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Abstract. Hydrostatic models were and still are the workhorses for realistic simulations of the ocean dynamics, especially for

climate applications. The hydrostatic approximation is formally first order in γ = H/L, where H is the vertical and L the hor-

izontal scale of the phenomenon considered. For linear (low amplitude) and unforced stratified rotating flow the dynamics can

be separated in balanced flow and wave motion. It is shown that for the linear balanced motion the hydrostatic approximation

is exact and for wave motion it is second order, obtaining the leading prefactors. The validity of the hydrostatic approximation5

therefore also relies on the ratio of the amplitude of wave motion to balanced motion. This ratio adds considerably to the quality

of the hydrostatic approximation for larger scale flows in the atmosphere and the ocean.

Imposing the divergenceless condition is a linear projection of the dynamical variables into the subspace of divergenceless

vector fields, for both the Navier-Stokes and the hydrostatic formalism. Both projections are local in Fourier space. The pro-

jection is followed by a time-evolution operator, which differs in the wave-frequencies, only. Combining the projection and the10

linear evolution operators in both formalisms leads to the linear projection-evolution operator.

Calculating the difference of the two projection-evolution operators, the expression of the error, scaling and prefactors, done

by the hydrostatic approximation is obtained. Analyzing the eigen-space of the projector-evolution operators, it is shown that for

rotating-buoyant vortical-flow the hydrostatic-approximation is of third order for buoyant forcing, second order for horizontal

and first order for vertical dynamical forcing. Equilibrium solutions are in the kernel of the linear projection-evolution operator15

and conservation laws are in the kernel of its adjoint.

Using the Heisenberg-Gabor limit it is shown that for large scale ocean dynamics, the difference of the dynamics of the

projection-evolution operator between the two formalisms is insignificant. It is shown that the hydrostatic approximation is ap-

propriate for realistic ocean simulations with vertical viscosities larger than ≈ 10−2m2s−1. A special emphasis is on unveiling

the physical interpretation of the calculations.20

1 Introduction

At large scales the ocean velocities point predominantly in the horizontal direction, due to the flatness of the ocean basin,

the action of gravity, the rotation of the earth and the feeble variations of density of ocean waters. This properties allow
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for the derivation of idealized mathematical models of the ocean dynamics from the fully three dimensional Navier-Stokes25

equations (see, i.e. Vallis (2017)). Idealized models are not only implemented numerically to efficiently integrate atmosphere

and ocean dynamics, but are at the basis of human understanding, Wirth (2010) and therefore of the developpement of story-

lines, explaining physical processes and their interactions. Most of these models are based on the hydrostatic approximation.

In the quasi-geostrophic model, for example, the entire dynamics is projected on the direction of the balanced eigen-vector

(to be defined below) and the influence of dynamics along the other vectors due to their linear and nonlinear interaction is30

estimated from the balanced flow. At small scales the turbulent motion is fully three-dimensional and the three-dimensional

Navier-Stokes equations have to be solved. As numerical simulations, especially when coastal processes are considered, are

moving towards finer horizontal resolution it is no-longer clear to what extent the hydrostatic approximation is valid. This has

sparked an increased interest in quasi-hydrostatic or fully three-dimensional Navier-Stokes models for ocean modelling (see

i.e. Marshall et al. (1997a); Guillaume et al. (2017); Auclair et al. (2018); Popinet (2020); Calandrini et al. (2024)). At the35

same time hydrostatic models are still widely used and developed for larger scale simulations of the atmosphere (see e.g. Janjic

et al. (2001); Wan et al. (2013); Milewski and Tabak (2015); Snodin and Wood (2022); Spensberger et al. (2022); Bouvier et al.

(2024)), the ocean (see e.g. Kärnä et al. (2018); Kevlahan and Dubos (2019)) and the climate (see e.g. Boucher et al. (2020)).

Hydrostatic models are also employed to increase physical insight (Atoufi et al. (2023); Winn et al. (2023)). Comparisons of

the two approaches using numerical simulations are reported (Tseng et al. (2005); Zeman et al. (2021)) as well as the coupling40

of the two model types, (Blayo and Rousseau (2016); Qu et al. (2019)). The present paper discusses the gray zone between the

two limits and establishes, where it is situated, using a purely analytical approach.

The justification of the hydrostatic approximation relies on the flatness of the dynamics, that is, the smallness of the ratio of

the vertical scale to the horizontal scale, γ = H/L. It was recently proved by Li and Titi (2016) that the Navier–Stokes equations

converge strongly to the primitive (hydrostatic) equations and that the convergence is of first order, O(γ). Scaling arguments45

on the validity of the hydrostatic approximation are often based on inertial-gravity wave dynamics. In Marshall et al. (1997b)

it was estimated, comparing the horizontal advection time to the wave frequency, that the motion is hydrostatic if γ2/Ri≪ 1,

where Ri = (NH/U)2 is the Richardson number, N the buoyancy frequency and U a typical horizontal velocity scale. These

scaling arguments do not include the Coriolis parameter f , which is known to further suppress vertical accelerations, this can

be seen in the prominent Taylor-Proudman-Poincaré theorem (see i.e. Wirth and Barnier (2008)). Furthermore, the effect of50

resonances are not included. Note also that Gill (1982) states that the hydrostatic approximation is appropriate if the frequency

of the wave motion is smaller than the buoyancy frequency ω≪N . For inertial-gravity waves N > ω > f and for balanced

motion ω≪N,f . In the ocean and atmosphere we typically have N > 10f , but there are also areas, where the ocean and

atmosphere are weakly or unstratified, or where the stratification is unstable. The action of gravity waves on the vortical flow

is, however, supposed to be small, rendering such arguments insignificant for most oceanic phenomena (see, i.e., Vanneste55

(2013), Wirth (2013)). In the present work I develop a frame work that allows for discussing the fidelity of the hydrostatic

approximation and offers an understanding of the underlying physics. Calculations are detailed in the text as they unveil the

physics. The calculations are performed in Fourier space, as projections into the space of incompressible vector fields are local,

but results are by no means restricted spectral models.
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The action of pressure, which insures the vanishing divergence of the velocity field, is discussed in Section 2. The present60

work combines three techniques: first (T1) I use the fact that imposing the divergenceless condition is a linear and local

projection in Fourier space, for both, the Navier-Stokes and the hydrostatic formalism, it is discussed in Section 3. Second

(T2), I extend the dynamical space to four dimensions considering the dynamical-vertical and buoyant acceleration as separate

variables, it is discussed in Section 4. Third (T3) I use the linearized equations of the dynamics in both formalisms and compare

their eigen vectors and eigen values, to bring out the similarities and differences, it is discussed in Section 5. This leads to a65

formal frame-work to investigate the validity of the hydrostatic approximation using linear algebra in low (≤ 5) dimensional

spaces.

To evaluate the hydrostatic approximation I consider the response of the linearized Navier-Stokes and the hydrostatic scheme

to a forcing. Formally, the linear terms of the equations can be written on the l.h.s. of the equality sign and the other terms on the

r.h.s., the latter then appear, formally, as forcings to the linear system. The origin of these generalized forcing can be external70

or internal, by the boundary or by non-linear terms and other processes, which are explicitly resolved or parameterized. Two

main steps are necessary to solve the two linearized schemes (see Fig. 2): The first step (S1) considers the effect of a forcing on

the eigen-vectors of the corresponding linearized projection-evolution operator. This step is explained in Section 6. Section 7

details the different components of the forcing vector. The second step (S2) considers the response of the system to the forcing

in the eigen spaces, of the linear projection-evolution operator, which is given in Subsection 7.1 (S2a) for stationary forcing75

and in Subsection 7.2 (S2b) for time-dependent forcing. To evaluate the hydrostatic approximation, for each of the two steps,

two sub-steps are necessary: one has to determine what is the error done by the hydrostatic approximation in each eigen-space,

the absolute error, and what is the amplitude of the motion in each eigen-space, to obtain the relative error. The sub-steps are

given in Subsection 7.1 for a stationary forcing and in Subsection 7.3 for a periodic forcing. In Section 7.4 I briefly discuss

the inclusion of the non-linear terms in the formalism. The discussing in Section 8 compares the error due to the hydrostatic80

approximation to other causes of error in numerical models as the increased friction coefficient and the Doppler shift due to

unresolved advection. This section also discusses if the finite time observations of waves allows to discriminate between the

two formalisms, based on the Heisenberg-Gabor uncertainty principle. The conclusions, Section 9, give a summary of the

scaling due to different forcings and compares the deficiencies of the hydrostatic equations to unresolved processes, internal

variability, finite resolution in space and uncertainties in the observations.85

1.1 The scales of ocean dynamics

Before evaluating the hydrostatic formalism by comparing its dynamics to the Navier-Stokes model, it is important to introduce

the scales in space and time of the different regimes of ocean dynamics, as shown in Fig. 1. At small scales and short times

the dynamics is three dimensional and the hydrostatic approximation deficient. We therefore consider the dynamics at scales

larger than 10 m and slower than 1 h. Four main regions can be identified. The first is the viscous region, below the blue90

line associated to the eddy viscosity employed in the model. The actual kinematic viscosity of sea water (O(10−6 m2 s−1)) is

many orders of magnitudes smaller and the dynamics in the viscous region is misrepresented in both formalism. It is important

to note that the vertical dynamics with typical vertical velocities of w = 10−4 m s−1 are in the viscous regime. The vertical
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Figure 1. Schematic view of the ocean dynamics in (logarithmic) time and space scales. The time scale is normalized by the Coriolis

period 1/f , with f = 10−4s−1. The buoyancy frequency is given by the red dashed line, a typical value is N = 10f . Inertia-gravity waves

have periods shorter than 1/f and their group velocity cg decreases with the wave length. At horizontal scales smaller than the depth of a

homogeneous layer and not subject to substantial influence of the Coriolis force (red area), the dynamics can lead to overturning and mixing

for which the hydrostatic approximation fails. Slow large-scale motion is close to balance (green area). Thin red-lines (slope=1) present

constant velocity. Balanced motion in the ocean is rarely faster than 1 m s−1, Barotropic gravity (bt.) waves (yellow area) have velocities of

the order of 100 m s−1. Internal gravity (bc.) waves (orange) are slower than 10 m s−1 and typical vertical velocities are less than 10−4 m

s−1. The blue-lines (slope =1/2) represents the effect of viscous damping for different values of viscosity and also for bi-Laplace damping

