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Abstract:

Across the last deglaciation, the atmospheric partial pressure of carbon dioxide (pCO2)
increased substantially from ~180 to ~280 ppm — yet its impact on vegetation dynamics across
this major climatic transition remains insufficiently understood. In particular, Iberian pollen
records reveal an intriguing feature that can be related to an often overlooked role of pCO, in
shaping vegetation responses during last deglaciation. These records reveal the near
disappearance of forest during the cold Last Glacial Maximum (LGM) and Heinrich Stadial 1
(HS1) phases and an unexpected recovery during the Younger Dryas (YD) cold phase, when
pCOs; increased. Here, we present high-resolution tracers of terrestrial (pollen, C29:C310rganic
biomarker) and marine (alkenone-derived Sea Surface Temperature, Cs7.4%, and long-chain
n-alkanes ratios) conditions from the southwestern (SW) Iberian margin Integrated Ocean
Drilling Program Site U1385 ("Shackleton site") for the last 22 cal ka BP. This direct land-sea
comparison approach allows us to investigate how the Iberian Peninsula vegetation
responded to major global pCO, changes of the last deglaciation.

Our results show that cold and moderately humid conditions of the LGM supported a
grassland-heathland mosaic ecosystem, but low pCO: likely caused physiological drought and
suppressed forest development. HS1, the coldest and most arid period, combined with
sustained low pCO; values almost suppress forest growth in favour of Mediterranean steppe
and semi-desert vegetation. In contrast, the warmer Bglling-Allergd, characterised by a
temperature optimum and variable but generally wetter conditions, along with the rising of
pCO; above 225 ppm at ~15 cal ka BP contributed to substantial forest development. During
the YD, sufficient moisture combined with increasing pCO- allowed the persistance of a mixed
grassland-forest mosaic despite cooler temperatures. Our study suggests that during cold and
low pCO:; periods (LGM and HS1), the role of pCO, on SW Iberian vegetation dynamics was
more pronounced compared to periods of higher pCO2. Temperature and precipitation
changes during periods of relatively high pCO2 play the main role in shaping the distribution
and composition of the vegetation.

Keywords:
Iberian margin; Deglaciation; Last Glacial Maximum; Direct land-sea comparison; Climatic
parameters vs pCO,; Forest development; Pollen analysis

1. Introduction

The last deglaciation, spanning from 20-19 cal ka BP (e.g. Denton et al., 1981; Toucanne et
al., 2008; Denton, 2010) to ~7 cal ka BP (e.g. Dyke and Prest, 1987; Carlson et al., 2008) was
punctuated by a series of rapid climate shifts accompanying the progressive melting of
northern hemisphere glaciers. This interval was marked by a global mean temperature
increase of 5-10°C, depending on latitude (Bard et al., 1987; Alley and Clark, 1999; Clark et
al., 2012) interrupted by an alternation of cold and warm phases. The warmer Bglling-Allergd
(BA, 15-12.5 cal ka BP) was bracketed by two major cold phases: the Heinrich Stadial 1 (HS1,
18.5-15 cal ka BP) and the Younger Dryas (YD, 12.9 - 11.6 cal ka BP). This period was also
characterized by an increase in atmospheric carbon dioxide (pCO3z) concentrations from ~180
ppmv to 280 ppmv (Monnin et al., 2001; Shakun et al., 2012; Marcott et al., 2014), one of the
largest shifts in pCO- of the last 800,000 years (Luthi et al., 2008). High-resolution data from
the West Antarctic Ice Sheet Divide ice core reveals that the rise was not gradual, but in three
main rapid (< 200 years) pCOs rises, of ~10 to 15 ppmv, at the end of HS1, within the BA and
at the onset of the YD (Marcott et al., 2014). Based on a direct comparison between terrestrial



86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

and marine climatic indicators from the SW Iberian margin sedimentary sequences, several
works focused on the mechanisms underlying the regional atmospheric and oceanic
responses to the last deglaciation (Boessenkool et al., 2001; Turon et al., 2003; Chabaud et
al., 2014; Oliveira et al., 2018; Naughton et al., 2019; Cutmore et al., 2021). However, few of
these records span the entire deglaciation, or offer resolution or chronological precision to
detect short-term vegetation and climate shifts in detail. The high temporal resolution and
robust chronology of IODP Site U1385, provide a valuable opportunity to evaluate vegetation
response to climate and pCO- changes in SW Iberia during this transitional period.

The role of pCO; throughout time as a climate driver remains intensely debated. Studies
suggest the pCO, acted as (1) a primary driver of the climatic changes, leading to temperature
chnages in the Northern Hemisphere (Shakun et al., 2012; Marcott et al., 2014); (2) a climate
amplifier, reinforcing warming that began through other processes (Alley and Clark, 1999;
Clark et al., 2012); or (3) as a consequence of climate change, responding to temperature
shifts rather than causing them (Denton et al., 2010). Beyond its role in shaping global climate,
pCO; directly influences plant physiology and how vegetation responds to environmental
change. The annual exchange of pCO; between the atmosphere and biosphere due to
photosynthetic activity corresponds to more than one-third of the total pCO; stored in the
atmosphere (Farquhar and Lloyd, 1993). During photosynthesis, atmospheric pCO, plays a
critical role in plant physiology; plants absorb pCO, through their stomata which are small leaf
pores, losing water. At lower pCO,, such as during glacial periods, plants must open these
pores wider or increase their number to capture enough pCO, (Royer et al., 2001). While this
enhances gas exchange, it also leads to greater water loss through transpiration, reducing
water-use efficiency (WUE), inducing physiological drought stress even under moderate
climatic conditions (Street-Perrot et al., 1997; Kdrner, 2000). These effects are especially
pronounced in semi-arid environments, where water limitation already constrains plant growth.
While many reconstructions of past vegetation focus only on temperature and precipitation,
the importance of pCO, as a limiting factor in plant productivity, coverage, and WUE is now
widely supported by both empirical and model-based studies (e.g. Cowling and Sykes, 1999;
Harrison and Prentice, 2003; Claussen et al., 2013; Piao et al., 2020).

Variations in pCO, not only affect plant physiological function but can also influence the
composition and structure of vegetation communities. Under low pCO, conditions, species
better adapted to drought and nutrient stress—such as those typical of steppes—are more
likely to dominate, and typically observed in colder periods. Conversely, higher pCO, levels
promote forest expansion and higher plant productivity, particularly in trees that benefit from
improved WUE (Huang et al., 2007; Randall et al., 2013). However, the response to CO; is
not globally uniform. Regional differences in water and nutrient availability, along with other
environmental constraints, mediate how vegetation responds to pCO, shifts (e.g. Tognetti et
al., 2008). Recent coupled vegetation-climate modelling and multiproxy reconstructions have
demonstrated that pCO, significantly impacts vegetation extent and productivity across
glacial-interglacial transitions (Wu et al., 2007; Wei et al., 2021; Koutsodendris et al., 2023,
Clément et al., 2024). These findings underscore the need to include pCO, changes when
interpreting pollen data or evaluating biome shifts (Prentice et al., 2017; Cao et al., 2019).
While the current pCO- fertilization has received considerable attention (e.g. Piao et al., 2020)
studies focusing on the effects of low pCO- on vegetation, or major transitions from low to high
pCO.,, are equally critical.

