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Abstract: Accurately simulate severe haze events through numerical models remains 17 

challenging because of uncertainty in anthropogenic emissions and physical parameterizations 18 

of particulate matter (PM2.5 and PM10). In this study, a coupled WRF-Chem/four-dimension 19 

local ensemble transform Kalman filter (4D-LETKF) data assimilation system has been 20 

successfully developed to optimize particulate matter concentration by assimilating hourly 21 

ground-based observations in winter over the Beijing-Tianjin-Hebei region and surrounding 22 
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provinces. The effectiveness of 4D-LETKF system and its sensitivity to ensemble member size 23 

and length of assimilation window have been investigated. The promising results show that 24 

significant improvements have been made by analysis in the simulation of particulate matter 25 

during severe haze event. The assimilation reduces root mean square errors of PM2.5 from 69.93 26 

to 31.19 µg m-3 and of PM10 from 106.88 to 76.83µg m-3. Smaller RMSEs and larger correlation 27 

coefficients in the analysis of PM2.5 and PM10 are observed across nearly all verification stations, 28 

indicating that the 4D-LETKF assimilation optimizes the simulation of PM2.5 and PM10 29 

concentration efficiently. Sensitivity experiments reveal that the combination of 48 hours of 30 

assimilation window length and 40 ensemble members shows best performance for reproducing 31 

severe haze event. In view of the performance of ensemble members, increasing ensemble 32 

member size improves divergence among each forecasting member, facilitates the spread of 33 

state vectors about PM2.5 and PM10 information in the first guess, favors the variances between 34 

each initial condition in the next assimilation cycle and leads to better simulation performance 35 

both in severe and moderate haze events. This study advances our understanding about the 36 

selection of basic parameters in the 4D-LETKF assimilation system and the performance of 37 

ensemble simulation in a particulate matter polluted environment. 38 

Key words: 4D-LETKF, severe haze simulation, ensemble member size, length of assimilation 39 

window 40 

 41 

1. Introduction 42 

Although great progress about air pollution control has been made during recent years, 43 

China is facing the highest levels of particulate matter in the world (van Donkelaar et al., 2016). 44 
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Particulate matter consists of PM2.5 and PM10, refers to particles with aerodynamic diameters 45 

of less than 2.5 and 10 µm, respectively. High concentration of particulate matter is a major 46 

factor for severe haze events (air quality index larger than 200) in the Beijing-Tianjin-Hebei 47 

(BTH) region of China, especially during winter (Yan et al., 2016, Zhang et al., 2018). 48 

Numerical models are considered to be useful tools for simulating haze events as for taking 49 

complex physical and chemical mechanisms into account, but the uncertainty in emissions and 50 

physical parameterizations still remain a significant barrier in improving the simulation 51 

accuracy (Gao et al., 2017, Feng et al., 2018). 52 

As an effective statistical approach, data assimilation is capable of improving the accuracy 53 

of pollution simulations by limiting the performance of models. Lots of data assimilation 54 

approaches have been applied to the atmospheric science, including three-dimension variation 55 

(3D-Var) (Lorenc 1986; Parrish and Derber 1992; Sun et al., 2020), four-dimension variation 56 

(4D-Var) (Huang et al. 2009; Benedetti et al., 2009), ensemble Kalman filter algorithms and 57 

their variants (Evensen 1994; Whitaker and Hamill 2002; Miyazaki et al., 2012a), etc. Among 58 

them, four-dimension local ensemble transform Kalman filter (4D-LETKF) has shown unique 59 

characteristics in numerical simulation (Evensen, 2003, Kong et al., 2021). Firstly, derived from 60 

finite forecasting members, the background error covariance matrix of 4D-LETKF features 61 

flow-dependent characteristics, and the linear combinations of ensemble members produce 62 

global analysis (Hunt et al., 2007). Secondly, the computational time for 4D-LETKF remains 63 

robust as the observation numbers increase, exhibiting strong computational ability in the 64 

parallel architecture when assimilate various measurements (Miyoshi et al., 2007; Hunt et al., 65 

2007, Dai et al., 2021). Lastly, 4D-LETKF can assimilate time slots of asynchronous 66 
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observations to optimize the current state within the assimilation window, which efficiently 67 

improves the quality of pollution prediction (Evensen, 2003, Ott et al., 2004, Dai et al., 2019, 68 

Cheng et al., 2019).  69 

The characteristics of 4D-LETKF underscore the importance of ensemble member size 70 

and length of assimilation window on its effectiveness. The ensemble member decides the 71 

background error covariance matrix, representing the uncertainty in ensemble simulations 72 

(Peng et al., 2017). 4D-LETKF considers approximate model trajectories by linear 73 

combinations of the background ensemble trajectories. However, limited numbers of ensemble 74 

members may bring about insufficient dispersion of ensemble systems (Hunt et al., 2004). In 75 

addition, 4D-LETKF system can greatly improves the utilization rate of observations by 76 

constrain the state variables in asynchronous hourly slot within the assimilation window. A 77 

longer assimilation window efficiently reduces computational load by avoiding frequent 78 

switches between state and forecast variables. But the trajectories over a long length of 79 

assimilation window may diverge enough that linear combinations will not approximate the 80 

model trajectories. Moreover, the model ensemble trajectory may not fit the observations well 81 

over the entire interval with the presence of model errors (Dai et al., 2019). Many studies have 82 

discussed the choice of these two parameters for ensemble Kalman filter algorithms and their 83 

variants. When optimizing hourly aerosol fields by satellite observations, Cheng et al. (2019) 84 

revealed that the forecast with a 24-hour assimilation window was comparable to those with 1-85 

hour, the root mean square error for AOD are 0.091 and 0.110, respectively, indicating the 86 

weights determined at the end of the 24 hours assimilation window are valid to optimize the 87 

ensemble trajectories. While Dai et al. (2019) proposed that over 80% of the hourly assimilation 88 
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efficiencies for the 1-hour assimilation window are higher than those with 6- or 24-hours in 89 

4D‐LETKF experiments, suggesting that assimilation efficiency decreases with the increase of 90 

the assimilation window interval. These different opinions reveal that there is still a large 91 

uncertainty about selection of parameters in 4D-LETKF assimilation system. 92 

The accuracy simulation of severe haze events with air quality index (AQI) larger than 200 93 

has been a challenging problem for a long time, posing severe threats to human daily life and 94 

public health (Wang et al., 2014, Kong et al., 2021, Gao et al., 2017). Although 4D-LETKF has 95 

unique advantages in computational efficiency and analysis, there are few researches 96 

investigate the impacts of 4D-LETKF assimilation on pollutant simulation especially in severe 97 

haze events, in addition, it is also imperative to explore the basic optimal combination of 98 

assimilation parameters and its explanation in this method. Our major objectives are not only 99 

to evaluate the performance of 4D-LETKF in reproducing particulate matter concentration 100 

during severe haze event, but also to summarize the influence rules of ensemble size and 101 

assimilation window length on particulate matter simulation, and explore whether these rules 102 

are applicable to moderate haze event (air quality index smaller than 200) as well. The results 103 

