
1 

 

Exploring the link between cation exchange capacity and magnetic 

susceptibility 

 

Gaston Matias Mendoza Veirana1, Hana Grison2, Jeroen Verhegge1,3, Wim Cornelis1, Philippe De 

Smedt1,3 5 

1Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. B, 9000 Ghent, 

Belgium. 
2 Institute of Geophysics of the Czech Academy of Sciences, Boční II/ 1401, 14100 Prague 4, Czech Republic 
3 Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35-UFO, 9000 Ghent, Belgium. 

Correspondence to: Gaston Matias Mendoza Veirana (Gaston.MendozaVeirana@ugent.be) 10 

Abstract. This study explores the relationship between soil magnetic susceptibility (𝜅) and cation exchange capacity (𝐶𝐸𝐶) 

across diverse European soils, aiming to enhance pedotransfer functions (PTFs) for soil 𝐶𝐸𝐶  using near-surface 

electromagnetic geophysics. We hypothesize that soil 𝜅 , can improve the prediction of 𝐶𝐸𝐶  by reflecting the soil’s 

mineralogical composition, particularly in sandy soils.   

We collected data from 49 soil samples in vertical profiles across Belgium, the Netherlands, and Serbia, including 𝜅 in field 15 

conditions (𝜅∗), low and high frequency 𝜅 in the laboratory, in-site electrical conductivity (𝜎), iron content, soil texture, 

humus content, bulk density, water content, water pH, and 𝐶𝐸𝐶. We used these properties as features to develop univariable 

and multivariable (in pairs) polynomial regressions to predict 𝐶𝐸𝐶 for sandy and clayey soils.  

Results indicate that 𝜅∗ significantly improves 𝐶𝐸𝐶 predictions in sandy soils, independent of clay content, with a combined 

𝜅∗- 𝜎 model achieving the highest predictive performance (R² = 0.94). In contrast, laboratory-measured 𝜅 was less effective, 20 

likely due to sample disturbance.  

This study presents a novel 𝐶𝐸𝐶 PTF based on 𝜎 and 𝜅∗, offering a rapid, cost-effective method for estimating 𝐶𝐸𝐶 in field 

conditions. While our findings underscore the value of integrating geophysical measurements into soil characterization, 

further research is needed to refine the 𝜅- 𝐶𝐸𝐶 relationship and develop a more widely applicable model. 

1 Introduction 25 

Modern strategies for soil characterization are crucial for addressing the global challenges of soil degradation and pollution. 

Near-surface electromagnetic geophysics, in particular, facilitates rapid quantitative assessment of soils, offering insights 
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into subsurface electrical conductivity (𝜎 ), dielectric permittivity (𝜀), and magnetic susceptibility (𝜅) (Garré et al., 2022; 

Romero-Ruiz et al., 2018). Data collected on these electromagnetic properties can be used for direct qualitative soil survey 

interpretations or for more comprehensive quantitative analyses involving pedophysical models and pedotransfer functions. 30 

Pedophysical models (PMs) link depth-specific geophysical properties with common soil properties. The need for 

developing such models is growing due to the demand for high-precision soil characterization (Romero-Ruiz et al., 2018; 

Verhegge et al., 2021; Wunderlich et al., 2013). Pedotransfer functions (PTFs) are models used to predict soil properties that 

are typically costly to obtain and are therefore determined less frequently than soil attributes that can be characterized more 

effectively (Van Looy et al., 2017).  35 

An important indicator of soil health and fertility, which is also crucial in most PMs and PTFs, is the cation exchange 

capacity (𝐶𝐸𝐶) (Glover, 2015; Mendoza Veirana et al., 2023). Defined as the ability of a soil to hold and exchange cations 

