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Abstract. This study explores the relationship between soil magnetic susceptibility (𝜅) and cation exchange capacity (𝐶𝐸𝐶) 

across diverse European soils, aiming to enhance pedotransfer functions (PTFs) for soil 𝐶𝐸𝐶  using near-surface 

electromagnetic geophysics. We hypothesize that soil 𝜅 , can improve the prediction of 𝐶𝐸𝐶  by reflecting the soil’s 

mineralogical composition, particularly in sandy soils.   

We collected data from 49 soil samples in vertical profiles across Belgium, the Netherlands, and Serbia, including 𝜅 in-situ 15 

conditions (𝜅∗𝜅∗), low and high frequency 𝜅 in the laboratory, in-site electrical conductivity (𝜎), iron content, soil texture, 

humus content, bulk density, water content, water pH, and 𝐶𝐸𝐶. We used these properties as features to develop univariable 

and multivariable (in pairs) polynomial regressions to predict 𝐶𝐸𝐶 for sandy and clayey soils.   

Results indicate that 𝜅∗𝜅∗  significantly improves 𝐶𝐸𝐶  predictions in sandy soils, independent of clay content, with a 

combined 𝜅∗𝜅∗- 𝜎 model achieving the highest predictive performance (R² = 0.94). In contrast, laboratory-measured 𝜅 was 20 

less effective, likely due to sample disturbance.  

This study presents a novel 𝐶𝐸𝐶 PTF based on 𝜎 and 𝜅∗𝜅∗, offering a rapid, cost-effective method for estimating 𝐶𝐸𝐶 in 

field conditions. While our findings underscore the value of integrating geophysical measurements into soil characterization, 

further research is needed to refine the 𝜅- 𝐶𝐸𝐶 relationship and develop a more widely applicable model. 

1 Introduction 25 

Modern strategies for soil characterization are crucial for addressing the global challenges of soil degradation and pollution. 

Near-surface electromagnetic geophysics, in particular, facilitates rapid quantitative assessment of soils, offering insights 
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into subsurface electrical conductivity (𝜎 ), dielectric permittivity (𝜀), and magnetic susceptibility (𝜅) (Garré et al., 2022; 

Romero-Ruiz et al., 2018). Data collected on these electromagnetic properties can be used for direct qualitative soil survey 

interpretations or for more comprehensive quantitative analyses involving pedophysical models and pedotransfer functions.  30 

Pedophysical models (PMs) link depth-specific geophysical properties with common soil properties. The need for 

developing such models is growing due to the demand for high-precision soil characterization (Romero-Ruiz et al., 2018; 

Verhegge et al., 2021; Wunderlich et al., 2013). Pedotransfer functions (PTFs) are models used to predict soil properties that 

are typically costly to obtain and are therefore determined less frequently than soil attributes that can be characterized more 

effectively (Van Looy et al., 2017).  35 

An important indicator of soil health and fertility, which is also crucial in most PMs and PTFs, is the cation exchange 

capacity (𝐶𝐸𝐶) (Glover, 2015; Mendoza Veirana et al., 2023). 𝐶𝐸𝐶, which refers to a soil’s capacity to retain and exchange 

positively charged ionsDefined as the ability of a soil to hold and exchange cations (Khaledian et al., 2017),  𝐶𝐸𝐶  is highly 

correlated with the soil clay content due to a larger colloid surface for particle exchanges. Furthermore, as it is influenced by 

the soil's physical (e.g., texture), chemical (e.g., pH, mineralogy), and biological properties (e.g., organic matter) ; thus,. 𝐶𝐸𝐶 40 

integrates aspects from all three main indicator groups commonly used to assess soil quality (Khaledian et al., 2017). Several 

PMs for soil 𝜎 prediction include 𝐶𝐸𝐶 due to the significant influence of free charges on 𝜎 , despite the contribution of other 

properties such as water content (𝛳) and salinity or bulk soil 𝜎  (Glover, 2015). Soil charges can be either permanent or 

variable, depending primarily on soil pH (Chapman, 1965; Sumner & Miller, 2018). The relationship between clay content 

and 𝐶𝐸𝐶 can be highly variable due to its dependence on clay mineralogy (ranging from 3-15 meq/100g for kaolinite to 100-45 