have great significance to verify and quantify the effect of 4D-LETKF assimilation on 104 

numerical simulations of PM2.5 and PM10, subsequently provide a general rule for parameter 105 

selection in the 4D-LETKF during severe haze event. Herein, we utilize 4D-LETKF system 106 

which was coupled with Weather Research and Forecasting with Chemistry (WRF-Chem) 107 

model to improve simulative skill of particulate matter among northern China during the winter 108 

of 2020. Section 2 briefly introduces detail setting of WRF-Chem model, 4D-LETKF, 109 

observations and numerical experiment designs. Section 3 compares the assimilation with those 110 
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in the prior simulation, summarizes and explains sensitivity rules for parametric selection, and 111 

followed by a conclusion in Section 4 lastly. 112 

2. Methodology 113 

2.1 Configuration of the forecast model  114 

In our implementation, the fully coupled “online” WRF-Chem version 3.9.1 is employed 115 

as numeral forward model to describe the meteorological and chemical conditions 116 

simultaneously, which fully considers extensive chemical transport processes including 117 

advection, convection and sedimentation processes (Grell et al., 2005). The WRF-Chem model 118 

is configured with two domains (d01 and d02), both using 100 (west–east) ×100 (south–north) 119 

grid points, but with horizontal resolutions of 30 and 10 km, respectively. As shown in Figure 120 

1(a), the d01 domain covers most part of East Asia, and the area under the blue shadow is the 121 

d02 domain. The vertical grid contains 40 full sigma levels, extending from the surface to 50 122 

hPa.  123 

The initial and lateral boundary conditions of meteorological fields are derived from the 124 

National Centers for Environmental Prediction Final (FNL) analysis data with a spatial 125 

resolution of 1°×1° and temporal interval of 6 hours. A state-of-the-art and highly non-linear 126 

gas-phase chemical mechanism Regional Atmospheric Chemistry Mechanism (RACM) 127 

(Stockwell et al., 1997) is selected as gas phase mechanism, and Goddard Chemistry Aerosol 128 

Radiation and Transport (GOCART) (Schwartz et al., 2012) is adopted as aerosol mechanism. 129 

The parameterization scheme used in research is shown in Table 1. 130 

Table 1. WRF-Chem parameterization scheme in this study. 131 

Parameterization WRF-Chem option 
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Microphysics Morrison 2–moment Scheme  

(Morrison et al., 2019) 

Longwave radiation RRTMG Longwave Scheme  

(Iacono et al., 2008) 

Shortwave radiation RRTMG Shortwave Scheme  

(Iacono et al., 2008) 

Planetary boundary layer YSU Scheme (Hong et al., 2006) 

Cumulus parameterization Grell 3D Ensemble Scheme 

(Grell et al., 1993) 

Land surface model Noah (Tewari et al., 2004) 

 132 

The anthropogenic emissions are obtained from the Multi-resolution Emission Inventory 133 

for China compiled by Tsinghua University (MEIC, http://www.meicmodel.org/). The 134 

inventory includes anthropogenic emissions from agriculture, industry, power, residential and 135 

transportation sectors (Zheng et al., 2021). Inventory with a spatial resolution of 0.25°×0.25° 136 

and has been interpolated to match the simulation resolution. The biogenic emissions are 137 

calculated online by Guenther scheme (Guenther et al. 1995). The PM2.5, PM10 concentrations 138 

output from WRF-Chem are linearly interpolated to site observations. The evaluation of 139 

uncertainty in the emission inventory has been shown in previous research (Zhang et al., 2009). 140 
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 141 

Figure 1. (a) WRF-Chem model domains. (b) Location of assimilated and independent 142 

verification observation sites with topography (units: m). The red and blue dot implies the 143 

assimilated and independent verification observation site, respectively. 144 

2.2 The 4D-LETKF algorithm and the state variables 145 

The 4D-LETKF coupled with WRF-Chem Model is implemented to investigate the 146 

influence of assimilation on particulate matter simulation in this research. In this section, we 147 

introduce the 4D-LETKF algorithm and corresponding state variables briefly, more detailed 148 

information can be found in Hunt et al. (2007). The LETKF features a flow-dependent 149 

covariance matrix from ensemble simulation and determines the analysis ensemble mean 𝑥𝑎̅̅̅̅  150 

(a posteriori) according to the following formula: 151 

𝑥̅𝑎 = 𝑥̅𝑏 + 𝑋𝑏𝑤̅𝑎 152 

where 𝑥̅𝑏  and 𝑋𝑏  denote ensemble mean of first guess and background ensemble 153 

perturbations, respectively. The ensemble perturbation matrix X is calculated as x(i) − 𝑥̅, {i = 154 

1, 2, ..., k}, which k represents the ensemble member size. The perturbation weight matrix 𝑤̅𝑎 155 

is the Kalman gain which linearly determines the increment between the analysis and the first 156 

guess, and can be calculated as: 157 
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𝑤̅𝑎 = 𝑃𝑎̃(𝑌𝑏)
𝑇
𝑅−1(𝑦0 − 𝑦̅𝑏) 158 

where 𝑃𝑎̃  is analysis error covariance in ensemble space. 𝑦0  and 𝑦̅𝑏  denote the 159 

observations vector and ensemble mean background observations, respectively. Ensemble 160 

mean background observations derived from applying observation vector to ensemble member 161 

state vector H (𝑥̅𝑏). The matrix R is the observation error covariance matrix. The matrix 𝑌𝑏 162 

represents ensemble background observation perturbations, whose i th columns is 𝑦𝑏(𝑖) − 𝑦̅𝑏, 163 

{i = 1, 2, ..., k}. 𝑃𝑎̃ can be obtained as:  164 

𝑃𝑎̃ = [(𝑘 − 1)𝐼/𝜌 + 𝑌𝑏
𝑇
𝑅−1𝑌𝑏]−1 165 

where I denotes the identity matrix and k is ensemble member size. To prevent from filter 166 

divergence, the multiplicative inflation factor 𝜌 is set to 1.1 to inflate the analysis covariance 167 

(Dai et al., 2019, Anderson, 2007). Analysis ensemble perturbations 𝑋𝑎 is calculated by: 168 

𝑋𝑎 = 𝑋𝑏[(𝑘 − 1)𝑃𝑎̃]
1/2

= 𝑋𝑏𝑊𝑎 169 

Calculated by the sum of the 𝑥̅𝑎 and each of the columns of 𝑋𝑎, the ensemble analyses are 170 

served as optimal initial conditions in each ensemble member to generate the first guess in the 171 

next cycle. 172 

 Figure 2 is the flow chart of the WRF-Chem/4D-LETKF assimilation system applied in 173 

our implementation. The system conducts these processes within each assimilation cycle. The 174 

4D-LETKF generates a flow-dependent background error covariance matrix by ensemble 175 

member. Given that the emissions inventory is an important source of uncertainty in simulation 176 

