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Text S1. Data and Methodology for long-term ozone modeling 

S1.1 Data used for ground-level ozone modeling 

In-situ ozone monitoring data 

Hourly ground-level ozone measurements from 2013 to 2020 were collected across mainland China, sourced 

from the China National Environmental Monitoring Center. Additional hourly measurements were acquired from 

the Environmental Protection Departments of the Hong Kong (https://cd.epic.epd.gov.hk/EPICDI) and Macau 

(https://www.dspa.gov.mo/envdata.aspx) Special Administrative Regions, as well as from Taiwan province 

(https://taqm.epa.gov.tw) spanning from 2005 to 2020. In total, the dataset comprises 3770362 records from 

1738 monitoring sites, with 1640 located in mainland China, 18 in Hong Kong, 6 in Macau, and 74 in Taiwan, 

as depicted in Fig. 1. In Taiwan Province, ozone concentrations measured in ppm were converted to μg/m3 by 

using a factor of 1.96, following methodologies from a previous study (Yin et al. 2017). Consistent with prior 

ozone research (Liu et al. 2020; Zhu et al. 2022), we computed the maximum daily 8-hour average (MDA8) of 

ozone concentrations and selected MDA8 O3 as the target variable for our estimation modeling. Negative values 

within the monitoring dataset were considered outliers and subsequently excluded. Additionally, daily MDA8 

O3 concentrations were disqualified if the valid number of hourly measurements within a natural day was less 

than 15 (Zhu et al. 2022). Ultimately, 184709 (4.67%) daily MDA8 O3 records were eliminated from the 

monitoring dataset. 
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Figure S1. Geographical distribution of the study region and air quality monitoring stations, with the background 

of elevation. 

 

Satellite measurements of atmospheric properties 

We acquired a daily, 1-km resolution, seamless land surface temperature (LST) dataset for China covering the 

years 2000 to 2020 from the National Tibetan Plateau Data Center (TPDC, https://data.tpdc.ac.cn). This high-

resolution dataset, referred to hereafter as TRIMS LST (Tang et al. 2024), is a product of an advanced method 

that merges MODIS thermal infrared observations with reanalysis datasets (Zhang et al. 2019; Zhang et al. 2021; 

Zhou et al. 2017). Validation against measurements from 19 surface sites confirmed its accuracy, with root mean 

square error (RMSE) values ranging from 0.80 to 3.68 K and mean bias error values between -2.26 and 1.73 K 

(Zhang et al. 2019; Zhang et al. 2021; Zhou et al. 2017). The reason for incorporating this variable is that 

temperature significantly influences ozone concentration by accelerating the rate of atmospheric chemical 

reactions, including those that produce ozone, and by increasing emissions of VOCs from biogenic sources 

(Sillman and Samson 1995). In contrast to previous studies that used temperature data from coarse-resolution 

reanalysis products, the LST dataset utilized in this study provides rich spatial gradients and captures short-term 

variations essential for detailed ground-level ozone analysis due to its daily, 1-km spatiotemporal resolution. 

 

In addition, considering the correlation between ozone and particulate matter (Xue et al. 2020; Zhu et al. 2022), 

aerosol optical depth (AOD) was also included in the ozone modeling. We used a daily, 1-km AOD dataset 

covering the period from 2000 to 2020, which was developed in out previous study (He et al. 2023a). This dataset, 

derived from the MODIS MAIAC 1-km AOD product, was enhanced with multi-source predictors using daily 

random forest models. Evaluation of this dataset showed a high correlation with ground-based AOD 

measurements, achieving an R² of 0.77 and an RMSE of 0.25, which is close to the performance of the original 

MODIS AOD product (R²=0.82, RMSE=0.16). 

