

1 **African dust transported to Barbados in the Wintertime Lacks Indicators of Chemical**
2 **Aging**

3
4 Haley M. Royer^{1,2}, Michael T. Sheridan^{1,3}, Hope E. Elliott⁴, **Edmund Blades¹**, Nurun Nahar

5 Lata⁵, Zezhen Cheng⁵, Swarup China⁵, Zihua Zhu⁵, Andrew P. Ault⁶, Cassandra J. Gaston^{1*}

6 ¹Department of Atmospheric Sciences, Rosenstiel School of Marine, Atmospheric, and Earth
7 Science, University of Miami, Miami, FL

8 ²Currently at: Department of Environmental Sciences and Engineering, University of North
9 Carolina at Chapel Hill, Chapel Hill, NC

10 ³Skidaway Institute of Oceanography, University of Georgia, Athens, GA

11 ⁴Department of Ocean Sciences, Rosenstiel School of Marine, Atmospheric, and Earth Science,
12 University of Miami, Miami, FL

13 ⁵Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory,
14 Richland, WA

15 ⁶Department of Chemistry, University of Michigan, Ann Arbor, MI

16 *Corresponding Author:

17 Cassandra J. Gaston: Email: cgaston@miami.edu, Phone: (305)-421-4979

18

19

20

21

22

23

24

25

26 **1. Abstract**

27 The chemical processing (“aging”) of mineral dust is thought to increase dust light scattering
28 efficiency, cloud droplet activation, and nutrient solubility. However, the extent of African dust
29 aging during long-range transport to the western Atlantic is poorly understood. Here, we explore
30 African dust aging in wintertime samples collected from Barbados when dust is transported at
31 lower altitudes. Ion chromatography (IC) analysis **indicates that the mass concentrations** of bulk
32 nitrate, sulfate, and oxalate increase, **relative to background conditions**, when African dust
33 reaches Barbados **after transatlantic transport**, indicating dust aging. However, aerosol mixing
34 state analysis from computer-controlled scanning electron microscopy with energy dispersive x-
35 ray spectroscopy (CCSEM/EDX) indicates that approximately 67% of dust particles are
36 internally mixed with sea salt, while only about 26% of dust particles contain no internally mixed
37 components. SEM/EDX elemental mapping and time-of-flight secondary ion mass spectrometry
38 (TOF-SIMS) reveals that within internally mixed dust and sea salt particles, only sea salt
39 components contain signs of aging **as indicated by the loss of chloride and acquisition of nitrate**
40 **and/or sulfate. Our results suggest that chemical aging may only modestly increase the solubility**
41 **of nutrients in African dust during long range transport. Because most dust that we measured was**
42 **internally mixed with sea salt, chemical aging is not necessarily required to increase the**
43 **hygroscopicity of dust, at least in the lower boundary layer. Further, our findings have**
44 **implications for understanding the release of halogens from sea salts, which may be enhanced in**
45 **internally mixed dust and sea salt particles.**

46

47

48

49 **2. Introduction**

50 Upon emission, dust can directly scatter or absorb solar radiation (Balkanski et al., 2007;
51 Haywood et al., 2003; Myhre & Stordal, 2001; Sokolik et al., 2001; Tegen, 2003), act as cloud
52 condensation (Albrecht, 1989; Koehler et al., 2009; Levin et al., 1996; Rosenfeld et al., 2001)
53 and ice nuclei (Archuleta et al., 2005; Cziczo et al., 2004; DeMott et al., 2003), and provide
54 micro- and macro- nutrients to nutrient-limited ecosystems (Elliott et al., 2024; Jickells et al.,
55 2005; Mahowald, 2011). However, mineral dust aerosol is still poorly represented in climate
56 models due, in part, to a lack of understanding of the physiochemical properties of dust and their
57 changes as a result of cloud processing (Gierlus et al., 2012; Wurzler et al., 2000), multiphase
58 reactions (Andreae et al., 1986; Sullivan et al., 2007; Sullivan & Prather, 2007) or heterogeneous
59 reactions with polluted air masses (Fitzgerald et al., 2015; Krueger et al., 2004; Sullivan et al.,
60 2009). The chemical change in the physiochemical properties of dust **due to heterogeneous or**
61 **multiphase reactions**, herein referred to as “aging”, can alter the water uptake properties of dust
62 (Krueger et al., 2003; Laskin et al., 2005) thus affecting its light scattering efficiency (Bauer et
63 al., 2007; Kandler et al., 2011; Levin et al., 1996), cloud droplet activation properties (Gibson et
64 al., 2007; Kelly et al., 2007; Sullivan et al., 2009; **Tang et al., 2016**), and atmospheric lifetime
65 (Abdelkader et al., 2015; Lance et al., 2013; Li et al., 2014; Wu et al., 2013). **We note that**
66 **chemical aging is distinct from other changes in the physicochemical properties of dust that may**
67 **occur during transport such as coagulation.** Chemical aging is also essential to increase the
68 bioavailability of nutrients within dust via ligand-mediated and proton-mediated dissolution
69 processes (Nenes et al., 2011; Spokes & Jickells, 1995; Stockdale et al., 2016). Modeling the
70 chemical aging process is challenging and, as a result, models often treat dust as a chemically

71 homogeneous and hydrophobic particle type (Han et al., 2011; Pringle et al., 2010; Shi et al.,
72 2008), which oversimplifies the complexity of dust and its impacts in the atmosphere.

73 African dust is the largest source of dust, which is transported to the Caribbean, North
74 and South America and Europe (Barkley et al., 2019; Prospero & Mayol-Bracero, 2013). Most
75 research studying African dust transport focuses on the summer when dust mass concentrations
76 are at a maximum (Prospero & Mayol-Bracero, 2013; Zuidema et al., 2019) and the Saharan Air
77 Layer (SAL) that transports dust across the Atlantic is at its maximum altitude (Carlson &
78 Prospero, 1972). The height of African dust transport minimizes the mixing time of transported
79 dust with the underlying Marine Boundary Layer (MBL) until the dust settles out of the SAL
80 (Ryder et al., 2018). Studies exploring African dust aging during the summertime have produced
81 varying results. Early attempts to study dust aging in the western Atlantic from Li-Jones &
82 Prospero, 1998, found a strong correlation between mineral dust and non-sea salt sulfate (NSS-
83 SO_4^{2-}) from size-resolved filter measurements collected in Barbados during the boreal spring,
84 which they conclude is the result of dust aging by sulfur emissions from Europe. In a more recent
85 study from Izaña, African dust has been shown to acquire sulfate from industrial emissions from
86 North Africa (Rodriguez et al., 2011). Further, single-particle methods have been utilized to
87 obtain more detail on the mixing state of dust to unambiguously determine if markers of aging
88 are located within dust or other aerosol particles. Conclusions from Denjean et al., 2015, inferred
89 from low hygroscopicity growth measurements, that long range transported African dust
90 particles collected over Puerto Rico in the boreal summer are not chemically processed and are
91 minimally mixed with other chemical components. In contrast, iron solubility was found to
92 increase in Saharan dust during transatlantic transport, in part, due to chemical aging (Rodriguez
93 et al., 2021). Further, Fitzgerald et al., 2015 also analyzed long range transported African dust in

94 Puerto Rico during the boreal summer, but found sulfate and oxalate on dust particles using real-
95 time single-particle mass spectrometry. Dust composition measured by Fitzgerald et al., 2015
96 may have also been affected by local cloud processing as sampling occurred within a cloud
97 forest. Boreal summer analysis of **long range transported** dust in Barbados from Kandler et al.,
98 2018 and Weinzierl et al., 2017 revealed limited aging of dust particles with some internal
99 mixing with other chemical components from microscopy and spectroscopy analysis. Model
100 analysis of summertime African dust transport from Abdelkader et al., 2017 explored the
101 evolution of dust aging as dust is transported from Africa to the western Atlantic, finding that
102 aged African dust is quickly removed from the aerosol loading during transit across the Atlantic,
103 leaving minimally-aged dust within the aerosol loading that reaches the western Atlantic.