(Pagowski and Grell, 2012), the research randomly perturbs anthropogenic emissions of PM, 177 

black carbon (BC) and organic carbon (OC) in January for each member to create the ensemble 178 

members, and the perturbation follows a log-normal distribution in the k-dimensional space. 179 
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The mean values of perturbations of PM2.5, PM10, BC and OC emissions are equal to 1, and the 180 

variances of these emissions are set according to corresponding uncertainty in MEIC inventory 181 

(Luo et al., 2023). Such ensemble anthropogenic emissions are perfect correlation in spatial and 182 

temporal dimension and should not be regarded as overly restrictive (Schutgens et al., 2010). 183 

This study only adds one times of perturbations into emissions at the first cycle of assimilation 184 

to provide the information spread of particulate matter. The WRF-Chem/4D-LETKF system 185 

propagates the ensemble forward simulation for the entire assimilation window time and 186 

outputs the first guess fields at each hourly time slot. The ensemble mean of first guess (𝑥̅𝑏) 187 

and background ensemble perturbations (𝑋𝑏) can be obtained from ensemble member here. 188 

Combining observation and observation operator, the innovation (𝑦0 − 𝑦̅𝑏 ) and 𝑌𝑏  can be 189 

obtained in each time slot. The perturbation weight matrix 𝑤̅𝑎 is valid within a relative short 190 

assimilation window (e.g., 24 or 48 hours) (Hunt et al., 2004, Cheng et al., 2019). The analysis 191 

ensemble derived from 𝑤̅𝑎 at the end of time slots will serve as chemical initial conditions for 192 

the next assimilation window. As the cycle of assimilation proceed, a linear combination of 193 

analysis ensemble is continuously obtained. 194 

 195 

Figure 2. Flow chart of the WRF-Chem/4D-LETKF assimilation system for particulate 196 

matter. 197 

The ensemble Kalman filter generally encounters a spurious long-distance correlation 198 
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problem because of the limited numbers of ensemble members (Miyazaki et al., 2012a). To 199 

avoid the problem above, it is necessary to apply observation localizations to filter observation 200 

from a long distance. 4D-LETKF offers a flexible choice of observation localizations in 201 

horizontal, vertical and temporal dimensions for each grid point (Cheng et al., 2019). In this 202 

study, the horizontal localization factor is calculated as Gaussian function (Miyoshi et al., 2007), 203 

which gradually reduces the effect of observation as the increasing departure from the analysis 204 

grid: 205 

f(r) = exp⁡(−𝑟2/2𝜎2) 206 

Here, r represents physical distance from observation to analysis grid and 𝜎  represents 207 

localization length. We limit the localization factor from 0 to 3.65 times the localization length 208 

(Zhao et al., 2015), ignoring the observation beyond 3.65 times the localization length to the 209 

analysis grid.  210 

The selection of the state variables depends on the generative mechanism of aerosol. As a 211 

result, 16 kinds of WRF-Chem/GOCART aerosol variables are treated as state variables. For 212 

the PM2.5 observations, the observation operator is described as: 213 

𝑦𝑃𝑀2.5

𝑓
= 𝜌𝑑[𝑃2.5 + 1.375S + 1.8(𝑂𝐶1 + 𝑂𝐶2) 214 

+𝐵𝐶1 + 𝐵𝐶2 + 𝐷1 + 0.286𝐷2 + 𝑆1 + 0.942𝑆2] 215 

where 𝜌𝑑 present the dry-air density, 𝑃2.5 is the fine unspecified aerosol contributions, 216 

S represents sulfate, OC1 and OC2 are hydrophobic and hydrophilic organic carbon, respectively. 217 

BC1 and BC2 are hydrophobic and hydrophilic black carbon, D1 and D2 are dusts with effective 218 

radii of 0.5 and 1.4 µm, and S1 and S2 are sea salts with effective radii of 0.3 and 1.0 µm, 219 

respectively (Peng et al., 2018). 220 
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Similarly, the observation operator for PM10 is shown as below: 221 

𝑦𝑃𝑀10

𝑓
= 𝜌𝑑[𝑃10 + 𝑃2.5 + 1.375S + 1.8(𝑂𝐶1 + 𝑂𝐶2) 222 

+𝐵𝐶1 +𝐵𝐶2 +𝐷1 + 0.286𝐷2 + 𝐷3 + 0.87𝐷4 + 𝑆1 + 0.942𝑆2 + 𝑆3] 223 

where 𝑃10  is coarse unspecified aerosol contributions, 𝐷3  and 𝐷4  are dusts with 224 

effective radii of 2.4 and 4.5 µm. 𝑆3 is sea salt with effective radii of 3.2 µm. Therefore, the 225 

simulated PM10-2.5 is:  226 

𝑦𝑃𝑀10−2.5

𝑓
= 𝜌𝑑[𝑃10 + 𝐷3 + 0.87𝐷4 + 𝑆3] 227 

In this research, 𝑦𝑃𝑀10−2.5

𝑜   calculated by 𝑦𝑃𝑀10

𝑜 − 𝑦𝑃𝑀2.5

𝑜   is used to analyze state variables 228 

including 𝐷5 and 𝑆4, which are dust with effective radii of 8 µm and sea salt with effective 229 

radii of 7.5 µm, respectively.  230 

2.3 Site observation data and errors 231 

Ground-based observation features high temporal resolution, which can capture variation 232 

of pollution concentration on an hourly scale at the bottom of the troposphere, providing 233 

continuous and reliable observation. The quality-assure and quality-controlled hourly 234 

observation data of PM2.5 and PM10 are used to explore the influence of 4D-LETKF assimilation 235 

in this research. The pollution data was obtained from China National Environmental 236 

Monitoring Center (http://106.37.208.233:20035/). As the research primarily focuses on the 237 

BTH region, the assimilation and verification sites are mainly located in the BTH region and 238 

neighboring provinces, primarily located in urban and suburban areas. In order to obtain more 239 

reliable observation data, the quality control of observation data in this study includes hourly 240 

observation of default value and extreme value detection. First, during the haze period, if the 241 

number of missing values for either type of pollutant at one site exceeds 24 hours, this site is 242 
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considered to have a certain uncertainty on observation quality, and data will not be assimilated. 243 

Second, for each kind of observation in different station, the hourly observation outside the 244 

range of m ±3σ will not be assimilated, where the m and σ denote the mean value and standard 245 

deviation of daily time series, respectively. When selecting assimilation and verification sites, 246 

spatial distribution uniformity is ensured for better assimilation performance, consequently, 247 

those sites are randomly selected. Finally, 127 assimilation sites and 69 verification sites in the 248 

BTH region and surrounding province are selected (Figure 1b). It can be seen that the 249 

assimilation and verification sites have a relatively uniform spatial distribution.  250 

The observation error covariance matrix (R) is assumed to be diagonal, implying that 251 

observational errors among each pollution species are uncorrelated. The observation error (r) 252 

consists of measurement error (ε0) and representation error (εr): 253 

𝑟 = √ε0
2 + ε𝑟

2 254 

The measurement error ε0 is defined as: 255 

ε0=ermax+0.0075*Π0 256 

where ermax is the base error, which is set to be 1 for PM2.5, and PM10 (Chen et al., 2019a), 257 