(blue-dashed-line, slope = 1/4). The area below is dominated by viscous friction, not correctly represented, neither in the hydrostatic nor the

Navier-Stokes formalism.

velocities are crucial for the fidelity of the hydrostatic approxiametion, The second regime is where balanced vortical flow

dominates and the hydrostatic and the Navier-Stokes formalism are close, as confirmed by our findings below. This regime95

is operating at larger scales than the viscous regime and at scales faster than Coriolis parameter. At time scales faster than

Coriolis parameter, the third regime representing inertia-gravity waves is dominant at larger scales and can be separated into

barotropic and baroclinic modes. The former are much faster than the latter, both interact through topographic variations of the

ocean floor. The former have negligible direct influence on the ocean circulation averaged over a few days. The latter can break

in the ocean interior leading to vertical mixing. The differences in the wave dynamics between both formalism is of second100

order in the aspect ratio O(γ2). The fourth regime is fully three dimensional, it is called the mixing regime in Fig. 1. Due to

its three-dimensional dynamics the horizontal scale is constraint by the thickness of the ocean layer considered. In numerical

simulations it is squeezed between the viscous and the wave regime and disappears for larger viscosities and hyper-viscosities.

The validity of the hydrostatic approximation is questioned in this regime. It is, however, in this range of scales that a large
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number of specific processes of ocean dynamics occur. Examples are convective plumes Marshall and Schott (1999); Wirth105

and Barnier (2006); Griffies and Treguier (2013), down-slope gravity currents Wirth (2009); Manucharyan et al. (2014); Gačić

et al. (2021), interactions with topography Jayne et al. (2004), breaking of internal waves Lamb (2014), Ekman layers (top,

bottom and interfacial) Laanaia et al. (2010); Elipot and Gille (2009), Langmuir cells McWilliams et al. (1997), ocean fronts

McWilliams (2021), small scale instabilities Dewar et al. (2015) and others. Dedicated numerical simulations are necessary to

validate the hydrostatic approximation for these processes. In the present work I do not want to rival these efforts, but rather110

present a theoretical framework to consider its validity.

In the ocean, the dynamics takes place also at scales faster than 1 h and smaller than 10 m. For this dynamics however neither

rotation nor stratification play a dominant role, it is close to three-dimensional isotropic turbulence and standard large eddy

simulation schemes developed in other fields of turbulent fluid dynamics can be employed to parameterize their effect on the

larger scale dynamics. For even smaller scale processes, as for example wave breaking and other surface processes, dedicated115

parameterizations have to be employed even in a far future.

2 Pressure

The starting point of our investigation are the three dimensional, incompressible Navier-Stokes equations in a rotating frame,

subject to the Boussinesq approximation and the traditional approximation (see, i.e., Wirth and Barnier (2008)), which supposes

the rotation vector to be aligned with gravity:120

∂tu = −(u · ∇)u− fz×u− gz
ρ

ρ0
+∇(ν∇u)−∇P, (1)

∇ ·u = 0, (2)

where u is the three dimensional velocity vector, z is the unit vector in the vertical upward direction, g is gravity, ν viscosity

and P is the pressure divided by the average density (see below).

The density can be separated into three parts:125

ρ(x,z, t) = ρ0(t) + ρz(z, t) + ρ′(x,y,z, t). (3)

(from left to right on the l.h.s. of Eq. 3): (1) the average density in the domain that can vary in time; (2) a part of the density

variation that is horizontally averaged and only varies in the vertical direction and in time; (3) the deviations from the sum

of the two. In the incompressible Navier-Stokes equations only the last term has to be considered for the acceleration, as the

other terms lead to a vertical force which is independent of the horizontal direction and therefore countered by a horizontally130

independent hydrostatic pressure force. We can replace ρ by ρ′ and write the buoyancy b =−gρ′/ρ0 in Eq. 1 and the pressure

will change from P to P ′, where the latter does not include the hydrostatic pressure force due to ρ0(t) and ρz(z, t).

If considering the terms on the r.h.s. of Eq. 1, from the left to the right, we see that the total acceleration is the sum of the

advection of inertia au (first term on the r.h.s. of Eq. 1) , the Coriolis acceleration af (second term), buoyancy acceleration

ab = (0,0, b)t (third term, the symbol t stands for the transpose of a vector). and the viscous acceleration aν (fourth term).135
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The pressure term on the right hand side insures the vanishing divergence of the total acceleration, ∇ · ∂tu = 0. Taking the

divergence of Eq. 1 we can calculate the pressure by solving the elliptic equation:

∇2P =−∇ · (au +ab +af +aν), (4)

subject to boundary conditions. Note that aν does not appear in Eq. 4 if the viscosity is isotropic and constant in space, as the

correct implementation of the viscous term is aν = (∇t · ν∇)u and ∇ ·u = 0 implies ∇ ·aν = 0.140

If the flow is in geostrophic equilibrium (or more precisely, satisfies the thermal-wind relation) ab =−af , au = aν = 0

and there is no time evolution of the velocity field. The quasi-geostrophic dynamics is based on the hydrostatic balance. If a

three dimensional perturbation is added to the dynamics it will approach quasi-geostrophy if rotation is a dominant feature

of the dynamics. How fast and how close this tendency towards quasi-geostrophy happens, at different scales, is today an

open question and depends on the problem considered (see, i.e., Vanneste (2013) and Wirth (2013)). Quasi-geostrophic flow is145

always close to balanced flow, which relies on the hydrostatic balance in the vertical and geostrophic balance in the horizontal.

Viscosity perturbs the latter balance but not the former.

We can write the pressure as a sum of four parts, each insuring the zero divergence of the corresponding term on the r.h.s. of

Eq. 10:

P (x,z, t) =−Pu(x,z, t) +Pf (x,z, t) +Pb(x,z, t) +Pν(x,z, t). (5)150

The first is related to the advection

∇2Pu =−∇ · ((u · ∇)u), (6)

it is non-linear. The second is due to the Coriolis force:

∇2Pf =−∇ · (fz∇×u). (7)

Calculating the two pressures above asks for solving an elliptic (non-local) problem. The third term is due to buoyancy:155

∂zPb = b. (8)

and can be solved by an integration in the vertical direction. If the viscosity is homogeneous and isotropic, the fourth term,

∇2Pν =∇ · (∇ · ν∇u), (9)

vanishes.

The linear operator P projects the acceleration in the subspace of zero divergence (see Fig. 3). Equations 1 and 2 can therefore160

be written as:

∂tu =−P((u · ∇)u)−P(fz×u) + P(zb)−P(ν∇2u) (10)

P(∇ ·u) = 0 (11)

Note, that although the projection is a linear operation, the pressure term is a non-linear term as it depends non-linearly on the

velocity field through the non-linear advection term. Separating each step of a fluid dynamics integration in an evolution and165
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a projection sub-step is a classical procedure and is widely applied, also in ocean simulations (see discussion on projection in

Marshall et al. (1997a); Guillaume et al. (2017); Popinet (2020)). In other numerical schemes Auclair et al. (2018) the evolution

stays close to the subspace of divergenceless vector-fields by introducing a spurious compressibility.

Linear, elliptic, non-local, problems with constant coefficients become local algebraic problems in Fourier space and their

solution is reduced to solving linear algebraic systems. The orthogonal projection on the subspace of divergence-free functions170

is a local operation in Fourier space and it is therefore natural to present our formalism in Fourier space. The dilemma with

the Fourier space is that boundary conditions, which are local in physical space become non-local in Fourier space, see Wirth

(2005) for a detailed discussion and application to ocean modeling.

3 Fourier Space Projections (T1)

In this section I discuss the well known technique (labeled T1 in the introduction and in Fig. 2) of projections of a vector field175

into the subspace of divegenceless vector-fields for the Navier-Stokes formalism and develop the equivalent for the hydrostatic

approximation. The Fourier transform of a L3−periodic variable is:

â(k) =
1
L3

∫

L3

ei(kxx+kyy+kzz)a(x,y,z)dxdydz, (12)

where the wave numbers are given by kx,ky,kz = 2πn/L and n ∈ Z.

The integration starts from a divergence-free initial-condition ûi (see Fig. 3), with the integration step:180

âx = −ikxû2
x− ikyûxuy − ikzûxuz + fûy − ν̃ûx (13)

ây = −ikxûxuy − ikyû2
y − ikzûyuz − fûx− ν̃ûy (14)

âz = −ikxûxuz − ikyûyuz − ikzû2
z − ν̃ûz, (15)

˙̂
b = −ikxûxb− ikyûyb− ikzûzb− ûzN

2−κk2b̂, (16)

with the wavelength k =
√

k2
x + k2

y + k2
z , the inverse friction time ν̃ = νk2 and the Brunt-Väisälä frequency N =

√
∂zbBG of185

the background stratification. The three-dimensional acceleration vector is:

âN =




âx

ây

âz + b̂


 . (17)

The hydrostatic pressure in Fourier space is ikzP̂ = b̂ and therefore ikxP̂ = kx

kz
b̂ and the horizontal hydrostatic acceleration

becomes: − (kx,ky)t

kz
b̂. The two-dimensional acceleration in the hydrostatic formalism is:

âH =




âx− kx

kz
b̂

ây − ky

kz
b̂

0


 , (18)190
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Figure 2. Schematic of the projection-evolution formalism: step S1 gives the difference in the projection of a forcing in the two formalisms

and step S2 the difference in the linear evolution. Non-linear terms (NL) can be represented as (time-dependent) forcings and the scheme has

to be iterated. The different forcings (vertical Fz , divergent Fd, rotational Fr and buoyancy flux B) are projected on wave forcing Fw and

balanced forcing Fb, which span the sub-space of divergenceless vector-fields. The rotational and the buoyancy flux forcings are identical in

both formalisms. The vertical forcing Fz is in the kernel of the hydrostatic projection (missing arrow) and the error of the divergent forcing

Fd done by the hydrostatic projection is of second order O(γ2) (orange arrow). The projection-evolution operator acts identical on balanced

forcing in both formalisms, whereas it differs to second order O(γ2) (orange arrow) on the wave forcing. The nonlinear terms formed by the

wave and balanced amplitudes appear as retro-acting forces (NL) in the formalism.8
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that is, the hydrostatic pressure is added to the horizontal acceleration and the vertical acceleration is omitted.