(Khaledian et al., 2017), 𝐶𝐸𝐶  is highly correlated with the soil clay content due to a larger colloid surface for particle 

exchanges. Furthermore, as it is influenced by the soil's physical (e.g., texture), chemical (e.g., pH, mineralogy), and 

biological properties (e.g., organic matter), 𝐶𝐸𝐶 integrates aspects from all three main indicator groups commonly used to 40 

assess soil quality (Khaledian et al., 2017). Several PMs for soil 𝜎 prediction include 𝐶𝐸𝐶 due to the significant influence of 

free charges on 𝜎 , despite the contribution of other properties such as water content (𝛳) and salinity or bulk soil 𝜎  (Glover, 

2015). Soil charges can be either permanent or variable, depending primarily on soil pH (Chapman, 1965; Sumner & Miller, 

2018). The relationship between clay content and 𝐶𝐸𝐶 can be highly variable due to its dependence on clay mineralogy 

(ranging from 3-15 meq/100g for kaolinite to 100-150 meq/100g for vermiculite), and the relative proportion of variable and 45 

permanent 𝐶𝐸𝐶 varies among clay minerals (Miller, 1970; Seybold et al., 2005). To standardize 𝐶𝐸𝐶 measurements under 

varying soil conditions, it is common to use the 𝐶𝐸𝐶 in neutral pH conditions (=7) 𝐶𝐸𝐶7. However, conventional analytical 

methods for measuring 𝐶𝐸𝐶 , such as the sodium saturation method, are time-consuming and expensive (Busenberg & 

Clemency, 1973). Due to the critical importance of 𝐶𝐸𝐶, its measurement cost, and its correlation with other soil properties, 

numerous PTFs (Khaledian et al., 2017) and worldwide hybrid models (Poggio et al., 2021) for 𝐶𝐸𝐶7 have been developed. 50 

Commonly, 𝐶𝐸𝐶  PTFs are expressed in function of clay content and humus, and less frequently pH and soil depth 

(Khaledian et al., 2017; Seybold et al., 2005). While commonly 𝐶𝐸𝐶 PTFs are multivariate polynomial regressions, machine 

learning methods are used in the last decade when large datasets are available, as artificial neural networks (Ghorbani et al., 

2015), and genetic expression programming and multivariate adaptive regression splines (Emamgolizadeh et al., 2015). 

However, when working with small datasets, polynomial regressions are often preferred. Additionally, results have shown 55 

that 𝜎  and soil magnetic susceptibility (𝜅) are independent (Maier et al., 2006), even though they generally correlate well 

with 𝐶𝐸𝐶. 

Soil magnetic susceptibility has been correlated positively with 𝐶𝐸𝐶 in studies focusing on soil type identification (de Mello 

et al., 2020), soil characterization (Siqueira et al., 2010), paleoclimatic reconstruction (Maher, 1998), and electromagnetic 
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induction applications (McLachlan et al., 2022). 𝜅 describes a material's ability to become magnetized when subjected to an 60 

external magnetic field. It quantifies the degree of magnetization induced in the substance relative to the strength of the 

applied magnetic field. Formally, 𝜅  is defined as 𝜅 = H/M, where M is the induced magnetization of the material and H is 

the applied magnetic field. Soil 𝜅 measurements are widely used to detect the presence of pedogenic ferrimagnetic minerals 

(Dearing et al., 1996). The composition of the source material, and consequently the mineralogy of the rocks and sediments 

that formed the soils, are the main parameters influencing soil magnetic properties (Jordanova, 2017). 65 

Soil clay content and soil 𝜅 are correlated positively due to the presence of ferrimagnetic minerals (such as maghemite) in 

the clay fraction, originating either from the source material or through pedogenesis (de Mello et al., 2020). Consequently, it 

has been suggested that the observed correlation between 𝜅 and 𝐶𝐸𝐶 is actually due to their mutual correlation with clay 

content, indicating that there may not be a direct effect of 𝜅 on 𝐶𝐸𝐶 (de Mello et al., 2020). 