Π0 denotes the observation of concentration. Produced by observation operator, 258 

representativeness errors can be calculated by the formula (Elbern et al., 2007):  259 

εr=γε0√𝛥𝑙/𝐿 260 

γis tunable scaling factor and 0.5 is set for γ, Δl is the spatial resolution of gridding (30 km 261 

and 10km for d01 and d02, respectively), L depends on station location, which denotes the 262 

range that an observation can reflect, here L is 2 km for calculation.  263 

 Meteorological data were collected from National Climatic Data Center 264 
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(https://wwww.ncei.noaa.gov/), which provides hourly air temperature, dew point, and 265 

windspeed data. The observational meteorological data are used to validate the performance of 266 

simulations in this study. 267 

2.4 Experiment design 268 

A series of control and data assimilation experiments during severe and moderate haze 269 

events, as listed in Table 2, have been carried out to achieve our major objective. The control 270 

experiments refer to numerical experiments without data assimilation. The Severe-FR 271 

experiment with 48 hours spin up time is performed firstly to quantify the necessity of adjusting 272 

particulate matter concentration during severe haze event. Severe-FR-24h, Severe-FR-48h, and 273 

Severe-FR-72h accompany with restart every 24, 48, and 72 hours respectively and update 274 

meteorological boundary conditions. Except Severe-FR, the rest of the experiments all have 72 275 

hours of free run as the basic chemical initial condition input to balance the pollutant 276 

concentration, and accompany 24 hours of spin up time at the beginning of each restart or 277 

assimilation cycle. Since the effectiveness of 4D-LETKF is highly related with ensemble 278 

member size and length of assimilation window (Rubin et al., 2016), the sensitivity analysis is 279 

employed to investigate the influence from two parameters on assimilation effect (Kong et al., 280 

2023). The selection of assimilation parameters for the sensitivity experiments includes 20, 40 281 

and 60 for ensemble members, and 24, 48 and 72 hours for the length of assimilation window 282 

empirically (Kong et al., 2021, Dai et al., 2021). All sensitivity experiments use identical WRF-283 

Chem physical parameterizations, anthropogenic emission and random perturbations. Through 284 

the comparison between all assimilation experiments, the influence rules of 4D-LETKF 285 

assimilation on the simulation of particulate matter in severe haze can be retrieved. Lastly, 286 
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aiming to determinate the applicable range of obtained influence rules above, two assimilation 287 

experiments in a moderate haze event are performed to validate whether the rules are also 288 

suitable to a less-polluted environment. The detail reasons for selection of parameters will be 289 

fully described in the next section. 290 

Table 2. design of numerical experiments in this research. 291 

 Experiment Design of simulation 

Control 

experiments 

Severe-FR Free run experiment in severe haze event and 

without restart in integration process. 

Severe-FR-24h Free run experiment in severe haze event and with 

restart every 24, 48 and 72 hours, provide 

deterministic simulation corresponding to data 

assimilation experiment. 

Severe-FR-48h 

Severe-FR-72h 

Moderate-FR-48h Free run experiment in moderate haze events and 

with restart every 48 hours, provide deterministic 

simulation corresponding to data assimilation 

experiment. 

Data 

assimilation 

experiments in 

severe haze 

event 

Severe-20m-24h Assimilation experiment in severe haze event with 

20 ensemble members and 24, 48, 72 hours of 

assimilation window length respectively. 

Severe-20m-48h 

Severe-20m-72h 

Severe-40m-24h Assimilation experiment in severe haze event with 

40 ensemble members and 24, 48, 72 hours of 

assimilation window length respectively. 

Severe-40m-48h 

Severe-40m-72h 
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Severe-60m-24h Assimilation experiment in severe haze event with 

60 ensemble members and 24, 48, 72 hours of 

assimilation window length respectively. 

Severe-60m-48h 

Severe-60m-72h 

Data 

assimilation 

experiments in 

moderate haze 

event 

Moderate-20m-48h 

Moderate-40m-48h 

Assimilation experiment in moderate haze event 

with 20 and 40 ensemble members combine with 48 

hours of assimilation window length. 

Root mean square error (RMSE), mean errors (BIAS), mean absolute error (MAE) and 292 

correlation coefficient are calculated in this study to evaluate the performance of each numerical 293 

experiment. The assimilation efficiency (AE) for estimating the data assimilation performance 294 

is also calculated from the formulation below (Yumimoto and Takemura, 2011): 295 

AE =
𝑅𝑀𝑆E𝑓 − 𝑅𝑀𝑆𝐸𝑎

𝑅𝑀𝑆𝐸𝑓
× 100% 296 

where 𝑅𝑀𝑆𝐸𝑓 and 𝑅𝑀𝑆𝐸𝑎 is RMSE with and without assimilation, respectively. According 297 

to the definition, if AE is positive, it means that RMSE has decreased due to assimilation effect. 298 

When AE is equal to 1, RMSE in analysis completely disappears, and analysis is equal to 299 

observation. 300 

3. Results 301 

3.1 Comparison of the analysis with control experiment 302 

3.1.1 The simulation of the severe haze event in BTH 303 

It is essential to discuss the basic evolution of pollutant and the necessity of pollutant data 304 

assimilation in severe haze event before conducting the assimilation experiments. The severe 305 
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haze event selected in this study occurred from 00:00 UTC 15 January 2020 to 00:00 UTC 21. 306 

Figure 3(a) shows the temporal variation of air quality index at the six sites among BTH region 307 

during the investigated period. The peak AQI mainly appeared on 18 January, and then rapidly 308 

decreased on 19 and 20 January. The temporal averaged of AQI have exceeded 200, with 309 

particulate matter identified as the primary pollutant. Fig. 3(b) provides the correlation 310 

coefficients and standardized standard deviations of five parameters from Severe-FR against 311 

observations. Meteorological variables including air temperature, dew point temperature and 312 

wind speed are well simulated when compared with PM2.5 and PM10. The correlation 313 

coefficients of meteorological factors are larger than 0.6, while that of pollutant concentrations 314 

are below 0.4. Therefore, when the meteorological conditions can be retrieved relatively 315 

accurately, particulate matter assimilation is the key to improving the simulative skill of 316 

pollutants.  317 

 318 

Figure3. (a) Temporal variation about air quality index at six sites in severe haze event. (b) A 319 

Taylor graph describing simulation from Severe-FR about five kinds of parameters compared 320 

with the observed ones in BTH region. 321 

3.1.2 The improvement of the severe haze simulation achieved by 4D-LETKF 322 
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The divergence between assimilation and control experiment reflects the contribution from 323 

4D-LETKF adjustment. Consequently, the study takes an ensemble member size of 40 and 324 

assimilation window length of 48 hours to conduct sensitivity experiment and compare with 325 

Severe-FR-48h which has the same integration time in each cycle to validate the effectiveness 326 

of 4D-LETKF assimilation system (the analysis from the selection of 40 ensemble members 327 

and 48 hours of assimilation window length is presented here because it shows the best 328 

performance among sensitivity experiments in the next section). Figure 4 reveals the 329 

performance of control and assimilation experiments in severe haze event. The RMSE values 330 

of PM2.5 and PM10 in Severe-FR-48h are 69.93 and 106.88µg m-3 and both with scattered 331 

distribution, indicating substantial uncertainty exist in reproducing this severe haze event. In 332 