104 Unlike the summertime when dust is transported within the elevated SAL, dust is
105 transported at lower altitudes during the wintertime (Tsamalis et al., 2013) enhancing the mixing
106 time of dust within the MBL, which may increase the interaction between dust, anthropogenic
107 emissions, and marine biogenic emissions in the MBL (Gutleben et al., 2022; Savoie & Prospero,
108 1982). **In addition to anthropogenic emissions that mix with dust (Gaston et al., 2024; Rodriguez**
109 **et al., 2011)**, the Sahelian burn season occurs during the boreal winter, often resulting in long-
110 range co-transport of dust and smoke emissions that were specifically observed during the
111 ATOMIC/EUREC⁴A campaigns (Quinn et al., 2021; Royer et al., 2023). Smoke emissions are
112 known to contain sulfur dioxide (SO₂) and nitrogen oxides (e.g., NO_x≡NO + NO₂) that
113 theoretically could age dust extensively (Hickman et al., 2021; Rickly et al., 2022), especially
114 during long-range transport in which dust has several days to interact with smoke emissions
115 before it arrives in the western Atlantic. During the ATOMIC/EUREC⁴A campaigns, sulfate was
116 observed on smoke particles, indicating a potential for dust aging during co-transport with smoke

117 (Royer et al., 2023). However, the likelihood of mixing between the emissions in the MBL, dust,
118 and African smoke emissions and their impact on dust aging during the wintertime is unclear.

119 The goal of this study is to determine the extent of aging on African dust particles
120 transported to the Caribbean during the boreal winter using methods that determine the mixing
121 state of individual particles. Collection of aerosol samples took place at the Barbados
122 Atmospheric Chemistry Observatory (BACO) at Ragged Point, Barbados from January through
123 February of 2020 during the ATOMIC/EUREC⁴A campaign. During the sampling period, 3 dust
124 events consisting of co-transported dust and smoke originating from Africa arrived at Barbados,
125 offering ample opportunity to study the extent of aging. Lidar measurements also reveal that
126 dust-laden air masses remained at a low altitude (3.5 km) for the duration of their transit to
127 Ragged Point, contrasting high altitude summertime transport conditions (Gutleben et al., 2022).
128 This study provides a unique opportunity for exploring the extent of dust aging on African dust,
129 which should be at a maximum under the conditions described. Our findings provide much
130 needed insight into the extent of aging for African aerosols undergoing **long range transport** to
131 the western Atlantic, which is essential for properly modeling the water uptake properties of dust
132 particles in the atmosphere as well as the solubility of nutrients in dust bearing minerals.

133 **3. Methods**

134 *3.1 Measurement Site and Sampling Period*

135 The sampling site, sampling period, and air mass origins that were studied have been
136 described previously in Royer et al., 2023. Briefly, aerosol samples consisting of long-range co-
137 transported African dust and smoke as well as marine aerosols were collected at the University
138 of Miami's Barbados Atmospheric Chemistry Observatory (BACO) at Ragged Point during the
139 EUREC⁴A and ATOMIC campaigns from 20 January through 20 February 2020 (Quinn et al.,

140 2021; Stevens et al., 2021). Air mass origins were determined using NOAA's HYSPLIT model
141 as well as daily dust mass concentrations (Stein et al., 2015). Ragged Point (13°6' N, 59°37'W),
142 a prominence on Barbados' eastern coast, is an ideal location for studying the extent of dust
143 aging in **long range transported** African aerosols as it is exposed to the steady easterly trade
144 winds which regularly carry outflows of African aerosols such as dust and smoke to the island
145 (Archibald et al., 2015; Carlson & Prospero, 1972; Prospero, 1968) and minimize the influence
146 of anthropogenic activity from local islands to the west (Prospero et al., 2005; Savoie et al.,
147 2002).

148 In this study, we utilize both bulk and single-particle methods to highlight the importance
149 of aerosol mixing state for understanding the extent of dust aging. Bulk methods have
150 traditionally been used to study long-range dust transport and the extent of dust aging in the
151 western Atlantic (Chen & Siefert, 2004; Li-Jones & Prospero, 1998; Savoie et al., 2002). Single
152 particle methods used herein show that elucidating the aerosol mixing state is essential for
153 determining the full extent of aging in **long range transported** African dust particles.

154 *3.2 **Mass Concentrations of Dust and Soluble Ion Content***

155 To collect aerosol samples, the BACO is equipped with a high-volume sampler and an
156 isokinetic aerosol inlet on top of a 17 m-tall tower situated on a 30 m bluff along the coast at
157 Ragged Point. Aerosol filters were collected using a high-volume sampler pumping at a rate of
158 approximately 0.7 m³/min for bulk measurements and 1.0 m³/min for size-resolved
159 measurements. Size-resolved filters were collected on a cascade impactor (Tisch Environmental,
160 Inc., Series 230) with 6 stages and 1 backing filter. Size-resolved aerosol analysis are separated
161 into supermicron (stages 1-4; >1.3 μ m) and submicron (stages 5 – backing filter; <1.3 μ m). All
162 aerosol filter samples were collected on cellulose Whatman-41 (W-41) filters with a nominal 20

163 μm pore size. After filter collection, filters were washed with Milli-Q water three times to
164 remove soluble material. The washed filters were subsequently combusted in a furnace at 500 °C
165 for about 12 h (i.e., overnight) to remove the cellulose filter and determine daily dust mass
166 concentrations (Prospero et al., 2021; Zuidema et al., 2019). Procedural filter blanks were also
167 collected by placing a filter in the sampler cassette for 15 min without turning on the pump. The
168 resulting ash mass from a sample minus the mass of a filter blank is the gross ash weight, which
169 is then adjusted by a factor of 1.3 to convert the ash weight to a mineral dust concentration
170 (Prospero, 1999; Zuidema et al., 2019).

171 To determine daily bulk and size-resolved soluble ion content, the 20 mL of Milli-Q used
172 to wash the filters was filtered through a 25 mm membrane filter with 0.4 μm pore size
173 (Whatman Nuclepore Track Etch Membrane) to remove any particulates from the washing
174 process. Filtrate was then frozen in a -20°C freezer until analysis. To prepare samples, frozen
175 filtrate was thawed in a warm water bath and vortexed for 20 sec. The filtrate was then analyzed
176 using an ion chromatography (IC) instrument (Dionex Integrion HPIC System; Thermo
177 Scientific). Samples were analyzed in triplicate to ensure precision of results. To obtain soluble
178 ion content, 5 mL aliquots of filtrate were injected into the IC system and analyzed for cations
179 (IonPac CG12A/CS12A; Thermo Scientific) and anions (IonPac AS11-HC; Thermo Scientific).
180 Cations of interest analyzed by IC include lithium (Li^+), sodium (Na^+), ammonium (NH_4^+),
181 potassium (K^+), magnesium (Mg^+), and calcium (Ca^+) while anions of interest include fluoride
182 (F^-), formate (CH_2O^-), methanesulfonate (MSA), chloride (Cl^-), nitrite (NO_2^-), bromide (Br^-),
183 nitrate (NO_3^-), sulfate (SO_4^{2-}), oxalate, and phosphate (PO_4^{3-}). Since the filtrate analyzed includes
184 sea salt emissions, which may include sulfate from ocean emissions, non-sea salt sulfate (NSS-
185 SO_4^{2-}) was calculated using the equation (Gaston et al., 2024)

186 $[NSS - SO_4^{2-}] = [SO_4^{2-}] - (0.2517 * [Na])$ (1)

187 to determine the fraction of sulfate derived from non-sea spray emissions including
188 anthropogenic and marine biogenic sources. For the purposes of this study, we focus primarily
189 on NSS- SO_4^{2-} and NO_3^- as they are chemical indicators of dust aging (Sullivan et al., 2007) as
190 well as oxalate as it indicates cloud processing and other processes (Ma et al., 2004). Samples
191 were also analyzed for methanesulfonate, an important tracer of ocean-derived biogenic sulfur
192 (Gaston et al., 2010) that can age dust particles (Desboeufs et al., 2024), however MSA
193 measurements were negligible.

194 *3.3 Aerosol Collection for Single Particle Mixing State Analysis*

195 To determine the mixing state of individual particles, aerosol samples were collected at
196 ambient relative humidity (RH) through an isokinetic aerosol inlet with a three-stage
197 microanalysis particle sampler (MPS-3, California Measurements, Inc.), which samples particles
198 from diameters of 5.0-2.5 μm (stage 1), 2.5-0.7 μm (stage 2), and <0.7 μm (stage 3). For each set
199 of samples (one set including one sample from each stage of the MPS), the MPS was run for 45
200 min at 2 L/min flow starting at approximately 09:30 LT (local time) or 13:30 coordinated
201 universal time (UTC). Meteorological data from a local station were used to manually check that
202 wind direction fell between 335 and 130 degrees and that wind speeds were greater than 1 m/s
203 during all sampling periods to ensure that only air from the open ocean to the east was sampled
204 rather than local, anthropogenically-influenced air.