To the best of our knowledge, the 𝜅- 𝐶𝐸𝐶 relationship has not been studied beyond the site level (Siqueira et al., 2010). This 70 

leaves any physicochemical mechanism that might link the permanent component of 𝐶𝐸𝐶 and soil 𝜅 unexplored. 

The main hypothesis is that soil 𝜅  can support characterizing soil mineralogy, which also influences the permanent 

component of 𝐶𝐸𝐶. Therefore soil 𝜅 may significantly enhance the accuracy of 𝐶𝐸𝐶 PTFs, which can help evaluating field 

𝐶𝐸𝐶  rapidly, and at low cost. To improve predictions of field 𝐶𝐸𝐶  by integrating soil 𝜅  we develop and test uni- and 

multivariate polynomial PTFs based on data of diverse soil types sampled in Europe. In addition, we explore soil 𝜅 measured 75 

in-situ and in laboratory at different frequencies to give insights into the 𝜅-𝐶𝐸𝐶 relationship and investigate how clay content 

affects the relationship between 𝜅 and 𝐶𝐸𝐶. 

To ensure transparency and reproducibility, all the collected data and developed code for this work is publicly available in 

(Mendoza Veirana, 2024). 

 80 

2 Methods 

2.1 Study area, field measurements, and soil analysis 

From 8 sites in Belgium, the Netherlands and Serbia, 49 soil samples were collected across a wide range of USDA soil 

textures from sand to clay, and WRB soil  types  (Figure 1 and Table 1, see also Mendoza Veirana et al. (2023)), At each 

site, test pits were dug to identify and sample different soil horizons. For each soil horizon and within a vertical soil profile, 85 

soil field 𝜅 was measured (𝜅∗) (5 to 11 measurements per site, 49 in total) using a kappa meter SM30 (ZH Instruments, Brno, 

Czech Republic) at 8 kHz. The sensor measures soil 𝜅 with a penetration depth of 2 cm and a sensitivity of 10-7 SI units. 

First, the sensor was placed against the soil’s profile wall for a measurement, followed by an additional measurement taken 

in open air away from the profile to obtain a reference zero 𝜅 value for measurement calibration (ZH instruments, 2022). 
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Additionally, a HydraProbe sensor (Stevens, Water Monitoring Systems) was employed to measure 𝜎 along the profile wall. 90 

The correction proposed by Logsdon et al. (2010) was applied to improve the quality of these readings.  

Undisturbed soil samples of 100 cm³ were collected by manually pushing standard steel rings horizontally into the soil 

profile wall at the same locations where 𝜅∗ was measured. These samples were used to determine volumetric water content 

(𝛳) and bulk density (𝑏𝑑) after drying them for 24 hours at 105 °𝐶 (Grossman and Reinsch, 2002).  

Disturbed soil samples of about 250 g were collected around the undisturbed samples. They were air-dried, homogenized in 95 

an agate mortar, and sieved using a 2 mm mesh for determination of texture, and chemical and magnetic soil properties.  

Clay, silt and sand content (denoted as Clay, Silt, Sand, respectively, expressed in %) was measured following ISO 11464, 

content of humus, 𝐶𝐸𝐶 was determined by CoHex (Ciesielski et al., 1997a, 1997b).  
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 100 

Table 1 Minimum and maximum intervals of soil and magnetic properties for each explored site. Data ranges reflect the diversity 

of soil types and conditions across various sites. 

 

 
Samples Soil type 

Depth 

[cm] 

Sand 

[%] 

Clay 

[%] 

 𝜅∗ 

[10-5] 

𝜅𝑙𝑓  

[10-5] 𝜅𝑓𝑑 [-] 

Fe 

[ppm] 

 

Humus 

[%] 

𝜎   

[mS/m] 

𝐶𝐸𝐶   

[meq/ 

100g] 

A 5 Luvisols [4,106] [9,16] [9,13] [14,32] [14,40] [5.2,8.1] [14,21] [0.1,2.3] [12,35] [6,9] 