Last deglaciation vegetation changes have been widely studied across the Iberian Peninsula
from palaeoecological records (e.g. Peyron et al., 1998; Carrion et al., 2002; Chabaud et al.,



133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

2014; Combourieu Nebout et al., 2009; Dormoy et al., 2009; Fletcher et al., 2010a; Arranbari
et al., 2014; Bartlein et al., 2011; Naughton et al., 2011; 2019; Tarroso et al., 2016) and,
alongside ecological niche modeling (Casas-Gallego et al., 2025), are traditionally interpreted
as a result of the combined effects of temperature, precipitation and evaporation changes.
However, growing evidence shows that many climate reconstructions for glacial periods based
on vegetation records may be biased as they neglect the influence of pCO, on WUE.
Neglecting this influence may contribute to the underestimation of past precipitation under full
glacial conditions (Jolly and Haxeltine, 1997; Cowling and Skyes, 1999; Gerhart and Ward,
2010; Prentice et al., 2017; Cleator et al., 2020; Izumi and Bartlein, 2016; Chevalier et al.,
2021), a concern still highlighted by recent studies (e.g. Wei et al., 2021; Prentice et al., 2022).
To address pCO,-related biases, inverse modelling studies to account for CO; correction have
been evolving for a while (e.g. Guiot et al., 2000; 2007; Wu et al., 2007; 1zumi and Bartlein,
2016) and compared with reconstructions using Modern Analogue Techniques (Davis et al.,
2024). However, the inverse modelling approach has some limitations relating to low
taxonomic resolution, and dependence on the vegetation model that is not always comparable
with pollen assemblages (Chevalier et al., 2020; Prentice et al., 2022). Recently, quantitative
reconstructions using methods like Tolerance Weighted Averaging Partial Least Squares
show that pCO, constraints on plant growth can make glacial conditions appear drier than
they likely were (Wei et al., 2021). By contrast, under interglacial conditions with higher pCO,
levels, model experiments suggest that forest expansion in SW Iberia is mostly controlled by
precipitation than by pCO, levels (Oliveira et al., 2018; 2020).

Despite these advances, there is a need for additional regional-based palaeoecological
research. This need was highlighted in a recent model-data comparison using the BIOME4
model and a biome-scale reconstruction compiled from pollen records across the Northern
Hemisphere (> 30°N), which reveals a level of unexplained variability in patterns across both
space and time (Cao et al., 2019). Detailed pollen assemblage datasets may provide key
insights into other factors than temperature, precipitation and potential evapotranspiration that
drive changes in vegetation dynamics and composition, such as pCO: (Ludwig et al., 2018;
Cao et al., 2019). Recognising the role of pCO- is a key issue not only to interpret the drivers
of past ecosystems accurately, but also to anticipate the future responses of semi-arid
landscapes to ongoing climate change.

The new multiproxy study of IODP Site U1385 allows the direct comparison between terrestrial
and marine climatic indicators across the LGM and deglaciation at high (centennial-scale)
temporal resolution, and therefore, the detailed reconstruction of vegetation changes in SW
Iberia along with sea surface temperature (SST) trends in its margin during the LGM, HS1, B-
A and the YD. This new paleoenvironmental record will serve to explore the main factors
driving forest development during the LGM and the last deglaciation, and evaluate the
potential pCO- thresholds for western Mediterranean forest development.

2. Materials and environmental setting
[Figure 1]

IODP Site U1385 is a composite record of five drillings in the SW Iberian margin (37°34.285'N;
10°7.562'W, 2587 m below sea level - mbsl) located on a spur at the continental slope of the
Promontério dos Principes de Avis, which is elevated above the abyssal plain and free from
turbidite influence (Hodell et al., 2015) (Fig. 1). This work focuses on Hole A, a continuous
record of 10 corrected revised meter composite depth (crmcd) mainly composed of
hemipelagic silt alternating with clay (Hodell et al., 2015). For this study, Hole A was sampled
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from 3.84 to 1.08 crmcd, which corresponds to the period between ~21.5 and 6.4 cal ka BP.
The sediment supply, including pollen grains, to Site 1385 is mainly derived via fluvial transport
from the the Tagus and Sado hydrographic basins, providing a reliable signature of the
vegetation of the adjacent continent (Naughton et al., 2007; Morales-Molino et al., 2020).
The present-day climate of southwestern Iberia is characterised by a Mediterranean climate
strongly influenced by the Atlantic Ocean, Kdppen classification CSa with warm summers
(around 22°C as the average temperature of the warmest month) mean annual temperatures
between 12.5°C and 17.5°C, and mean annual precipitation from 400 to 1000 mm/yr. The
rainy season peaks in the winter between November and January and drought occurs in the
summer generally from June to September (AEMET, 2011).

The present-day vegetation of southwestern Iberia reflects a transitional biogeographical zone
between temperate and Mediterranean climates (Rivaz-Martinez et al., 2017). Coastal areas,
influenced by oceanic humidity and milder winters, support thermophilous evergreen species
such as Quercus suber, Olea europaea var. sylvestris, Myrtus communis, and Pistacia
lentiscus (Asensi and Diez-Garretas et al., 2017). Inland, as elevation increases and oceanic
influence diminishes, Mesomediterranean forests dominate, composed of both evergreen (Q.
suber, Q. rotundifolia, Q. coccifera) and deciduous oaks (Q. faginea, Q. robur), often combined
with heathlands or aromatic scrublands (e.g. Cistus spp.). Distinctive oak—juniper woodlands
appear in drier zones, and pine forests (Pinus pinaster, P. pinea) are common on sandy
coastal soils. Riparian zones feature Alnus glutinosa and Salix spp., while widespread Cistus
and Erica shrublands reflect the area's susceptibility to fire.

3. Methods

3.1. Chronological framework
[Table 1, Figure 2, Figure 3, SM Figure S1]

Sixteen AMS 'C dates were used to generate a new age-model for the last deglaciation at
Site U1385 (Table 1 and Fig. 2). Five of these were previously published by Oliveira et al.,
(2018), based on monospecific Globigerina bulloides samples and analysed at the Vienna
Environmental Research Accelerator (VERA), University of Vienna, Austria. A new set of
eleven samples for AMS '“C were selected from monospecific foraminifer samples of G.
bulloides, and a mixed assemblage of G. bulloides and G. inflata processed at the Keck
Carbon Cycle AMS Facility, University of California, Irvine (Table 1). The new age-model was
calculated using a Bayesian approach, through the software Bacon implemented in R (Blaauw
and Christen, 2011; R Development Core Team, 2020) using the Marine20 calibration curve
(Heaton et al., 2020). The studied interval encompasses the period from ~22 to 6 ka, as shown
by the radiocarbon age model (Fig. 2). The average temporal resolution for the pollen and
organic biomarkers across the deglaciation is 110 and 104 years, respectively, or slightly lower
(174 and 135 years, respectively) when including the Holocene section (Fig. 3 and SM Fig.
S1).