150 meq/100g for vermiculite), and the relative proportion of variable and permanent 𝐶𝐸𝐶  varies among clay minerals 

(Miller, 1970; Seybold et al., 2005). To standardize 𝐶𝐸𝐶 measurements under varying soil conditions, it is common to use 

the 𝐶𝐸𝐶 in neutral pH conditions (=7) 𝐶𝐸𝐶7. However, conventional analytical methods for measuring 𝐶𝐸𝐶, such as the 

sodium saturation method, are time-consuming and expensive (Busenberg & Clemency, 1973). Due to the critical 

importance of 𝐶𝐸𝐶, its measurement cost, and its correlation with other soil properties, numerous PTFs (Khaledian et al., 50 

2017) and worldwide hybrid models (Poggio et al., 2021) for 𝐶𝐸𝐶7 have been developed. Commonly, 𝐶𝐸𝐶  PTFs are 

expressed in function of clay content and humus, and less frequently pH and soil depth (Khaledian et al., 2017; Seybold et 

al., 2005). While commonly 𝐶𝐸𝐶 PTFs are multivariate polynomial regressions, machine learning methods are used in the 

last decade when large datasets are available, as artificial neural networks (Ghorbani et al., 2015), and genetic expression 

programming and multivariate adaptive regression splines (Emamgolizadeh et al., 2015). However, when working with 55 

small datasets, polynomial regressions are often preferred. Additionally, althoughAlthough  𝜎  and 𝜅  generally correlate well 

with 𝐶𝐸𝐶, results have shown that 𝜎  and soil magnetic susceptibility (𝜅)  they are independent (Maier et al., 2006).  

Soil magnetic susceptibility has been correlated positively with 𝐶𝐸𝐶 in studies focusing on soil type identification (de Mello 

et al., 2020) (Pearson’s correlation 0.4), soil characterization (Siqueira et al., 2010) (Pearson’s correlation 0.68), 
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paleoclimatic reconstruction (Maher, 1998) (Pearson’s correlation 0.95 for Podsol and 0.73 for Cambisol samples),, and 60 

electromagnetic induction applications (McLachlan et al., 2022). 𝜅 describes a material's ability to become magnetized when 

subjected to an external magnetic field. It quantifies the degree of magnetization induced in the substance relative to the 

strength of the applied magnetic field. The composition of the parent material, and consequently the mineralogy of the rocks 

and sediments that formed the soils, are the main parameters influencing soil magnetic properties (Jordanova, 2017). 

Formally, 𝜅  is defined as 𝜅 = H/M, where M is the induced magnetization of the material and H is the applied magnetic 65 

field. Soil and sediments 𝜅  measurements are widely used to detect the presence of pedogenic ferrimagnetic minerals 

(Dearing et al., 1996).  

Soil clay content and soil 𝜅 are correlated positively due to the presence of ferrimagnetic minerals (such as maghemite) in 

the clay fraction, originating either from the source parent material or through pedogenesis (de Mello et al., 2020) (Pearson’s 

correlation 0.26). Consequently, it has been suggested that the observed correlation between 𝜅 and 𝐶𝐸𝐶 is actually due to 70 

their mutual correlation with clay content, indicating that there may not be a direct effect of 𝜅 on 𝐶𝐸𝐶 (de Mello et al., 

2020). 

To the best of our knowledge, the 𝜅- 𝐶𝐸𝐶 relationship has not been studied beyond the site level (Siqueira et al., 2010). This 

limited scope represents a significant research gap, as the broader applicability of 𝜅 for 𝐶𝐸𝐶  prediction remain largely 

unexplored across diverse soil types and conditions.  75 

The main hypothesis is that soil 𝜅  can support characterizing soil mineralogy, which also influences the permanent 

component of 𝐶𝐸𝐶. Therefore soil 𝜅 may significantly enhance the accuracy of 𝐶𝐸𝐶 PTFs. This study directly addresses the 

identified gap by systematically examining the 𝜅 – 𝐶𝐸𝐶 relationship using a new comprehensive dataset. The potential to 

develop more robust, widely applicable 𝐶𝐸𝐶  PTFs underscores the significance of this work, with implications for 

sustainable land management, precision agriculture, and environmental monitoring.   80 

