
 

Response to Reviewer 1: 

 

Comments: 

He et al. developed a machine learning model to estimate gridded ozone data using 

meteorological parameters, pollutant variables, geographical covariates, temporal dummy 

variables, and ground station observation data. They conducted the modeling based on data 

after 2014 and extended the ozone estimates to the period 2000-2013, ultimately generating 

seamless ozone data for 2000-2020. Detailed exposure risk analyses were also conducted. 

Given the persistently high ozone concentrations in China in recent years, the data and 

analysis results presented in this paper are of value for decision-making. Overall, the paper 

generates long-term ozone data, the methods and framework employed are reasonable, and 

the results and analysis offer some insightful takeaways, but there are still several issues that 

need to be addressed: 

Response: Thank you for reviewing our manuscript and providing us constructive 

suggestions/comments. We have thoroughly considered your suggestions/comments and 

revised our manuscript accordingly. The item-by-item responses are below. 

 

(1).The authors emphasize the importance and contribution of surface temperature as a 

proxy. However, two aspects warrant further exploration: 

(a) The conclusion that surface temperature is important is derived from the model's variable 

importance analysis. What would happen if surface temperature were removed from the 

model? Would the overall modeling accuracy decrease, and by how much? Additionally, how 

would the spatial mapping results be affected in the absence of high-resolution surface 

temperature data? A visual example to illustrate this would be helpful. 

Response: Thank you for your valuable suggestion. We have conducted a series of 

experiments to evaluate the impact of incorporating the satellite-derived land surface 

temperature (LST) variable into ground-level ozone models on estimation accuracy. 

Compared to the baseline model, the inclusion of LST significantly improves predictive 

performance, with R2 values increasing by 0.04–0.06 across random, site-based, and day-

based 10-fold cross-validation (CV). These findings have been incorporated into the first 

paragraph of Section 4 in the revised manuscript as shown below. 

“…Consistent with our previous findings (He et al., 2024), incorporating LST—closely 

linked to ozone variations and available at high spatiotemporal resolutions—significantly 

enhances the overall quality of our estimation data. This improvement is demonstrated by 

its leading rank in variable importance (Fig. S9) and the observed increase in R2 values by 



0.04–0.06 across sample-, site-, and day-based 10-fold CVs when comparing models with 

and without LST (Table S8). …” 

Additionally, we examined the effect of satellite-derived LST on the spatiotemporal 

mapping of ground-level ozone using an interpretable machine-learning approach. The 

modeling process and key findings, detailed in our previous publication (He et al., 2024), are 

summarized below. Since the modeling framework in this study builds upon our previous 

work, and the primary objectives of this study are to evaluate spatial hotspots of ground-

level ozone and their temporal changes, we have not redundantly discussed the role of 

satellite LST in mapping in the present manuscript.  

➢ Variable Importance Analysis. We applied both global (impurity-based) and 

localized (SHapley Additive exPlanations, SHAP) variable importance methods 

to analyze the contributions of each predictor in the optimally trained model. 

Satellite-derived LST consistently ranked as the most important variable, 

contributing approximately 32% (impurity-based) and 22% (SHAP) to the 

model’s predictive performance. Analyses at varying spatial resolutions (1 km, 

10 km, and 25 km) further underscored the critical role of satellite LST in high-

resolution ozone mapping, potentially surpassing the influence of other 

meteorological factors. 

➢ Comparison with Alternative Temperature Data. We investigated the impact 

of replacing LST with reanalyzed 2-meter air temperature (T2M) data. The 

results revealed significant shifts in variable importance rankings. The 

temporally dummy variable (TX) became the most important predictor (~15%), 

with T2M ranking second (~12%) in the localized SHAP analysis. When we 

developed a 25-km resolution ozone prediction model, T2M maintained a 

second-place ranking (~11%), but its importance fell short of expectations. Even 

at comparable spatial resolutions, T2M captured less predictive information 

than LST, suggesting that satellite-derived LST’s combined spatial and temporal 

high resolution provides superior information for ozone modeling. 