Severe-40m-48h, the RMSE values of PM2.5 and PM10 are 31.19 and 76.83µg m-3, decreasing 333 

by 55.40% and 28.12% respectively in a high particulate matter concentration environment. 334 

The decreased RMSE values also imply that the assimilation system has reached a well-335 

calibrated stage. Not only more points are getting together, but smaller simulation errors for 336 

PM2.5 and PM10 also imply that the Severe-40m-48h outperforms the Severe-FR-48h in this 337 

severe haze event.  338 
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 339 

Figure 4. Scatter and density plot of PM2.5 and PM10 in Severe-FR-48h and Severe-40m-340 

48h versus observations from verification stations (units: µg m-3). 341 

In order to acquire basis distribution of simulation errors for particulate matter, Figure 5 342 

presents the frequency distribution of deviations between observed and simulated particulate 343 

matter concentrations in Sevre-FR-48 and Severe-40m-48h experiments. It is obviously that 344 

Severe-40m-48h increases the frequency of low deviations and decrease those of high 345 

deviations in the simulation of PM2.5. The deviation pattern of PM2.5 in Severe-40m-48h is 346 

generally squeezed with higher peaking and symmetrical to the value of 0 than Severe-FR-48h. 347 

For the deviation distribution pattern of PM10, it shows high frequency of negative deviations 348 

and great underestimation in the Severe-FR-48h, and this underestimation has been effectively 349 

corrected by the adjustment of initial conditions and step analysis in Severe-40m-48h. Specially, 350 
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the proportion of deviation within 20 µg m-3in the Severe-40m-48h is 69.98% for PM2.5 and 351 

31.90% for PM10.  352 

 353 

Figure 5. Frequency distribution of the deviations about the simulated PM2.5 and PM10 354 

concentrations in Severe-40m-48h and Severe-FR-48h minus the observed ones. 355 

Figure 6 exhibits the spatial distribution of four statistical parameters about RMSE for 356 

particulate matter among the BTH region. By comparison from the Severe-FR-48h and Severe-357 

40m-48h, there are significant RMSE reduction for PM2.5 after assimilation, implying that the 358 

actual evolution of PM2.5 can be better represented by Severe-40m-48h. For instance, the RMSE 359 

values of PM2.5 in Baoding, Hengshui and Cangzhou, have significantly decreased to 29.85, 360 

18.98, and 19.06µg m-3, respectively, compared to 80.55, 55.22 and 76.32 µg m-3in the Severe-361 

FR-48h. AE in most verification stations has exceeded 50% also suggests the high efficiency 362 

of 4D-LETKF assimilation for the simulation of PM2.5. Although the performance of 363 

assimilation experiment in Shijiazhuang city does not have a good agreement with observation 364 

and shows a positive difference, high values of AE in most of verification stations also proves 365 

the validation of assimilating effect for PM10. Compared to the Severe-FR-48h, the Severe-366 

40m-48h productively reduces the RMSE of PM10, accompany with high values of 61.18%, 367 

59.17% and 52.18% about AE on Zhangjiakou, Tangshan and Hengshui, respectively.  368 
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 369 

Figure 6. Spatial distribution of RMSE values from Severe-40m-48h (first column), Severe-370 

FR-48h (second column), their difference (third column) and AE (fourth column) for PM2.5 371 

(first row) and PM10 (second row) from 15 January to 21 January among verification station 372 

in BTH region. The difference implies the RMSE in Severe-40m-48h minus those in Severe-373 

FR-48h. AE is assimilation efficiency and has been described in methodology before. 374 

The spatial distribution of correlation coefficients from Severe-40m-48h, Severe-FR-48h, 375 

their difference for PM2.5 and PM10 are also illustrated in Figure 7. The assimilation experiment 376 

increases the correlation coefficients to more than 0.6 at all sites in the simulations of PM2.5 and 377 

exceed 0.7 among the southern BTH region in the simulations of PM10. The Severe-40m-48h 378 

also reverses the opposite trend of PM2.5 and PM10 series in Severe-FR-48h versus observations, 379 

for example, the correlation coefficients in Severe-FR-48h at Chengde and Zhangjiakou are -380 

0.42 and -0.53, but increase to 0.52 and 0.69 after assimilation in the simulations of PM10. 381 

Incorporating more assimilable observations may further increase the correlation coefficient in 382 

the simulation of particulate matter (Kong et al., 2021). Data assimilation by multiple 383 

observations from diverse platform is necessary because it can integrate and coordinate 384 

observational information into aerosol forecasts well and then improve air pollutant forecast 385 
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accuracy (Barbu et al., 2009, Ma et al., 2020).  386 

 387 

Figure 7. Spatial distribution of correlation coefficients from Severe-40m-48h (first column), 388 

Severe-FR-48h (second column), their difference (third column) for PM2.5 (first row) and 389 

PM10 (second row) from 15 January to 21 January among verification station in BTH region. 390 

The difference implies the correlation coefficient in Severe-40m-48h minus those in Severe-391 

FR-48h. 392 

 The temporal variations of particulate matter from Severe-40m-48h, Severe-FR-48h and 393 

observation at six independent verification stations are shown in Figure S1 and Figure S2. The 394 

six independent verification stations have experienced different levels of air pollution and 395 

distributed uniformly over BTH region. It is apparently that the analysis at six stations have 396 

good agreement with observations both for PM2.5 and PM10, which can better characterize the 397 

peaks and valleys of particulate matter concentration over investigated period.  398 

Table 3 lists theΔRMSE,ΔCORR and AE in the simulations of particulate matter at 399 

independent stations outside the BTH region. The RMSEs and correlation coefficients have 400 

https://doi.org/10.5194/egusphere-2024-3321
Preprint. Discussion started: 5 November 2024
c© Author(s) 2024. CC BY 4.0 License.