To improve predictions of field 𝐶𝐸𝐶 by integrating soil 𝜅, this study focuses on  we develop and test uni- and multivariate 

polynomial PTFs based on data of diverse soil types sampled in Europe. In addition, we explore soil 𝜅 measured in-situ and 

in laboratory at different frequencies to give insights into the 𝜅-𝐶𝐸𝐶 relationship and investigate how clay content affects the 

relationship between 𝜅 and 𝐶𝐸𝐶. While the methodology of this study focusses on soil and geophysical data collection, data 

analysis and model development, delving into the underlying physicochemical mechanisms of soil mineralogy that would 85 

link 𝜅 and 𝐶𝐸𝐶 are out of our scope but is highlighted as an important direction for future research. 

To ensure transparency and reproducibility, all the collected data and developed code for this work is publicly available in an 

open source Python software: (Mendoza Veirana, 2024). 

 

 90 
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2 Methods 

2.1 Study area, field measurements, and soil analysis 

From 8 sites in Belgium, the Netherlands and Serbia, 49 soil samples were collected across a wide range of USDA soil 

textures from sand to clay, and WRB (IUSS Working Group WRB, 2022) soil  types  (Figure 1 and Table 1, see also 

Mendoza Veirana et al. (2023))., Specifically, 6 sites in Belgium contributed 38 samples, one site in the Netherlands 95 

contributed 6 samples, and one site in Serbia contributed 5 samples. This distribution ensures representation of diverse soil 

types and textures across the three countries. At each site, test pits were dug to identify and sample different soil horizons. 

For each soil horizon and within a vertical soil profile, soil field 𝜅 was measured (𝜅∗) (5 to 11 measurements per site, 49 in 

total) using a kappa meter SM30 (ZH Instruments, Brno, Czech Republic) at 8 kHz. The sensor measures soil 𝜅 with a 

penetration depth of 2 cm and a sensitivity of 10-7 SI units. First, the sensor was placed against the soil’s profile wall for a 100 

measurement, followed by an additional measurement taken in open air away from the profile to obtain a reference zero 𝜅 

value for measurement calibration (ZH instruments, 2022). Additionally, a HydraProbe sensor (Stevens, Water Monitoring 

Systems) was employed to measure 𝜎 along the profile wall. The correction proposed by Logsdon et al. (2010) was applied 

to improve the quality of these readings.  

Undisturbed soil samples (100 cm³) were collected manually, by pushing standard steel rings horizontally into the soil 105 

profile wall at the same locations where 𝜅∗ was measured. After the cores were weighed fresh and oven-dried for 24 h at 

105 °𝐶, volumetric water content (𝛳) was calculated from the water-mass loss divided by the core volume, and bulk density 

(𝑏𝑑) from the oven-dry mass divided by the same volume (Grossman and Reinsch, 2002).  

Disturbed soil samples of about 250 g were collected around the undisturbed samples. They were air-dried, homogenized in 

an agate mortar, and sieved using a 2 mm mesh for determination of texture, and chemical and magnetic soil properties.  110 

Clay, silt and sand content (denoted as Clay, Silt, Sand, respectively, expressed in %) was measured following the pipette 

method (NF X31-107, 2003) ISO 11464after sieving at 2 mm, content of humus, 𝐶𝐸𝐶 was determined by CoHex method 

(Ciesielski et al., 1997a, 1997b).  
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 115 

Table 1 Minimum and maximum intervals of soil and magnetic properties for each explored site. Data ranges reflect the diversity 

of soil types and conditions across various sites. 

 

 
Samples Soil type 

Depth 

[cm] 

Sand 

[%] 

Clay 

[%] 

 𝜅∗ 

[10-5] 

𝜅𝑙𝑓  

[10-5] 𝜅𝑓𝑑 [-] 

Fe 

[ppm] 

 

Humus 

[%] 

𝜎   

[mS/m] 

𝐶𝐸𝐶   

[meq/ 

100g] 

A 5 Luvisols [4,106] [9,16] [9,13] [14,32] [14,40] [5.2,8.1] [14,21] [0.1,2.3] [12,35] [6,9] 

DREN 5 
 

[72,252] [18,35] [27,39] [47,66] [51,70] [6.2,9.1] [31,38] [0.6,1.6] [30,53] [20,25] 