The integration step is followed by a projection on the divergence-free sub-space. It is orthogonal to the divergence-free

sub-space in the Navier-Stokes formalism,

P̄N (âN ) = âN − (k · âN )k
k2

. (19)

This projection is local in Fourier space, it is performed independently for every wave vector k and makes the power of the195

pseudo-spectral method based on the Fourier series expansion of the velocity field. It was applied to ocean modelling in Wirth

(2005).

For kz = 0 the hydrostatic projection equals the Navier-Stokes projection applied to the first two components. For kz ̸= 0

the projection is in the vertical direction in the hydrostatic formalism leaving the horizontal components unchanged (see Fig.

3):200

kz = 0 : P̄H(âH) =




1− k2
x

k2
h

−kxky

k2
h

0

−kxky

k2
h

1− k2
x

k2
h

0

0 0 0







âx

ây

0


 , (20)

kz ̸= 0 : P̄H(âH) =




1 0 0

0 1 0

−kx

kz
−ky

kz
0


 âH (21)

with k2
h =

√
k2

x + k2
y . It is clearly seen that the vertical acceleration prior to the projection is ignored, the entries of the third

column vanish. The vertical acceleration is obtained, through the projection, entirely based on the horizontal components,

such that the velocity field is divergenceless. Note that the correction for kz ̸= 0 are of order γ =
√

k2
h/k2

z , which is small for205

dynamical processes which have a horizontal extension larger than the vertical. Both projectors lead to a divergenceless vector

field, which is readily verified by multiplying the projectors by the wave-vector, k, on their left.

The major difference between the hydrostatic and the Navier-Stokes projection is that in the latter the vertical acceleration

from the dynamical and gravitational acceleration are treated equally, while in the former the vertical dynamical acceleration

is omitted and the gravitational acceleration is added to the horizontal acceleration using the hydrostatic equation, as shown in210

Fig. 3.

In numerical models based on Fourier representation the projection is exact at the machine precision employed. In other

models the projection in the Navier-Stokes formalism is done via an elliptic solver of which the precision is specified and

usually far less than the machine precision. In this case the double line in Fig. 3, representing the sub-space of zero divergence,

has a finite thickness corresponding to the precision prescribed to the elliptic solver.215

4 Fourier Space Extension (T2)

In this section I introduce the extension of the Fourier space to 4 dimension, this technique is labeled T2 in the introduction and

in Fig. 2. To emphasize the similarities and differences of both projections, I split the vertical acceleration into the two parts, a

9
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dynamical (âz) and a buoyant (âb = b̂) part:

ã =




âx

ây

âz

âb




. (22)220

The buoyancy adds to the dynamical vertical acceleration. In the Navier-Stokes formalism there is no difference in the pro-

jection of the two, while in the hydrostatic projection the dynamical vertical acceleration is ignored, while the buoyancy

acceleration appears in the horizontal component. More precisely, the hydrostatic projection becomes:

PH =




1 0 0 −kx

kz

0 1 0 −ky

kz

−kx

kz
−ky

kz
0 k2

h

k2
z




= 1− 1
kz







0

0

1


(kx,ky,0,−k2

h

kz
) +




kx

ky

0


(0,0,0,1)


 . (23)225

The third column is zero as the dynamical vertical acceleration is ignored, while it can be seen in the fourth column that the

gravitational acceleration acts on the horizontal and vertical. The Navier-Stokes projection is:

PN =




1− k2
x

k2 −kxky

k2 −kxkz

k2 −kxkz

k2

−kxky

k2 1− k2
y

k2 −kykz

k2 −kykz

k2

−kxkz

k2 −kykz

k2 1− k2
z

k2 1− k2
z

k2


 = 1− 1

k2




kx

ky

kz


(kx,ky,kz,kz). (24)

The third and fourth column are identical, as the vertical acceleration due to the dynamical and gravitational part are treated

equally. If buoyancy vanishes, the divergence free subspace is spanned by the orthogonal vectors eP
1 = (ky,−kx,0,0)t and230

eP
2 = (kx,ky,−k2

h

kz
,0)t. There is no difference between the Navier-Stokes and the hydrostatic projections if applied to these

two vectors. The first vector represents a divergenceless horizontal rotational motion with no vertical component. In two

dimensions this is the only way to have a divergenceless mode. The second vector is a compensation between the horizontal

and vertical divergence, it represents vertical stretching and compression of the water column. The vertical component of the

curl of the second vector is vanishing.235

To emphasize the projection on eP
1 and eP

2 the projection operators can also be written as:

PH =
1
k2

h







ky

−kx

0


(ky,−kx,0,0) +




kx

ky

−k2
h

kz


(kx,ky,0,−k2

h

kz
)


 (25)

PN =
1
k2

h







ky

−kx

0


(ky,−kx,0,0) +

k2
z

k2




kx

ky

−k2
h

kz


(kx,ky,−k2

h

kz
,−k2

h

kz
)


 . (26)
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There is no difference in the projection of the purely horizontal divergenceless motion, the first term in both projections.

Whereas, if horizontally divergent, buoyant and vertical motion is considered, there are two differences: the horizontally di-240

vergent and buoyant accelerations differ by a factor k2
z/k2 = (1 + γ2)−1 and the vertical dynamic acceleration is neglected in

the hydrostatic approximation. The former difference is of second order O(γ2), while the latter is of first order O(γ), a higher

order can be assigned if the dynamics constraints the order of the vertical dynamical acceleration âz , this will be discussed in

Section 5 based on the linearized, low amplitude, dynamics. Note that the projections are closely related to the well known

Craya decomposition or wave-vortex compositions, see Deriaz et al. (2010) and references therein for a detailed discussion.245

The vector eP
3 = (kx,ky,0,kz)t is in the kernel of both projections and represents balanced flow: the hydrostatic balance in

the vertical, âz = 0, saying that all the acceleration in the vertical is due to buoyancy b̂, and the geostrophic balance in the hori-

zontal: âx = fûy = kx

kz
b̂ and ây =−fûx = ky

kz
b̂. These compensations are the essence of Geophysical Fluid Dynamics (GFD),

that is the dynamics of a buoyant fluid in a rotating frame. It includes geostrophy, thermal-wind balance and cyclostrophic

balance.250

The difference between the two projections lies in the second vector in the kernel, for the hydrostatic operator it formally

is eH
0 = (0,0,1,0) but as, in the hydrostatic formalism, âz = 0 it has zero amplitude. For the Navier-Stokes operator the

second vector in the kernel is eN
0 = (0,0,1,−1), it expresses the trivial fact that compensations between the dynamical and

gravitational accelerations are in the kernel of the operator. In the hydrostatic approximation (âz = 0) no such compensation

exists. Furthermore, eN
00 = kzeN

0 +eP
3 = (kx,ky,kz,0)t is also in the kernel of the Navier-Stokes operator, if multiplied by P̂ ′d255

it is nothing else than the dynamic pressure correction ∇P ′d. Note that eP
1 ,eP

2 ,eN
00 are an orthogonal subset.

For kz ̸= 0 the difference between the operators is:

A(ã) = PH(ã)−PN (ã) =

=







1 0 0 −kx

kz

0 1 0 −ky

kz

−kx

kz
−ky

kz
0 k2

h

k2
z


−




1− k2
x

k2 −kxky

k2 −kxkz

k2 −kxkz

k2

−kxky

k2 1− k2
y

k2 −kykz

k2 −kykz

k2

−kxkz

k2 −kykz

k2 1− k2
z

k2 1− k2
z

k2





 ã

=
1

kzk2




k2
xkz kxkykz kxk2

z −kxk2
h

kxkykz k2
ykz kyk2

z −kyk2
h

−kxk2
h −kyk2

h −kzk
2
h (k2

h)2/kz




︸ ︷︷ ︸
A

ã260

=
1
k2




kx

ky

−k2
h

kz


(kx,ky,kz,−

k2
h

kz
)ã. (27)

By construction, the difference of the two operators is in the space of divergenceless functions spanned by eP
1 and eP

2 (with

the last component omitted), but the above shows that it is aligned with eP
2 . This illustrates that the difference between the

hydrostatic and the Navier-Stokes operator is never in the vertical vorticity, but in the compensation of horizontal divergence

through vertical divergence, the water column is stretched differently if (kx,ky,kz,−k2
h

kz
)ã ̸= 0. The Navier-Stokes projector265
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does not lead to a change in vorticity, while a non-vanishing hydrostatic correction alters the horizontal-components of the

vorticity vector, only.

If there is no constraint on the acceleration vector:
√

[A(ã)]2 < γ
√

ã2, if γ < 1. Furthermore the error in the vertical is by a

factor γ smaller than the horizontal error. If the vertical dynamic acceleration is γ-times smaller than the horizontal or buoyant

accelerations:
√

[A(ã)]2 ≤ γ2
√

ã2. Note that for the hydrostatic approximation to be of second order, O(γ2), only the vertical270

dynamic acceleration has to be small, not the buoyant. The relative error is A(ã)/PN (ã); for ã = eN
0 it is ∞.

So far, I have only considered the error in the hydrostatic approximation for an acceleration field, without any reference

to the underlying dynamics. In the next section I will discuss the error for low amplitude motion, if the dynamics is well

approximated by the linearized equations.