➢ Robustness Across LST Sources. To test the robustness of LST’s role, we 

replaced TPDC-LST with MODIS LST in the ozone prediction model. LST 

consistently emerged as the most critical variable, contributing approximately 

40% in the impurity-based importance analysis. The MODIS LST-based model 

maintained strong performance, achieving a random 10-fold CV R² of 0.91 and 

an RMSE of 14.16 μg/m³. These results reaffirm the critical role of LST in ozone 

prediction, irrespective of the satellite data source, and highlight the 

robustness of LST in capturing key ozone-relevant information. 

(b) We are aware of global warming. If surface temperature plays a decisive role in ozone 

estimation, this may be suitable for the integration between ozone and surface temperature 



observation, but is it equally applicable for hindcasting? Further discussion on this point 

could enhance the scientific value of the paper. 

Response: Thank you for highlighting the effect of LST on ozone hindcasting, which is an 

excellent point for further discussion. To address this, we have developed models with and 

without LST as a predictor and compared their CV results to demonstrate the contribution of 

LST to ozone hindcasting. These results have been incorporated into the first paragraph of 

Section 4, as shown below. 

“… Additionally, its critical role in hindcasting ground-level ozone estimates for the pre-

2013 unmonitored period is validated through improvements in estimation accuracy, as 

reflected by an R2 increase of 0.07 in the leave-one-year-out CV (Table S8) and 0.02 in 

independent validation using Hong Kong in-situ measurements (Table S9). …” 

 

(2). The paper estimates historical ozone data over an extended period, which is difficult to 

validate. While observation data from Hong Kong are scarce, they provide valuable 

validation. However, this is not clearly explained in the paper. How many observation sites in 

Hong Kong were used, and what time periods do the data cover? This information is crucial 

for assessing the accuracy of the historical ozone estimates. A more in-depth analysis would 

be beneficial. For example, if a few years of data are available, how does the accuracy vary 

year by year? 

Response: We appreciate your comment and fully agree that detailed information about 

the Hong Kong observational data is crucial for assessing the accuracy of historical ozone 

estimates. In our study, the independent validation dataset from Hong Kong consisted of 

17,122 observations spanning the period from 2005 to 2012. Please note that 2005 is the 

earliest year the Hong Kong measurements are available. A statistical summary of the 

model’s performance across different years is presented in Table S5 in the revised version, 

and the relevant content has been updated as shown below. 

 “…Additionally, an independent evaluation using 17,122 ozone measurements from 

Hong Kong, spanning 2005 to 2012, demonstrates that our model achieved R2 values ranging 

from 0.31 to 0.59 and RMSE values from 34.65 to 45.40 μg/m³, with averages of 0.41 and 

41.95 μg/m³, respectively (Fig. 1b and Table S5).” 

 

(3). The time periods are divided into 2001-2007, 2008-2015, and 2016-2020 for trend 

analysis. Were these periods defined based on trend identification, or was the segmentation 

arbitrary? This needs to be clarified in the paper. 

Response: The three periods were defined based on the national annual exposure time 

series shown in Fig. 3b. We observed two turning points, around 2008 and 2015, in the 

annual mean population-weighted MDA8 O₃. The relevant sentence has been revised for 



clarity, as shown below: 

 “…As illustrated in the annual exposure time series (Fig. 3b), two turning points are 

observed around 2008 and 2015…” 

 

(4). The paper presents results across multiple scales (e.g., pixel, county, region, national), 

offering a comprehensive view of the analysis from different perspectives. Figure 4 presents 

fine-grained county-level analysis, but it is unclear what new insights this scale of analysis 

provides. It seems neither as detailed as pixel-level analysis nor as regionally distinctive as 

the regional-scale analysis. It would be helpful to clearly state the key conclusions derived 

from this level of analysis. 

Response: In the revised manuscript, we have clearly articulated the key conclusions of 

the county-level analysis, highlighting its unique contributions. In general, the county-level 

analysis is particularly valuable for effective environmental management, as it enables 

tailored interventions in areas with elevated ozone concentrations. The following content 

has been incorporated into the penultimate paragraph of Section 4 in the revised 

manuscript. 