E 5 Cambisols [20,110] [24,35] [20,25] [7.2,14] [8,15] [3.5,5.5] [19,25] [0.8,2.6] [38,50] [9,12] 

EH2 5 Phaeozems [20,94] [10,54] [17,53] [12,20] [13,38] [3.2,6.7] [42,50] [0.3,5.7] [55,66] [16,39] 

HOEKE 11 Cambisols [28,258] [9,45] [16,32] [4.5,116] [6.8,127] [4.4,8.1] [17,34] [0.5,11] [27,59] [8,30] 

P 7 Retisols [32,144] [42,80] [8,11] [2.6,12] [4.5,16] [2.9,8.5] [5.9,12] [0,2] [8,17] [1.6,11] 

S 5 Arenosols [28,130] [83,93] [5,7] [3,20] [2.9,73] [3.3,9.2] [3.6,16] [0,2] [11,29] [2,5] 

VALTHE 6 Podzol [10,60] [91,95] [3,4] [0.8,12] [1.2,19] [3.9,9.7] [1,2.5] [0,2.2] [0.5,1] [1.6] 

All 49   [4,252] [9,95] [3,53] [0.8,116] [1.2,127] [2.9,9.7] [1,50] [0,11] [0,66] [1.6,39] 
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Figure 1 Locations of the study sites. Background shows dominant surface texture (European Soil Database v2.0, 2004). Colors 

represent the texture of the sites: sandy in yellowish, silty in blueish and clayey in reddish. The United States Department of 

Agriculture (USDA) texture triangle showing the particle size distribution categorized by sampling site. The samples presented in 

Table 1 are represented by triangles (adapted from (Mendoza Veirana et al., 2023)). 120 

  

Magnetic susceptibility 𝜅 was measured using a Kappabridge MKF1-FA (AGICO Instruments, Brno, Czech Republic), in 

addition to the field 𝜅  measurements. Prior to these laboratory measurements, corrections were made to eliminate the 

influence of the diamagnetic sample holder. Samples were placed in 10 cm3 plastic holders, and the in-phase 𝜅 was recorded 

at both low frequency (𝜅𝑙𝑓) and high frequency (𝜅ℎ𝑓) (976 Hz and 15616 Hz, respectively). Thus, the percentage frequency 125 

dependent magnetic susceptibility (𝜅𝑓𝑑) was calculated as: 

 

𝜅𝑓𝑑 =
𝜅𝑙𝑓 − 𝜅ℎ𝑓

𝜅𝑙𝑓

× 100  [%] 

Equation 1 
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Additionally, the absolute difference (𝜅𝑓𝑑 𝑎𝑏𝑠 = 𝜅𝑙𝑓 − 𝜅ℎ𝑓 ) was calculated. Such measurements are used to detect the 130 

presence of superparamagnetic ferrimagnetic minerals occurring as ultrafine (<0.03 μm) crystals (mostly ultrafine magnetite 

and maghemite) produced largely by pedogenic biochemical processes in soil (Dearing, 1994). Samples where ultrafine 

minerals are present will show increased frequency dependent magnetic susceptibility; samples without such minerals will 

show identical 𝜅 values at the two frequencies.     

To support magnetic observations, elemental analyses were performed to evaluate the total iron content concentration (Fe) of 135 

all samples through X-ray fluorescence (XRF, Niton XL3t GOLDD+, Thermo Fisher Scientific Inc., USA) on samples that 

passed a 0.5 mm sieve and placed in capsules covered with 4-6 m cellophane. Three consecutive XRF measurements were 

performed and averaged for each sample.   