5 Linearized Equations (T3)275

In this section I combine the projections in the extended Fourier space with the linearized evolution equation. If the velocity is

small the first term on r.h.s. of Eq. 4 is negligible and the non-linear terms in Eqs. 13, 14, 15 and 16 can be neglected. When

we further introduce a buoyancy velocity ub = b/N and write the four dimensional velocity vector û = (ux,uy,uz,ub)t, the

linearized dynamics is given by:

 ã

˙̂ub


 = L□û, (28)280

where the symbol □ is a place holder for “ ” for the Navier-Stokes or “H” for the hydrostatic formalism. Note that the vector

on the r.h.s. has 5 dimensions as it consists of the accelerations was well as the buoyancy and the buoyancy flux divided by the

Brunt-Väisälä frequency. This normalization renders the vectors and operators, introduced below, dimensionally homogeneous.

The extension to 5 dimensions is necessary to calculate the vertical acceleration from the dynamical and buoyant part and to

keep track of the buoyancy anomaly, which is unchanged by the projection operator. The explicit form of the operators are:285

L =




−ν̃ f 0 0

−f −ν̃ 0 0

0 0 −ν̃ 0

0 0 0 N

0 0 −N −κk2




and

LH =




−ν̃ f 0 0

−f −ν̃ 0 0

0 0 −ν̃ 0

0 0 0 N

N kx

kz
N

ky

kz
0 −κk2




. (29)

I used ∂tb =−uzN
2−κk2b.
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ûx

ûz

kz

−kx

ûi

ûH

û

âx

PH(âH)

−kx

kz
b̂

b̂

â

âz

PN (â)

k

A(ã)

1

Figure 3. Schematic view of the (real-component) Fourier subspace spanned by the velocity components (ûx(kx,kz), ûz(kx,kz)) for the

mode k = (kx,kz ̸= 0), given by the thin-red-vector. The corresponding perpendicular subspace of zero divergence is shown by the double-

red-line. Points are velocities and vectors are accelerations multiplied by the time step ∆t. One time-step in the hydrostatic (blue) and

Navier-Stokes (olive) formalism is shown. It consists in an evolution followed by a projection step. The evolution step (thin-full-vector)

∂tû starts from the initial velocity ûi. In the hydrostatic formalism the vertical acceleration is neglected during the evolution step. The

buoyancy acceleration in the Navier-Stokes formalism is given by the dashed olive vector. When added to the dynamic vertical acceleration

az it gives the total vertical acceleration. The buoyancy correction in the hydrostatic formalism, is given by the blue dashed line, it is in the

horizontal and added to the horizontal acceleration . It is obtained by projecting the buoyancy acceleration along the wave vector (dashed-

red-line) on the line defined by the horizontal acceleration. The projection step (thick-full-vectors) in both formalisms end on the double-

red-line, representing vanishing divergence. The Navier-Stokes projection is orthogonal to the subspace of zero-divergence and ends at û.

The hydrostatic projection is in the ûz direction and ends at ûH . The difference between the hydrostatic and the Navier-Stokes formalism,

the error, is given by the thick-red-vector. The dashed red-line is parallel to the wave-vector.
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We define the extended projection operator:

P̃□ =


P□ 0

0 1


 . (30)290

The change in buoyancy is unaffected by the divergenceless condition, but the acceleration has to be projected into the subspace

of divergence-free vector-fields. The operator L̃□ = P̃□L□ governs the time evolution via:

∂tû□(t) = L̃□û□(t) + P̃□F̂(t). (31)

The force F̂ = (F̂x, F̂y, F̂z,0, B̂)t is formed of forces in the first three components. The fourth component is vanishing as there

is no buoyancy imposed by the exterior but a buoyancy flux which is in the fifth component, when divided by the the Brunt-295

Väisälä frequency. The forces and fluxes are divided by the reference density and represent accelerations and relative fluxes, in

the Boussinesq approximation used here. The explicit forms of the evolution operators are:

L̃ =




−ν(k2− k2
x) + f

kxky

k2 νkxky + f
k2−k2

x

k2 νkxkz −N kxkz

k2

νkxky − f
k2−k2

y

k2 −ν(k2− k2
y)− f

kxky

k2 νkykz −N
kykz

k2

νkxkz + f
kykz

k2 νkykz − f kxkz

k2 −νk2
h N

k2
h

k2

0 0 −N −κk2




(32)

L̃H =




−ν̃ f 0 −N kx

kz

−f −ν̃ 0 −N
ky

kz

ν̃ kx

kz
+ f

ky

kz
ν̃

ky

kz
− f kx

kz
0 N

k2
h

k2
z

N kx

kz
N

ky

kz
0 −κk2




(33)

If diffusivity equals viscosity, κ = ν > 0, both matrices have two complex conjugated eigen values λ□
1,2 =±iω□− ν̃, where:300

ω2 =
α

k2
, (ωH)2 =

α

k2
z

with α = f2k2
z + N2k2

h, (34)

are the dispersion relations of internal waves in the Navier-Stokes and the hydrostatic formalism, respectively. They are equal

if and only if the horizontal wave numbers vanish, kh = 0. Note that for the Navier-Stokes formalism the frequency of the

waves, ω, is between the Coriolis f and the buoyancy frequency N , whereas for hydrostatic waves it, ωH , is above the Coriolis

frequency. For k2
h > k2

z the hydrostatic approximation allows for waves with square frequencies faster than the maximum of305

f2 and N2. I use the superscript □ when either formalism is concerned. The other two eigen-values are λ3 =−ν̃ and λ4 = 0.
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The corresponding eigen vectors are:

e□
1,2 =




±iγ̃□ω kx

kh
+ f

ky

kh

±iγ̃□ω
ky

kh
− f kx

kh

∓ iγ̃□ωkh

kz

Nkh

kz




, e3 =
f

kh




ky

−kx

0

− f
N kz




,

e4 =
1

f2kh




(ν̃2 + N2) [fky + ν̃kx]

(ν̃2 + N2) [−fkx + ν̃ky]

ν̃(f2 + ν̃2)kz

−N(f2 + ν̃2)kz




, eH
4 =




0

0

f

0




, (35)

The first two vectors present inertial oscillations which are fast motion. We see that the eigen vectors for the fast motion and the310

corresponding eigen values differ by ωH = γ̃Hω, where we set γ̃H =
√

1 + γ2, This shows that the error is of second order,

O(γ2). The first two, complex valued vectors, can be substituted by the real orthogonal vectors,

ẽ1 =




f
ky

kh

−f kx

kh

0
Nkh

kz




, ẽ2 = ω




kx

kh

ky

kh

−kh

kz

0




, (36)

of which the directions are independent of the projection, Navier-Stokes or hydrostatic, which facilitates the comparison of the

two formalisms.315

The basis D□
4 = (ẽ1, ẽ2,e3,e□

4 ), is dimensionally homogeneous and we have: L̃□ẽ1 =−γ̃□ωẽ2 and L̃□ẽ2 = (γ̃□)−1ωẽ1,

where γ̃ = 1 in the Navier-Stokes formalism. The third vector represents the thermal-wind balance, a generalization of geostro-

phy. Its eigen value vanishes with viscosity, it converges to a stationary state. We see that the first three vectors represent diver-

genceless motion as (ẽi)t · (kt,0) = 0, ∀i = 1,2,3. They are identical in both formalisms. The fourth vector has a divergence:

(ẽ4)t · (kt,0) = ν̃(ν̃2 +α) and (ẽH
4 )t · (kt,0) = kz , in both formalisms and does therefore not participate in the dynamics. The320

error between the projections along the fourth direction, with a vanishing eigen value, is of first order O(γ1), if f,N ≪ ν̃

and of zeroth order O(γ0) if ν → 0 as the vectors eH
4 and e4 become orthogonal. A perturbation in the vertical acceleration

triggers inertial-gravity waves in the Navier-Stokes formalism, whereas it has no effect in the hydrostatic case. If viscosity is

zero the matrix L̃ is not diagonalizable, has a Jordan-normal-form. I will therefore in the sequel discuss the case ν → 0 rather

than ν = 0, which is also appropriate if numerical models are considered. Note that the first three components of ẽ1 and e3325

are aligned with eP
1 and those of ẽ2 with eP

2 . The matrix that transforms from the sub-basis D = (ẽ1, ẽ2,e3) to the Cartesian

coordinates is formed by the three basis vectors:

ED =




f
ky

kh
ω kx

kh
f

ky

kh

−f kx

kh
ω

ky

kh
−f kx

kh

0 −ω kh

kz
0

N kh

kz
0 − f2

N
kz

kh




(37)
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For any vector in the subspace formed by D, the vertical acceleration to the horizontal counterpart is always at least of first

order O(γ), as the first two components of ẽ2 are orthogonal to the first two components of the two other basis vectors. A330

result which can be also seen directly from the divergence free condition.

The validity of the hydrostatic approximation relies also on how strongly the modes ẽ1, ẽ2 on one side and e3 on the other,

get excited. For a comparison of the amplitudes of the forcing for each vector, the vectors are normalized by the square route

of twice the energy density, kinetic plus potential. The modules are:

e1 = γ̃□e2 =
√

α

k2
z

, e3 = γ−1

√
f2

N2
e1 (38)335

and the energies of the first and the third mode are equal when the horizontal scale equals the Rossby radius of deformation.