3.2. Pollen analysis

A total of 97 samples (including 25 previously published by Oliveira et al., 2018) were analysed
between 3.84 to 1.08 crmcd in Hole A, and prepared at the University of Bordeaux, France
using the standard protocol of the UMR EPOC laboratory (Georget et al., 2025). The sediment
was firstly separated using coarse-sieving at 150 um, retaining the fine fraction. A sequence
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of chemical treatments, starting with cold HCI (hydrochloric acid) at increasing concentrations
(10%, 25%, 50%) eliminated calcium carbonate particles. Cold HF (hydrofluoric acid). at
increasing strength (45% and 70%) eliminated silicates. The remaining residue was micro-
sieved (10 um mesh), retaining the coarse fraction. Exotic Lycopodium spore tablets of known
concentration were added to each sample to calculate pollen concentrations (Stockmarr,
1971). The obtained residue was mounted in a mobile medium composed of phenol and
glycerol 1% (wl/v), to allow pollen/spore rotation and accurate identification. Samples were
counted using a transmitted light microscope at 400X and 1000X (oil immersion)
magnifications. To perform pollen identification, we used identification keys (Faegri and
Iversen, 1989; Moore et al., 1991), photographic atlases (Reille, 1992; 1995) and the SW
Mediterranean modern reference collection.

The total count ranged from 198 to 1545 pollen and spores per sample, with a minimum of
100 terrestrial pollen grains and 20 pollen morphotypes to provide statistical reliability of the
pollen spectra (McAndrews and King, 1976; Heusser and Balsam, 1977). The main pollen
sum was calculated following previous palynological studies of Site U1385 (e.g. Oliveira et al.,
2016) that excluded Pinus, Cedrus, aquatic plants, Pteridophyte and other spores, and
indeterminable pollen. The pollen percentages are calculated against the main pollen sum;
but the percentages of over-represented taxa were calculated on the basis of the main sum
plus the counts for that particular individual taxon; for example: 100 * Pinus / (Main sum +
Pinus) and 100* Cedrus / (main sum + Cedrus). Pinus pollen is generally overrepresented in
marine deposits and therefore excluded from the main sum (Naughton et al., 2007). Cedrus,
being an exotic component transported by wind from the Atlas or Rif mountain chains
(Morocco), is also excluded. PSIMPOLL 4.27 (Bennett, 2009) was used to plot percentages
for selected taxa, grouped by ecological affinities (Gomes et al., 2020). Stratigraphically
constrained cluster analysis by Sum of Squares determined the five statistically significant
pollen assemblage zones (U1385-1 to 5 in Fig. 3, SM Fig.1 and Table S1) based on a
dissimilarity matrix of Euclidean distances with pollen taxa = 1% (Grimm, 1987; Bennet et al.,
2009).

In addition to the pollen-based ecological groups, we calculated the sum of Poaceae and
Cyperaceae (Fig. 3g), to check the potential importance of C4 plants in the Iberian Peninsula.
While most of the present-day Poaceae and Cyperaceae in this region belongs to the C3
plants type (Casas-Gallego et al., 2025), it is possible that C4 plants were more important at
other moments in recent Earth history. Pollen analysis, is a core method in palaeoclimatology
and palaeoecology, used to assess past climate conditions based on the ecological affinities
of specific taxa grouped into pollen-based ecological groups. These groups reflect present-
day vegetation—climate relationships, allowing inferences about dry, cold, warm, or moist
conditions. As such, our pollen data reflect ecological responses rather than absolute
quantitative climate parameters (Williams et al., 2001). A pollen diagram with clustering
analysed (SM Fig. S1) was produced revealing four main episodes over the LGm and the Last
deglaciation (Fig. 3, further details in SM Table S1).

3.3. Compilation of Iberian margin pollen records

In order to assess vegetation and climate changes more widely in the Iberian Peninsula region
across the LGM and last deglaciation, we compiled available marine records along the Iberian
margin covering the period from 23 to 6 ka. Pollen count datasets from eight marine pollen
records (D13882 - Gomes et al., 2020; MD03-2697 - Naughton et al., 2016; MD95-2039 —
Roucoux et al., 2005; MD95-2043 Fletcher and Sanchez Goii, 2008; MD95-2042 — Chabaud
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et al., 2014; ODP Site 976 — Comborieut Nebout et al., 1998; 2002; 2009; SU81-18 Turon et
al., 2003; Site U1385 — this study) were used with the original published chronologies. Pollen
percentages were recalculated against the main pollen sum. A uniform calculation of the
pollen-based ecological group TMF (Temperate and Mediterranean forest) was made for each
record, integrating the following taxa of 1) Temperate trees and shrubs: deciduous Quercus,
Acer, Betula, Cannabis/Humulus, Carpinus, Castanea, Fraxinus excelsior-type, Hedera helix,
Hippophae, llex, Juglans, Myrica and Vitis; and 2) Mediterranean taxa: evergreen Quercus,
Quercus suber, Arbutus type, Buxus, Daphne, Jasminum, Ligustrum, Myrtus, Olea, Phillyrea,
Pistacia, Rhamnus, Rhus.

To assess the general trend of vegetation patterns throughout the deglaciation, we applied a
Generalised Additive Model (GAM), considered as a more robust statistical approach than
loess curves (Wood, 2017; Simpson, 2018). The GAM model was fitted using the gam()
function of the mgcv package (version 1.8.24; Wood, 2017) for R (version 3.6.3; R Core Team,
2020). We fitted the model using a standard GAM with REML smoothness selection, with 30
basis functions (k=30) and a smoothing parameter of 0.0001 (sp=0.0001). To check the
validity of the smooth terms and if the used basis functions captured the wiggliness, we applied
a test using the gam.check() function of the mgcv package. The k-index obtained higher than
1, and the p-value supported the hypothesis that in both cases, enough basin functions were
used. The curve shows the fitted GAMs for TMF with an approximate 95% confidence interval
(Simpson, 2018).

3.4. Molecular biomarkers

Marine biomarker analyses were carried out in 123 levels, including 30 already published by
Oliveira et al., (2018). All analyses were performed following the extraction and analytical
methods (Villanueva et al.,1997; Rodrigues et al.,2017). Marine coccolithophorid algae
synthesise organic compounds including alkenones (Volkman et al., 1980) (Fig. 3i and j).
Seawater temperature changes influence the amounts of di-, tri- and tetra-unsaturated
alkenones produced by algae (Brassell et al., 1986). The use of organic solvents to separate
the total lipid fraction from sediments allows the sea surface temperature alkenone-based
reconstruction (U¥37 - SST) (e.g. Villanueva and Grimalt, 1997; Rodrigues et al., 2017). The
U¥37 index (Prahl and Wakeman, 1987) was converted to temperatures values using the global
calibration equation defined by Miller et al., (1998) with an uncertainty of 0.5°C (Grimalt et al.,
2001). Additionally, tetra-unsaturated alkenone (Cs7.4) percentages were calculated due to
their potential to identify the occurrence of cold freshwater pulses associated with iceberg
discharges (Bard et al., 2000; Martrat et al., 2007; Rodrigues et al., 2011; 2017) and therefore,
changes in the reorganisation of surface water masses in the North Atlantic (Rodrigues et al.,
2017).