23 

 

decreased and increased respectively after assimilate ground-based observations, suggesting 401 

that the uncertainty in Severe-FR-48h has been well optimized not only in the BTH region, but 402 

also includes the whole simulation domain. Compared to the Severe-FR-48h, the analysis in 403 

Yuncheng shows that the RMSE values of PM2.5 and PM10 have decreased by 98.26 and 144.56 404 

µg m-3 remarkably, such a great improvement may relate to the enhanced estimation capability 405 

about state variables of particulate matter. The high values of AE also suggest that verification 406 

observation sites outside the BTH region have achieved a good Kalman gain. In previous 407 

researches, predicting heavy haze events in northern China, especially over the Beijing-Tianjin-408 

Hebei Region, remained a challenge when compared to other regions like Pearl River Delta and 409 

Yangtze River Delta in China (Feng et al., 2018, Gao et al., 2017). The deficiency may be 410 

induced by GFS (National Centers for Environmental Prediction Global Forecast System) data, 411 

providing a poor estimation of meteorological fields in northern China, increasing the 412 

instability of atmospheric dynamics and ultimately decreasing the assimilation effect (Kong et 413 

al., 2021). In this research, the analysis is propagated by meteorological elements including 414 

temperature, air pressure and wind fields come from NCEP Final analysis data, which may 415 

provide an optimal meteorological boundary conditions for the assimilation of pollutant 416 

concentration. 417 

Table 3. Statistics about PM2.5 and PM10 from analysis in the cities among neighboring 418 

provinces of BTH region. ΔRMSE (ΔCORR) represent the RMSE (correlation coefficient) 419 

from analysis minus those from Severe-FR-48h.  420 

City/ 

Statistical 

PM2.5 PM10 

ΔRMSE ΔCORR AE ΔRMSE ΔCORR AE 
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variable 

Taiyuan -21.30 +0.41 23.93% -54.8 +0.71 39.05% 

Changzhi -38.39 +0.38 65.93% -63.06 +0.68 63.22% 

Jincheng -37.94 +0.37 66.85% -94.32 +0.89 72.45% 

Shuozhou -27.07 +0.31 58.96% -100.08 +0.84 69.96% 

Yuncheng -98.26 +0.67 77.85% -144.56 +1.25 80.64% 

Hohhot -92.30 +0.67 74.53% -121.79 +1.41 68.92% 

Chifeng -16.90 +0.55 64.95% -38.18 +0.95 60.85% 

Huludao -38.56 +0.20 59.11% -95.95 +1.04 65.76% 

Jinzhou -42.97 +0.21 61.17% -46.26 +0.83 45.83% 

Chaoyang -39.37 +0.37 51.14% -83.04 +1.23 61.86% 

Jinan -44.90 +0.63 69.71% -71.22 +0.59 62.93% 

Qingdao -23.99 +0.27 37.98% -72.05 +0.44 72.21% 

Shouguang -28.70 +0.21 58.03% -48.92 +0.39 47.57% 

Anyang -35.87 +0.41 62.53% -32.08 +0.60 33.15% 

Zhengzhou -26.26 +0.37 37.51% -3.64 +0.42 3.73% 

3.2 The sensitivity of 4D-LETKF to ensemble member size and length of assimilation 421 

window 422 

In previous section, the research has compared the performance from assimilation 423 

experiment with 40 ensemble members and 48 hours of assimilation window length against that 424 

do not integrate hourly pollutant observations. The results fully demonstrate the ability of 4D-425 

LETKF assimilation method to reproduce severe haze events in spatial and temporal dimension. 426 
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However, the 4D-LETKF assimilation effect is highly rely on selection of ensemble member 427 

size and length of assimilation window, so how does the assimilation approach vary to the 428 

parameterized selection in severe haze event? It is of great meaning to conduct sensitivity 429 

experiments based on ensemble member size and length of assimilation window, compare each 430 

performance of them by statistical metrics, and summarize the general influence rule of 4D-431 

LETKF parameter selection. Consequently, nine panels of sensitivity experiments are 432 

conducted with the selection of ensemble member size (20, 40, 60 members) and the length of 433 

assimilation window (24, 48, 72 hours) to maximize the positive innovation in this section.  434 

Figure 8 reveals the heatmap about RMSE in each sensitivity experiment of particulate 435 

matter over verification sites among the BTH region. The results of free run experiment with 436 

different integration times (24, 48, 72 hours) are offered here for comparison with analysis 437 

which with same assimilation cycle time. The RMSEs of PM2.5 and PM10 in each free run 438 

experiment exceed 60µg m-3 and 100µg m-3, respectively. It is apparently that the 4D-LETKF 439 

performs better than the FR experiment in the simulation about PM2.5 and PM10 over wide range 440 

of ensemble member sizes and assimilation window lengths, illustrating the broad applicability 441 

of 4D-LETKF data assimilation to these parameters. However, it can be found that the analysis 442 

of PM2.5 and PM10 are dependent on length of assimilation window and dramatically related to 443 

ensemble member size in all sensitivity experiments. Unlike the short-lived and chemical 444 

reactive species (such as SO2 and NO2) which easily undergo complex and nonlinear 445 

photochemical reactions, a relative longer assimilation window length seems more suitable for 446 

assimilating ground-based particulate matter observations (Peng et al., 2017, Kong et al., 2021). 447 

A longer assimilation window length could also avoid the underestimation of model spread and 448 
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overconfidence in the first-guess state estimate by enough integration time of each member 449 

(Schutgens et al., 2010, Miyazaki et al., 2012a, Hunt et al., 2007). Hence, 48 or 72 hours of 450 

assimilation window length are advised to optimize the ensemble concentration trajectories. On 451 

the other hands, increasing ensemble member size efficiently reduces uncertainty in PM2.5 and 452 

PM10, as evidenced by the decrease of RMSEs from free run to assimilation experiments with 453 

20 and 40 members. However, when compared with the results from 40 ensemble members, 454 

the accuracy of numerical simulations has not significantly improved for both PM2.5 and PM10 455 

with 60 ensemble members, indicating that 40 members are sufficient and feasible to provide a 456 

reliable estimation of the background error and analysis rather than more numerical source 457 

consumption. Considering numerical source consumption and RMSE values in the simulations 458 

of PM2.5 and PM10, the Severe-40m-48h shows more comparable to the observations when 459 

compared with the other eight panels of sensitivity experiments. 460 

 461 

Figure 8. Heatmap about RMSE in each sensitivity experiment of particulate matter over 462 

verification sites (units: µg m-3). The number in each small square represents the RMSE 463 

between observation and simulation for each combination of ensemble member size and the 464 

length of assimilation window methods. 465 

3.3 The influence from ensemble member size to the ensemble spread  466 
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In order to explore why increasing ensemble member size can efficiently reduce the 467 

uncertainty in the analysis of PM2.5 and PM10 as revealed in Figure 8, the study investigates the 468 

spatial distribution of standard deviations of PM2.5 and PM10-2.5 among first guess and analysis 469 

field in terms of ensemble members. The standard deviations of ensemble members describe 470 

how the emission perturbation propagates among the forward model, and this perturbation is 471 

driven by the underlying surface pollution emission inputs and the meteorological conditions. 472 

Therefore, the standard deviation in the first guess fields quantifies the dispersion degree of the 473 

ensemble background, substantially impacts the calculation of assimilation parameters such as 474 

ensemble state vector perturbations, and further affects the performance of particulate matter 475 

predictions.  476 

Since the RMSE decreases with the increasing ensemble member size when 20 and 40 477 

members are setting, and 48 hours of assimilation window length corresponds to a smaller 478 

RMSE, the study compares the spatial distribution of ensemble standard deviations from 479 

Severe-20m-48h and Severe-40m-48h to explain the relationship between ensemble member 480 

size and simulation errors in analysis result. Figure 9 depicts contour maps of the spatial 481 

distribution of temporal averaged standard deviations in the first guess and analysis of Severe-482 

40m-48h, Severe-20m-48h and their difference for PM2.5 and PM10-2.5 during severe haze event. 483 