 

Other atmospheric parameters 

We also included a range of other atmospheric parameters known to influence ground-level ozone variations in 

our ozone modeling. These parameters encompass meteorological elements and ozone precursors. We sourced 

hourly data on total precipitation (TP), U- and V-components of surface wind (U10M, V10M), surface pressure 

(SP), air temperature (T2M), total cloud cover (TCC), surface solar radiation downwards (SSRD), surface latent 

heat flux (SLHF), and planetary boundary layer height (PBLH) from the ERA5 reanalysis 

(https://www.ecmwf.int/). This dataset, produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF), offers a global climate and weather reanalysis with a spatial resolution of 0.1°×0.1°, covering the 

period from 2003 to 2020. Additionally, daily surface sunshine duration (SSD) data, observed by approximately 

830 monitoring stations, were obtained from the China Meteorological Data Service Center 

https://data.tpdc.ac.cn/
https://www.ecmwf.int/


(http://data.cma.cn/en). Hourly nitrogen dioxide (NO2) concentration data were collected from the ECMWF's 

fourth generation global reanalysis of atmospheric composition (EAC4, url: 

https://ads.atmosphere.copernicus.eu/cdsapp#!/home), which provides a spatial resolution of 0.75°x0.75° 

(Inness et al. 2019). 

 

Geographical covariates 

Surface-related high-resolution data measured by satellite remote sensing, including population density 

distribution (POP), elevation (DEM), and land-cover classification (LCC) were also collected. The Landscan 

annual population distribution data with 1-km spatial resolution (Rose et al. 2020) were publicly available from 

the Oak Ridge National Laboratory of USA (https://landscan.ornl.gov/). The 30-m elevation data was extracted 

from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation 

Model (https://asterweb.jpl.nasa.gov/gdem.asp). The 30-m annual land cover (LC) datasets were obtained from 

Jie Yang and Xin Huang (Yang and Huang 2021), which is a Landsat-derived land cover product over China and 

contains nine classes, namely, cropland (LC1), forest (LC2), shrub (LC3), grassland (LC4), water (LC5), 

snow/iced (LC6), barren (LC7), impervious (LC8), and wetland (LC9). This LC dataset achieved high model 

performance, with overall accuracy of 79.31%, and outperforms the widely-used land cover products such as 

MCD12Q1 based on 5131 third-party test samples.   

S1.2 Data preprocessing and integration 

To facilitate the integration of variables for ground-level ozone modeling and prediction, we established a 1-

km grid based on the full-coverage AOD data, resulting in a total of 9646100 grid cells across the study area. 

Where multiple surface ozone monitoring stations were located within the same grid cell, their readings were 

averaged, ultimately resulting in 3249652 samples for model training and validation. Our preprocessing 

techniques for handling variable datasets with differing spatial and temporal resolutions are consistent with 

those used in our previous studies (He et al. 2021; He et al. 2023b). Hourly atmospheric parameters of coarser 

resolution from ECMWF reanalysis products were first aggregated into daily averages and then downscaled to 

the 1-km grid using a bilinear resampling technique. Station-based surface sunshine duration (SSD) data were 

interpolated to the 1-km grid using inverse distance weighted interpolation. Furthermore, 30-meter land cover 

classification (LCC) categories were quantified as continuous values by calculating the area ratios of each land 

cover type within the 1-km grid cells. The details of the data sources and integration methods are provided in 

Table S1. 

 

S1.3 Feature construction and selection 

To account for significant temporal variations in ground-level ozone concentrations, we incorporated dummy 

temporal features into our model, including the day of the year (DOY) and its cosine transformation 𝑇𝑥 =

http://data.cma.cn/en
https://ads.atmosphere.copernicus.eu/cdsapp#!/home
https://landscan.ornl.gov/).
https://asterweb.jpl.nasa.gov/gdem.asp


cos⁡(2𝜋
𝐷𝑂𝑌

365.25
) . Additionally, we explored various spatial features such as latitude, longitude, Haversine 

distances to the four corners of the study region (Wei et al. 2023), and geospatial codes in Cartesian coordinates 

(Yang et al. 2022). However, preliminary analyses indicated that including these spatial features led to abnormal 

spatial patterns in the ozone estimates, particularly in the western areas of the study region where samples are 

sparse (Fig. S1). This issue of abnormal spatial patterns was also observed in particulate matter estimations from 

satellite remote sensing data (Ma et al. 2022b). Consequently, we decided to include only the temporal features 

in our modeling.  