The ratio between Cy9 and Cz1 n-alkanes was also calculated to understand how epicuticular
wax production in terrestrial plants varied through the time (Eglinton and Hamiltom 1967). This
index is generally considered to encompass the dynamic between woody plants vs grasses
plants of the adjacent continent (Cranwell 1973, Tareq et al., 2005, Bush et al., 2013; Struck
et al., 2020). This relation encompasses the adaptation of plants, by increasing leaf wax long
chain production, to reduce water loss during the photosynthetic processes and prevent
desiccation promoted by harsh winds or more arid conditions (Bush and Mclnerney, 2013).
Index values >1 are typically considered to reflect higher quantities of C29 n-alkanes produced
by trees and shrubs, while values <1 are generally considered to indicate higher quantities of
Cs1 n-alkanes by grasses and herbaceous plants (Cranwell, 1973; Rodrigues et al., 2009; Ortiz
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etal., 2010; ). However, the interpretation of this index may vary across biomes and dependent
on source vegetation types (Carr et al., 2014; Diefendorf and Freimuth, 2017).

4. Results and discussion
[Figure 4, Figure 5, Table S1, SM Figure S2]

4.1. The effect of pCO; on biome changes during the LGM and deglaciation

Whilst a classic interpretation of ecosystem dynamics as described for Site U1385 can be
proposed solely considering the variation of the main climatic parameters (temperature,
precipitation), we hypothesise that changes in pCO- played an essential role in vegetation
change, specifically in the deglacial forest expansion. Here, we evaluate the drivers of
vegetation change by explicitly considering the evolution of pCO- through the deglaciation.
Our discussion is supported by the present-day environmental and climatic space, considering
the temperature and precipitation in which different taxa exist in Iberian Peninsula and
characterising the TMF — Quercus sp., the Heathland (ERI) - Ericaceae family and the semi-
desert (STE) landscapes (SM Fig. 2).

41.1.LGM

The pollen-based vegetation record from Site U1385 shows that during the LGM (pollen zone
U1385-1: 21.500 — 17990 cal yr BP, SM Fig. S1) a grassland—heathland mosaic dominated
the landscape, with semi-desert taxa (STE, ~40%) and heathland taxa (ERI, ~10-20%) (Fig.
3d, e; Fig. 4d), forming a distinctive non-analogue glacial vegetation cover. The prevalence of
heath (Erica spp.) in Iberian pollen records underpins the classic view of the LGM in |beria as
a fairly humid interval, certainly compared with the extreme aridity of Heinrich stadials
(Roucoux et al., 2005; Naughton et al., 2007; Fletcher and Sanchez-Goni, 2008; Combourieu-
Nebout et al., 2009; Sanchez-Gofii et al., 2009). Nevertheless there is a somewhat complex
picture with respect to the prevailing moisture availability for vegetation during this interval.
Semi-desert taxa, typically found in arid conditions are abundant, while heathland taxa,
associated with more humid environments, reach their maximum in the record (Fig. 3; SM Fig.
S2c¢). Forest taxa were represented in low percentages (5-15%) (Fig. 3c), suggesting cold and
relatively dry conditions over the continent. The TMF values are consistent across the U1385
record and GAM-fitting to the data compilation (Fig. 3c), being consistently observed across
the marine records in southerly locations off the Iberian Peninsula (MD95-2043 - Fletcher and
Sanchez Goii, 2008 and ODP Site 976 - Comborieut Nebout et al., 1998; 2002; 2009 in the
Mediterranean Sea, and SU81-18- Turon et al., 2003 in the Atlantic Ocean) as well as further
North off the Iberian Peninsula (MD99-2331 and MD03-2697- Naughton et al., 2007; 2016).

Interestingly, the environmental space for the Ericaceae group (namely Erica arborea, E.
australis, Calluna vulgaris) coincides with that occupied by the Quercus genus, the main
constituent of the TMF group (SM Fig. S2b). This begs the question, if the environmental
conditions that support heathland overlap with those for Quercus sp., then why were forests
not thriving during the LGM? A possible explanation could be associated with cold atmospheric
temperatures (SST's average ~14.5°C, Fig. 3j), even if during the LGM the temperatures were
not as extreme as the ones observed during the HS1 (Bond et al., 1993; Rasmussen et al.,
1996). Hence, in addition to temperature the low levels of pCO. during the LGM ranging
between 180-190 ppmv, could have been another important controlling factor which are
among the lowest concentrations recorded during the history of land plants (Pearson and
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Palmer, 2000; Tripati et al., 2009). The global distribution of different vegetation types as a
function of temperature and precipitation was modelled under modern conditions and for LGM
pCO2 (185 ppm), showing qualitative differences in the distribution of vegetation types (Shao
et al.,, 2018). Under low pCO- grasslands were favoured to the detriment of evergreen
broadleaf, evergreen and deciduous needle leaf forest. This study, however, did not include
heathlands specifically, and it is not known whether this group has adaptations permitting
better functioning under low pCO. levels. We speculate that drought-adapted traits in
Mediterranean Ericaceae especially E. arborea including thick cuticles, small leaf size, large
photosynthetic thermal window and deep root system with large diameter and a massive
underground lignotuber (Gratani and Varone, 2004) may have been beneficial in coping with
the challenging trade-off between photosynthesis and water loss under very low pCO,. As
such, the Ericaceae of the LGM may represent part of vegetation that coped well with
physiological constraints of the low pCOs..

At the same time, we note that the LGM corresponds to a maximum in the precession cycle,
which is recognised to promote a weakening of seasonal contrasts (reduced summer dryness)
favourable for heathland development in the Iberian Peninsula (Fletcher and Sanchez-Gofii ,
2008; Sanchez-Goiii et al., 2008; Margari et al.,. 2014), in both glacials and interglacials (e.g.
Oliveira et al., 2017), including the Middle to Late Holocene (Chabaud et al., 2014; Oliveira et
al., 2018; Gomes et al., 2020). Furthermore, in addition of requiring less humidity than forests,
heathland ecosystems thrive on acidic, low-nutrient soils, which can develop as a result of
altered hydrological cycles during precession maxima.The ecological advantages of Erica also
include less demanding edaphic requirements (low nutrient demand), more competitive re-
sprouting strategy after disturbance, including fires, as well as a higher dispersal capacity
compared with Quercus sp. for example (Pausas, 2008). However, these observations do not
rule out a key impact of low pCO2 on vegetation composition during the LGM.