Note that in the hydrostatic approximation the vertical velocity is not a dynamical variable and does not contribute to the kinetic

energy and, therefore, the energy density of ẽ2 in the Navier-Stokes formalism agrees to the energy density of γ̃H ẽ2 in the

hydrostatic formalism. For small aspect ratios the energy of the balanced eigen-vector grows as γ−1 with respect to the wave

modes.340

A vector that represents an equilibrium, geostrophy in our case, is in the kernel of both operators, as its time evolution

vanishes. A conserved scalar quantity that is a linear combination of the components of the time evolution vector, divergence

and potential vorticity in our case, is represented by a vector that is in the kernel of the adjoint of the operators, as its dot

product with the time evolution vector vanishes. The adjoint operators are given by the transposed matrices (L̃)t and (L̃H)t

for Navier-Stokes and the hydrostatic case, respectively. Note that neither of the operators is self-adjoint, that is, the matrices345

are not symmetric. The kernel of the adjoint operators contains the wave vector r3 = (k,0)t, which is therefore a conserved

quantity. This shows that the acceleration is divergence free in both formailsms, that the divergence of the velocity field is

conserved and the vanishing divergence is maintained during the evolution of the velocity field. When viscosity and diffusivity

vanish the vector r4 = (ky,−kx,0,−fkzN
−1)t is also in the kernel of the adjoint hydrostatic-operator, this corresponds to

the conservation of linear potential-vorticity. Whereas, in the Navier-Stokes case we have L̃tr4 = fr3, this corresponds to the350

conservation of linear potential-vorticity when the velocity field is divergence-free. As the velocity field is divergence free,

linear potential vorticity is conserved in both formalisms. It is interesting to note that for the Navier-Stokes formalism the

kernel is one dimensional as the sub-matrice corresponding to the zero eigen value has a Jordan normal form. The discussion

on the adjoint operators also shows that there are no more than two conserved quantities in the linear approximations.
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6 Projection on the Basis of Eigen Vectors (S1)355

The projection of a given acceleration ã on the modes of the linear dynamics represents step S1, as defined in the introduction

and shown in Fig. 2. The identities:

ẽ1− e3 =
α

Nkzkh




0

0

0

1




, f2k2
z ẽ1 + N2k2

he3 =
fα

kh




ky

−kx

0

0




(39)

allow to write the extended projection operators that convert the forcing F̂ to a divergenceless acceleration in the first three

components and an unchanged buoyancy flux in the fourth: The projection operators given in Eqs. 25, 26 that project the360

generalized acceleration ã written in terms of the basis D□ are:

DP̃ =
1
kh

[
fk2

z

α
ẽ1 +

N2k2
h

fα
e3

]
(ky,−kx,0,0,0) +

k2
z

ωk2kh
ẽ2(kx,ky,−k2

h

kz
,0,0)

+kzkh

[
N

α
(ẽ1− e3)−

1
ωk2

ẽ2

]
(0,0,0,1,0)

+
Nkzkh

α
(ẽ1− e3)(0,0,0,0,1). (40)

DP̃H =
1
kh

[
fk2

z

α
ẽ1 +

N2k2
h

fα
e3

]
(ky,−kx,0,0,0) +

1
ωkh

ẽ2(kx,ky,0,0,0)365

+kzkh

[
N

α
(ẽ1− e3)−

1
ωk2

z

ẽ2

]
(0,0,0,1,0)

+
Nkzkh

α
(ẽ1− e3)(0,0,0,0,1) (41)

In matrix form this is:

DP̃ =
1

αkh




fk2
zky −fk2

zkx 0 Nkzk
2
h Nkzk

2
h

αkxk2
z

ωk2
αkyk2

z

ωk2 −αk2
hkz

ωk2 −αk2
hkz

ωk2 0
N2k2

hky

f −N2k2
hkx

f 0 −Nkzk
2
h −Nkzk

2
h


 (42)

DP̃H =
1

αkh




fk2
zky −fk2

zkx 0 Nkzk
2
h Nkzk

2
h

αkx

ω
αky

ω 0 −αk2
h

ωkz
0

N2k2
hky

f −N2k2
hkx

f 0 −Nkzk
2
h −Nkzk

2
h


 (43)370

The operators only differ in the second line as all the differences are restricted to the second eigen-vector. The projection

operators are the left pseudo-inverse of ED, that is DP̃□ED = 1D, which means that the vector space spanned by the basis

D = (ẽ1, ẽ2,e3) is composed of divergenceless vectors.

6.1 Forcing of the Linear System

An exterior force F̂ = (F̂x, F̂y, F̂z,0, B̂)t, was introduced in Section 5. The exterior forcing is projected on the basis D by the375

projector DP̃□. I then determine the amplitude of the three basis vectors subject to different forcings. To this end, I write the
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forcing vector as:

F̂ =




kxF̂d−kyF̂r

kh

kyF̂d+kxF̂r

kh

F̂z

0

B̂




, (44)

where I split the horizontal forcing in a divergent and a rotational part, using the Helmholtz decomposition, to obtain:

DP̃F̂ = −F̂r
1

fα




f2k2
z

0

N2k2
h


 + B̂

Nkhkz

α




1

0

−1


 +

kz

ωk2
(F̂dkz − F̂zkh)




0

1

0


 , (45)380

DP̃HF̂ = −F̂r
1

fα




f2k2
z

0

N2k2
h


 + B̂

Nkhkz

α




1

0

−1


 +

F̂d

ω




0

1

0


 = DP̃F̂+

kh

ωk2
(F̂dkh + F̂zkz)




0

1

0


 . (46)

The difference between the two operators is twofold: F̂z is ignored in the hydrostatic projection and for the projection of F̂d

is of second order, O(γ2). Both projections are identical if rotational and buoyant forcings are considered. All the differences

are only in the projections on the second eigen-vector. Therefore, the effect of all forcings on the balanced mode, which is the

third component in the above equations, is identical in both formalisms. That is, if forcings act differently in the hydrostatic385

approximation this difference does not directly affect the balanced mode. If the buoyancy frequency vanishes, N → 0, all the

energy from a rotational forcing goes to the first wave mode as no geostrophy is possible in this case. Furthermore, a divergent

or vertical forcing does not act on the balanced mode. For a vertical forcing all the work is done on the wave part in the Navier-

Stokes formalism, whereas it has no effect in the hydrostatic approximation. If F̂rfkz = B̂Nkh, the forcing is balanced and

all the work is done on the balanced mode.390

6.2 Linearized Equation in the Eigen-Space

If the linear operator is restricted to a basis spanned by D = (ẽ1, ẽ2,e3) it reads:

DL̃□
D =




−ν̃ ω 0

−(γ̃□)2ω −ν̃ 0

0 0 −ν̃


 and

D(L̃□)−1
D = β□




−ν̃ −ω 0

(γ̃□)2ω −ν̃ 0

0 0 −(ν̃β□)−1


 . (47)

where β□ = (ν̃2 + (γ̃□ω)2)−1. The linearized dynamics consists in a damped thermal-wind balance along e3, for which the395

hydrostatic approximation is exact, and damped inertia-gravity waves around this balanced state along the directions ẽ1 and ẽ2.
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The only difference between the Navier-Stokes and the hydrostatic approximation in the subspace spanned by {ẽ1, ẽ2} lies in

the frequencies, given in Eq. 34. Note that the correction γ̃□ appears only as a square and the approximations for the operator

and the inverse operator are of second order: O(γ2).

7 Forced Motion (S2)400

7.1 Slow Forced Motion, Ekman Dynamics

This section discusses the special case of the response of the linearized Navier-Stokes and hydrostatic operators subject to

an almost time independent forcing. In geophysical fluid dynamics the large scale processes are evolving and interacting on

a time-scale much slower than the wave frequencies γ̃□ω. In this case the left-hand-side of Eq. 31 can be neglected. In the

linear approximation an external (boundary) forcing can be balanced by a viscous force, the Coriolis force or both as in Ekman405

dynamics. Boundary conditions are local in physical space and therefore non-local in Fourier space, that is they are applied

to different modes, which also interact through the boundary condition (see, e.g. Wirth (2005)). If the horizontal forcing

is divergent, also the horizontal velocity field is and vertical velocities are induced, which represent Ekman pumping. If we

suppose that the forcing F̂ is weak, the linearized evolution Eq. 31 is suitable. Using the Boussinesq approximation, the forcing

is represented as an acceleration. If the forcing is time independent, the stationary velocity field is restricted to the basis D and410

can be obtained performing steps S1 & S2a through Eqs. 31, 42, 43 and 47:

x̂□
D =−D(L̃□)−1

D DP̃□F̂. (48)

The image of the operator DP̃□ is spanned by the basis D for which D(L̃□)−1
D exists, if viscosity is non-vanishing.

7.1.1 Absolute Error

After having determined the amplitude of each mode due to the forcing (S1+S2a) the difference between the two formalisms415

in the basis D is determined. The total error is:

E = x̂H
D − x̂D =

[
−D(L̃H)−1

D DP̃H + D(L̃)−1
D DP̃

]
F̂ =

[
−D(L̃H)−1

D + D(L̃)−1
D

]
DP̃HF̂−D(L̃)−1

D

[
DP̃H −DP̃

]
F̂

=
ω

α


(β−βH)




−ν̃/ω

1

0


− γ2βH




0

1

0







[
fk2

z F̂r + NkhkzB̂
]
+




1

ν̃/ω

0




[
(βH − (γ̃H)−2β)F̂d + β

kzkh

k2
F̂z

]
(49)

We immediately see that the response to a stationary forcing of the balanced dynamics (e3) is identical in both formalisms.

Furthermore, a balanced forcing with: −fkzF̂r + NkhB̂ = F̂d = F̂z = 0, leads to a vanishing error. The last equality in the420

first line shows that the error can be separated in an evolution error, due to the differences in the wave frequencies (S2), and the

error done by the hydrostatic projection (S1). The forcing Fz is in the kernel of the hydrostatic projection (S1), only. This and

the subsequent evolution (S2) of the projection error gives the error shown by the second part of the last term of the second line.

The order can be written as O(γF̂z + γ2F̂d + γ2F̂r + γ3B̂). If the vertical component of the forcing F̂z itself is of first order,
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due to a boundary with a slope ≈ γ, the approximation becomes second order, which shows that the hydrostatic approximation425

has two ingredients: the horizontal scales are larger than the vertical and the vertical forcing is smaller than the horizontal.