The first guess in Severe-40m-48h and Severe-20m-48h shows that the relatively high standard 484 

deviations are generally observed in southern of BTH region, while those in the northern areas 485 

are close to zero for both PM2.5 and PM10-2.5. High value centers are distributed in densely 486 

populated areas and urban centers including Shijiazhuang, Xingtai, Tianjin and Tangshan city, 487 

where the standard deviations have generally exceeded 30µg m-3. Combined with Figure S3, it 488 
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can be seen that the areas with large concentration standard deviations correspond well with the 489 

spatial distribution of anthropogenic emission and the areas with large standard deviations of 490 

emission sources. The standard deviations of concentrations of PM2.5 and PM10-2.5 have closely 491 

relationship with the allocation and configuration of anthropogenic emission sources, because 492 

disturbances are only added to emission sources for each ensemble member, without disturbing 493 

the meteorological field in this haze event. The variation of difference in the third column 494 

entirely comes from increasing ensemble member size. The positive difference between Severe-495 

40m-48h and Severe-20m-48h in first guess suggests that increasing ensemble member size 496 

leads to greater differences among each ensemble for both PM2.5 and PM10-2.5 over BTH areas. 497 

The high efficiency of 4D-LETKF is strongly influenced by sufficient information spread 498 

among ensemble members, which integrate spreading observational information to produce 499 

analysis from the first guess (Rubin et al., 2016). As a result, the increasing ensemble member 500 

size improves divergence for each member and facilitates the state vectors about PM2.5 and 501 

PM10-2.5 information spread in the first guess, which makes a better performance for Severe-502 

40m-48h rather than Severe-20m-48h in this severe haze event. The standard deviations of 503 

PM2.5 in analysis are generally lower than those in first guess. Due to the localization of 4D-504 

LETKF, that is the ground-based observation data only optimized for simulation grid within a 505 

certain range, square-like areas of low standard deviations appear in the analysis of PM2.5 both 506 

for 40 and 20 ensemble members. Nearly all assimilated stations are located at the center of 507 

low value square areas suggesting that 4D-LETKF tunes all PM2.5 trajectories into a small range 508 

with low standard deviation at each slot of analysis by the assimilation of ground-based 509 

observations. For PM10-2.5, there are no square-like areas of low standard deviations in the 510 
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analysis both for 40 and 20 ensemble members, indicating that the 4D-LETKF does not has an 511 

obvious limitation for PM10-2.5 trajectories, however, the decreased standard deviations effect 512 

from the 4D-LETKF is still distinct for the particulate matter because PM10 consist of PM2.5 513 

and PM10-2.5 in simulation. Enlarging ensemble member size is benefit to the improving of 514 

standard deviations of PM2.5 and PM10-2.5 in analysis, while the improving magnitude of PM2.5 515 

is obviously smaller than PM10-2.5. The assimilation results are not directly influenced by the 516 

increased standard deviations in analysis. Such low increasement of standard deviations 517 

(generally below 3 µg m-3) is unlikely to induce uncertainty in the fitting and averaging process, 518 

but facilitates divergence in initial conditions between forecasting members in the next 519 

assimilation cycle. In addition, Figure S4 depict the spatial distribution of standard deviation 520 

from Severe-60m-48h, Severe-20m-48h and their difference in the first guess and analysis field. 521 

It can be seen that increasing the number of ensemble member generally also improves the 522 

standard deviation in first guess and analysis over the BTH region both for PM2.5 and PM10-2.5. 523 

Overall, the increasement of standard deviations generated by increasing ensemble member 524 

size directly improves the information spread of ensemble members in the first guess field and 525 

the assimilation effect of 4D-LETKF, while the positive difference of standard deviation in 526 

analysis favors the variances between each initial condition in the next assimilation window 527 

during severe haze event.  528 
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 529 

Figure 9. Contour maps of spatial distributions of temporal averaged PM2.5 and PM10-2.5 530 

standard deviations in the first guess (first and second row) and analysis (third and fourth 531 

row) of Severe-40m-48h, Severe-20m-48h and their difference (Severe-40m-48h minus 532 

Severe-20m-48h) within simulation period (units: µg m-3). The red dots in analysis of PM2.5 533 

and PM10-2.5 implies the location of assimilated stations. 534 

In the other sides, no matter for the first guess from Severe-40m-48h or Severe-20m-48h, 535 

the high standard deviations are found near Shijiazhuang region in Figure 9, but Shijiazhuang 536 
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station still with larger RMSE and smaller AE in Figure 6. This seems contrary to the opinion 537 

that increasing standard deviations in the first-guess field is beneficial to raising the accuracy 538 

of pollutant simulations. Therefore, Shijiazhuang station and the stations which with high 539 

values of AE (exceed 50) and difference of standard deviation in first guess (exceed 1 µg m-3) 540 

including Beijing, Tangshan, Handan, Baoding, Cangzhou, and Hengshui regions are selected 541 

to explore the temporal distribution of standard deviations difference between 40 and 20 542 

ensemble members, so as to further advance our understanding about the relationship between 543 

ensemble member size and simulation uncertainty in 4D-LETKF system. Figure 10 examines 544 

the temporal distribution of the standard deviation difference for PM2.5 and PM10-2.5 during the 545 

investigated period at Shijiazhuang station and results averaged from the selected stations. 546 

From January 17 to January 18, the standard deviation difference in first guess at Shijiazhuang 547 

station has increased drastically and exceeded up to 10 µg m-3 for both PM2.5 and PM10-2.5. This 548 

uneven temporal distribution results in a large standard deviation difference of first guess in 549 

Figure 9. This huge divergency between ensemble member may attributed to the peak pollutant 550 

levels with AQI exceeds 300 at Shijiazhuang station occurs on the January 17 as shown in 551 

Figure 3. In highly polluted environments, 40 forecasting members with different perturbations 552 

in emission sources are more likely to differ the concentration of particulate matter in first guess 553 

fields. Excessive high dispersion of PM2.5 and PM10-2.5 for ensemble members may arise an 554 

over-high estimation about background covariances and obtain a poor Kalman gain. Moreover, 555 

it can be found that the standard deviation difference of PM2.5 and PM10-2.5 at Shijiazhuang 556 

station are obviously lower than the averaged from selected stations except the high dispersion 557 

time, suggesting the increasing number of ensemble members has limited impact on the 558 
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divergence between each ensemble member at Shijiazhuang during these dates. Too low 559 

standard deviations imply filter convergence near Shijiazhuang station, which may induce the 560 

underestimation of model spread, reduce the effect of observation information, and make 561 

system more certain of state estimate about particulate matter concentrations in first guess 562 

(Hunt et al., 2007). In addition, reducing uncertainty in the mixed anthropogenic emission 563 

inventory may be an important approach to avoid filter convergence near the Shijiazhuang 564 

region. Generally edited by empirical and statistical data such as anthropogenic emission 565 

factors and activity dataset, the anthropogenic emissions based on bottom-up method can hardly 566 

capture the real spatiotemporal distribution of anthropogenic emissions over China as 567 

frequently variations in energy consumption, even though the latest version. Among the 568 

southern of BTH region, the great positive innovations of particulate matter emissions in 569 

posterior estimation have been discovered in previous researches, implying that the update of 570 

underestimated emissions in this region may enlarge the deviations between ensemble members 571 

since a large quantity of emissions corresponds to a higher degree of perturbation (Peng et al., 572 