205 *3.4 Single Particle Elemental Composition and Particle Source Determined from Computer
206 Controlled Scanning Electron Microscopy Coupled to Energy Dispersive X-ray Spectroscopy
207 (CCSEM-EDX)*

208 To determine aerosol elemental composition, particles were deposited onto carbon-coated
209 copper grids (Ted Pella, Inc., Prod. # 01910-F) on each of the 3 stages of the MPS that were later
210 analyzed at the Environmental Molecular Science Laboratory (EMSL) at Pacific Northwest
211 National Laboratory (PNNL) using computer-controlled scanning electron microscopy (Quanta
212 3D) coupled with energy-dispersive X-ray spectroscopy (EDAX, Inc.) (CCSEM/EDX). **SEM**
213 **provides images, size, and morphology of individual particles while EDX measures the semi-**
214 **quantitative elemental composition of each particle.** Approximately 1800 particles from stage 1,
215 2500 particles from stage 2, and 3200 particles from stage 3 were analyzed via CCSEM/EDX for
216 each day of sampling. Only particles with diameters $>0.1 \mu\text{m}$ were analyzed. Semiquantitative
217 data products from CCSEM/EDX analysis were then analyzed in MATLAB (version 9.6.0; The
218 Mathworks, Inc.) using a k-means clustering algorithm (Ault et al., 2012; Royer et al., 2023;
219 Shen et al., 2016) to group similar particles into clusters based on the elemental percentage, size,
220 and shape of individual particles. These clusters are then assigned to particle types based on their
221 morphology, characteristic EDX spectra, and the existing literature. Percent composition
222 threshold values of 1% were used when processing CCSEM/EDX data to ensure the presence of
223 elements detected by the EDX. Single particle analysis using CCSEM/EDX was limited to 16
224 elements found in common aerosols such as dust, sea salt, and smoke particles: carbon (C),
225 nitrogen (N), oxygen (O), sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si),
226 phosphorus (P), sulfur (S), chlorine (Cl), potassium (K), calcium (Ca), vanadium (V), manganese
227 (Mn), iron (Fe), and nickel (Ni). To prevent the signal from the copper (Cu)-grid from interfering
228 with measuring the other elements in the particles, Cu was intentionally excluded from the list of
229 elements to detect. Though the grids are coated with carbon (C), C was intentionally included
230 due to the presence of organics within the aerosol loading. The inclusion of C may result in a

231 small underrepresentation of other elements of interest as the C signal may be artificially
232 elevated by the C-coating on the Cu-grids. Commonly used thresholds for detecting an element
233 with CCSEM-EDX are 0.5-1% (by mole fraction) (Hopkins et al., 2008), and depend on factors
234 such as substrate, collection time of spectra, accelerating voltage, sensitivity of the sample to the
235 electron beam, and the element being measured (i.e., EDX is less sensitive to N than S in this
236 analysis). A rough rule of thumb is that when elements are not detected they are < 1% of particle
237 mass.

238 Particle identification was primarily based on semiquantitative elemental composition
239 determined by EDX. Dust particles were identified based on the presence of elements common
240 in aluminosilicate minerals, including Si, Al, Fe, K, Ca, and Mg detected from EDX analysis
241 (Hand et al., 2010; Krueger et al., 2004; Levin et al., 2005). Sea salt particles were characterized
242 by high Na and Cl content, indicating the presence of halite (NaCl) (Bondy et al., 2018). Smoke
243 particles were identified as containing a combination of C, O, S, and K, as shown previously at
244 this site (Royer et al. 2023) and other sites (Bondy et al. 2018; Olson et al. 2019). Internal
245 mixtures of dust and sea salt contained elements indicative of both dust (Si, Al, Fe, K, Ca, and
246 Mg) and sea salt (Na and Cl), usually with portions of the particle containing primarily dust and
247 other portions containing primarily sea salt. Internally mixed dust and smoke contained elements
248 common in mineral dust as well as high C, K, and S which are representative of carbon-based
249 matter that has undergone combustion and aging from sulfur compounds, leading to the formation
250 of potassium-containing salts (Andreae, 1983; Li et al., 2003).

251 Analysis of CCSEM/EDX data also included calculating the extent of aging across the
252 aerosol size distribution. To obtain this information, nitrogen (N) and sulfur (S) % values for
253 each particle in a cluster of a known particle type were extracted along with the corresponding

254 diameter for each particle. Data was then binned according to diameter size, while N and S %
255 values were averaged for each diameter size. Values that did not exceed 1% were rounded down
256 to 0% as only an exceedance of 1% guarantees the presence of an element.

257 The spatial distribution of elemental components on select particles was also determined
258 using elemental mapping (AZtecLive SmartMapping; Oxford Instruments). Approximately 10
259 elemental maps were collected for dust, sea salt, and internally mixed dust and sea salt. Spectra
260 were collected for select components within elemental maps to obtain more detailed chemistry
261 across an individual particle, which allows for analysis of sea salt and dust components as well
262 as the extent of aging in these components within internally mixed dust and sea salt particles.

263 *3.5 Determination of the Chemical Composition at the Aerosol Surface using Time-of-Flight
264 Secondary Ion Mass Spectrometry (TOF-SIMS)*

265 The spatial distribution of major ions across the surface of individual particles was also
266 determined. Aerosol particles were collected onto silicon wafers (Ted Pella, Inc., Prod. # 16008)
267 within the MPS, which were then analyzed with time-of-flight secondary ion mass spectrometry
268 (TOF-SIMS; IONTOF GmbH, Munster, Germany) at PNNL (Li et al., 2023). In addition to
269 providing more detailed chemical information on dust aging, TOF-SIMS supplements the time-
270 intensive method of elemental mapping with SEM/EDX by analyzing multiple particles to
271 explore particle aging, thus supporting the representativeness of elemental mapping results to the
272 total aerosol loading (Hopkins et al., 2008). Further, while EDX is limited to elemental data
273 indicative of aging (e.g., the presence of N and/or S), TOF-SIMS can detect compounds such as
274 nitrate (NO_3^-) and sulfate (HSO_4^-) ions that more concretely provide evidence of chemical aging.

275 To perform TOF-SIMS analysis, a 25 keV Bi_3^+ beam was focused to around a 0.4 μm
276 diameter area on the silicon substrate and scanned over a 100 $\mu\text{m} \times 100 \mu\text{m}^2$ area to produce an

277 image of 256x256 pixels. The current of the beam was 0.36 pA with 10 kHz pulse frequency,
278 and data collection time was 600 s per set of images. The total ion dose for each sample was
279 under the static limit so that only surface information (<2 nm) was collected for the analyzed
280 particles. Delayed extraction mode was also used during image collection to ensure that both
281 positive and negative ion images could be collected at the exact same location. Ions of interest
282 indicated the presence of sea salt (Na_2Cl^+ and NaCl_2^-), dust (Al^+ and Ca^+), and chemical aging
283 (HSO_4^- and NO_3^-). Surface contamination from the lab space the samples were handled in (e.g.,
284 butanediol (m/z -89) likely from butanol used in particle counters in the lab space) was observed
285 in the samples, and to remove contamination, a 20 keV argon (Ar) cluster ($\text{Ar}_{1500\pm 300}^+$) sputtering
286 ion beam was used with a beam current of about 2.0 nA before chemical analysis with the 25
287 keV Bi_3^+ beam occurred. Samples underwent Ar sputtering for 50s to remove the top 100 nm of
288 sample.

289 **4. Results**

290 *4.1 Bulk Aerosol Mass Concentrations From Filter Sampling*

291 Figure 1 presents daily dust mass concentrations and bulk soluble ion content along with
292 correlation plots for each ion of interest **quantified from our filter samples**. Results show a strong
293 correlation between daily dust mass concentrations and nitrate (NO_3^- , $R^2 = 0.75$), dust and non-
294 sea salt sulfate (NSS- SO_4^{2-} , $R^2 = 0.83$), as well as a weak correlation with oxalate ($R^2 = 0.11$)
295 throughout the entire campaign. The presence of nitrate, non-sea salt sulfate, and oxalate from
296 bulk aerosol analysis suggests that dust is being aged during transport. Similar figures for
297 supermicron ($> 1.3 \mu\text{m}$) and submicron ($< 1.3 \mu\text{m}$) analysis can be found in Figures S1 and S2,
298 respectively, in the Supporting Information (SI). Notably, dust mass concentrations were evenly
299 split between the supermicron and submicron size modes. Both supermicron (SUP) and