 

Feature selection was guided by XGBoost’s impurity-based variable importance, which assesses the impact and 

contribution of each predictor. Eleven variables with lower importance were removed from the model, as our 

preliminary analyses showed that excluding these variables did not significantly affect performance (Table S2 

and S3). The final set of predictors used to construct the XGBoost model included LST, SSRD, SSD, TP, AOD, 

NO2, T2M, PBLH, POP, LUCT2, LUCT8, DEM, LUCT7, DOY, Tx. Further details about these variables and 

their abbreviations can be found in Sections 2.1.2 to 2.1.4 and Table S1. 



 

 

Table S1. Data sources and preprocessing methods of variables used for ground-level ozone estimation modeling. 

Variable Abbreviation Data source Spatial scale Temporal resolution 
Preprocessing 

method 

Land Surface Temperature LST 
MODIS LST: (Wan et al. 2021a, b) 

TPDC_LST: (Shi and Dong 2021) 
1km daily Resampling 

Sunshine duration SSD (NMIC 2023) point daily IDW interpolation 

Surface solar radiation 

downwards 
SSRD 

(Hersbach et al. 2020) 0.125°×0.125° hourly Resampling 

2m temperature T2M 

Total precipitation TP 

Boundary layer height BLH 

10 meter V wind component V10 

10 meter U wind component U10 

Total cloud cover TCC 

Surface pressure SP 

Surface latent heat flux SLHF 

Elevation DEM (JAST 2019) 500m ---- Resampling 

Population density POP (Rose et al. 2020) 1km yearly Area sharing 

Cropland land cover LUCT1 

(Yang and Huang 2020) 30m yearly Area sharing 

Forest land cover LUCT2 

Shrub land cover LUCT3 

Grassland land cover LUCT4 

Water land cover LUCT5 

Sonw/Ice land cover LUCT6 

Barren land cover LUCT7 

Impervious land cover LUCT8 

Wetland land cover LUCT9 

Aerosol optical depth AOD (He et al. 2023) 0.01°×0.01° daily ---- 

Total column Nitrogen dioxide NO2 (Inness et al. 2019) 0.75°×0.75° hourly Resampling 

Time variables TX ---- ---- ---- ---- 

Day of year DOY ---- ---- ---- ---- 

 

  



Table S2. Variable importance ranking based on the XGBoost model with all explanatory variables. 

Number Variable Importance of model 

1 LST 0.34 

2 SSRD 0.09 

3 SSD 0.07 

4 AOD 0.05 

5 TX 0.05 

6 TP 0.04 

7 NO2 0.04 

8 T2M 0.03 

9 LUCT2 0.03 

10 DOY 0.02 

11 DEM 0.02 

12 BLH 0.02 

13 POP 0.02 

14 LUCT8 0.02 

15 LUCT7 0.02 

16 LUCT4 0.02 

17 LUCT3 0.02 

18 LUCT5 0.02 

19 LUCT1 0.02 

20 SP 0.02 

21 V10 0.02 

22 TCC 0.02 

23 SLHF 0.01 

24 U10 0.01 

25 LUCT9 0.00 

26 LUCT6 0.00 

  



Table S3. Performance comparisons of XGBoost models with various predictors. 