DREN 5 
 

[72,252] [18,35] [27,39] [47,66] [51,70] [6.2,9.1] [31,38] [0.6,1.6] [30,53] [20,25] 

E 5 Cambisols [20,110] [24,35] [20,25] [7.2,14] [8,15] [3.5,5.5] [19,25] [0.8,2.6] [38,50] [9,12] 

EH2 5 Phaeozems [20,94] [10,54] [17,53] [12,20] [13,38] [3.2,6.7] [42,50] [0.3,5.7] [55,66] [16,39] 

HOEKE 11 Cambisols [28,258] [9,45] [16,32] [4.5,116] [6.8,127] [4.4,8.1] [17,34] [0.5,11] [27,59] [8,30] 

P 7 Retisols [32,144] [42,80] [8,11] [2.6,12] [4.5,16] [2.9,8.5] [5.9,12] [0,2] [8,17] [1.6,11] 

S 5 Arenosols [28,130] [83,93] [5,7] [3,20] [2.9,73] [3.3,9.2] [3.6,16] [0,2] [11,29] [2,5] 

VALTHE 6 Podzol [10,60] [91,95] [3,4] [0.8,12] [1.2,19] [3.9,9.7] [1,2.5] [0,2.2] [0.5,1] [1.6] 

All 49   [4,252] [9,95] [3,53] [0.8,116] [1.2,127] [2.9,9.7] [1,50] [0,11] [0,66] [1.6,39] 

https://doi.org/10.5194/egusphere-2024-3306
Preprint. Discussion started: 5 November 2024
c© Author(s) 2024. CC BY 4.0 License.



6 

 

 

Figure 1 Locations of the study sites. Background shows dominant surface texture (European Soil Database v2.0, 2004). Colors 

represent the texture of the sites: sandy in yellowish, silty in blueish and clayey in reddish. USDA texture triangle showing the 

particle size distribution categorized by sampling site. The samples presented in Table 1 are represented by triangles (adapted 

from (Mendoza Veirana et al., 2023)). 105 

  

Magnetic susceptibility 𝜅 was measured using a Kappabridge MKF1-FA (AGICO Instruments, Brno, CZ), in addition to the 

field 𝜅 measurements. Prior to these laboratory measurements, corrections were made to eliminate the influence of the 

diamagnetic sample holder. Samples were placed in 10 cm3 plastic holders, and the in-phase 𝜅 was recorded at both low 

frequency (𝜅𝑙𝑓) and high frequency (𝜅ℎ𝑓) (976 Hz and 15616 Hz, respectively). Thus, the percentage frequency dependent 110 

magnetic susceptibility (𝜅𝑓𝑑) was calculated as: 

 

𝜅𝑓𝑑 =
𝜅𝑙𝑓 − 𝜅ℎ𝑓

𝜅𝑙𝑓

× 100  [%] 

Equation 1 
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Additionally, the absolute difference (𝜅𝑓𝑑 𝑎𝑏𝑠 = 𝜅𝑙𝑓 − 𝜅ℎ𝑓 ) was calculated. Such measurements are used to detect the 115 

presence of superparamagnetic ferrimagnetic minerals occurring as ultrafine (<0.03 μm) crystals produced largely by 

pedogenic biochemical processes in soil (Dearing, 1994). Samples where ultrafine minerals are present will show increased 

frequency dependent magnetic susceptibility; samples without such minerals will show identical 𝜅  values at the two 

frequencies.    

To support magnetic observations, elemental analyses were performed to evaluate the total iron content concentration (Fe) of 120 

all samples through X-ray fluorescence (XRF, Niton XL3t GOLDD+, Thermo Fisher Scientific Inc., USA) on samples that 

passed a 0.5 mm sieve and placed in capsules covered with 4-6 m cellophane. Three consecutive XRF measurements were 

performed and averaged for each sample.   