For a vanishing viscosity ν̃ → 0, the error associated with a divergent forcing F̂d is of second order O(ν̃2), while it is of zero

order for the other forcings. Furthermore, a vertical forcing leads to a velocity of F̂z
khkz

ω2k2 ẽ1 in the Navier-Stokes formalism,

while it has no effect in the hydrostatic approximation. As the vertical component of ẽ1 is vanishing, so is the error in the

vertical component. For a strong viscous damping ν̃ →∞, present in numerical models just above the grid scale, where non-430

hydrostatic effects are also important, we have β = O(ν̃−2) and the error is of order O(ν̃−1F̂z + ν̃−1F̂d + ν̃−2F̂r + ν̃−2B̂).

For scales f ≈ ν̃ Ekman layer dynamics occurs.

7.1.2 Relative Error

We have seen above that the dynamics can be split into two parts: wave dynamics along the first two eigen-vectors and balanced

flow along the third eigen-vector. As the latter is free of error the fidelity of the hydrostatic approximation depends also on how435

the energy is distributed among the eigen modes. This is achieved by considering the relative error,

ER =
|Ê|
|x̂| , (50)

rather than the absolute error, with

x̂ = −DL̃−1
D DP̃F̂ =




−f2k2
z ν̃β

f2k2
zωβ

−N2k2
hν̃−1




1
fα

F̂r +




−ν̃β

ωβ

−ν̃−1




Nkhkz

α
B̂ +




1

ν̃/ω

0




kzβ

k2
(F̂dkz − F̂zkh), (51)

for the different types of forcing. Note that the absolute error is a vector while the relative error is a scalar. A constant forcing440

on the wave mode leads to a finite amplitude motion, while in the balanced mode it is only countered by viscosity.

The balanced mode is excited by rotational and buoyancy forcing, only, and its amplitude compared to the amplitude of

the wave motion is proportional to ν̃−1, as it is damped by viscosity, only. Furthermore, Eq. 38 shows that the square root

of the energy of the third mode, as compared to the wave modes, grows with decreasing aspect ratio as γ−1. The hydrostatic

approximation for the relative error is therefore O(ER) = ν̃γO(Ê), smaller, if the third component in Eq. 51 does not vanish,445

that is if N2khF̂r ̸= fkzB̂. This adds considerably to the validity of the hydrostatic approximation, for scales much larger than

the viscous cut-off. If the forcing is purely vertical, F̂z ̸= 0 and F̂r = B̂ = F̂d = 0, the relative error is unity.

7.2 Projection-Evolution Operator (S2b)

After having discussed the case of a stationary force, I now consider the general case of a force varying in time. The linearized

equation governing the dynamics subject to a low amplitude forcing F̂(t) is given by Eq. 31. A forcing can only lead to450

divergenceless acceleration and has therefore to be projected into the subspace of divergenceless functions by the corresponding

projector given in Eqs. 45 and 46. The dynamics takes place in the subspace spanned by D. Its solution, starting from the initial
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condition (û(0), b(0))t, is:

û□(t)

b□(t)


 = ED exp(DL̃□

D(t))




t∫

0

exp(DL̃□
D(−s)) DP̃□F̂(s)ds + DP̃□


û(0)

b(0)







= ED

t∫

0

exp(DL̃□
D(t− s)) DP̃□F̂(s)ds455

+ ED exp(DL̃□
D(t))DP̃□


û(0)

b(0)


 , (52)

with

exp(DL̃□
D(t)) = e−ν̃t




cos(γ̃□ωt) (γ̃□)−1 sin(γ̃□ωt) 0

−γ̃□ sin(γ̃□ωt) cos(γ̃□ωt) 0

0 0 1


 , (53)

where I used: exp(DL̃□
D(t))exp(DL̃□

D(−s)) = exp(DL̃□
D(t−s)). Once the dynamics is projected on the basis D, the evolution

is identical in both formalisms along e3 and the oscillations between ẽ1 and ẽ2 have a difference in the frequencies and the460

hydrostatic solution diverges as sin(ωγ2

2 t), for a slowly varying forcing, if the forcing frequency ζ ≪ ω. If the forcing has

frequencies equal or close to γ̃□ω, resonances can occur and the divergence can take place at a faster rate.

The unforced linear equations allow two types of motion: (decaying, if ν ̸= 0) internal waves with a frequency faster than f

and (decaying, if ν ̸= 0) thermal wind equilibrium. This dynamics is described by the second term on the r.h.s. of Eq. 52. The

error done by the hydrostatic approximation in the basis D, starting from rest and subject to a time-dependent force F̂(t) is:465

∆F̂ =

t∫

0

[
exp(DL̃H

D(t− s))DP̃H − exp(DL̃D(t− s))DP̃
]
F̂(s)ds (54)

7.3 Periodic Forcing

When solving linear equations, solutions can be considered independently for each wave vector k and frequency ζ. For a

periodic forcing with frequency ζ, the evolution Eq. 31 in the basis D is:

∂tx̂□ = L̃□
Dx̂□ + F̂D cos(ζt). (55)470

The general solution is:

x̂□ = exp(DL̃□,ζ
D (t)) F̂D =

t∫

0

exp(DL̃□
D(t− s))cos(ζs)ds F̂D. (56)

Before discussing the general case I examine the case of a very small viscosity (ν̃2 ≪ (γ̃□ω)2, ζ2). The solution is:

x̂ =
1

ζ2− (γ̃□ω)2




ζ sin(ζt)− aγ̃□ω sin(γ̃□ωt) ω(−cos(ζt) + acos(γ̃□ωt)) 0

(γ̃□)2ω(cos(ζt)− acos(γ̃□ωt)) ζ sin(ζt)− aγ̃□ω sin(γ̃□ωt) 0

0 0 ζ2−(γ̃□ω)2

ζ sin(ζt)


 F̂D. (57)
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The constant a is there to satisfy the initial condition. For high-frequency forcing ζ2 ≫ (γ̃□ω)2 there are no resonances and475

the part independent of the initial condition, which is “forgotten” after a long time t≫ ν̃−1, is:

x̂□ = exp(DL̃□,ζ
D (t))F̂D = ζ sin(ζt)F̂D. (58)

In this case the operator L̃
□
D has no time to act on the dynamics.

The general solution for t≫ ν̃−1, when the initial condition is forgotten, is:

x̂□ =




ζs̃□ −ωc̃□ 0

(γ̃□)2ωc̃□ ζs̃□ 0

0 0 b̃


FD (59)480

with:

s̃□ = q̃□
[
ν̃

ζ
(ν̃2 + ζ2 + (γ̃□ω)2)cos(ζt) + (ν̃2 + ζ2− (γ̃□ω)2)sin(ζt)

]
(60)

c̃□ = q̃□
[
−(ν̃2− ζ2 + (γ̃□ω)2)cos(ζt)− 2ν̃ζ sin(ζt)

]
(61)

(q̃□)−1 = (ν̃2 + (ζ + γ̃□ω)2)(ν̃2 + (ζ − γ̃□ω)2)

= ν̃4 + 2ν̃2(ζ2 + (γ̃□ω)2) + (ζ2− (γ̃□ω)2)2 (62)485

b̃ =
ν̃ cos(ζt) + ζ sin(ζt)

ν̃2 + ζ2
. (63)

For a stationary forcing, ζ = 0, the results from Subsection 7.1 are obtained and if ν̃2 ≪ (γ̃□ω)2, ζ2, the solution given in

Eq. 58 is recovered. The wave frequency only appears as a square, which assures that the error of the projection-evolution

operator is of second order. The eigen values of the evolution matrix are:

λ□
W1/W2 = ζs̃□± iγ̃□ωc̃□ and λb = b̃. (64)490

The corresponding eigen vectors are e□
1,2 and e3. Resonances are efficiently damped by viscosity if for a forcing at the resonant

frequency, ζ2 = ω2, the viscous time-scale is larger than the resonance period, ν̃2 > ω2.

7.3.1 Absolute Error

The difference between the two evolution operators in the case of a long viscous damping time ν̃2 ≪ ζ2,(γ̃□ω)2 is:

G0
ζ =

γ2

(ζ2− (γ̃□)2ω2)(ζ2−ω2)




ζω2 sin(ζt) −ω3 cos(ζt) 0

ζ2ω cos(ζt) ζω2 sin(ζt) 0

0 0 0


 . (65)495

The hydrostatic approximation is of second order. In the general case the difference between the two evolution operators is:

Gν
ζ =




ζ(s̃H − s̃) −ω(c̃H − c̃) 0

γ̃2ωc̃H −ωc̃ ζ(s̃H − s̃) 0

0 0 0


 . (66)

22

https://doi.org/10.5194/egusphere-2024-3307
Preprint. Discussion started: 28 October 2024
c© Author(s) 2024. CC BY 4.0 License.



All the components of the matrix are at least of second order, O(γ2).

The error done by the hydrostatic approximation with a periodic forcing of frequency ζ is:

Êν
ζ =

[
Gν

ζ DP̃H + exp(DL̃ζ
D(t))(DP̃H −DP̃)

]
F̂. (67)500

It has two terms: the first is due to the different evolution in the two formalisms (see Eq. 66) and the second due to the difference

in the projections (see Eq. 46). The explicit form is:

Êν
ζ =

kz

α
(−fkzF̂r + khB̂)




ζ(s̃H − s̃)

(γ̃□)2ωc̃H −ωc̃

0


 + F̂d







−(c̃H − c̃)
ζ
ω (s̃H − s̃)

0


 +

k2
h

k2




−c̃
ζ
ω s̃

0





− F̂z

khkz

k2




−c̃
ζ
ω s̃

0


 . (68)

For the case of a long viscous damping time I obtain:

Ê0
ζ =

γ2ωζ

(ζ2− (ωH)2)(ζ2−ω2)

[
kz

α
(−fkzF̂r + khB̂)

]



ω sin(ζt)

ζ cos(ζt)

0


505

+
1

ζ2−ω2

[
F̂d(

γ2ω

ζ2− (ωH)2
+

k2
h

ωk2
)− F̂z

khkz

ωk2

]



−ω cos(ζt)

ζ sin(ζt)

0


 . (69)

This shows, once more, that the third component, the balanced dynamics, is free of error. The scaling of the error with the

aspect ratio is:

O(Ê) = O(γ2F̂r + γ3B̂ + γ2F̂d + γF̂z). (70)

If the forcing evolves much slower than the buoyancy frequency the dynamics is close to the stationary state calculate in510

Subsection 7.1. If the forcing occurs at the wave frequency of either formalism, resonances or near resonances dominate the

linear dynamics. The hydrostatic approximation breaks down as ωH ̸= ω if kh ̸= 0 and a resonance occurs in one formalism

but not in the other. During resonances or close resonances the scaling is still given by Eq. 70 but the prefactor diverges. Note

that if ν̃2 ≫ (γ̃□ω)2 resonances are efficiently damped.