 

2.2 Model development 140 

Developing a 𝐶𝐸𝐶 PTF using soil 𝜅 data that can be generalized beyond site-specific is a challenging task, requiring careful 

consideration of the data used for model development. The absence of previous attempts at developing a 𝐶𝐸𝐶 PTF using soil 

𝜅 data that can be generalized beyond site-specific this highlights the importance of thorough data exploration. We chose to 

build polynomial models due to their interpretability, simplicity, and the use of only one tuning parameter (polynomial 

degree), which is suitable given the relatively small dataset (n=49).  145 

 

Field and laboratory measured soil properties were used as features for predicting 𝐶𝐸𝐶 (target variable), these are: soil depth, 

water pH, 𝐻𝑢𝑚𝑢𝑠 , 𝐶𝑙𝑎𝑦 , 𝑆𝑖𝑙𝑡 , and 𝑆𝑎𝑛𝑑 , 𝑏𝑑 , 𝜎 , 𝜅∗ , 𝜅𝑙𝑓 , 𝜅𝑓𝑑 , 𝜅𝑓𝑑 𝑎𝑏𝑠 , and Fe. All (13) features were used to develop 

univariable polynomial regressions, and multivariable models were created by combining features in pairs, resulting in 91 

feature combinations. The top four combinations in terms of test performance were compared to the standard combination of 150 

Clay and Humus content, also, single features were considered (𝐶𝑙𝑎𝑦, 𝜎, and 𝜅∗).   

Since model performance was largely dependent on clay content, the samples were divided into sandy (n=25) and clayey 

(n=24) groups, using the median clay content (16.1%) as a threshold. Both input datasets were split randomly into training 

(70%) and testing (30%) subsets, without consideration of any soil characteristics. This approach ensured that samples from 

different sites, soil horizons, and physicochemical properties were mixed during data splitting. To further ensure an unbiased 155 

model evaluation, the training and testing process was repeated 100 times. The best polynomial degree (linear or quadratic) 

was determined by the highest median of the 𝑅2 test scores over the 100 repetitions (Tibshirani et al., 2001). Finally, model 

implementation was performed after tuning and feature selection using all the samples of each subset. 
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2.3 Statistical analysis 160 

Predicting 𝐶𝐸𝐶  based on soil properties, particularly focusing on magnetic characteristics is a multivariate problem. 

Commonly, many variables are linearly correlated with 𝐶𝐸𝐶, such as Clay, 𝜅, Fe, Humus, and 𝜎. The challenge lies in 

distinguishing between independent and masked effects. Importantly, the positive correlation between 𝜅 and 𝐶𝐸𝐶 may be 

due to the strong correlation between clay content and both 𝐶𝐸𝐶 and 𝜅 (de Mello et al., 2020).   

To address this, we quantified the independent correlation between 𝜅  and 𝐶𝐸𝐶 , irrespective of the effects of clay by 165 

calculating the partial correlation, that is the correlation between the residuals of the linear fitting of the covariable (Clay) 

with the variables (𝜅 and 𝐶𝐸𝐶). 

 

3 Results and discussion 

 170 

3.1 Data exploration 

A general variable exploration analysis is presented in this section, which is fundamental for the model development in the 

next section. Spearman’s rank correlations between all the features mentioned and target can be seen in  

Figure 2. As expected, soil 𝜅 is less correlated to 𝐶𝐸𝐶 than common soil properties such as Clay and Sand, water pH and 𝛳, 

while Fe and 𝜎 correlate strongly with 𝐶𝐸𝐶. Additionally, consistent with the findings of de Mello et al. (2020) and Ayoubi 175 

et al. (2018), there is a positive correlation between Clay and 𝜅 (both 𝜅∗ and 𝜅𝑙𝑓). Also in line with Maier et al. (2006), 𝜎 is 

not correlated significantly to 𝜅. Conversely, Sand correlates negatively with both 𝜅 and Fe. 
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 180 

Figure 2 Spearman rank correlation heatmap showing significant P-values≤<0.005 for the 49 soil samples, mi.ssing correlations 

have P-values>0.005. 

 

Comparing soil 𝜅∗ to 𝜅𝑙𝑓 reveals a similar trend across the entire range of observations (10-5 to 10-3) (see Figure 3). This 

trend persists despite 𝜅∗ being measured in undisturbed soil structures with field bulk density, while 𝜅𝑙𝑓 was obtained from 185 

repacked samples that do not preserve the field structure and density. Additionally, the measurement frequency for 𝜅∗ (8 

kHz) differs from that of 𝜅𝑙𝑓  (~1 kHz).  
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Figure 3 Logarithmic scatter plot showing the field in-situ obtained observed magnetic susceptibility (𝜿∗) vs the laboratory 190 

observed low frequency magnetic susceptibility (𝜿𝒍𝒇). 