300 submicron (SUB) analysis shows similar findings to bulk filter analysis in which a strong
301 correlation exists between dust mass concentrations and nitrate ($R^2_{\text{SUP NO}_3} = 0.50$; $R^2_{\text{SUB NO}_3} =$
302 0.59), non-sea salt sulfate ($R^2_{\text{SUP NSS-SO}_4} = 0.80$; $R^2_{\text{SUB NSS-SO}_4} = 0.49$), and oxalate ($R^2_{\text{SUP oxalate}} =$
303 0.63 ; $R^2_{\text{SUB oxalate}} = 0.27$). Differences between supermicron and submicron analysis indicate that
304 nitrate is more concentrated in the supermicron aerosol loading ($\text{Avg}_{\text{SUP NO}_3} = 0.64 \mu\text{g/m}^3$;
305 $\text{Avg}_{\text{SUB NO}_3} = 0.44 \mu\text{g/m}^3$). However, nitrate has an appreciable submicron mode likely due to
306 transported African smoke. Results also show that NSS-SO₄²⁻ ($\text{Avg}_{\text{SUP NSS-SO}_4} = 0.04 \mu\text{g/m}^3$;
307 $\text{Avg}_{\text{SUB NSS-SO}_4} = 0.46 \mu\text{g/m}^3$) and oxalate ($\text{Avg}_{\text{SUP oxalate}} = 0.01 \mu\text{g/m}^3$; $\text{Avg}_{\text{SUB oxalate}} = 0.04 \mu\text{g/m}^3$)
308 are more concentrated in the submicron aerosol loading (Quinn et al., 2021; Royer et al., 2023;
309 Savoie et al., 1982). These findings suggest that dust is possibly being aged, with supermicron
310 dust being primarily aged by nitrate and submicron dust being primarily aged by sulfate and
311 oxalate or via cloud processing (Bondy et al., 2017). However, the limitations of this traditional
312 analysis include an oversimplification of aerosol mixing state by assuming nitrate, non-sea salt
313 sulfate, and oxalate are associated only with dust.

314 *4.2 Size-Resolved Aerosol Mixing State from CCSEM/EDX*

315 Using size-resolved chemical data of individual particles from CCSEM/EDX analysis,
316 we assessed the extent of aging across the aerosol size distribution. The role of particle size is
317 important as smaller dust particles have higher surface area-to-volume ratios that have been
318 suggested to increase the propensity for dust aging (Baker & Jickells, 2006). Results from
319 CCSEM/EDX analysis revealed the presence of both marine particles such as sea spray, aged sea
320 spray, organics, and sulfates, as well as continental particle types including dust, internally
321 mixed dust and sea salt, internally mixed dust and smoke from African wildfires, and externally
322 mixed smoke from African wildfires that are described in detail in Royer et al., 2023. Here, we

323 focus on 4 particle types relevant to the understanding of dust aging during the sampling period:
324 dust, sea spray (combined sea spray and aged sea spray), internally mixed dust and sea salt, and
325 internally mixed dust and smoke.

326 Figure 2 presents detailed size-resolved chemical data for the four particle types of
327 interest during periods of dust transport to Barbados, providing insight into the extent of particle
328 aging across the aerosol size distribution. In Figure 2a, particle types are plotted as number
329 fractions of the aerosol loading as a function of aerosol diameter. While dust mass concentrations
330 from our filters for the submicron ($<1.3 \mu\text{m}$) and supermicron ($>1.3 \mu\text{m}$) aerosol loading are
331 similar at $14.4 \mu\text{g}/\text{m}^3$ and $12.3 \mu\text{g}/\text{m}^3$, respectively, similar to results found for Asian dust
332 (Zhang et al., 2023), CCSEM analysis reveals that dust only makes up 21% and 4% of the
333 submicron ($<1 \mu\text{m}$) and supermicron ($1\text{-}5 \mu\text{m}$) aerosol loading by particle number, respectively.
334 We note that part of this discrepancy could be because the CCSEM analysis is restricted to an
335 upper limit of $5 \mu\text{m}$ in diameter. Figure 2a reveals that internal mixtures of dust with other
336 components such as sea salt and smoke are, in fact, more abundant in the aerosol size distribution
337 compared to dust alone, specifically in the supermicron aerosol loading. Internal mixtures of dust
338 and sea salt comprise 11% of the submicron and 45% of the supermicron aerosol loading, while
339 internal mixtures of dust and smoke comprise 14% of the submicron and 8% of the supermicron
340 aerosol loading. These data reveal a complexity in the aerosol loading overlooked by bulk
341 aerosol analysis, and call into question the assumption that the presence of nitrate, non-sea salt
342 sulfate, and oxalate in bulk samples indicates aging of individual dust particles.

343 Figures 2b, c, d, and e present the average detectable nitrogen (N) content (left axis) and
344 number fraction of N-containing particles (right axis) as a function of particle size for sea salt,
345 internally mixed dust and sea salt, internally mixed dust and smoke, and dust particles,

346 respectively. Values for average N content and particle fractions with detectable N for each
347 particle type are reported in the Supporting Information (SI) tables S1 and S2, respectively.
348 Notably, average N content within individual particles is similar for all 4 particle types, ranging
349 from $2.0 \pm 0.5\%$ to $2.6 \pm 0.4\%$ N with an average N content of $2.2 \pm 0.6\%$. However, between the 4
350 particle types, there are large variations in the number of particles containing detectable N, which
351 is found in $36 \pm 25\%$ of submicron and $76 \pm 12\%$ of supermicron dust particles. This corroborates
352 findings from bulk aerosol analysis which shows that nitrate is more concentrated in the
353 supermicron aerosol loading compared to the submicron aerosol loading. However, Figure 2a
354 reveals that dust only comprises 13% of the aerosol loading by number, with a much larger
355 contribution in the submicron aerosol loading. Considering that individual particles containing
356 detectable N on average have a N content of $2.2 \pm 0.6\%$, dust alone cannot explain trends in bulk
357 nitrate. Figure 2c, d, and e all indicate the presence of N in particles aside from dust. Most
358 notably, internally mixed dust and sea salt, which makes up 45% of the supermicron aerosol
359 loading, has detectable N in $75 \pm 14\%$ of supermicron particles, potentially explaining the high
360 supermicron nitrate content from bulk aerosol analysis.

361 Figures 2f, g, h, and i present the average detectable **sulfur (S)** content and number
362 fraction of S-containing particles for the 4 particle types of interest. Values for average S content
363 and particle fractions with detectable S for each particle type are reported in SI tables S3 and S4,
364 respectively. Similarly to Figures 2b, c, d, and e, the S content in individual particles does not
365 vary much across the aerosol size distribution for each particle type, with the average S content
366 for the total aerosol loading ranging from $1.7 \pm 0.5\%$ to $2.7 \pm 0.5\%$ and averaging $2.4 \pm 1.2\%$.
367 However, **the number fractions of** particles with detectable S do vary across the aerosol size
368 distribution and between particle types. Only $8 \pm 7\%$ of submicron and $14 \pm 15\%$ of supermicron

369 dust particles contained detectable S, indicating a large discrepancy between dust particles
370 containing S and the **sulfate** mass concentrations observed **from our filter analysis**. For almost all
371 particle types across the aerosol size distribution, with the exception of supermicron internal
372 mixtures of dust and smoke, S content exceeds that of dust. Internal mixtures of dust and sea salt
373 far exceed the S content in dust with $28\pm9\%$ of submicron and $35\pm19\%$ of supermicron
374 **internally mixed dust and sea salt particles** containing S. This is especially relevant as internal
375 mixtures of dust and sea salt comprise a much larger portion of the supermicron aerosol loading
376 at 45%, compared to dust at 4%. Sea salt particles, which also make up a much larger portion of
377 the particle loading than dust at 55% of the submicron and 44% of the supermicron aerosol
378 loading, also contained larger number fractions of particles with detectable S where $36\pm22\%$ of
379 submicron and $87\pm58\%$ of supermicron sea salt particles had observable S. Observed S in sea
380 salt and internal mixtures of dust and sea salt may explain the observed non-sea salt sulfate mass
381 concentrations detected in the supermicron size range **of our filter samples**. However, an increase
382 in S in sea salt particles across the size distribution is, in part, likely the result of calcium-sulfate
383 minerals that often form on larger sea salt particles (Ault et al., 2013; Bondy et al., 2018; Choël
384 et al., 2007). **Despite the larger mass concentration of non-sea salt sulfate in the submicron size**
385 **mode of our filters**, number fractions of particles containing detectable S were greater in the
386 supermicron size range compared to the submicron size range for all four particle types except
387 internally mixed dust and smoke, which only comprises 14% of the submicron aerosol loading
388 and has an average S content of $2.7\pm1.0\%$ for submicron particles. Instead, high mass
389 concentrations of sulfate observed in submicron IC analysis are likely caused by ammonium
390 sulfate particles observed during the sampling period. Previous studies show sulfate particles are
391 primarily submicron in size and comprise a large fraction of the submicron aerosol loading

392 during both clean marine conditions and African dust transport (Rodriguez et al., 2011), which
393 may contribute high non-sea salt sulfate mass detectable in bulk aerosol analysis but not in S
394 content for the four particle types of interest (Royer et al., 2023).