“Based on the high-resolution estimates, we quantitatively identified counties with the 

highest and lowest ozone levels (Fig. 4b-c), offering critical insights to inform resource 

allocation and targeted pollution control measures. For instance, counties such as Xiqing and 

Beichen in Tianjin, identified as having high ozone levels, can be prioritized for implementing 

targeted emission control policies and public health campaigns to mitigate health risks for 

local residents. These localized insights are often overlooked in broader-scale regional 

analyses. Previous studies relying on coarser-resolution data have typically focused on large 

urban agglomerations, such as the Beijing-Tianjin-Hebei region and the Pearl River Delta 

(PRD) (Wei et al., 2022), neglecting smaller yet critically affected areas. Conversely, while 

pixel-level analyses offer highly detailed spatial patterns, they may lack the administrative 

relevance needed for actionable policy decisions. By bridging the gap between regional and 

pixel-level analyses, our county-level analysis provides actionable and geographically specific 

recommendations, empowering policymakers to address ozone pollution more effectively.” 

 

(5). The exposure levels for the period 2016-2020 show a significant increase in the NCP 

region, especially compared to 2001-2007. What is the underlying cause of this increase? 

Additionally, the PRD has long been considered a high-concentration ozone area, but this 

does not seem to be reflected in the results. 

Response: The NCP is a notable ozone hotspot, showing an increasing trend in recent 

years. Additionally, we observed a significant shift in the peak ozone exposure month from 

June to May. These changes can be attributed to shifts in meteorological conditions, such as 

extreme high temperatures (Wang et al., 2022), and changes in air pollutant emissions, 



particularly the reduction in NOx emissions combined with high VOC emissions (Ke et al., 

2021), which favor ozone formation. Moreover, the substantial reduction in ambient 

particulate matter in recent years has likely exacerbated ozone conditions in this region, as 

PM2.5 plays a role in slowing the removal of hydroperoxy radicals, thereby promoting ozone 

production (He et al., 2023; Li and Li, 2023; Li et al., 2019). These points have been 

integrated into the third paragraph of Section 4. Please note that in response to Reviewer 

#2’s suggestion, we have consolidated the NCP discussion into a single paragraph—the third 

paragraph—in the revised manuscript. 

We appreciate your observation regarding the PRD region and its representation in our 

results. While our discussion section emphasizes the NCP region due to its predominantly 

exacerbated ozone pollution issues, our results do indeed reflect that the PRD has 

consistently been a region of high ozone exposure. This is supported by the following three 

key aspects: 

➢ Ozone exposure trends across China over the past two decades: The PRD 

region has consistently experienced elevated ozone concentrations, particularly 

during autumn and winter, where ozone levels are significantly higher 

compared to other regions (Figure 3). 

➢ Regional population exposure: Between March 2000 and December 2020, 

approximately 40% of days in the PRD region had population exposure to ozone 

levels exceeding 100 μg/m³, with around 2% of days exceeding the national 

secondary limit of 160 μg/m³ (Figure 5). This highlights the region’s long-term 

ozone exposure burden. 

➢ Long-term ground-level ozone trends in the PRD region: Our study indicates 

that the increasing trends in ground-level ozone exposure in the PRD are more 

pronounced than in most other regions. Between 2001 and 2007, ozone 

concentrations in the PRD rose at an average rate of 1.33 μg/m³ per year, with 

a particularly sharp increase of 3.84 μg/m³ per year during autumn. In the 

2016–2020 period, the upward trend became even more pronounced, 

especially in autumn, where ozone concentrations increased by 6.38 μg/m³ per 

year. These trends are considerably steeper than those observed in the NCP 

region. 

Together, these findings confirm that the PRD remains a region of long-term, high ozone 

exposure and underscores the need for continued attention to ozone pollution in this area. 

 

(6). What are the physical or chemical mechanisms through which aerosol optical depth is 

used to estimate near-surface ozone? Please provide further explanation. 



Response: The physical and chemical mechanisms linking AOD and ground-level ozone 

have been incorporated into Section S1.1 of the revised supporting document. The following 

is a more detailed explanation. 

➢ Aerosols can affect the scattering and absorption of solar radiation, thereby 

influencing the efficiency of photochemical reactions (Wang et al., 2019), which in 

turn affects the formation and destruction of ozone.  

➢ Additionally, certain types of aerosols (such as black carbon) can adsorb volatile 

organic compounds (VOCs) in the atmosphere(Gao et al., 2018), which are 

important precursors for ozone formation. By influencing the concentration of 

VOCs, aerosols can indirectly affect ozone production.  

