi.org/10.1126/SCIENCE.276.5313.786, 1997.
- 978 Körner, C.: Biosphere responses to CO_2 enrichment, Ecol. Appl., 10, 1590-979 1619,https://doi.org/10.1890/1051-0761(2000)010[1590: BRTCE]2.0.CO;2, 2000.
- Ludwig, P., Shao, Y., Kehl, M., and Weniger, G.-C.: The Last Glacial Maximum and Heinrich event I on the Iberian Peninsula: A regional climate modelling study for understanding human settlement patterns, Glob. Planet. Change, 170, 34-47, https://doi.org/10.1016/J.GLOPLACHA.2018.08.006, 2018.
- Koutsodendris, A., Dakos, V., Fletcher, W. J., Knipping, M., Kotthoff, U., Milner, A. M., Müller,
 U. C., Kaboth-Bahr, S., Kern, O. A., Kolb, L., Vakhrameeva, P., Wulf, S., Christanis, K.,
 Schmiedl, G., and Pross, J.: Atmospheric CO₂ forcing on Mediterranean biomes during the
 past 500 kyrs, Nat. Commun. 14, 1664, https://doi.org/10.1038/s41467-023-37388-x, 2023.
- 988 Marcott, S.A., Bauska, T.K., Buizert, C., Steig, E.J., Rosen, J.L., Cuffey, K.M., Fudge, T.J., 989 Severinghaus, J.P., Ahn, J., Kalk, M.L., McConnell, J.R., Sowers, T., Taylor, K.C., White,

- J.W.C., Brook, E.J.: Centennial-scale changes in the global carbon cycle during the last deglaciation, Nature, 514, 616-619, https://doi.org/10.1038/nature13799, 2014.
- 992 Margari, V., Skinner, L.C., Hodell, D.A., Martrat, B., Toucanne, S., Grimalt, J.O., Gibbard, P.L., 993 Lunkka, J.P. and Tzedakis, P.C.: Land-ocean changes on orbital and millennial time scales
- 994 and the penultimate glaciation. Geology, 42(3), pp.183-186, https://doi.org/10.1130/G35070.1, 2014.
- 996 Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., and. Stocker, T. F.: 997 Four climate cycles of recurring deep and surface water destabilisations on the Iberian 998 margin, Science, 317, 502 - 507, https://doi.org/10.1126/science.1139994, 2007.
- McAndrews, J.H. and King, J.E.: Pollen of the North American Quaternary: the top twenty, Geoscience and Man, 15, 41-49, https://doi.org/10.2307/3687256, 1976.
- Meijer, P. T. and Tuenter, E.: The effect of precession-induced changes in the Mediterranean freshwater budget on circulation at shallow and intermediate depth, Journal of Marine Systems, **68**, 349–365, https://doi.org/10.1016/j.jmarsys.2007.01.006, 2007.
- Meyers, P.A.: Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes, Org. Geochem., 34, 261-289, https://doi.org/10.1016/S0146-6380(02)00168-7, 2003.
- Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T.F., Raynaud,
 D., Barnola, J.M.: Atmospheric CO2 concentrations over the last glacial termination,
 Science, 291, 112-114, https://doi.org/10.1126/science.291.5501.112, 2001.
- Moore, P.D., Webb, J.A. and Collison, M.E.: Pollen analysis. Blackwell scientific publications, Oxford, 1991.
- Morales-Molino, C. and García-Antón, M.: Vegetation and fire history since the last glacial maximum in an inland area of the western Mediterranean Basin (Northern Iberian Plateau, NW Spain), Quaternary Res., 81, 63-77, https://doi.org/10.1016/j.yqres.2013.10.010, 2014.
- Morales-Molino, C., Devaux, L., Georget, M., Hanquiez, V., and Goñi, M.F.S.: Modern pollen representation of the vegetation of the Tagus Basin (central Iberian Peninsula), Rev. Palaeobot. Palyno., 276, 104193, https://doi.org/10.1016/j.revpalbo.2020.104193, 2020.
- Müller, P., Kirst, G., Ruhland, G., Storch, I.V., Rosell-Melé, A.: Calibration of the alkenone index U^k₃₇ based on core-tops the eastern South Atlantic and global ocean (60°N-60°S), Geochim. Cosmochim. Ac., 62, 1757-1772, https://doi.org/10.1016/S0016-7037(98)00097-0, 1998.
- Naughton, F., Costas, S., Gomes, S.D., Desprat, S., Rodrigues, T., Goñi, M.S., Renssen, H., Trigo, R., Bronk-Ramsey, C., Oliveira, D., and Salgueiro, E.: Coupled ocean and atmospheric changes during Greenland stadial 1 in southwestern Europe, Quaternary Sci. Rev., 212, 108-120, https://doi.org/10.1016/j.guascirev.2019.03.033, 2019.
- Naughton, F., Drago, T., Sánchez-Goñi, M.F., and Freitas, M.C.: Climate variability in the North-Western Iberian Peninsula during the last deglaciation, in: Oceans and the atmospheric carbon content, edited by: Duarte, P., Santana-Casiano, M., Springer, Dordrecht, 1-22, 2011.
- Naughton, F.,Sanchéz-Goñi, M.S., Desprat, S., Turon, J.L., Duprat, J., Malaizé, B., Joli, C., Cortijo, E., Drago, T., and Freitas, M.C.: Present-day and past (last 25 000 years) marine pollen signal off western Iberia, Marine Micropaleontology, 62, 91-114, 10.1016/j.marmicro.2006.07.006, 2007.
- Naughton, F., Sánchez Goñi, M.S., Rodrigues, T., Salgueiro, E., Costas, S., Desprat, S., Duprat, J., Michel, E., Rossignol, L., Zaragosi, S., and Voelker, A.H.L.: Climate variability across the last deglaciation in NW Iberia and its margin, Quaternary Int., 414, 9-22,
- 1037 https://doi.org/10.1016/j.quaint.2015.08.073, 2016.