395 Ternary plots presented in Figure 3 provide insight into the chemical mixing state of
396 detected particles during the EUREC⁴A/ATOMIC campaign. Single particles are represented by
397 individual dots in each ternary plot. The color of each dot indicates the diameter of the particle it
398 represents. The position of each dot within the ternary plot indicates the relative abundance of
399 sulfur (S, left vertex), chlorine (Cl, top vertex), and nitrogen (N, right vertex) within each
400 particle. Sea salt particles displayed in Figure 3a are clustered primarily at the top vertex
401 indicating high Cl content, low S content, and low N content characteristic of freshly emitted sea
402 salt. Particle clustering at the left and right vertices demonstrates aging of sea salt particles as
403 low Cl content and high S and/or N content suggests chloride has been depleted and replaced
404 with nitrate and sulfate during heterogeneous reactions (Ault et al., 2013, 2014; Behnke et al.,
405 1997; Gaston et al., 2011, 2013; Sobanska et al., 2003). Differences in color at each vertex
406 within Figure 3a also indicates that aged sea salt particles are smaller than fresh sea salt particles
407 on average (Laskin et al., 2012).

408 Dust and internally mixed dust and smoke particles are primarily in the submicron size
409 range, as indicated in Figure 2, and cluster at the right vertex indicating the presence of more N
410 compared to S and Cl in these particles, but these particles are sparse in number concentration.
411 Internally mixed dust and sea salt particles cluster primarily along the right axis of the ternary
412 plot, exhibiting various levels of Cl likely from sea salt, low S, and varying N content. Notably,
413 larger particles identified as internally mixed dust and sea salt had elevated chloride compared to
414 S and N while smaller particles had less chloride and elevated S and N. Figure 3 demonstrates

415 that, of the particle types containing dust components, internal mixtures of dust and sea salt are
416 the most abundant in the aerosol loading and had the highest number of aged particles containing
417 detectable N and S. As such, we focus our subsequent analysis of chemical aging on internally
418 mixed dust and sea salt.

419 *4.3 Elemental Mapping and EDX Analysis to Determine Spatial Patterns of Chemical Aging*
420 *Markers on Individual Particles*

421 While analysis by CCSEM/EDX is valuable for determining size-resolved aerosol mixing
422 state, this method does not map the distribution of elements within each particle, which leads to
423 uncertainty regarding the location of the aging components within the particles, particularly for
424 internally mixed particle types. The elemental mapping image depicted in Figure 4a shows the
425 distribution of elements across an entire particle. The presence of distinct areas of dust
426 components such as Si, Al, Ca, Fe, and Mg that are separate from sea salt components such as
427 Na and Cl within a single particle indicates that the particle is a typical internally mixed dust and
428 sea salt particle. Within the image, the distribution of nitrogen and sulfur are depicted as well,
429 and visually appear present only over the sea salt components. Spectra from EDX analysis were
430 extracted from these distinct regions on the particle which reveal that nitrogen and sulfur are
431 indeed either negligible or completely absent on the dust components (S = 0.1%; N = 0%), while
432 they are present in appreciable quantities on the sea salt components (S = 2.9%; N = 2.9%). Also
433 worth noting is the absence of Cl in the sea salt component, which is indicative of sea salt aging
434 also observed in CCSEM/EDX analysis. This particle is representative of internally mixed dust
435 and sea salt particles detected during the sampling period that similarly show only aging on the
436 sea salt components. Additional examples of internally mixed dust and sea salt particle elemental
437 maps and EDX spectra are provided in Figure S3 of the SI. In addition, elemental maps and

438 corresponding EDX spectra for dust, sea salt, smoke, and internally mixed dust and smoke are
439 provided in Figure S4. Similar to the internally mixed dust and sea spray particles, externally
440 mixed dust and the dust component that is internally mixed with smoke show a lack of aging
441 while the smoke components in mixed dust and smoke particles show extensive accumulation of
442 sulfur. These results suggest that even in internal mixtures of dust, only the sea salt (or smoke)
443 components are undergoing aging at least with S while dust **shows a lack of chemical aging**
444 **markers.**

445 *4.4 TOF-SIMS Imaging of Chemical Markers of Aerosol Aging*

446 Results from TOF-SIMS analysis corroborate findings from SEM/EDX elemental
447 mapping, indicating that aging of internally mixed dust and sea salt particles occurs primarily on
448 the sea salt components. Figure 5 depicts results from TOF-SIMS imaging in which the color
449 intensity in each image represents the intensity of an ion. The cation images in the top panel
450 indicate the presence of sea salt (Na_2Cl^+) and dust (Al^+ and Ca^+), while the last cation image on
451 the righthand side shows all ions plotted together. The cation image indicates that while the
452 majority of the particles in the image presented are sea salt particles due to the abundance of
453 Na_2Cl^+ , the co-location of sea salt components with dust components Al^+ and Ca^+ suggest there
454 is internal mixing of dust and sea salt as well. The anion images in the bottom panel similarly
455 plot individual ions, with the anions indicating the presence of sea salt (NaCl_2^-) and chemical
456 markers of aging from sulfate and nitrate (HSO_4^- and NO_3^- , respectively) as well as a final image
457 containing all anions plotted together. Once again, the presence of the anion NaCl_2^- suggests that
458 sea salt is abundant and further corroborates the cation images. The presence of HSO_4^- and NO_3^-
459 provide insight into the extent of aging on the particles presented in the images which show a
460 strong presence of aging from sulfate through the presence of HSO_4^- but a lack of aging from

461 nitrate through the absence of NO_3^- . Most notably, in the image overlaying all anions together,
462 the NaCl_2^- and HSO_4^- are indistinguishable from one another, indicating aging on the sea salt
463 components. Comparing the cation image to the anion image, it is clear that the areas in which
464 dust components are present are not undergoing aging, rather, primarily the sea salt components
465 are being aged. This supports findings from elemental mapping from SEM/EDX analysis which
466 similarly suggest minimal aging of dust components but aging of sea spray components in these
467 internally mixed particles.

468 **Discussion & Conclusion**

469 Traditional methods for studying dust aging often measure dust concentrations (or their
470 proxies) and soluble materials extracted from aerosol filters have historically used correlations
471 between nss-sulfate, oxalate, and nitrate and dust mass concentrations to prove the presence of
472 dust aging. However, these methods have been unable to determine the mixing state of dust and,
473 thus, whether dust (or another aerosol type) is actually undergoing chemical aging (Chen &
474 Siefert, 2004; Li-Jones & Prospero, 1998). The results from this work indicate that while internal
475 mixtures of dust with other particles are common in the lower boundary layer, both internally
476 and externally mixed African dust detected in the western Atlantic are minimally aged during the
477 wintertime. The boreal winter provides the most ideal conditions for African dust chemical aging
478 to occur due to the lower transport altitude creating more time for MBL emissions to interact
479 with long range transported dust. Further, wintertime dust is often co-transported with Sahelian
480 biomass burning and industrial emissions contributing high concentrations of NO_x and SO_2 that
481 are co-transported with dust, allowing for interaction of dust with gases that can induce chemical
482 aging over several days during transatlantic transport (Hickman et al., 2021). The lack of aging
483 on internal mixtures of dust and smoke indicate rapid conversion of NO_x and SO_2 to nitrate and

484 sulfate on smoke, which is corroborated by the presence of potassium sulfate salts observed on
485 smoke particles from EUREC⁴A/ATOMIC and a lack of these compounds on dust (Royer et al.,
486 2023). The lack of dust aging indicators observed during the winter may indicate a lack of aging
487 throughout the year for **long range transported** African dust. This is apparent from size-resolved
488 CCSEM/EDX data which indicate a lack of aging on dust particles by sulfate and nitrate, and
489 from elemental mapping and TOF-SIMS imaging which show that chemical aging is favored on
490 the sea spray and smoke components of internally mixed dust particles. **Our findings of aged sea**
491 **spray, with losses of chloride, on internally mixed dust and sea spray particles could also indicate**
492 **an increase in the heterogeneous displacement of chloride from these internally mixed particles**
493 **compared to sea spray alone (van Herpen et al., 2023).**

494 It is likely that dust is being aged in the eastern Atlantic, but is removed during **long**
495 **range transport** to the western Atlantic based on previous studies (Abdelkader et al., 2017). The
496 lower altitude for dust transport during the wintertime would also provide ample opportunity for
497 dust aging in the eastern Atlantic which could lead to the rapid aging of dust particles before
498 **long range transport** (Chiapello et al., 1995; Kandler et al., 2011; Ullerstam et al., 2002). The
499 addition of high levels of pollutants from **North African industrial emissions** and the Sahelian
500 fires could also exacerbate aging in the eastern Atlantic (**Andreae et al., 2000; Rodriguez et al.,**
501 **2011**). Aged dust particles are much more efficiently removed by both wet and dry deposition as
502 well as cloud droplet activation as a result of increased water uptake properties enhancing their
503 size and reactivity (Abdelkader et al., 2017; Gaston, 2020; Metzger et al., 2006). It is possible
504 that the rapid aging of dust particles in the eastern Atlantic upon dust emission increases the
505 water uptake properties of the dust, leading to rapid removal of dust particles before **long range**
506 **transport** can carry dust particles to the western Atlantic. This potentially explains the minimal

507 aging of dust particles in the western Atlantic, as any aged dust is likely removed before arriving
508 over Barbados.