7.3.2 Relative Error515

To obtain the relative error the procedure is identical to the case of stationary forcing considered in subsection 7.1.2. We

compare the absolute error calculated above to the solution of the Navier-Stokes model, using Eq. 59,

x̂N = F̂r
1

fα




−f2k2
zζs̃N

−f2k2
zω2c̃N

N2k2
hb̃


 + B̂

khkz

α




ζs̃N

ω2c̃N

−b̃




+ (F̂d
k2

z

k2
− F̂z

kzkh

k2
)




−c̃N

ζs̃N

0


 (71)
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which is taken as the reference. Calculations confirm the results from subsection 7.1.2 also for the case of periodic forcing,520

except that prefactors in the scaling can diverge due to resonances.

7.4 Non-linear Terms

Formally the non-linear terms can be added to the forcing in Eq. 52 by F̂→ F̂+ F̂nl. Using Eqs. 13 to 16 I obtain:

F̂nl =−i




kxû2
x + kyûxuy + kzûxuz

kxûxuy + kyû2
y + kzûyuz

kxûxuz + kyûyuz + kzû2
z

kxûxb + kyûyb + kzûzb




(72)

Due to the zero divergence of the velocity field, the horizontal velocity components are at least a factor γ larger than the525

vertical velocity, ûx ∼ ûy ∼ γ−1ûz . If this property is conserved by the non-linear term, the hydrostatic approximation is of

second order O(γ2), following Eq. 70.

8 Discussion

The hydrostatic approximation is exact on the balanced mode and if this mode receives all the energy by a given forcing then

the approximation is exact. If the forcing strongly excites wave-motion then the deficiencies of the hydrostatic approximation530

in predicting the wave dynamics determines its overall quality. The hydrostatic approximation fails if the forcing is a vertical

acceleration which is not a dynamical variable in the hydrostatic approximation and is therefore ignored, while in the Navier-

Stokes formalism it generates horizontal velocities of first order in the scale ratio, O(γ).

In my evaluation, done using the techniques T1, T2 and T3 in Fourier space, the calculation is done separately for every three

dimensional wave vector k. The projection step, S1, is instantaneous, it does not depend on the temporal variation of the forcing.535

Whereas the evolution step, S2, asks for integrating the evolution equations in time. In the linear approximation forcings at

different frequencies superpose without interacting and step S2 can be calculated for each forcing frequency separately. The

quality of the hydrostatic approximation depends on the Coriolis parameter f , the buoyancy frequency N and the viscosity ν.

It has to be determined for every three dimensional wave vector k and forcing vector F̂ and frequency ζ (see Fig 2).

The mathematical formalism to evaluate the hydrostatic approximation was developed and applied in the previous sections.540

It is now important to compare the deficiencies of the hydrostatic approximation to other uncertainties, to evaluate its fidelity.

The previous discussion shows that viscosity and damping can mask the differences in the wave frequencies between the two

formalisms. This will be assessed in Subsection 8.1. The wave packets move at the group velocity and are advected by the

mean flow, which shows internal variability. In Subsection 8.2 I compare this Doppler effect to the error due to the hydrostatic

approximation. Every measurement or observation is limited in time and space. Subsection 8.3 applies the Heisenberg-Gabor545

uncertainty principle to discuss for which processes the difference between the two formalisms is actually detectable, given the

finite space-time observations.
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8.1 Masking of Resonance Differences by Friction

I first note that the amplitude of the balanced mode is bounded by (γ̃□ω)−1. Resonances occur when
√

(ζ2− (γ̃□ω)2)2 ≪
(γ̃□ω)2. For not too small viscous damping, (ζ2− (γ̃□ω)2)2 ≫ 2(γ̃□ω)2ν̃2, Eqs. 60 and 61 approach:550

s̃□ ≈ 1
2γ̃□ων̃

cos(γ̃□ωt), (73)

c̃□ ≈ −1
2γ̃□ων̃

sin(γ̃□ωt). (74)

The amplitude of the wave motion is bounded by viscosity and diverges as ν̃−1. There is no significant difference between the

two formalisms. For smaller viscosities (ζ2− (γ̃□ω)2)2 ≪ 2(γ̃□ω)2ν̃2:

s̃□ ≈ 2γ̃□ων̃

(ζ2− (γ̃□ω)2)2
cos(γ̃□ωt), (75)555

c̃□ ≈ 2γ̃□ων̃

(ζ2− (γ̃□ω)2)2
sin(γ̃□ωt). (76)

The amplitude of the wave motion shows a quadratic divergence: O
(
ζ ± (γ̃□ω))−2

)
and resonances can occur in one formalism

and not in the other when:

γ2 ≪ ν̃2

ω2
. (77)

which occurs at scales: k≫ kr = (γω/ν)1/2. If a hyper- or hypo dissipation operators να∇2α are used (hyper-viscosity,560

α = 1 corresponding to Laplacian dissipation and α = 0 to scale independent bottom friction), this occurs at scales k≫ kr =

(γω/να)1/(2α).

In simulations of the ocean dynamics we either resolve the turbulent mixed layer dynamics at the surface and the bottom,

which asks for a resolution on the meter scale in the vertical and the horizontal, or we parameterize it, which asks for vertical

viscosity above νz > 10−2 m2s−1. In numerical models of the ocean dynamics resolution and viscous damping are very565

different in the horizontal and the vertical. If the model is fine resolution, an isotropic eddy viscosity is chosen based on the

Smagorinsky large-eddy simulation model. Its viscous damping time is ν̃ = C2
s u/∆x. A Smagorinsky constant Cs = 0.16, a

current speed of 10−1 m s−1 and a grid scale ∆x, leads to ν̃ ≈ 3 · 10−3 m s−1/(∆x). If we suppose that ω > 10−4 s−1 Eq.

77 gives: γ ≪ 30m
∆x , meaning that the difference between the resonant frequencies in both formalisms is hidden by viscosity

if the vertical scale is below 30 m, which is a typical scale for the oceanic Ekman-layer. This shows that viscosity masks570

differences between the two formalisms in the bottom and surface Ekman-layer dynamics. At larger horizontal scales friction

is parameterized through turbulent bottom friction. A bottom friction coefficient of≈ 10−3, a current speed of 10−1 m s−1 and

a resonance frequency ω ≈ 10−4 s−1 shows that bottom friction is sufficient to hide the difference in resonance frequencies

only if the ocean layer thickness in meters is below γ−1. The above shows that neither viscous nor bottom friction can mask

the difference in the resonance frequencies for large scale dynamical processes.575

25

https://doi.org/10.5194/egusphere-2024-3307
Preprint. Discussion started: 28 October 2024
c© Author(s) 2024. CC BY 4.0 License.



8.2 Comparison to Doppler Shift and effective Coriolis parameter

Horizontal waves evolve in a medium that is moving with a velocity, u, which leads to a Doppler shift in the frequency at an

Eulerian point. If the velocity, u, has a turbulent variability ∆u, due to the turbulent dynamics of the flow field, also the Doppler

shift in the frequency is modified and the modification can be compared to the error done by the hydrostatic approximation.

The difference in the horizontal wave velocity, c, between the two formalisms is ∆c = γc = γω/kh = ω/kz , which equals the580

vertical phase speed. The difference between the formalisms is significant if ∆c > ∆u, that is if γ > ∆u/c. In the Strait of

Gibraltar the uncertainty in the horizontal advection due to natural variability, is on the order of ∆u = 0.1 m s−1 and c = 1

ms−1, so that for γ < 0.1 the hydrostatic approximation can not be distinguished from the Navier-Stokes solution. With a depth

of around 300 m the horizontal wave length has to be below 3000 m which asks for a resolution of 300 m or finer, to distinguish

between the two formalisms. The same can be applied to the group velocity of a moving wave packet, but as it is lower than585

the phase speed it is even more affected by the Doppler shift. We see that internal variability of the horizontal velocity masks

efficiently the differences between the two formalisms.

Gradients of the horizontal velocities lead to vorticity, ζ, and change the effective Coriolis parameter feff =
√

1 + ζ/ff (for

f > 0) (see Wirth (2013)). If the Rossby number ζ/f > 2γ2ω2/f2, the change in the effective Coriolis parameter is larger

than the difference in the formalisms. For oceanic values of N2/f2 = 100 and γ < 0.01 changes in the formalisms for Rossby590

numbers larger than 2 ·10−2 are masked. A horizontal velocity difference across the strait of Gibraltar of 0.3 m s−1, leading to

a Rossby number of 0.1, masks the changes in the frequencies of the formalisms for a horizontal wave-length above 3 km.

8.3 Uncertainty estimation

This section discusses the estimation of uncertainty in time and space based on the theory of the Heisenberg-Gabor limit

(see Folland and Sitaram (1997) for a general discussion and Mordant (2010) for an application similar to the present). If595

considering the time-frequency formalism it shows, that the resolution of the frequency (described by the standard deviation,

σf , in the frequency domain of the normalized signal) and the length of the signal (described by the standard deviation of the

temporal extent of the signal σt) are restraint by:

σfσt ≥
1
4π

, (78)

equality being obtained only by a Gaussian function. Note, that this applies to perfect data not disturbed by superposed signals600

or noise, so it is independent of the quality of the observation or the model, it is purely theoretical.