 

2.2 Model development 125 

Developing a 𝐶𝐸𝐶 PTF using soil 𝜅 data that can be generalized beyond site-specific is a challenging task, requiring careful 

consideration of the data used for model development. The absence of previous attempts at this highlights the importance of 

thorough data exploration. We chose to build polynomial models due to their interpretability, simplicity, and the use of only 

one tuning parameter (polynomial degree), which is suitable given the relatively small dataset (n=49).  

Field and laboratory measured soil properties were used as features for predicting 𝐶𝐸𝐶 (target variable), these are: soil depth, 130 

water pH, 𝐻𝑢𝑚𝑢𝑠 , 𝐶𝑙𝑎𝑦 , 𝑆𝑖𝑙𝑡 , and 𝑆𝑎𝑛𝑑 , 𝑏𝑑 , 𝜎 , 𝜅∗ , 𝜅𝑙𝑓 , 𝜅𝑓𝑑 , 𝜅𝑓𝑑 𝑎𝑏𝑠 , and Fe. All (13) features were used to develop 

univariable polynomial regressions, and multivariable models were created by combining features in pairs, resulting in 91 

feature combinations. The top four combinations in terms of test performance were compared to the standard combination of 

Clay and Humus content, also, single features were considered (𝐶𝑙𝑎𝑦, 𝜎, and 𝜅∗).   

Since model performance was largely dependent on clay content, the samples were divided into sandy (n=25) and clayey 135 

(n=24) groups, using the median clay content (16.1%) as a threshold. Both input datasets were split randomly into training 

(70%) and testing (30%) subsets, without consideration of any soil characteristics. This approach ensured that samples from 

different sites, soil horizons, and physicochemical properties were mixed during data splitting. To further ensure an unbiased 

model evaluation, the training and testing process was repeated 100 times. The best polynomial degree (linear or quadratic) 

was determined by the highest median of the 𝑅2 test scores over the 100 repetitions. Finally, model implementation was 140 

performed after tuning and feature selection using all the samples of each subset. 

 

2.3 Statistical analysis 

Predicting 𝐶𝐸𝐶  based on soil properties, particularly focusing on magnetic characteristics is a multivariate problem. 

Commonly, many variables are linearly correlated with 𝐶𝐸𝐶, such as Clay, 𝜅, Fe, Humus, and 𝜎. The challenge lies in 145 

https://doi.org/10.5194/egusphere-2024-3306
Preprint. Discussion started: 5 November 2024
c© Author(s) 2024. CC BY 4.0 License.

Usuário
Comentário do texto
Please, exemplify what minerals

Usuário
Comentário do texto
clay

Usuário
Comentário do texto
humus

Usuário
Comentário do texto
More detailed explanations of the statistical analyses are essential to ensure the reproducibility of this study. Certain parts of the methodology, particularly in the first paragraph, appear irrelevant or better suited for discussion. Clarify the specific analyses conducted, their purpose, the insights they provided, and the software used for the analysis. Additionally, explicitly state the database utilized, as relevant information regarding these aspects is currently missing in this section.

Usuário
Comentário do texto
why do you used capital letter for clay and humus? Please correct

Usuário
Comentário do texto
This part of the methodology is unclear and requires additional details to ensure reproducibility. Please reorganize the section and provide further clarification, including specific steps, tools, and datasets used.



8 

 

distinguishing between independent and masked effects. Importantly, the positive correlation between 𝜅 and 𝐶𝐸𝐶 may be 

due to the strong correlation between clay content and both 𝐶𝐸𝐶 and 𝜅 (de Mello et al., 2020).   