509 Based on the high abundance of internally mixed dust and sea salt particles in the aerosol
510 loading, it is likely that unaged dust transported across the Atlantic becomes associated with
511 aged sea spray as dust is being detrained from the SAL into the MBL as suggested in previous
512 studies (Abdelkader et al., 2017). This would result in altitudinal gradients in dust mixing state
513 important for dust radiative impacts. Though dust components in the lower boundary layer are
514 rarely aged, internal mixtures of dust with other components such as sea salt and smoke are
515 common. The high degree of aging on these internally mixed components suggest internal dust
516 mixtures are more hygroscopic and, thus, are potentially efficient as cloud condensation nuclei.

517 The lack of aging on dust components has implications for nutrient availability in mineral
518 dust aerosols transported to the tropical Atlantic as well. Ecosystems in the tropical Atlantic such
519 as the open Atlantic Ocean and the Amazon rainforest rely on external inputs of nutrients such as
520 iron and phosphorus (Fe and P). Chemical aging is particularly important to provide bioavailable
521 sources of nutrients to marine ecosystems, as deposition of particles out of the euphotic zone
522 competes with nutrient release into seawater (Gaston, 2020). The lack of **chemical** aging on
523 mineral dust observed in this study suggests **that the chemical aging of dust plays a limited role**
524 **in observed increases in nutrient solubility during transatlantic transport, consistent with findings**
525 **for Asian dust (Chen et al, 2024).**

526 In this work, we utilized methods that target aerosol mixing state to determine the extent
527 of aging in **long range transported** African dust particles to the western Atlantic during the
528 wintertime. The disparity between bulk methods, which suggest dust aging is extensive, and
529 methods that characterize the aerosol mixing state, which reveal a distinct lack of aging for dust

530 components, reveals the importance of utilizing single-particle methods to understand dust aging
531 (Fitzgerald et al., 2015; Kandler et al., 2011). We also provide much-needed insight into the
532 question of dust aging in the western Atlantic, revealing limited aging for dust particles in the
533 wintertime that should be considered in global and regional models.

534 **Data Availability**

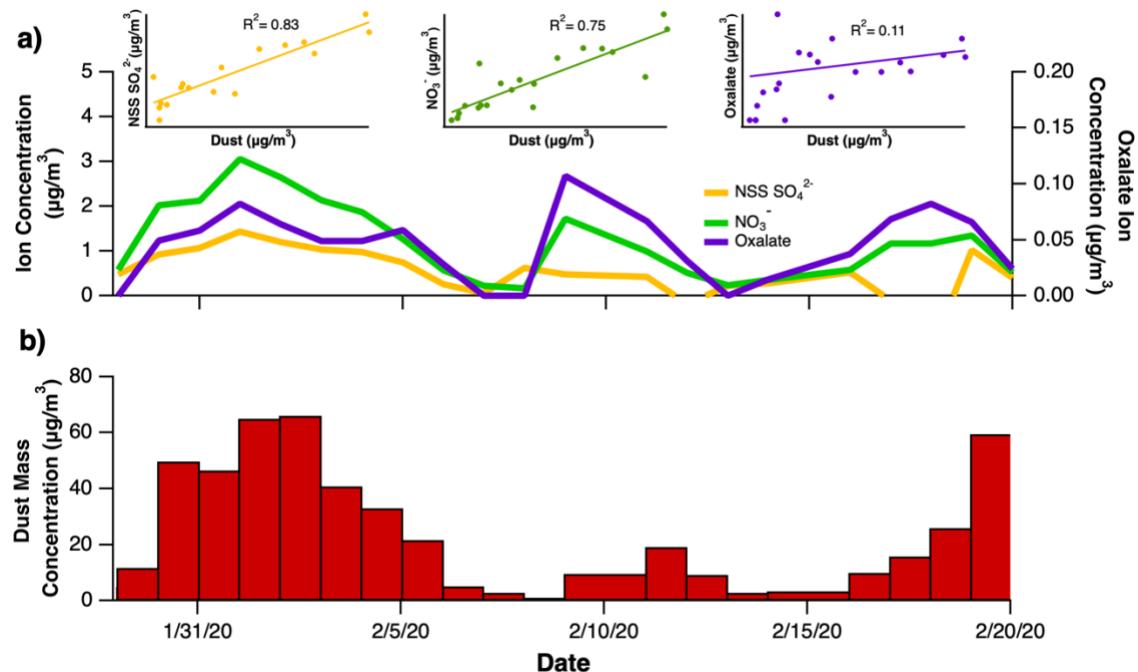
535 **Dust and soluble ion mass concentration data and number counts of particle types detected by**
536 **CCSEM/EDX** will be publicly available in the University of Miami data repository.

537 **Author Contribution:**

538 Conceptualization of this work was performed by HMR, APA, and CJG. Collection of
539 samples was conducted by HMR and EB, while analysis was done by HMR, MS, HE, NNL, ZC,
540 and ZZ. Development of methods used in this work was done by HMR, ZC, SC, APA, and CJG.
541 Instrumentation used to conduct this work was provided by CJG, APA, SC, and ZZ.
542 Validation of data products was performed by HMR, ZC, APA, and CJG. Computer code used
543 for data analysis was provided by APA. Data visualization was performed by HMR, APA,
544 and CJG. Supervision and project administration duties were conducted by CJG. CJG is
545 responsible for funding acquisition. HMR wrote the original draft for publication, and all co-
546 authors reviewed and edited this work.