Diverse vegetation models have been used to understand the influence of climatic parameters
and pCO- during the LGM (e.g. Harrison and Prentice, 2003; Woillez et al., 2011; |zumi and
Bartlein, 2016; Shao et al., 2018). However, there is a disagreement about the magnitude of
the pCO:influence, from being considered to have an equal influence (Izumi and Lezine, 2016)
to being thought to be less critical than climatic parameters (Woillez et al., 2011; Shao et al.,
2018; Chen et al., 2019). Harrison and Prentice (2003) also highlight model differences and
the variable regional expression of the influence of pCO2 (with higher impact in tropical areas).
However, these studies agree that low pCO; had a negative physiological impact on forest
development during the LGM in different continents (Jolly and Haxeltine, 1997; Cowling, 1999;
Harrison and Prentice, 2003; Woillez et al., 2011; Shao et al., 2018; Chen et al., 2019). Jolly
and Haxeltine (1997) used BIOMOD to simulate LGM vs pre-industrial CO; levels under
different climatic conditions scenarios (temperature and precipitation) in tropical Africa; CO-
was considered the primary driver of biome change from tropical montane forests to shrubby
heathland ecosystems. This model included a photosynthetic scheme able to simulate plant
response to different levels of CO. and its impact on stomatal conductance and water stress.
This study showed that increasing pCO2 (above ~190 ppmv), offsets the lower temperatures
(changes of -4 to -6 °C), allowing the forest to thrive and replace heathland. However, plants
with higher climatic demands (temperature and precipitation), which is the case of most
temperate trees, are less competitive under low pCO; conditions, compared with evergreen
microphyllous species (e.g. Erica spp.).

Long-term studies considering CO: limitations on vegetation contrast in their perspectives;
Gosling et al., (2022) argue that during the last 500k, precipitation and fire exert the main
controls on woody cover in tropical Africa while CO, effects were relatively small. In Asia,
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Clément et al., (2024) also emphasize the role of precipitation as the driver of vegetation
distribution during interglacials, and that vegetation is not sensitive to CO; above 250 ppmv
(value characterizing most of the interglacials); however during glacial CO2 conditions (<~185
ppmv), CO: is an important factor, favouring the increase of C4 plants.The inclusion of pCO-
in climatic reconstructions for LGM for Africa and Europe yields a wetter LGM compared with
reconstructions assuming pCO; present-day concentrations (Wu et al., 2007). A similar impact
is evident in the Last Glacial moisture reconstruction based on the pollen record of El Cafizar
de Villarquemado in eastern lberia; including a correction for the direct physiological effects of
low pCO: yields a wetter reconstruction of glacial climate (Wei et al., 2021). The implications
of these experiments are important for the SW Iberian region and may help to resolve the
apparent contradiction between vegetation (abundance of semi-desertic plants and presence
of heathland) and climate simulations which indicate enhanced winter precipitation over
southern Iberian and Northwest Africa due to southward shifting of the wintertime westerlies
(Beghin et al.,, 2016). In the absence of pCO. correction, temperature could also be
misinterpreted; the LGM vegetation for Mediterranean sites was simulated and associated
with warmer summer under LGM pCO;, instead of the colder conditions simulated with
present-day levels of CO, (Guiot et al., 2000). In Europe, pollen reconstruction with steppe
vegetation indicated warmer winter temperature for LGM pCO. compared with the modern
pCO2 (Wu et al., 2007). The bias could extend to simulations of glacial vegetation; without the
pCO; effect, the cover of boreal and temperate forests is reduced, and evergreen forests are
overestimated for the LGM (Woillez et al., 2011).

Experiments determining plant thresholds in response to low pCO2 have not received as much
attention as research on the impact of high pCO; levels (Gerhart and Ward, 2010; Dusenge
et al., 2019). When we assess the relationship between pCO,, SST and TMF across the LGM
and deglaciation events we observe that the LGM (i) corresponds to SSTs below 15.5°C and
pCO. below 225 ppmv, and (ii) that TMF values remain below 20% (Fig. 5). In African
mountain environments, a pCO, threshold of approximately 220 ppmv has been suggested as
the minimum above which forests could develop (Dupont et al., 2019). Therefore, extremely
low pCO; below a critical threshold of ~220-225 ppmv may have been the critical determinant
of low forest development in the LGM. These pCO, threshold values, despite differences in
baseline conditions such as insolation, are broadly consistent with other time intervals where
Mediterranean forest expansion occurred, for example during MIS13 at ~216 ppmv (Oliveira
et al., 2020) and MIS18 at ~215 ppmv under relatively high temperatures and increased winter
rainfall (Sanchez-Gofi et al., 2023). Temperatures during the LGM in southwestern Iberia may
have been sufficiently mild for forest development with sea surface temperatures of ~15.5°C
(Fig. 3j) aligned with the broader threshold for forest development (Sanchez-Goii et al., 2008).
For this reason, one could speculate that a hypothetical increase in pCO, above the observed
critical threshold during the LGM could have permitted forest development in southwestern
Iberia.

4.1.2. HS1

During HS1 (Pollen zone U1385-2: 17990 — 15230 cal yr BP, SM Fig. S1), a Mediterranean
steppe landscape (Fig. 3d) with minimum arboreal development (Fig. 3c) corresponded to the
lowest SSTs of the record (SST~12°C, Fig. 3j), and highest levels of aridity are suggested by
the maximum of semi-desert taxa and minimum TMF (Fig. 3 and 5c). Additionally, high Ca7. 4
values (~8.2%, Fig. 3i) reflect major meltwater pulses, associated with extreme cold conditions
of HS1 in the Atlantic Ocean. The notable decrease in heaths (ERI, Fig.3e) as well as
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terrestrial marshes and wetlands (decrease in Isoetes undiff.) further support increased
moisture stress (SM Table S1 and SM Fig. S1). The dominance of STE during HS1 is
consistent across the majority of the Iberian Peninsula records (Roucoux et al., 2005;
Naughton et al., 2007; 2016; MD95-2043 - Fletcher and Sanchez Gofii, 2008; ODP Site 976
— Comborieut Nebout et al., 2002), reflected also in the long-term minimum in modelled forest
levels (Fig. 3c).

Throughout HS1, the potential effect of increasing pCO- (from ~185 to ~225 ppm) from 18.1
to ~16 cal ka BP (Fig. 3b) was not enough to counteract the limiting effect of extreme cold and
dry atmospheric conditions. Regional models - Weather and Research Forecast Model -
simulating the potential vegetation with a pCO. correction show a reduction in arboreal
vegetation and increase of sparsely vegetated soil for the Iberian region during HS1 compared
with the LGM (Ludwig et al., 2018). The simulated precipitation values for SW |beria (Tagus
hydrographic basin catchment), show values below 700 mm/yr for HS1, which agrees with the
pollen evidence for widespread semi-desert taxa development. Interestingly, the differences
between HS1 and LGM concerning temperature, precipitation and pCO2 are quite relevant.
The climatic extremes of HS1, despite rising pCO2, were most likely responsible for the loss
of heathland following the LGM. Besides, the forest development was constrained across the
territory, and based on pollen data from marine and terrestrial records we do not observe any
significant (<5% TMF) latitudinal difference when comparing northern (e.g. Penalba et al.,
1997; Perez-Obiol and Julia, 1984; Roucoux et al., 2005; Naughton et al., 2007) with southern
(e.g. this study; Comborieu Nebout et al., 2002; Fletcher and Sanchez Gofii, 2008) pollen
records. Furthermore, the relationship between pCO,, SST and TMF across the HS1 show
scattered values of TMF (below 20%) occurring at SST below 15.5°C and pCO- below 225

ppmv (Fig. 5).
41.3.BA

The BA (Pollen zone U1385-3: 15230 — 12780 cal yr BP; SM Fig. S1) was characterised
broadly by favourable climatic conditions (higher temperatures, higher moisture availability)
for TMF development (Fig. 3c) including a minor increase in thermophilous Mediterranean
elements (Fig. 3c and f) and a reduction of STE (Fig. 3d). The combination of warming (SST
above 16°C, Fig. 3 j) and a dry to wet trend are likely the primary drivers of progressive forest
development during the BA. Additionally, the increase of pCO, from ~230 to 245 ppmv should
have promoted a "fertilisation effect" during this time interval (Fig. 3b). The simulations
produced by BIOMES3 for African Biomes (Tropical forest/Ericaceous scrub) with a present
climate showed that above 190 ppmv, the increase of pCO- at intervals <20 ppmv, gradually
offsets the negative effect of temperature changes; above 250 ppmv with a maximum
temperature change of ~-6°C the development of forest will be promoted to the detriment of
the ericaceous scrubland (Jolly and Haxeltine, 1997).