- Nelson, D.M., Urban, M.A., Kershaw, A.P., and Hu, F.S.: Late-Quaternary variation in C3 and C4 grass abundance in southeastern Australia as inferred from δ13C analysis: Assessing the roles of climate, pCO2, and fire, Quaternary Sci. Rev., 139, 67-76, https://doi.org/10.1016/j.quascirev.2016.03.006, 2016.
- Oliveira, D., Desprat, S., Rodrigues, T., Naughton, F., Hodell, D., Trigo, R., Rufino, M., Lopes, C., Abrantes, F., and Sánchez Goñi, M. F.: The complexity of millennial-scale variability in southwestern Europe during MIS 11, Quat. Res., 86, 373–387, https://doi.org/10.1016/j.yqres.2016.09.002, 2016.
- Oliveira, D., Desprat, S., Yin, Q., Naughton, F., Trigo, R., Rodrigues, T., Abrantes, F., and Sánchez Goñi, M.F.: Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe, Clim. Dynam., 51, 667-686, https://doi.org/10.1007/s00382-017-3948-7, 2018.
- Oliveira, D., Desprat, S., Yin, Q., Rodrigues, T., Naughton, F., Trigo, R. M., and Goñi, M. F. 1050 1051 S. Combination of insolation and ice-sheet forcing drive enhanced humidity in northern 1052 subtropical regions during MIS 13. Quat. Sci. Rev., 247, 1053 https://doi.org/10.1016/j.quascirev.2020.106573, 2020.
- Ortiz, J.E., Torres, T., Delgado, A., Llamas, J.F., Soler, V., Valle, M., Julià, R., Moreno, L., and Díaz-Bautista, A.: Palaeoenvironmental changes in the Padul Basin (Granada, Spain) over the last 1 Ma based on the biomarker content, Palaeogeogr. Palaeocl., 298, 286-299, https://doi.org/10.1016/j.palaeo.2010.10.003, 2010.
- Pausas, J.G., Llovet, J., Rodrigo, A., and Vallejo, R.: Are wildfires a disaster in the Mediterranean basin? A review, Int. J. Wildland Fire , 17, 713-723, https://doi.org/10.1071/WF07151, 2008.
- Pearson, P.N. and Palmer, M.R.: Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695-699, https://doi.org/10.1038/35021000, 2000.
- Peñalba, M.C., Arnold, M., Guiot, J., Duplessy, J.C., Beaulieu, J.-L.: Termination of the last glaciation in the Iberian Peninsula inferred from the pollen sequence of Quintanar de la Sierra, Quaternary Res., 48, 205-214, https://doi.org/10.1006/qres.1997.1922,1997.
- Pèrez-Obiol, R. and Julià, R.: Climatic change on the Iberian Peninsula recorded in a 30,000yr pollen record from Lake Banyoles, Quaternary Res., 41, 91-98, https://doi.org/10.1006/qres.1994.1010, 1994.
- Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de Beaulieu, J.L., Bottema, S., and Andrieu, V.: Climatic reconstruction in Europe for 18,000 yr BP from pollen data, Quaternary Res., 49, 183-196,https://doi.org/10.1006/qres.1997.1961,1998.
- Piao S, Wang X, Park T, Chen C, Lian XU, He Y, Bjerke JW, Chen A, Ciais P, Tømmervik H, Nemani RR: Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ., 1(1), 14–27. https://doi.org/10.1038/s43017-019-0001-x, 2020.
- Post-Beittenmiller, D.: Biochemistry and molecular biology of wax production in plants, Annu. Rev. Plant Biol., 47, 405-430, https://doi.org/10.1146/annurev.arplant.47.1.405, 1996.
- Prahl, F.G. and Wakeham, S.G.: Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment, Nature, 330, 367-369, https://doi.org/10.1038/330367a0, 1987.
- Prentice, I.C., Cleator, S.F., Huang, Y.H., Harrison, S.P., and Roulstone, I.: Reconstructing ice-age palaeoclimates: Quantifying low-CO2 effects on plants, Glob. Planet. Change, 149, 166-176, https://doi.org/10.1016/J.GLOPLACHA.2016.12.012, 2017.
- Prentice, I. C., Villegas-Diaz, R., and Harrison, S. P.: Account ing for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates, Global Planet. Change, 211, 103790, https://doi.org/10.1016/j.gloplacha.2022.103790, 2022.