➢ Given that AOD serves as an indicator of aerosol concentration and properties, it 

provides important information about the potential impact of aerosols on ground-

level ozone estimation.  

 

(7). Lines 155-167, does "province level" refer to statistical analysis by province, rather than 

validation by province? 

Response: Yes, this term indeed refers to statistical analyses conducted by province, 

rather than validation by province. We have further clarified this point in the revised version 

to ensure that readers can clearly understand. Below is the content of our modified 

manuscript. 

“… We further compiled the CV results by province, revealing that the XGBoost model 

performed exceptionally well in Beijing, Tianjin, Hebei, Shanxi, and Henan, achieving CV R² 

values above 0.86. However, its performance was weaker in Fujian and Taiwan, where R² 

values fell below 0.70 (Fig. S3). …” 

 

(8). Figure 2 compares the results obtained in June 2018 with those from previous studies. 

Why was this particular time chosen for comparison? 

Response: We chose June 2018 as the time period for comparison primarily because this 

month recorded relatively high ozone concentrations in the monitoring station data, which 

has been identified as a hotspot for high ozone levels, highlighting significant spatial 

disparities in ozone exposure within cities. We have revised the opening sentence of Section 

3.1.3 to clarify the reason behind selecting this subset for comparison and the relevant 

sentence is shown below.  

“We selected a subset from June 2018, identified as a hotspot for high ozone levels based 

on ground-level monitoring data, from our long-term, full-coverage MDA8 O₃ estimates 

generated by the proposed modeling framework…” 



 

(9). Line 231, a writing mistake, "NCP)" should be "NCP." 

Response: Thank you for your careful review and comments on our paper. We have made 

this correction in the revised version. 

 

(10). The discussion section summarizes many of the paper's findings and analyses, a more 

discussion of uncertainties and insights regarding ozone pollution control would be 

beneficial. 

Response: Thank you for your suggestion regarding the discussion section. We have 

revised the manuscript in the following two ways: 

a. Uncertainty Analysis: The primary source of uncertainty in the spatiotemporal analysis 

lies in the long-term ozone estimates. To address this, we conducted rigorous validation of 

the historical ozone estimates, in contrast to many previous studies that relied solely on 

sample-based 10-fold CV to represent the accuracy of long-term estimates. Our validation 

results, particularly the time-aggregated validation outcomes, demonstrate significant 

improvements in the accuracy of the historical estimates, with an R² of 0.74 at the monthly 

scale in Fig. 1. These findings suggest that the spatiotemporal exposure analysis, especially 

regarding long-term variations, is robust and reliable. This discussion has been incorporated 

into the final paragraph of Section 4 in the revised version. Below is the revised content from 

our manuscript. 

“The primary source of uncertainty in this study lies in the long-term ozone estimates. 

Since the NAQMN was not established before 2013, monitoring data from earlier years is 

unavailable. As a result, we could not directly train the model for that period. Instead, we 

applied the model developed for post-2014 data to hindcast ozone levels for the earlier 

unmonitored years. Consequently, the estimated ozone levels for these years may carry a 

certain degree of uncertainty, which could impact the spatiotemporal analysis. However, we 

conducted rigorous validation of the hindcast estimates, and the time-aggregated validation 

results demonstrated significant improvements in the accuracy of the pre-2013 estimates 

(R2 of 0.74 at the monthly scale in Fig. 1). These findings suggest that the spatiotemporal 

exposure analysis, particularly regarding long-term variations, is robust and reliable.” 

b. Challenges in Controlling Ozone Pollution: We have included ozone pollution control 

recommendations based on our spatiotemporal analysis in the middle paragraphs of Section 

4 in the revised manuscript. For instance, we observed a notable shift in the peak ozone 

exposure month from June to May, which is particularly pronounced in the NCP region. We 

discussed the potential causes of this phenomenon and recommended that policymakers 

remain vigilant about this shift to adapt mitigation strategies in the third paragraph of 



Section 4. Additionally, we have included a paragraph in the fourth paragraph of Section 4 to 

discuss the implications of our county-level study on policymaking. 

 

 