Within age uncertainties of the archives, abrupt increases in pCO, at 16.3 ka and 14.8 ka
(Marcott et al., 2014) (Fig. 3b) could tentatively be associated with the slight increase of forest
at the onset of the BA and the subsequent highest peaks of forest development observed
during the BA, respectively (Fig. 3c). Cao et al. (2019), using pollen-based biome
reconstruction, suggested that worldwide expansion of forests was a consequence of the
increasing pCO2 superimposed over the temperature increase between 21 ka and 14 ka. Cao
et al. (2019) further emphasise the role of CO. after the LGM driving a general northward
expansion of forests and replacement of grassland by temperate forests in Europe. During the
BA, considering that temperature and moisture availability in SW Iberia was favourable,
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increases in pCO; levels (>225 ppmv) may have amplified TMF expansion during this period
(Fig. 4b and Fig. 5).

41.4.YD

The YD (pollen zone U1385-4: 12780 — 11190 cal yr BP, SM Fig. S1) is characterised by an
initial weak forest contraction followed by its progressive expansion (Fig. 3c). At the regional
scale, the landscape likely consisted of a forest—grassland mosaic, as suggested by the
relatively high presence of forest elements coexisting with semi-desert taxa (Fig. 3c, d and
Fig. 4a). Strong SST cooling (Fig. 3j), (equivalent to LGM SSTs or even cooler), with a
minimum of 13.2 °C in the record, without signiifcant freshwater pulses, may have been
associated with cooler land surface temperatures. However, this impact may have been muted
by the positive effect of higher moisture availability (based on the presence of TMF, Naughton
et al. 2019) and/or the increasing trend of pCO: (Fig. 3b). The fairly weak reduction in TMF
observed in our record and corroborated by the compiled records (Fig 3c) contrasts with the
steppe environment described for this interval, especially in the southeast of the Iberian
Peninsula (Carridn et al., 2002; Camuera et al., 2019). A more pronounced forest contraction
is observed in the high altitude terrestrial/lacustrine cores (Quintanar de la Sierra |l — Pefialba
et al.,, 1997; and La Roya - Allen et al., 1996) in which the near-disappearance of the forest
might reflect the altitudinal adjustments in vegetation belts (Aranbarri et al., 2014). However,
the U1385 record and other Iberian margin and Iberian Peninsula records (e.g. Lake de
Banyoles — Perez-Obiol and Julia, 1994; MD03-2697 — Naughton et al., 2007; MD95-2039 —
Roucoux et al., 2005; Charco da Candieira — van der Knaap and van Leeuwen, 1997; MD95-
2042 — Chabaud et al., 2014; D13882 - Naughton et al., 2019; MD95-2043- Fletcher and
Sanchez Goni, 2008; ODP Site 976 — Comborieut Nebout et al., 2002) show a relatively high
percentage of TMF during the YD when compared with the previous HS1 in the SW Iberian
Peninsula (Fig. 3c).

Unfortunately, there is a lack of independent precipitation proxies for SW Iberia, and Dennison
et al. (2018) highlight a lack of reliability in the speleothem proxies for precipitation in this
region for this time interval. More widely in the Iberian Peninsula, a double hydrological
structure with a drier first phase and wetter second phase was proposed, the latter favouring
the expansion of mountain glaciers (Garcia-Ruiz et al., 2016; Baldini et al., 2019). We observe
that the notable YD forest development occurred, counterintuitively, in association with similar
SSTs to those of the LGM and only slightly higher than those of HS1. Alongside higher summer
insolation, higher pCO- (>240 ppmyv, Fig. 5) may have been a key factor supporting forest
development. A climate simulation from transient experiments using LOVECLIM, for the site
SHAKO06-5K / MD01-2444 located nearby U1385, obtained a weaker AMOC, colder winter
temperature, and lower precipitation for the YD compared with the LGM (Cutmore et al., 2021).
This supports the scrutiny of additional factors, notably pCO: influence on moisture availability
for plants, to explain the substantial levels of TMF observed in the Iberian margin records (Fig.
3c). The increase in pCO, may have enhanced plant productivity and WUE (Cowling and
Sykes, 1999; Ward et al., 2005) during the YD, partially compensating for the impact of
atmospheric cooling and drying. Schenk et al. (2018) suggest pCO2may play an essential role
in the forest development if enough moisture is available. It may be that the tree cover was
restricted to suitable, moist microhabitats and close to refuge zones, but it certainly was not
as restricted as in previous cold periods (Svenning et al., 2011), as TMF abundances support
(Fig. 3c). Simultations from vegetation-climate models based on pollen records for biome
reconstruction (Shao et al., 2018) and in a dynamic vegetation model (ORCHIDEE) driven by
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outputs from an AOGCM (Woillez et al., 2011) emphasise the influence of increasing pCO. as
a critical factor for worldwide forest development during the period including the YD (Shao et
al., 2018). Underlying these changes the increase in summer insolation (Fig. 3a), which
contributed to the increase of summer temperatures and winter precipitation in the
Mediterranean region (Meijer and Tuenter, 2007) cannot be neglected as a promotor of forest
development, at least where trees were not excessively water-stressed. However
disentangling the contribution of insolation vs pCO- requires sensitivity experiments, not yet
performed. In summary, the persistence of TMF during the YD, despite colder winters and
drier summer conditions compared to the B-A, seems to be best explained by the combined
interaction between precipitation variability, maximum insolation and increasing pCO,
(between ~245 and 265 ppmv) (Fig. 4a).

4.1.5 Early to Middle Holocene

Pollen zone U1385-5 (11190 — 4260 cal yr BP) corresponds to the Early to Middle Holocene.
This zone is marked by the expansion of TMF and warm-loving Mediterranean elements,
reflecting a regional increase in temperature and precipitation alongside warm SSTs (>18°C).
Despite the low temporal resolution for this interval, the U1385 record is consistent with nearby
records showing a maximum forest development at around 9000 cal yr B.P. (Fig. 3c), noting
that the specific timing of the Holocene forest maximum varied across the Iberian Peninsula
along a gradient of regional moisture availability (Gomes et al., 2020). The Early Holocene
pCO: exceeded 260 ppmv, representing full interglacial conditions. The combination of
coupled interglacial ocean-atmosphere conditions (reflected in high SSTs) and high pCO-
supported maximum forest development (Fig. 5). The impact on moisture availability for plants
compared to the preceding glacial conditions would have been profound, supporting high
productivity and further increases in WUE. The progressive lifting of CO, constraints on
photosynthesis across the Last Deglaciation thus may represent an important factor
underlying the forest development in SW |beria.