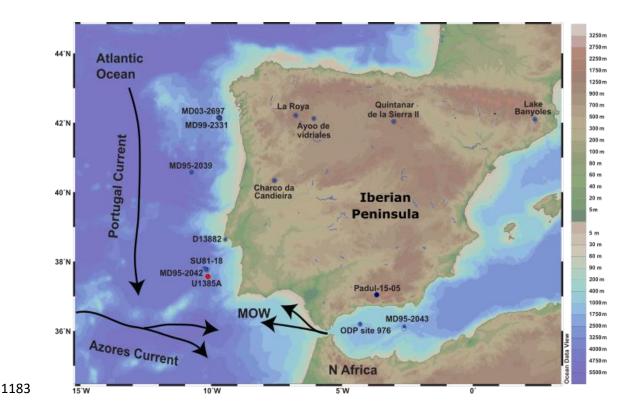
- R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, 2020.
- Reille, M.: Pollen et spores d'Europe et d'Afrique du nord: Laboratoire de botanique historique et palynologie, URA CNRS, Marseille, France, 543p., 1992.
- Reille, M.: Pollen et spores d'Europe et d'Afrique du Nord (Vol. 2), Laboratoire de Botanique historique et Palynologie, URA CNRS, Marseille, France, 1995.
- Rivas-Martínez, S., Penas, Á., del Río, S., Díaz González, T. E., and Rivas-Sáenz, S.: Bioclimatology of the Iberian Peninsula and the Balearic Islands, in The Vegetation of the Iberian Peninsula, edited by: Loidi, J., Plant and Vegetation, vol. 12, Springer, Cham, Switzerland, pp. 29–80, https://doi.org/10.1007/978-3-319-54784-8 2, 2017.
- Rodrigues, T., Alonso-García, M., Hodell, D.A., Rufino, M., Naughton, F., Grimalt, J.O., Voelker, A.H.L., and Abrantes, F.: A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: A perspective from the Iberian Margin, Quaternary Sci. Rev., 172, 118-130, https://doi.org/10.1016/j.quascirev.2017.07.004, 2017.
- Rodrigues, T., Grimalt, J.O., Abrantes, F., Naughton, F., and Flores, J.A.: The last glacialinterglacial transition (LGIT) in the western mid-latitudes of the North Atlantic: Abrupt sea surface temperature change and sea level implications, Quaternary Sci. Rev., 29, 1853-1862, https://doi.org/10.1016/j.quascirev.2010.04.004, 2010.
- Royer, D. L. Stomatal density and stomatal index as indicators of paleoatmospheric CO₂ concentration. Review of Palaeobotany and Palynology, 114(1-2), 1-28, https://linkinghub.elsevier.com/retrieve/pii/S0034666700000749, 2001.
- Sage, R.F. and Cowling, S.A.: Implications of stress in low CO₂ atmospheres of the past: Are today's plants too conservative for a high CO₂ world?, in: Carbon dioxide and environmental stress, edited by: Luo, Y., Mooney, H.A., Academic Press, New York, 289- 305, https://doi.org/10.1016/B978-012460370-7/50012-7, 1999.
- Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Otto-Bliesner, B., Schmittner, A., Bard, E.: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, Nature, 484, 49-54, https://doi.org/10.1038/nature10915, 2012.
- Shao, Y., Anhäuser, A., Ludwig, P., Schlüter, P., and Williams, E.: Statistical reconstruction of global vegetation for the last glacial maximum, Glob. Planet. Change, 168, 67-77, https://doi.org/10.1016/j.gloplacha.2018.06.002, 2018.
- Simpson, G.L.: Modelling palaeoecological time series using generalised additive models, Front. Eco. Evo., 6, 149, https://doi.org/10.3389/fevo.2018.00149, 2018.
- Stockmarr, J.A.: Tablets with spores used in absolute pollen analysis, Pollen spores, 13, 615-621, 1971.
- Street-Perrott, F.A., Huang, Y., Perrott, A., Eglinton, G., Barker, P., Khelifa, L.B, Harkness, D.D., Olago, D.O.: Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems, Science, 278, 1422-1426, https://doi.org/10.1126/science.278.5342.1422, 1997.
- Struck, J., Bliedtner, M., Strobel, P., Schumacher, J., Bazarradnaa, E., and Zech, R.: Leaf wax n-alkane patterns and compound-specific δ^{13} C of plants and topsoils from semi-arid and arid Mongolia, Biogeosciences, 17, 567–580, https://doi.org/10.5194/bg-17-567-2020, 2020.
- Svenning, J.C., Fløjgaard, C., Marske, K.A., Nógues-Bravo, D., and Normand, S.: Applications of species distribution modelling to paleobiology, Quaternary Sci. Rev., 30, 2930-2947, https://doi.org/10.1016/j.quascirev.2011.06.012, 2011.
- Tarroso, P., Carrión, J., Dorado-Valiño, M., Queiroz, P., Santos, L., Valdeolmillos-Rodríguez,