 

3.2 𝑪𝑬𝑪 modelling 

Model training and testing was performed in sandy and clayey groups independently. The predictors for 𝐶𝐸𝐶, with the best 

overall model performance, turned out to be highly dependent on the group. Notably, using 𝜎 and 𝜅∗ provided the best 195 

prediction results on the sandy group, with training and testing median 𝑅2 values of 0.95 and 0.85, respectively (see Figure 

4). This performance is significantly higher than that achieved with the commonly used features, such as Clay and Humus 

content, which had a median test 𝑅2=0.38. Additionally, the combination of Sand and pH performed equally well, followed 

closely by combinations of 𝜅∗ and 𝜅𝑙𝑓 features. 

 200 
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Figure 4 Horizontal bar plot showing test model performances of 𝑪𝑬𝑪 prediction based on different features (vertical axis) for 

sandy and clayey samples. Features shown here are the top four in performance (bottom), and 𝜿∗, 𝝈, Clay, and the pair Clay, 

Humus. 

 205 

The strong performance of 𝜎 and 𝜅∗ as predictors of 𝐶𝐸𝐶 in sandy soils (median test R² = 0.85) is particularly noteworthy. 𝜎 

is known to be influenced by several factors including soil water content, salinity, and the concentration of dissolved ions, 

which collectively can reflect the variable component of 𝐶𝐸𝐶 (Glover, 2015). In sandy soils, which typically have lower 

water and nutrient retention capacities, 𝜎 can provide a dynamic measure of the available exchangeable cations at a given 

time. Concurrently, the strong predictive capacity of 𝜅∗ suggests it captures a different, yet complementary, aspect of 𝐶𝐸𝐶. 210 

In soils with low clay content, and therefore limited colloid surface area, the permanent component of 𝐶𝐸𝐶 is likely more 

affected by minerals. The fact that 𝜅∗, measured in-situ, performed better than laboratory κ suggests that the undisturbed soil 

structure and field conditions are crucial for this relationship, possibly reflecting the spatial arrangement and contact of these 

minerals within the soil matrix.      

Additionally, both 𝜎 and 𝜅∗ can be quickly measured in field conditions without the need for invasive sampling. Therefore, 215 

after implementing the best 𝐶𝐸𝐶 PTF for sandy samples (see Figure 5):   

 

𝐶𝐸𝐶 = 1.233 + 14000 ⋅ 𝜅∗ − 0.00861 ⋅ 𝜎 − 5.91 ⋅ 107 ⋅ 𝜅∗
2 

+ 1350 ⋅ 𝜅∗ ⋅ 𝜎 + 0.000624 ⋅ 𝜎2; 𝑅2 = 0.94 

Equation 2 

Where 𝜅∗ is unitless, 𝜎 is in mS/m and 𝐶𝐸𝐶 in meq/100g . 220 
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Figure 5 Implemented 𝑪𝑬𝑪 PTF for sandy samples (clay<16.1) (Equation 2) with a 𝑹𝟐=0.94. The model is colored in vertical axis 

from red to blue to visualize its shape. Colored dots represent the samples used in the sandy group, belonging to different sites that 

match the colors in Figure 1. 225 

 

For clayey samples, 𝜎 and Clay features resulted in the best performance with a training and testing 𝑅2 equal to 0.89 and 

0.82, respectively. This result is in line with the literature since the link between 𝐶𝐸𝐶, 𝜎 and Clay is well documented 

(Glover, 2015; Wunderlich et al., 2013). For clayey samples, 𝜅   was not an outstanding feature, likely due to the influence of 

larger colloid surface that may not be effectively characterized by 𝜅  .  230 

 

3.3 𝜿∗- 𝑪𝑬𝑪 statistics 

The partial correlation between 𝜅∗ and 𝐶𝐸𝐶, while controlling for (removing the effect of) Clay, was found to be 0.61 for 

sandy samples, and -0.14 for clayey samples. This indicates that in sandy samples, 𝜅∗ is just partially influenced by Clay. For 

clayey samples, however, 𝜅∗ is heavily influenced by the soil’s clay content, making the correlation between 𝜅∗ and 𝐶𝐸𝐶 235 

minor if the effect of Clay is removed. Consequently, predicting 𝐶𝐸𝐶 using Clay alone is as effective as using both Clay and 

𝜅∗ (median testing 𝑅2 of 0.66 and 0.64, respectively), while 𝜅∗ alone is a poor predictor (see Figure 4).   