4.2. C2/C3qratio and Cs/C4 dynamics: potential and limitations

Insights into the dominance of different plant physiological pathways in response to contrasting
levels of pCO, and humidity can be potentially gained using C2¢/C31 n-alkanes of Site U1385.
The C20/C31 curve shows important variability between climatic phases, with increasing values
during the LGM, high values during HS1 and the YD, and lower values during the BA and
Holocene (Fig. 3h). The C29/Cz31 is positively correlated (Pearson’s correlation coefficient, r =
0.52, p-value = 2.473e-08) with the semidesert pollen group and negatively correlated (r = -
0.63, p-value = 2.821e-12) with TMF (Fig. 3c, d and h).These observations support a coherent
link between pollen-based vegetation changes on the adjacent continent and n-alkane chain-
lengths. In general, C29and Cs1, as well as other long-chain alkanes with odd carbon numbers
(e.g. Cag, Ca1, Ca3), are epicuticular waxes produced by terrestrial plants, from which Czg could
represent woody plants and Cs¢ grasses (Meyers, 2003). However, caution in interpreting the
Ca0/Csq ratio in terms of taxonomic groups is required since woody plants and grasses are both
capable of producing Cz¢ and Cs1 chain lengths (Ortiz et al., 2010; Bush and Mclnerney, 2013).
Furthermore, differences are observed between global regions and biomes in terms of what
long-chain n-alkanes a species produces (Bush and Mclnerney, 2013). Here, we do not find
that the anticipated general interpretation of the C,/Cs1 ratio as an indicator of the relative
abundance of trees vs grasses holds for our datasets. Instead, we offer two possible
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interpretations. First, C29/Cs1 ratio in this setting may reflect an adaptation of plants to aridity.
The n-alkanes of leaf waxes are produced to protect plants against the loss of water during
the photosynthetic process (Post-Beittenmiller, 1996; Jetter et al., 2006). We could expect
arid, cold and windy conditions to be more disturbing for woody plants; with demanding
physiological requirments compared to grasses. Therefore, such harsh environments could
exert greater stress on woody plants than on herbaceous taxa.Consequently the increase of
the C20/C34 during HS1 and YD, could suggest a climatic adaptation of woody plants (TMF and
ERI) by increasing the production of leaf wax Cy9 as a protective strategy to survive under
these challenging conditions (Fig. 3h). Second, the shifts in chain-lengths may primarily reflect
compositional shifts between woody-dominated vegetation that includes diverse ecological
tolerances, from semi-desert dwarf shrubs such as Artemisia to mesophyll broad-leaved trees.
As such, a prevailing “trees vs grasses” interpretative structure may not be adequate for the
Iberian Peninsula setting. The traditional taxonomic generalisation of C29 woody versus Ca1
grasses (Meyers, 2003), still needs some caution and further research to develop a fuller
picture of the leaf-wax characteristics of contributing species in the region is required
(Cutmore, 2021). However, the coherent climate signature evident in the U1385 is
encouraging for this endeavour. Other hypotheses to be explored for understanding the role
of different forcing on the Mediterranean forest development during deglaciations include the
connection between the long-chain n-alkanes and the dynamic between Cs; and C. plants.
Nowadays, African savannahs are dominated by C. plants, and biomarkers (including C31 n-
alkanes) can be used to infer their presence in past landscapes (Dupont et al., 2019).
Worldwide, 80% of Poaceae (grasses) and Cyperaceae (sedges) present a C4 photosynthetic
pathway that is favoured by arid conditions (Sage, 2017). Unfortunately, pollen analysis cannot
discriminate Poaceae and Cyperaceae pollen morphotypes from exclusively or in its majority
C. plants. We have grouped the Poaceae and the Cyperaceae pollen taxa, noting the inherent
limitations of this grouping to represent C4 plants in Iberia as we know that less than 10% of
the grasses in this region belong to C4 plants at present (Casas-Gallego et al., 2025) (Fig.
39). Across the last deglaciation, this group (Poaceae + Cyperaceae) presents relatively high
values with considerable oscillations between the LGM and the BA and more stable behaviour
onwards. No particular correlation with other indicators (TMF or STE or C2/C34) was evident,
apart from the apparent instability before the Holocene. Therefore, we do not observe
particular evidence to suggest an increased importance of grasses and sedges during arid
intervals or low pCO2 intervals of the LGM and deglaciation. In laboratory studies, C3 grasses
outperform C4 grasses when temperatures rise by 5 to 15°C at a low CO, concentration of
200 ppm. Research on the quantum yield of photosynthesis identified a “crossover
temperature”—the point at which C3 and C4 plants perform equally. This crossover depends
on both temperature and CO, levels. Modeling across 0—45°C and CO, levels from 150-700
ppm shows that whether C3 or C4 plants are favored is determined by the interaction between
these two factors, unfortunately humidty was not considered(Ehleringer et al., 1997; Edwards
et al., 2010). Furthermore, most of the C4 plants are confined to the tropical grasslands and
savannahs; being better adapted to environments with higher temperatures, aridity, poor
nutrient soils, and intensive disturbance caused by animals or fire regimes (Bond et al., 2005;
Edwards et al., 2010). Likewise, one should expect that vegetation in SW |beria after the LGM
(Fig. 3 and 5) should be mainly composed of Cs plants; considering the estimated SSTs
indicating relatively cold temperatures (Fig. 5) and the high percentages of Artemisia spp (Cs
plant) (SM Fig. S1).
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However, it is not currently possible to entirely rule out an increased importance of C4 plants
in the glacial vegetation of SW Iberia, because pollen morphology does not allow the
separation of these groups. The discrimination of Cs/C4 grasses has been made on the basis
of stable isotopes of ancient grass pollen (Nelson et al., 2016) although the single grain
isotopic measurements employed remain challenging to implement. There is important scope
for further study of biomarker proxies to clarify the dynamic between Cs/Cs plants in the
Temperate/Mediterranean (Warm-temperate) biomes. This highlights the fact that Cs/C,4 plant
dynamic observed in Africa (e.g. Dupont et al., 2019) and other savannahs ecosystems is not
replicable in our study area so far. Biomarker species/groups fingerprinting studies are
required in order to distinguish between Cs; and C4 plants and test for an increased abundance
of C4plants within Iberian Mediterranean ecosystems during the last deglaciation.