Variables in model R2 RMSE (μg/m³) MAE (μg/m³) 

LST, SSD, SSRD, T2M, TP, BLH, DEM, POP, LUCT8, 

LUCT2, LUCT7, AOD,NO2, TX,DOY, LUCT1, LUCT3, 

LUCT4, LUCT5, LUCT6, 

LUCT9,SLHF,SP,TCC,U10,V10 

0.77 21.41 15.86 

LST, SSD, SSRD, T2M, TP, BLH, DEM, POP, LUCT8, 

LUCT2, AOD,NO2, TX,DOY 
0.75 22.27 16.52 

LST, SSD, SSRD, T2M, TP, BLH, DEM, POP, LUCT8, 

LUCT2, LUCT7, AOD,NO2, TX,DOY 
0.76 22.15 16.43 

LST, SSD, SSRD, T2M, TP, BLH, DEM, POP, LUCT8, 

LUCT2, LUCT7, AOD,NO2, TX,DOY, LUCT4 
0.76 22.14 16.41 

 

 

  



 

Table S4. Performance comparisons of long-term ozone estimation models over China in the literature. 

 

Study 

Spatial Temporal 10-fold CV R2 By-year R2 

Scale Extent Scale 
Sample-based Site-based Site-based  

D M D M D M D M 

Ma et al.(2022) 1 km 
2005-

2017 
Daily 0.77 0.77 0.74 0.77 0.58 0.63 --- --- 

Liu et al.(2020) 0.1° 
2005-

2017 
Daily 0.78 0.90 0.64 0.68 --- --- 0.61 0.69 

Xue et al.(2020) 0.1° 
2013-

2017 
Daily 0.70 --- --- --- --- --- --- --- 

Wei et al.(2022) 10 km 
2013-

2020 
Daily 0.87 --- 0.80 --- --- --- --- --- 

Chen et al.(2021) 0.0625° 
2008-

2019 
Daily 0.84 0.91 0.79 0.82 --- --- --- --- 

Zhu et al.(2022) 0.05° 
2005-

2019 
Monthly --- 0.87 --- 0.86 --- --- --- 0.76 

This study 0.01° 
2000-

2020 
Daily 0.83 0.96 0.66 0.72 0.61 0.80 0.57 0.74 

 

Note: D and M represent daily and monthly, respectively. 

  



Table S5. Leave-one-year-out CV results of our proposed ozone estimation method over Hong Kong. 
 Number R2 RMSE(μg/m³) MPE(μg/m³) 

Daily 23703 0.44 32.84 24.86 

Monthly 1240 0.69 17.13 12.57 

  



Table S6. Mann-Kendall test results for maximum monthly ozone concentration in China and three typical 

regions. 
 U Statistic P Value 

China 276.00 0.04 

Eastern China 278.00 0.03 

PRD 204.00 0.92 

NCP 271.00 0.04 

  



 

 
Figure S2. Abnormal spatial distribution of XGBoost predictions with additional spatial features during 

modeling. 

 

  



 
Figure S3. Spatial distribution of random 10-fold CV results of our proposed MDA8 O3 method at the provincial 

scale.  



 
Figure S4. Time series of estimated vs. observed MDA8 O3 concentrations over China during 2018: (a) mean 

values at all in-situ monitors, (b) values at Wanshou Temple station in Beijing (lat=39.87°, lon=116.37°), (c) 

values at No.15 Factory station in Shanghai (lat= 31.20°, lon=121.48°), and (d) values at No.86 Middle School 

station in Guangzhou (lat= 23.11°, lon= 113.43°).  



 
Figure S5. Time series of monthly mean population-weighted mean MDA8 O3 in China and typical exposure 

hotspots with linear trends.  



 
Figure S6. Seasonal mean of daily coefficient of variation values for ground-level MDA8 O3 prediction from 

2000 to 2020. 

  



 

 
Figure S7. Average percentage of the population exposure to MDA8 O3 concentration exceeding 100 μg/m3 over 

China. 

  



 

 
Figure S8. A case study regarding tritrated O3 from Wuhan on May 28, 2017. The downtown area of Wuhan, 

central to the areas surrounding the Yangtze River (typically distributed in the dashed line), is depicted in the 

figure. The stations are marked with dots that use the same colorbar as the MDA8 O3 concentration predictions. 

On this particular day, the prevailing wind direction was from the south.  



 

 
Figure S9. Importance of variables used for predicting the long-term MDA8 O3 concentration by the proposed 

method. 
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