 

4 Limitations and further directions 

The current study, while providing novel insights, has several limitations that also point towards important future research 240 

directions. 
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Firstly, Tthe main limitations of the analyzed results are related to the dataset size, although diverse in terms of European 

soil types, is relatively small. A; a larger sample size could improve the statistical relevance of the findings and improve the 

robustness and generalizability of the developed PTFs (Van Looy et al., 2017). Future work should aim to expand the 

database with more samples covering an even wider range of soil properties and parent materials. 245 

Secondly, all collected samples come from non-tropical regions, where organic matter content and bacterial activity do not 

significantly influence soil 𝜅. In contrast, these factors may contribute substantially to higher soil 𝐶𝐸𝐶 in other environments 

(Seybold et al., 2005). Therefore, the results are valid for the sampled sites that belong to European soils, and applications to 

scenarios beyond this range of soils should be approached with caution.  

Thirdly, a significant limitation is the lack of direct mineralogical analysis, especially for clay and iron oxide fractions.  250 

While κ offers an indirect proxy for ferrimagnetic mineralogy, detailed characterization (e.g., via X-ray diffraction) is needed 

for a mechanistic understanding of the κ - 𝐶𝐸𝐶 link. Identifying specific clay minerals (like kaolinite vs. smectite) and their 

abundance would clarify their 𝐶𝐸𝐶 contributions and interactions with magnetic minerals. This is a crucial step to move 

beyond empirical correlations towards a process-based understanding  

Fourthly, while field-measured κ proved useful, the reasons for its superiority over laboratory-measured 𝜅𝑙𝑓  or 𝜅𝑓𝑑  in the 255 

PTFs warrant further exploration. This could involve investigating the effects of soil structure, moisture content (which are 

preserved in in-situ κ measurements). A deeper understanding of how these factors influence different κ measurements could 

lead to optimized measurement strategies. 

Finally, the model shown in Equation 2 is valid for samples with clay content between 2.9% to 16.1%, 𝜎 between 0.55 mS/m 

to 39 mS/m, 𝜅∗ between 8 to 320 µ, and 𝐶𝐸𝐶 between 1.6 meq/100g to 8.7 meq/100g. 260 

As larger and more comprehensive datasets become available, exploring advanced modelling techniques, such as machine 

learning algorithms, may capture more complex, non-linear relationships. Assessing the scalability of the κ-𝐶𝐸𝐶 relationship 

from point measurements to field-scale predictions using proximal sensing platforms, for example, vehicle-mounted EMI 

sensors providing dense κ data (McLachlan et al., 2022), would be beneficial. 

5 Conclusions  265 

For the first time, the link between soil 𝜅 and 𝐶𝐸𝐶 has been explored using data that extends beyond the site level. By 

analyzing soil samples across Europe, encompassing a range of diverse soil physicochemical properties, we found that 𝜅∗ 

significantly contributes to predicting soil 𝐶𝐸𝐶, particularly in sandy samples, and this contribution is linearly independent 

of the soil clay content. Conversely, soil 𝜅 measured in the laboratory was less effective, likely due to the disturbance of soil 

structure and soil density. 270 

Based on these findings, we proposed a novel PTF for 𝐶𝐸𝐶 in sandy samples, with a 𝑅2 of 0.94, based on 𝜎 and 𝜅∗, which 

likely relate to the variable and permanent components of 𝐶𝐸𝐶, respectively. This PTF is valuable because both 𝜎 and 𝜅∗ are 
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quick and inexpensive to measure in the field, making it straightforward to predict  𝐶𝐸𝐶 under field conditions. For instance, 

it can be used to quickly assess the fertility of sandy soils across agricultural fields. 

Further research, along with expanding the existing database, could enhance 𝐶𝐸𝐶 modeling and provide deeper insights into 275 

the 𝜅∗ - 𝐶𝐸𝐶  relationship. These advances could help integrate independent geophysical properties such as 𝜎  and 𝜅 , to 

quantify key soil properties like 𝐶𝐸𝐶, advancing a more holistic approach towards soil characterization. 
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