To address this, we quantified the independent correlation between 𝜅  and 𝐶𝐸𝐶 , irrespective of the effects of clay by 

calculating the partial correlation, that is the correlation between the residuals of the linear fitting of the covariable (Clay) 

with the variables (𝜅 and 𝐶𝐸𝐶). 150 

 

3 Results and discussion 

 

3.1 Data exploration 

A general variable exploration analysis is presented in this section, which is fundamental for the model development in the 155 

next section. Spearman’s rank correlations between all the features mentioned and target can be seen in Figure 2. As 

expected, soil 𝜅 is less correlated to 𝐶𝐸𝐶 than common soil properties such as Clay and Sand, water pH and 𝛳, while Fe and 

𝜎 correlate strongly with 𝐶𝐸𝐶. Additionally, consistent with the findings of de Mello et al. (2020) and Ayoubi et al. (2018), 

there is a positive correlation between Clay and 𝜅 (both 𝜅∗ and 𝜅𝑙𝑓). Also in line with Maier et al. (2006), 𝜎 is not correlated 

significantly to 𝜅. Conversely, Sand correlates negatively with both 𝜅 and Fe. 160 
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Figure 2 Spearman rank correlation heatmap showing significant P-values<0.005 for the 49 soil samples. 

 

Comparing soil 𝜅∗ to 𝜅𝑙𝑓 reveals a similar trend across the entire range of observations (10-5 to 10-3) (see Figure 3). This 165 

trend persists despite 𝜅∗ being measured in undisturbed soil structures with field bulk density, while 𝜅𝑙𝑓 was obtained from 

repacked samples that do not preserve the field structure and density. Additionally, the measurement frequency for 𝜅∗ (8 

kHz) differs from that of 𝜅𝑙𝑓  (~1 kHz).  
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 170 

Figure 3 Logarithmic scatter plot showing the field observed magnetic susceptibility vs the laboratory observed low frequency 

magnetic susceptibility. 

 

3.2 𝑪𝑬𝑪 modelling 

Model training and testing was performed in sandy and clayey groups independently. The predictors for 𝐶𝐸𝐶, with the best 175 

overall model performance, turned out to be highly dependent on the group. Notably, using 𝜎 and 𝜅∗ provided the best 

prediction results on the sandy group, with training and testing median 𝑅2 values of 0.95 and 0.85, respectively (see Figure 

4). This performance is significantly higher than that achieved with the commonly used features, such as Clay and Humus 

content, which had a median test 𝑅2=0.38. Additionally, the combination of Sand and pH performed equally well, followed 

closely by combinations of 𝜅∗ and 𝜅𝑙𝑓 features. 180 
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Figure 4 Horizontal bar plot showing test model performances of 𝑪𝑬𝑪 prediction based on different features (vertical axis) for 

sandy and clayey samples. Features shown here are the top four in performance (bottom), and 𝜿∗, 𝝈, Clay, and the pair Clay, 

Humus. 185 

 

The strong performance of 𝜎 and 𝜅∗ as predictor of 𝐶𝐸𝐶 in sandy soils can be explained by the variable nature of 𝜎 as it 

depends on state variables, as well as the variable component of 𝐶𝐸𝐶. The strong predictive capacity of 𝜅∗ likely captures the 

permanent component of 𝐶𝐸𝐶 , which in sandy soil is mainly linked to soil mineralogy due to low colloid surface. 

Additionally, both 𝜎 and 𝜅∗ can be quickly measured in field conditions without the need for invasive sampling. Therefore, 190 

after implementing the best 𝐶𝐸𝐶 PTF for sandy samples (see Figure 5):   

 

𝐶𝐸𝐶 = 1.233 + 14000 ⋅ 𝜅∗ − 0.00861 ⋅ 𝜎 − 5.91 ⋅ 107 ⋅ 𝜅∗
2 

+ 1350 ⋅ 𝜅∗ ⋅ 𝜎 + 0.000624 ⋅ 𝜎2; 𝑅2=0.94 

Equation 2 

Where 𝜅∗ is unitless, 𝜎 is in mS/m and 𝐶𝐸𝐶 in meq/100g . 195 
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Figure 5 Implemented 𝑪𝑬𝑪 PTF for sandy samples (clay<16.1) (Equation 2) with a 𝑹𝟐=0.94. The model is colored in vertical axis 

from red to blue to visualize its shape. Colored dots represent the samples used in the sandy group, belonging to different sites that 

match the colors in Figure 1. 200 

 