- 1134 A., Célio Alves, P., Brito, J.C., and Cheddadi, R.: Spatial Climate Dynamics in the Iberian Peninsula since 15 000 yr BP, Clim. Past, 12, 1137-1149, https://doi.org/10.5194/cp-12-1136 1137-2016, 2016.
- Tognetti, R., Cherubini, P., and Innes, J.L.: Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO₂ concentrations, New Phytol., 146, 59-74, https://doi.org/10.1046/j.1469-8137.2000.00620.x, 2008.
- Toucanne, S., Zaragosi, S., Bourillet, J.F., Naughton, F., Cremer, M., Eynaud, F., and 1140 1141 Dennielou, B.: Activity of the turbidite levees of the Celtic–Armorican margin (Bay of Biscay) 1142 during the last 30 000 years: imprints of the last European deglaciation and Heinrich events, Mar. Geol., 247, 84–103, https://doi.org/10.1016/j.margeo.2007.08.006, 2008.Tripati, A.K., 1143 Roberts, C.D., and Eagle, R. A.: Coupling of CO₂ and Ice Sheet Stability Over Major Climate 1144 the Last Million Years, Science, 1145 20 326. 1394-1397. 1146 https://doi.org/10.1126/science.1178296, 2009.
- Turon, J.L., Lézine, A.M., and Denèfle, M.: Land-sea correlations for the last glaciation inferred from a pollen and dinocyst record from the Portuguese margin, Quaternary Res., 59, 88-96, https://doi.org/10.1016/S0033-5894(02)00018-2, 2003.
- Villanueva, J. and Grimalt, J.O.: Gas Chromatographic Tuning of the U^k'₃₇ Paleothermometer, Anal. Chem., 69, 3329-3332, https://doi.org/10.1021/ac9700383, 1997.
- Volkman, J.K., Barrerr, SM, Blackburn, S.I. and Sikes, E.L.: Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate, Geochim. Cosmochim. Ac., 59, 513-520, https://doi.org/10.1016/0016-7037(95)00325-T, 1995.
- Ward, J.K.: Evolution and growth of plants in a low CO₂ world, in: A history of atmospheric CO₂ and its effects on plants, animals, and ecosystems, edited by: Ehleringer, J.R., Cerling, T.E., Dearing, M.D., Springer, New York, 232-257, 2005.
- Wei, D., González-Sampériz, P., Gil-Romera, G., Harrison, S. P., and Prentice, I. C.: Seasonal temperature and mois ture changes in interior semi-arid Spain from the last inter glacial to the Late Holocene, Quaternary Res., 101, 143–155, https://doi.org/10.1017/qua.2020.108, 2021.
- Woillez, M., Kageyama, M., Krinner, G., de Noblet-Ducoudré, N., Viovy, N., and Mancip, M.: Impact of CO₂ and climate on the Last Glacial Maximum vegetation: results from the ORCHIDEE/IPSL models, Clim. Past, 7, 557-577, https://doi.org/10.5194/cp-7-557-2011, 2011.
- Wood, S. N.: Generalised Additive Models: An Introduction with R, 2nd Edition, Chapman and Hall/CRC Press, New York, 496p., https://doi.org/10.1201/9781315370279, 2017.
- Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling, Clim. Dyn., 29, 211-229, https://doi.org/10.1007/s00382-007-0231-3, 2007.