547

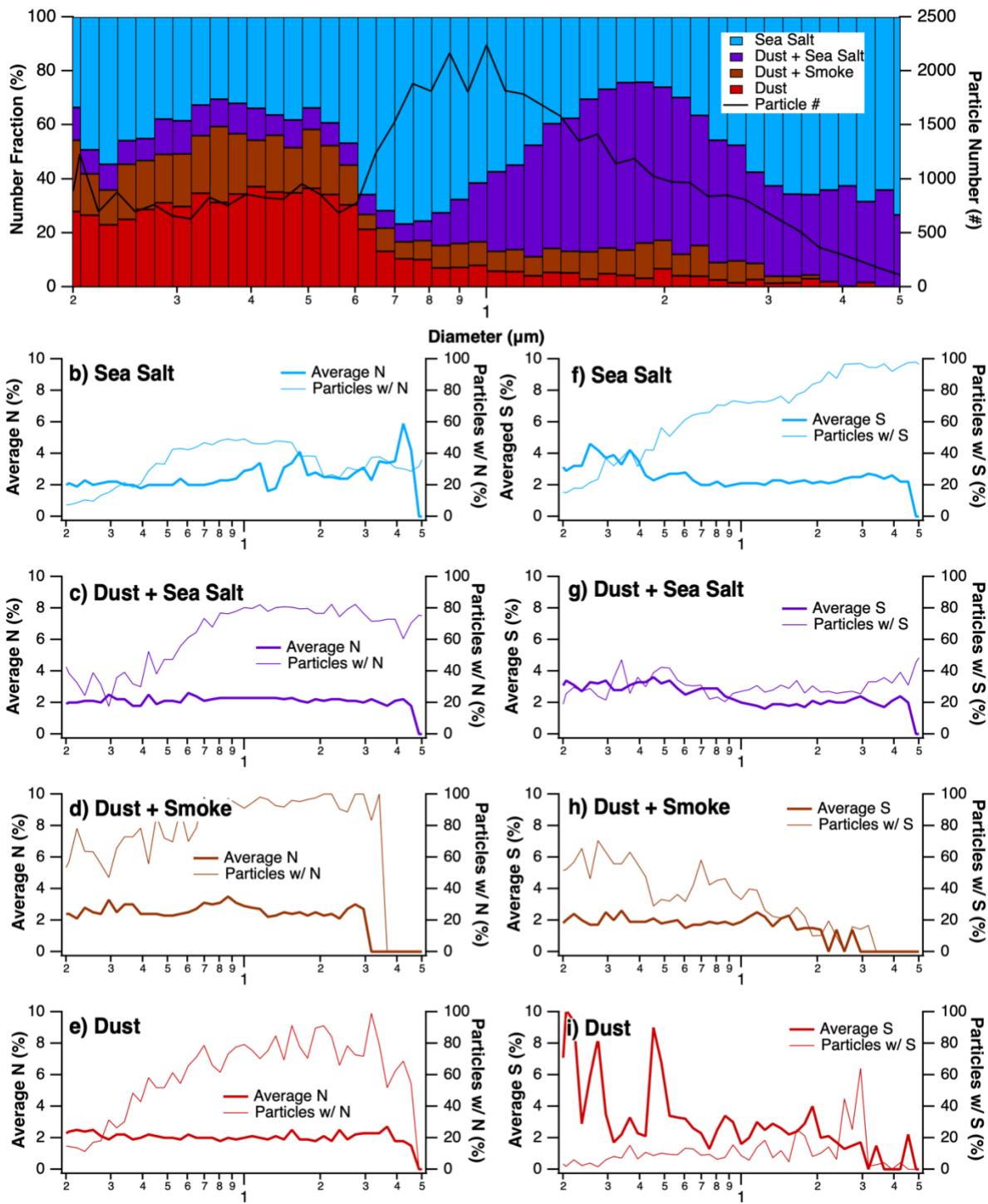
548


549 **Competing Interests:** The authors declare that they have no conflict of interest.

550

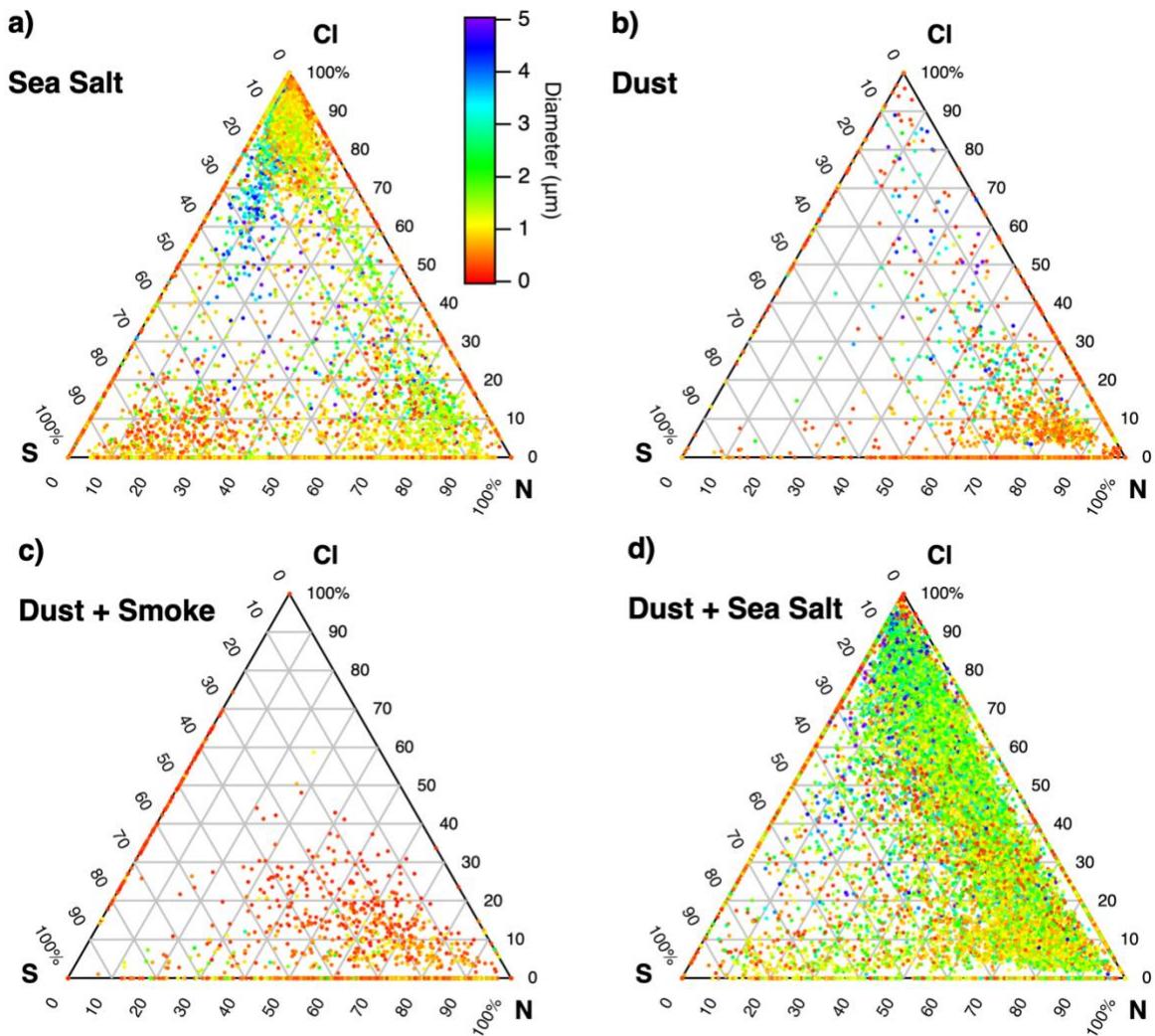
551 **Acknowledgements**

552 C.J.G. acknowledges an NSF CAREER award (1944958). A portion of this research was
553 performed on project awards (10.46936/lser.proj.2019.50816/60000110 and
554 10.46936/lser.proj.2021.51900/60000361) from the Environmental Molecular Sciences

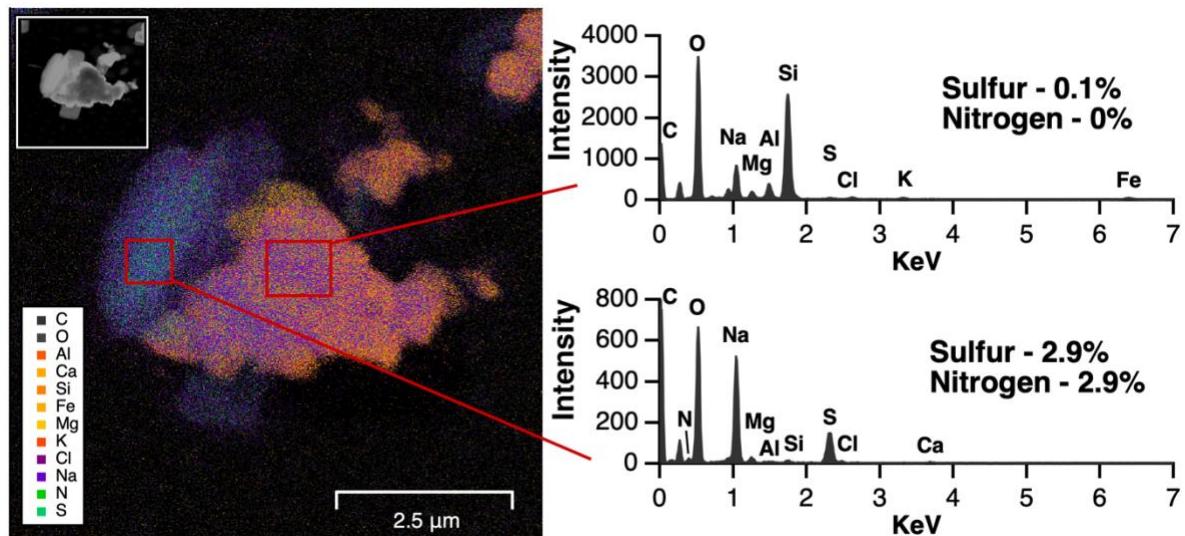

555 Laboratory, a DOE Office of Science User Facility sponsored by the Biological and
556 Environmental Research program under Contract No. DE-AC05-76RL01830.