For clayey samples, 𝜎 and Clay features resulted in the best performance with a training and testing 𝑅2 equal to 0.89 and 

0.82, respectively. This result is in line with the literature since the link between 𝐶𝐸𝐶, 𝜎 and Clay is well documented 

(Glover, 2015; Wunderlich et al., 2013). For clayey samples, 𝜅   was not an outstanding feature, likely due to the influence of 

larger colloid surface that may not be effectively characterized by 𝜅  .  205 

 

3.3 𝜿∗- 𝑪𝑬𝑪 statistics 

The partial correlation between 𝜅∗ and 𝐶𝐸𝐶, while controlling for (removing the effect of) Clay, was found to be 0.61 for 

sandy samples, and -0.14 for clayey samples. This indicates that in sandy samples, 𝜅∗ is just partially influenced by Clay. For 

clayey samples, however, 𝜅∗ is heavily influenced by the soil’s clay content, making the correlation between 𝜅∗ and 𝐶𝐸𝐶 210 

minor if the effect of Clay is removed. Consequently, predicting 𝐶𝐸𝐶 using Clay alone is as effective as using both Clay and 

𝜅∗ (median testing 𝑅2 of 0.66 and 0.64, respectively), while 𝜅∗ alone is a poor predictor (see Figure 4).   

 

4 Limitations 

The main limitations of the analyzed results are related to the dataset size; a larger sample size could improve the robustness 215 

of the findings. Additionally, all collected samples come from non-tropical regions, where organic matter content and 

bacterial activity do not significantly influence soil 𝜅. In contrast, these factors may contribute substantially to higher soil 
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𝐶𝐸𝐶  in other environments (Seybold et al., 2005). Therefore, the results are valid for the sampled sites that belong to 

European soils, and applications to scenarios beyond this range of soils should be approached with caution. Specifically, the 

model shown in Equation 2 is valid for samples with clay content between 2.9% to 16.1%, 𝜎 between 0.55 mS/m to 39 220 

mS/m, 𝜅∗ between 8 to 320 µ, and 𝐶𝐸𝐶 between 1.6 meq/100g to 8.7 meq/100g. 

 

5 Conclusions  

For the first time, the link between soil 𝜅 and 𝐶𝐸𝐶 has been explored using data that extends beyond the site level. By 

analyzing soil samples across Europe, encompassing a range of diverse soil physicochemical properties, we found that 𝜅∗ 225 

significantly contributes to predicting soil 𝐶𝐸𝐶, particularly in sandy samples, and this contribution is linearly independent 

of the soil clay content. Conversely, soil 𝜅 measured in the laboratory was less effective, likely due to the disturbance of soil 

structure and soil density. 

Based on these findings, we proposed a novel PTF for 𝐶𝐸𝐶 in sandy samples, with a 𝑅2 of 0.94, based on 𝜎 and 𝜅∗, which 

likely relate to the variable and permanent components of 𝐶𝐸𝐶, respectively. This PTF is valuable because both 𝜎 and 𝜅∗ are 230 

quick and inexpensive to measure in the field, making it straightforward to predict 𝐶𝐸𝐶 under field conditions. For instance, 

it can be used to quickly assess the fertility of sandy soils across agricultural fields. 

Further research, along with expanding the existing database, could enhance 𝐶𝐸𝐶 modeling and provide deeper insights into 

the 𝜅∗ - 𝐶𝐸𝐶  relationship. These advances could help integrate independent geophysical properties such as 𝜎  and 𝜅 , to 

quantify key soil properties like 𝐶𝐸𝐶, advancing a more holistic approach towards soil characterization. 235 

 

Data availability 

 10.5281/zenodo.13971643 

Code availability 

https://github.com/orbit-ugent/kappa-CEC 240 
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