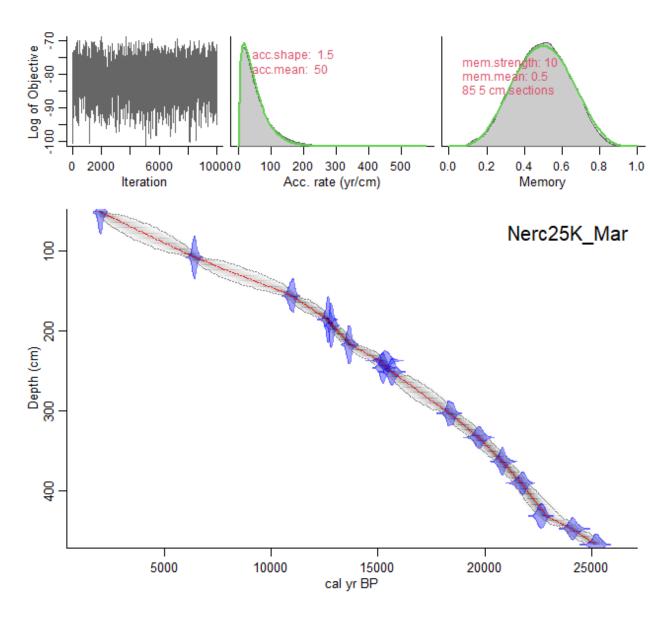
1173

1174

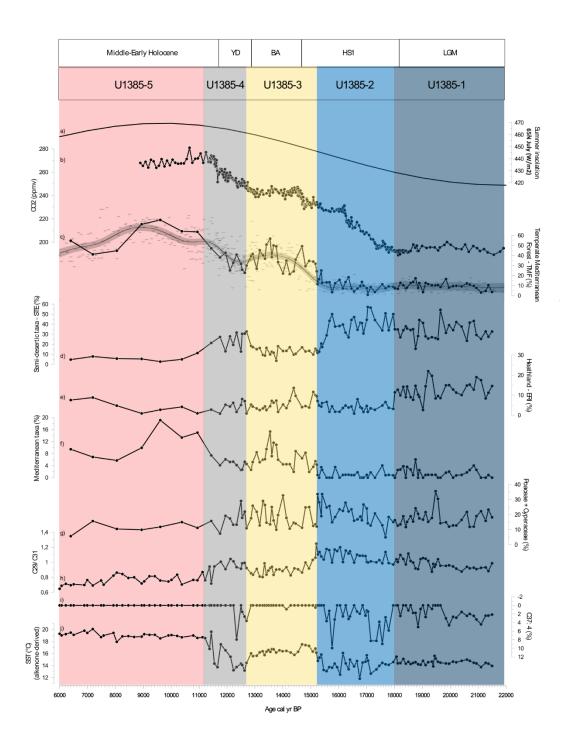
1175

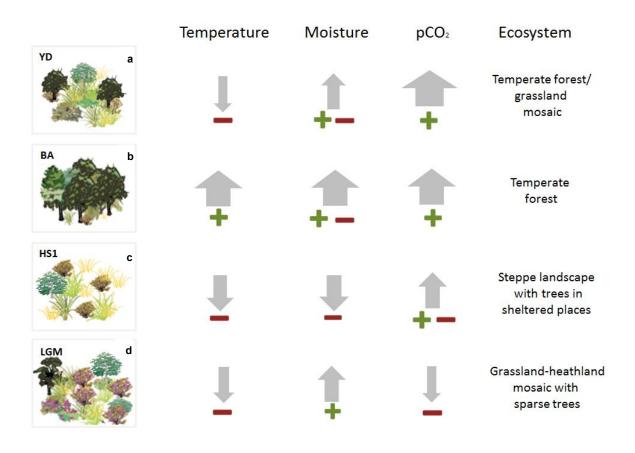

1176

1178 Tables and figures


Table 1 – Radiocarbon ages of IODP Site U1385.

Lab code	Core Depth (crmcd)	Material	Conv. AMS ¹⁴ C (yr B.P.)	Error
0140801r9_MSGforam01_5ox	52	G. bulloides	2525	28
0140801r5_MSGforam01_1ox	108	G. bulloides	6181	35
0140801r6_MSGforam01_2ox	156	G. bulloides	10060	33
CIAMS-219300	186	G. bulloides	11310	60
0140801r7_MSGforam01_3ox	193	G. bulloides	11499	43
CIAMS-219301	217	G. bulloides	12300	40
CIAMS-219302	237	G. bulloides	13430	110
0140801r8_MSGforam01_4ox	246	G. bulloides	13355	45
CIAMS-219303	251	G. bulloides	13670	60
CIAMS-219304	303	G. bulloides	15890	70
CIAMS-219305	333	G. bulloides	17090	90
CIAMS-235000	363	G. bulloides G. infleta	18010	60
CIAMS-235001	390	G. bulloides	18700	70
CIAMS-235002	431	G. inflata G. bulloides	19540	70
CIAMS-235003	447	G. inflata G. bulloides	20910	90
CIAMS-235004	487	G. inflata G. bulloides G. inflata	21830	100


^{*} AMS from Oliveira et al. (2018)