2017, Feng et al., 2023). In a word, the perturbations added to emissions and meteorological 573 

fields needs to be executed carefully in 4D-LETKF system to avoid too high or too low 574 

ensemble dispersion degree because which determinate how analysis results weight toward 575 

observations information and first guess fields (Dai et al., 2021).  576 
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 577 

Figure 10. Temporal distribution of standard deviation difference (Severe-40m-48h minus 578 

Severe-20m-48h) in first guess for PM2.5 and PM10-2.5 at Shijiazhuang station and averaged 579 

from the selected stations (units: µg m-3). The red dash line is zero.  580 

The results above suggest that the increasing ensemble member size strengthens divergence, 581 

benefits the information spread in the first guess and finally improves the simulative skill in 582 

severe haze event. However, it has not been testified whether these influence rules are also 583 

practical for a more common, and less polluted condition. Therefore, two assimilation 584 

experiments in moderate haze event, Moderate-20m-48h and Moderate-40m-48h, are 585 

performed to examine the applicable range. As shown in Figure S5, the moderate haze event 586 

spans from 00:00 UTC 15 January 2019 to 00:00 UTC 21. This moderate event began on 15 587 

January, with AQI increasing until 18 January, reaching a moderate level but not lasting for a 588 

long time, and then decreased on 19 and 20 January. Most areas experienced mild or moderate 589 

air pollution, with AQI generally below 200, the primary pollutant was particulate matter after 590 

calculation. The simulations of moderate haze event utilize the same anthropogenic emission 591 

inventory as used in severe haze event since two events both happen in January, thereby avoids 592 

the additional influence introduce from emission source variation and the perturbations to 593 

information spread and assimilation effect.  594 

Figure S6 shows the simulated concentrations of PM2.5 and PM10 against ground-based 595 
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observations during moderate air pollution event. The RMSEs of PM2.5 in Moderate-FR-48h, 596 

Moderate-20m-48h and Moderate-40m-48h are 40.40, 24.12 and 18.52µg m-3, respectively, and 597 

the RMSEs of PM10 are 73.47, 67.81 and 57.04 µg m-3 respectively. The concentrations of PM2.5 598 

and PM10 in assimilation experiments are more in agreement with observations, suggesting the 599 

validation of 4D-LETKF adjustment in moderate haze event. The phenomena that the 600 

simulation error of PM2.5 and PM10 decrease with increasing ensemble member size are same 601 

with those characteristics have shown in severe haze event before.  602 

Similar to Figure 9, Figure S7 presents the spatial distributions of standard deviations about 603 

PM2.5 and PM10 in the first guess of Moderate-40m-48h, Moderate-20m-48h and their 604 

difference. The relatively smaller magnitude of standard deviation difference in first guess may 605 

relate to relatively low PM2.5 and PM10 concentrations in moderate haze event. Positive 606 

difference in first guess and analysis for particulate matter implies the Moderate-40m-48h 607 

obtains a higher diversity of ensemble members than Moderate-20m-48h, and which are also 608 

similar with those happen in the severe haze event.  609 

4. Summary 610 

The numerical simulation of severe haze events with air quality index larger than 200 has 611 

been a challenging problem in the field of atmospheric pollution for a long time. In this research, 612 

a WRF-Chem/4D-LETKF coupled data assimilation system has been successfully developed 613 

by ensemble member with perturbed anthropogenic emissions to improve the simulative skill 614 

of particulate matter in severe haze event during the winter of 2020. The research validated the 615 

effectiveness of 4D-LETKF data assimilation, discussed the optimal parameter combination of 616 

ensemble member size and length of assimilation window for 4D-LETKF assimilation system, 617 
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summarized and explained the influence rules from parametric selection to the 4D-LETKF 618 

assimilation effect during severe and moderate haze event.  619 

It is concluded that the Severe-40m-48h experiment shows the best performance in the 620 

simulations of PM2.5 and PM10 after comparing the statistical errors and computing resource 621 

consumption across multiple sensitivity analyses, with the RMSEs of 31.19 and 76.83µg m-3 622 

for PM2.5 and PM10 in severe haze event. Severe-40m-48h optimizes the underestimation of 623 

particulate matter concentrations in Severe-FR-48h, and remarkably improves the simulation 624 

accuracy in the entire BTH region and neighboring provinces. For example, the RMSEs of 625 

PM2.5 in Baoding, Hengshui and Cangzhou decrease to 29.85, 18.98 and 19.06 µg m-3 626 

respectively, from 80.55, 55.22 and 76.32 µg m-3 in Severe-FR-48h. Severe-40m-48h is also 627 

capable of retrieving the peaks and valleys of particulate matter concentration over investigated 628 

period. To examine the dependence of the assimilation effect of 4D-LETKF, nine panels of 629 

sensitivity tests were conducted according to ensemble member size and length of assimilation 630 

window. The findings suggest that the simulation accuracy of PM2.5 and PM10 can be strongly 631 

improved by the increasing ensemble member size from 20 to 40. A relative longer assimilation 632 

window length such as 48 or 72 hours combine with 40 ensemble member size is advised in 633 

4D-LETKF assimilation system. In view of performance of ensemble member, increasing 634 

ensemble member size improves divergence among each forecasting member, facilitates the 635 

spread of state vectors about PM2.5 and PM10 information in the first guess, favors the variances 636 

between each initial condition in the next assimilation window and leads to better performance 637 

in simulation of severe haze event. A similar conclusion can also be draw from the moderate 638 

haze event, suggesting that this influence rule is applicable in both severe and moderate haze 639 
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conditions.  640 

There are still some deficiencies in this research. Although we have performed data quality 641 

control in this study, we did not use approaches such as super-observations to improving the 642 

correspondence between grid points and observations (Jin et al., 2022, Miyazaki et al., 2012a), 643 

which may increase the representational error and result in the possibility of two stations with 644 

different concentrations interpolating in the same grid. Improving the spatial resolution of 645 

forward model or introducing super observations may mitigate this problem (Miyazaki et al., 646 

2012b, Feng et al., 2020b). Furthermore, the concentration of state variables about particulate 647 

matters in initial conditions are optimized in this study, but there still remain large uncertainties 648 

in anthropogenic emission data, which is an important chemical boundary input for pollutant 649 

simulations. These uncertainties sources may play a significant role in the over- or 650 

underestimation of pollutant ensemble modeling. The anthropogenic emissions inversion based 651 

on Ensemble Kalman filter and their variants is recognized as an effective approach for 652 

reducing uncertainty in anthropogenic emission sources (Peng et al., 2018, Feng et al., 2020a, 653 

Chen et al., 2019b). The jointly adjust initial conditions and emissions source with 4D-LETKF 654 

is the focus of future work to further improving the forecast skills about air pollutants during 655 

heavy pollution events. 656 
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