The difference in frequency between the two formalisms is σf = ωγ/2. To discriminate between the two frequencies in

a signal, the Heisenberg-Gabor limit requires an observation time σt ≥ (2πωγ)−1. For short waves as for example wave-

trains generated by tidal forcing in the Strait of Gibraltar we have ω ≈ 10f . A resolved traveling wave asks for a grid scale

which is at least one tenths of the wave length and if the horizontal resolution is about 10 times the water depth we obtain605

γ > 0.01. This leads to an observation time of the phenomenon longer than the Coriolis period, which exceeds the lifetime

of waves generated by tidal motion in, for example, the Strait of Gibraltar. This means that even in the absence of noise,

currents and other phenomena it is mathematically impossible to distinguish between the hydrostatic and the Navier-Stokes
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wave frequency. Furthermore, during this time, the advective and the group velocity will have transported the wave-packet

several tens of kilometers to regions where the depth and stratification largely differ, further altering the wave frequency and610

the phase and group velocity.

If waves with larger horizontal extensions are considered γ ≫ 0.01 with ω ≈ f the observation time to distinguish between

the hydrostatic and the Navier-Stokes wave-frequencies increases to several weeks. This means the differences between the

two formalisms can not be detected in the temporal domain.

If the spatial resolution is fine enough so that vertical convection can be explicitly resolved ∆x = ∆z < 10 m we have615

γ ≈ 1, the domain is essentially unstratified, so that ω ≈ f and we obtain ts ≥ σt = 1
2πf = 2 days, which is about the time

an oceanic deep convection plume takes to go from surface to the bottom. So also in the case of oceanic deep convection the

difference between the two projection-evolution operators can not be detected. The difference in the projection operator in the

two formalisms might be significant due to the advective transport of vertical velocity, which is present in the Navier-Stokes

formalism but neglected in the hydrostatic approximation.620

In the spatial domain the wave lengths can be considered in the vertical and the horizontal domain. To calculate the difference

in wave vectors kH and k between both formalisms for a given wave-frequency, the equation: ωH(kH) = ω(k) has to be

solved. This is done separately in the horizontal (supposing kH
z = kz) and the vertical (supposing kH

h = kh). In the horizontal

the relation between the hydrostatic and the Navier-Stokes horizontal wave-number is:

(kH
h )2− (1− f2

N2
)
k2

z

k2
k2

h = 0. (79)625

For a strong stratification and small γ this approaches (kH
h )2 = (1− γ2)k2

h. Using the Heisenberg-Gabor limit means that the

observation length has to exceed γ−2/(4π) the wave length, which means that for a rather large γ ≈ 0.1, we need at least 10

wavelength to distinguish between the two formalisms and γ ≈ 0.01 asks for an observation of around 1000 wave periods, no

wave packets of such extension are observed in the ocean.

In the vertical the solution is630

(1− f2

N2
)(kH

z )2− (1 + γ2)k2
z = 0. (80)

For the leading vertical modes there are only from one to a few half periods imposed by the depth of the domain. The question I

answer is by how much does the depth has to vary, to perfectly compensate the differences of the two formalisms? If N = 10f

a typical value for the ocean with a buoyancy frequency of a few hours and γ = 0.01 the difference is 1 %. With a vertical

extension of 500 m of the phenomena, as for example in the strait of Gibraltar, this asks for a vertical resolution of the635

topography below 5 m. Such precision is not possible with today’s models, as, for example, the topography or the thermocline

depth largely exceed 5 m from one horizontal grid-point to the next. So also in this case the difference in the projection-

evolution operator between the two formalisms is insignificant.

Finally I consider by how much the buoyancy frequency has to differ to compensate the error done by the hydrostatic

approximation. To make the wave frequency of both formalisms agree at the same wave vector, the difference in the buoyancy640

frequency is (NH)2 = (N2− f2)/(1 + γ2), for N2 = 100f2 and γ = 0.1 this leads to a difference in buoyancy frequency of

less than 2 %, far below the precision of today’s models or observations.
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The above discussions on the uncertainty of the horizontal, vertical wave-number and the buoyancy frequency demonstrate

that the difference in the projection-evolution operators of the formalisms is not significant in realistic simulations of ocean

dynamics, for small amplitude, linearized, motion. Only non-linear or externally forced processes can lead to configurations645

that project differently into the subspace of divergenceless fields, in the two formalisms.

9 Conclusions

The present paper displays a theoretical framework to investigate the differences between the Navier-Stokes model and the

hydrostatic approximation. To investigate the fidelity of the hydrostatic approximation I constructed a four dimensional lo-

cal projection of the dynamics in Fourier space, by separating the buoyant and dynamic vertical acceleration (T1+T2) and650

combined it to the linear projection-evolution operator (T3). The linearized dynamics in the hydrostatic and Navier-Stokes for-

malism is compared. It shows, that the hydrostatic approximation relies on two properties, the difference in the eigen vectors

of the linear operator between the two formalisms and the difference in the corresponding eigen values. The former shows in

the projection on the eigen vectors (S1) while the latter in the evolution in the eigen spaces (S2). The projection depends on the

Coriolis frequency f , the buoyancy frequency N and the three dimensional wave vector k. The projection-evolution operator655

depends on the same parameters, plus the forcing frequency ζ.

The eigen spaces of the wave dynamics (2D) and the balanced dynamics (1D) are identical between both formalisms. The

eigen value for the balanced flow agrees between the two formalisms whereas the eigen values in the wave dynamics differ

due to the different wave-frequencies. Therefore: for the projection-evolution operator (S2), the hydrostatic approximation is

exact if the balance dynamics is considered, whereas it differs to second order O(γ2) for the wave dynamics. The fourth eigen660

vector is in the kernel of the corresponding projection. It is different in both formalisms to zeroth order O(γ0), but as the

corresponding eigenvalue is vanishing, it does not participate in the dynamics.

The difference in the projection (S1) between the two formalisms is always along the second vector of the eigen space of

the wave dynamics (ẽ2). It corresponds to horizontally divergent flow, with a vanishing vertical component of the vorticity

vector and is caused either by a purely vertical force, with error O(γ), or a horizontally divergent force, with error O(γ2). The665

projection of a rotational forcing and a buoyant forcing on the eigen vectors is identical in both formalisms. This makes the

hydrostatic approximation to be first order, except if the vertical dynamical-acceleration is of first order, which would make

the hydrostatic approximation to be second order O(γ2). An expansion of the non-linear terms in powers of γ suggests that its

vertical acceleration is indeed first order.

The error in the projection-evolution operator is second order O(γ2) for the wave dynamics and exact for the balanced flow.670

The validity of the hydrostatic approximation relies not only on the order of approximation in the scale-ratio, γ, but also on the

amount of energy that is found in the subspaces spanned by the wave modes and the balanced mode. As the dynamics of the

latter is perfectly described by the hydrostatic approximation. For fast motion, if the frequency of the dynamics is larger than

the minimum of either f and N , resonances can occur and the hydrostatic approximation breaks down even if the projection-

evolution operator is formally second order. But for slower and slower motion, of frequency ζ, relatively more and more energy675
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goes into the balanced mode, for which the hydrostatic approximation is exact. I showed that this depends also on the viscous

damping. Another important result is that I manage to write the linear projection-evolution operators so that the lowest power of

the wave frequency ω is quadratic, which assures that the approximation for the linear projection-evolution operator is second

order.

There are two important points one has to keep in mind: first the hydrostatic approximation is a singular perturbation680

of the full Navier-Stokes equations, as the highest (temporal) derivative in the equation for the vertical velocity is omitted

and expansions in small parameters are no guarantee for the smallness of the error (see i.e. Bender et al. (1999)). Second,

the hydrostatic approximation breaks down where neither: rotation nor stratification nor scale-ratio constrain the fluid, that

is, in fast moving unstratified fluid dynamics. Where, when and how such areas are spontaneously created by the turbulent

forced dynamics or external forcing, depends on the situation considered. For these reasons dedicated numerical experiments685

of an oceanic phenomena have to be employed to determine the fidelity of the hydrostatic approximation for the scales and

phenomena studied.

Considering a non-vanishing viscosity is of importance as in numerical models the non-hydrostatic effects are present at the

smallest scales of the model at which the numerical viscosity parameter has a dominant effect. It is straightforward to extend the

calculations to an anisotropic viscosity, which vertical values much smaller than the horizontal counter-parts, usually employed690

due to the disparate resolution in the vertical and horizontal. Such anisotropy, however, hinders the fully three-dimensional

dynamics to commence. Comparing the impact of anisotropic friction to the hydrostic approximation has not been done here,

as in fully non-hydrostatic simulations, that resolve the dynamics down to the meter scale, an anisotropic viscous damping lags

justification.

It is shown that if the vertical turbulent-viscosity parameterizes the turbulent Ekman-layer dynamics the viscosity is high695

enough to mask the differences between the two formalisms in the wave frequencies at scales below the Ekman layer thickness

(≈ 30 m). If it is lower νz < 10−2m2s−1 the vertical turbulent-exchange of momentum has to be resolved explicitly, which

asks for a grid scale in the vertical and horizontal which is at one meter or finer. At these scales the free surface variations

become important leading to Langmuir cells (see McWilliams et al. (1997)). For an explicit representation of these processes

the fully three dimensional Navier-Stokes equations with a free surface should be used. Such models will not be available for700

basin wide simulations in the near future and parameterizations for surface processes have to be used.

At larger scales the Doppler shift, the change in the effective Coriolis parameter due to unresolved processes and the internal

variability of the dynamics, and also the variation of the topography do not allow to discriminate between the two formalisms

in realistic ocean simulations. Furthermore, the uncertainty obtained through the Heisenberg-Gabor limit shows that the obser-

vation time of propagating inertia-gravity waves does not allow to discriminate between the two formalisms. In conclusion: if705

the vertical viscosity is larger than νz > 10−2m2s−1, the hydrostatic approximation is appropriate to represent motion slower

then the Coriolis frequency in realistic simulations of the ocean dynamics. Differences between the two formalisms can be

apparent in simulations of specific oceanic processes in an idealized setting.
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