Figure 1 – Location of the IODP Site U1385 and of the marine and terrestrial pollen records discussed in the text. Marine sedimentary records: MD03-2697 (Naughton et al., 2016); MD99-2331 (Naughton et al., 2007); MD95-2039 (Roucoux et al., 2005); D13882 (Gomes et al., 2020); MD95-2043 (Fletcher and Sánchez Goñi, 2008); MD95-2042 (Chabaud et al., 2014); SU81-18 (Turon et al., 2003); ODP Site 976 (Comborieut Nebout et al., 1998; 2002; 2009); Continental sedimentary records: Lake de Banyoles (Pèrez-Obiol and Julià,1994); Quintanar de la Sierra II (Peñalba et al., 1997); La Roya (Allen et al., 1996); Ayoo de vidriales (Morales-Molino and Garcia-Anton, 2014); Charco da Candieira (Van der Knaap and van Leeuwen, 1997); Padul15-05 (Camuera et al., 2019). Black arrows represent the surface water circulation (MOW, Portugal and Azores Current). Note that coastline boundaries are for the present day.

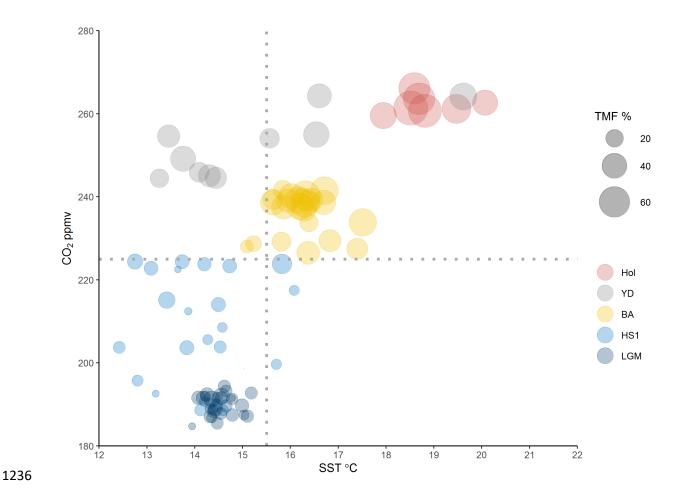

Figure 2 – Age-depth model for IODP Site U1385 using a Bayesian approach with Bacon v.2.3.9.1 (Blaauw and Christen, 2011). The original dates were calibrated using Marine20 (Heaton et al., 2020) grey stippled line show 95% confidence intervals; red curve shows single "best" model based on the mean age for each depth. Upper graphs show from left to right: Markov Chain Monte Carlo (MCMC) iterations and priors (green line) and posteriors (dark grey line with a grey fill) for the accumulation rate and variability/memory. Note: the depth (Y axis) was converted to cm from the corrected revised meter composite depth (crmcd).

Figure 3 – Comparison of multiproxy records from the Site U1385 with a) 65°N July (W/m²) summer insolation (Berger and Loutre, 1991) b) CO2 (ppmv) composite from WAIS (Marcott et al., 2014) (; Principal pollen-based ecological groups: c) Temperate Mediterranean Forest from Site U1385 (%) (solid black line) and compilation of Iberian Margin TMF records (D13882, MD03-2697; MD95-2042; MD95-2043; ODP-976; U1385) – GAM (curve with grey (%), d) Semi-desertic taxaincluding *Amaranthaceae* (previously *Chenopodiaceae*), *Artemisia*, and *Ephedra*. (%), e) Heathlandincluding members of the *Ericaceae* family (including various *Erica* spp) and *Calluna* spp (%), f) Mediterranean taxa (%) and g) Poaceae + Cyperaceae (%); h) C₂₉/C₃₁ ratio, i) C_{37: 4} (%) and j) SST (°C). The different coloured shading corresponds to the pollen zones (SM Fig. S1 and SM Table S1) and were connected with the periods indicated.

Figure 4 – Schematic representation of the relative change of climatic inferred parameters (precipitation and temperature) based on pollen-vegegation groups, biomarkers, SST as well as the physiological contribution of CO_2 for each period showing a schematic reconstruction of the potential ecosystem scenarios. The perceived temperature used the interpretation of pollen (TMF and STE groups), SST and n-alkanes; the perceived moisture (ERI, TMF and STE).

Figure 5 – Dispersion plot showing the relation between CO_2 (Marcott et al., 2014) and SST in relation to TMF % across the different intervals of the Last deglaciation, following the pollen zones boundaries.