5. Conclusion

This study presents high-resolution pollen and SST records from Site U1385 off the SW
Iberian Margin, offering valuable data for understanding past vegetation dynamics during key
climate transitions and ,CO2 changes of the LGM and deglaciation. We applied a biomarker
proxy (leaf wax C29/Cs1 ratio) which is positively correlated with the semi-desert pollen curve
and negatively with TMF, revealing its potential as a proxy of aridity in the Mediterranean
region). The high temporal resolution analysis and robust radiocarbon chronology allow
consistent and more accurate comparisons with regional datasets, making this study a
valuable contribution for future palaeonvironmental reconstructions and model simulations.
Rather than simply interpreting our dataset in terms of past temperature and precipitation
changes, we examine the U1385 record in light of the growing corpus of modern and palaeo
observational and modelling studies that support a significant influence of pCO; on past
vegetation distribution and composition. We suggest that low pCO, acted as a modulator of
vegetation response during the LGM. Cold temperatures, low seasonality, and exacerbated
drought stress resulting from plant physiological impacts of low pCO, likely restricted forest
growth while favoring heathlands. Traits of Mediterranean Ericaceae, such as deep roots and
thick waxy leaves, may have given these plants a competitive advantageDuring HS1, woody
vegetation was significantly suppressed due to cold and arid conditions, exacerbated by low
atmospheric pCO, levels. The subsequent notable expansion of temperate Mediterranean
forests (TMF) during the Bglling-Allergd (BA) was driven by warmer and moister conditions;
and also favoured by rising pCO, concentrations. During the Younger Dryas (YD), despite a
return to colder temperatures, forest—grassland mosaics persisted—primarily supported by
increased moisture availability and sustained higher pCO, levels.

Furthermore, our study supports a critical pCO, threshold for forest expansion during the
deglaciation at ~225 ppmv. Below this value, arboreal populations were generally restricted in
their development (e.g. LGM) and the impact of climatic aridification and cooling (e.g. HS1)
was detrimental. Above this value, arboreal populations developed strongly (e.g. BA) and the
impact of climatic deterioration (e.g. YD) was moderated. This value aligns with several
observations from Mediterranean to the tropical African environments (e.g. Dupont et al.,
2019; Oliveira et al.,2020; Koutsodendris et al., 2023; Sanchez-Gofi et al., 2023). The concept
should be further tested in regional vegetation models to determine the vegetation response
to pCO2 fluctuations during past cold periods. Our findings highlight the importance of pCO,
as a key driver of vegetation change in the Mediterranean region through its influence on
moisture availability in plants (Koutsodendris et al., 2023). The paleo-data offer valuable
context for elucidating vegetation responses under future climate scenarios involving rising
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CO, and shifting precipitation patterns. They also highlight the need for further investigation
of the relationship between long-chain n-alkanes and present-day vegetation and C3/C4 plants
ratio as the long-chain alkanes do not yet provide a reliable basis to disentangle the dynamic
between woody plants and grasses in the Mediterranean domain.
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Tables and figures

Table 1 — Radiocarbon ages of IODP Site U1385.

Lab code Core Material Conv. Error
Depth {crmed) AMS 4T
{yr B.P.)
*20140801r2_MSGforam01_Sox 52 G. buloides 2525 28
*20140801r58_MEGforam01_Tox 103 G. bullzides 8131 35
*20140801r8_MSGforam01_2ox 158 G. buloides 10080 33
UCIAKME-219300 128 G. bullzides 11310 a0
*20140801r7_MEGforam01_3ox 193 5. hulloides 11488 43
UCIAKMS-219301 217 G. buloides 12300 40
UCIAMS-219302 237 G. buloides 13430 110
*20140801r8_MEGforam01_4ox 248 G. bullzides 13355 45
UCIAKMS-2183032 251 5. bulioides 13670 a0
UCIAKME-219304 303 G. bulioides 15880 70
UCIAMSE-219305 333 5. bulioides 17080 a0
UCIAKMS-235000 383 G. bulloides 18010 g0
G. inflatz
UCIAKMS-235001 380 5. bulloides 18700 70
G. inflatz
UCIAMS-235002 41 G. bulloides 19540 70
G. inflatz
UCIAMS-235002 447 G. buloides 20810 an
G. inflatz
UCIAKS-235004 487 G. bulleides 21830 100
G. inflatz

* AMS from Oliveira et al. (2018)
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Figure 1 — Location of the IODP Site U1385 and of the marine and terrestrial pollen records
discussed in the text. Marine sedimentary records: MD03-2697 (Naughton et al., 2016); MD99-
2331 (Naughton et al., 2007); MD95-2039 (Roucoux et al., 2005); D13882 (Gomes et al.,
2020); MD95-2043 (Fletcher and Sanchez Goii, 2008); MD95-2042 (Chabaud et al., 2014);
SU81-18 (Turon et al., 2003); ODP Site 976 (Comborieut Nebout et al., 1998; 2002; 2009);
Continental sedimentary records: Lake de Banyoles (Pérez-Obiol and Julia,1994); Quintanar
de la Sierra Il (Pefialba et al., 1997); La Roya (Allen et al., 1996); Ayoo de vidriales (Morales-
Molino and Garcia-Anton, 2014); Charco da Candieira (Van der Knaap and van Leeuwen,
1997); Padul15-05 (Camuera et al., 2019). Black arrows represent the surface water
circulation (MOW, Portugal and Azores Current). Note that coastline boundaries are for the
present day.
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Figure 2 — Age-depth model for IODP Site U1385 using a Bayesian approach with Bacon
v.2.3.9.1 (Blaauw and Christen, 2011). The original dates were calibrated using Marine20
(Heaton et al., 2020) grey stippled line show 95% confidence intervals; red curve shows single
"best" model based on the mean age for each depth. Upper graphs show from left to right:
Markov Chain Monte Carlo (MCMC) iterations and priors (green line) and posteriors (dark grey
line with a grey fill) for the accumulation rate and variability/memory. Note: the depth (Y axis)
was converted to cm from the corrected revised meter composite depth (crmcd).
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Figure 3 — Comparison of multiproxy records from the Site U1385 with a) 65°N July (W/m?)
summer insolation (Berger and Loutre, 1991) b) CO2 (ppmv) composite from WAIS (Marcott
etal., 2014) (; Principal pollen-based ecological groups: c) Temperate Mediterranean Forest
from Site U1385 (%) (solid black line) and compilation of Iberian Margin TMF records (D13882,
MDO03-2697; MD95-2042; MD95-2043; ODP-976; U1385) — GAM (curve with grey (%), d)
Semi-desertic taxaincluding Amaranthaceae (previously Chenopodiaceae), Artemisia, and
Ephedra. (%), €) Heathlandincluding members of the Ericaceae family (including various Erica
spp) and Calluna spp (%), f) Mediterranean taxa (%) and g) Poaceae + Cyperaceae (% ); h)
C29/C31 ratio, i) Cs7.4 (%) and j) SST (°C). The different coloured shading corresponds to the
pollen zones (SM Fig. S1 and SM Table S1) and were connected with the periods indicated.
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Figure 4 — Schematic representation of the relative change of climatic inferred parameters
(precipitation and temperature) based on pollen-vegegation groups, biomarkers, SST as well
as the physiological contribution of CO- for each period showing a schematic reconstruction
of the potential ecosystem scenarios. The perceived temperature used the interpretation of
pollen (TMF and STE groups), SST and n-alkanes; the perceived moisture (ERI, TMF and
STE).
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Figure 5 — Dispersion plot showing the relation between CO; (Marcott et al., 2014) and SST
in relation to TMF % across the different intervals of the Last deglaciation, following the pollen

zones boundaries.
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