557

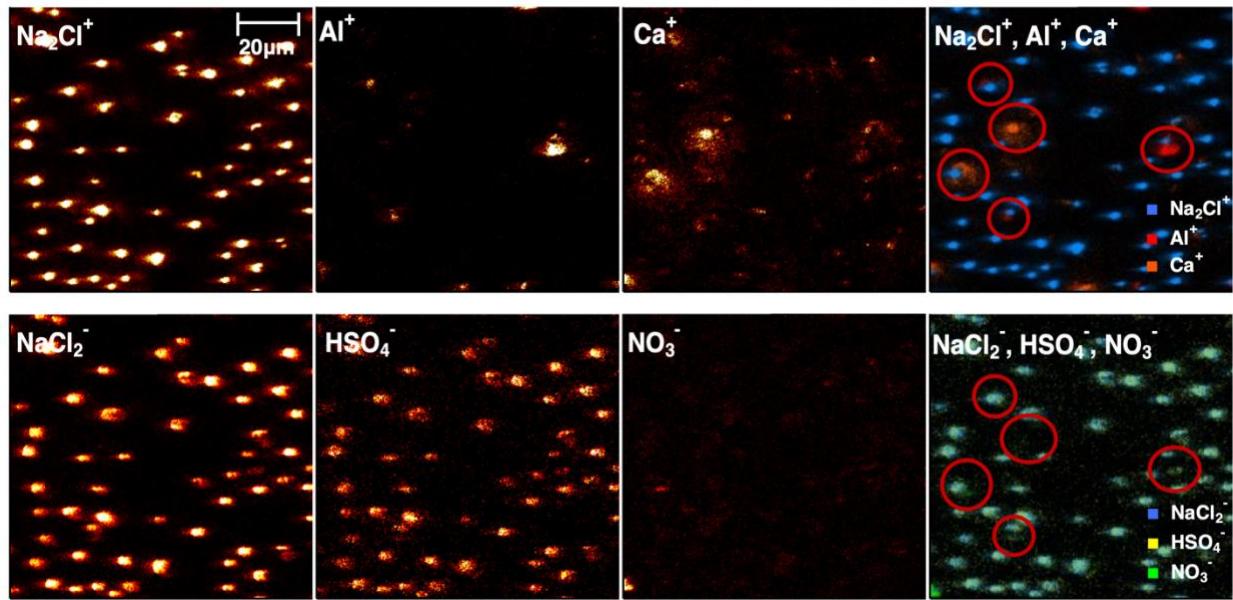
558 Figure 1 – a) Daily bulk soluble ion content for nitrate (left axis; green line), non-sea salt sulfate
559 (left axis; yellow line), and oxalate (right axis; purple line) with correlation plots for each ion as
560 a function of dust mass concentrations and b) daily bulk dust mass concentrations determined for
561 the entire sampling period. Correlation plots include all data, including data from samples with
562 undetectable ions, but trendlines only consider data with detectable dust and ions.


563

564


565 Figure 2 – Size-resolved chemistry plots summarized by a) a total size-resolved chemistry plot in
 566 which the particle number loading is normalized to the sum of sea salt particles (blue), internally
 567 mixed dust and sea salt particles (purple), internally mixed dust and smoke particles (brown), and

568 dust particles (red) for each size bin and presented as a fraction of the particle number loading in
569 each size bin (left axis) along with the total sum of the number of particles of interest for each
570 size bin (right axis: black line). Plots depicting the average **nitrogen (N)** or **sulfur (S)** content in
571 individual particles (left axis; thick line) as well as the number fraction of particles in each size
572 bin containing **nitrogen or sulfur** (right axis; thin line) are provided for b) **nitrogen** in sea salt
573 particles, c) **nitrogen** in internally mixed dust and sea salt particles, d) nitrogen in internally
574 mixed dust and smoke particles, e) **nitrogen** in dust particles, f) **sulfur** in sea salt particles, g)
575 **sulfur** in internally mixed dust and sea salt particles, h) **sulfur** in internally mixed dust and smoke
576 particles, and i) **sulfur** in dust particles.


577

578 Figure 3 – Ternary plots presenting the normalized percentage of **sulfur (S)** (left axis), **chlorine**
 579 (**Cl**), (right axis), and **nitrogen (N)** (bottom axis) present in dust (6,426 particles), internally
 580 mixed dust + smoke (1,588 particles), internally mixed dust + sea salt (18,210 particles), and sea
 581 salt (22,354 particles). Color scaling denotes particle diameter.

582

583 Figure 4 – Elemental mapping image from SEM/EDX analysis for an internally mixed dust and
584 sea salt particle collected at Ragged Point on 2/9/2020 on stage 2 of the MPS. Top left plot
585 depicts the SEM image. The legend explains the color associated with each element plotted in
586 the elemental map with warm colors denoting dust components, cool colors denoting sea spray
587 components and green colors denoting aging markers. Red squares on the elemental map indicate
588 where EDX spectra were extracted for the dust component, which is shown in the top right plot,
589 and the sea salt component, shown in the bottom right plot, of the particle. Sulfur and nitrogen
590 values represent calculated EDX intensity present on dust and sea spray components of the
591 particle.

592

593 Figure 5 – Image plots from TOF-SIMS analysis of a sample collected on 2/18/2020 from stage
 594 1 of the MPS. Red circles mark the location of dust components of the particles. The top panel
 595 shows images of cations indicative of sea salt (Na_2Cl^+), dust (Al^+ and Ca^+), and a combined plot
 596 showing all three markers. The bottom panel shows anions indicative of sea salt (NaCl_2^-),
 597 chemical aging markers (sulfate (HSO_4^-), nitrate (NO_3^-)) and a combined plot showing all three
 598 markers.

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614 **References**

615

616 Abdelkader, M., Metzger, S., Mamouri, R. E., Astitha, M., Barrie, L., Levin, Z., & Lelieveld, J.
617 (2015). Dust-air pollution dynamics over the eastern Mediterranean. *Atmospheric*
618 *Chemistry and Physics*, 15(16), 9173–9189. <https://doi.org/10.5194/acp-15-9173-2015>

619 Abdelkader, M., Metzger, S., Steil, B., Klingmüller, K., Tost, H., Pozzer, A., Stenchikov, G.,
620 Barrie, L., & Lelieveld, J. (2017). Sensitivity of transatlantic dust transport to chemical
621 aging and related atmospheric processes. *Atmospheric Chemistry and Physics*, 17(6), 3799–
622 3821. <https://doi.org/10.5194/acp-17-3799-2017>

623 Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. *Science*,
624 245(4923), 1227–1230. <https://doi.org/10.1126/science.245.4923.1227>

625 Andreae, M O, Elbert, W., Gabriel, R., Johnson, D. W., Osborne, S., & Wood, R. (2000).
626 Soluble ion chemistry of the atmospheric aerosol and SO₂ concentrations over the eastern
627 North Atlantic during ACE-2. *Tellus B: Chemical and Physical Meteorology*.
628 <https://doi.org/10.3402/tellusb.v52i4.17087>

629 Andreae, Meinrat O. (1983). Soot Carbon and Excess Fine Potassium: Long-Range Transport of
630 Combustion-Derived Aerosols. *Science*, 220(4602), 1148–1151.
631 <https://doi.org/10.1126/science.220.4602.1148>

632 Andreae, Meinrat O, Charlson, R. J., Bruynseels, F., Storms, H., Grieken, R. Van, & Maenhaut,
633 W. (1986). Internal Mixture of Sea Salt, Silicates, and Excess Sulfate in Marine Aerosols.
634 *Science*, 232(4758), 1620–1623. <https://doi.org/10.1126/science.232.4758.1620>

635 Archibald, A. T., Witham, C. S., Ashfold, M. J., Manning, A. J., O'Doherty, S., Greally, B. R.,
636 Young, D., & Shallcross, D. E. (2015). Long-term high frequency measurements of ethane,
637 benzene and methyl chloride at Ragged Point, Barbados: Identification of long-range
638 transport events. *Elementa: Science of the Anthropocene*, 3.
639 <https://doi.org/10.12952/journal.elementa.000068>

640 Archuleta, C. M., DeMott, P. J., & Kreidenweis, S. M. (2005). Ice nucleation by surrogates for
641 atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures.
642 *Atmospheric Chemistry and Physics*, 5(10), 2617–2634. <https://doi.org/10.5194/acp-5-2617-2005>

643

644 Ault, A. P., Peters, T. M., Sawvel, E. J., Casuccio, G. S., Willis, R. D., Norris, G. A., & Grassian,
645 V. H. (2012). Single-Particle SEM-EDX Analysis of Iron-Containing Coarse Particulate
646 Matter in an Urban Environment: Sources and Distribution of Iron within Cleveland, Ohio.
647 *Environmental Science & Technology*, 46(8), 4331–4339.
648 <https://doi.org/10.1021/es204006k>

649 Ault, A. P., Moffet, R. C., Baltrusaitis, J., Collins, D. B., Ruppel, M. J., Cuadra-Rodriguez, L.
650 A., Zhao, D., Guasco, T. L., Ebbin, C. J., Geiger, F. M., Bertram, T. H., Prather, K. A., &
651 Grassian, V. H. (2013). Size-Dependent Changes in Sea Spray Aerosol Composition and
652 Properties with Different Seawater Conditions. *Environmental Science & Technology*,
653 47(11), 5603–5612. <https://doi.org/10.1021/es400416g>

654 Ault, A. P., Guasco, T. L., Baltrusaitis, J., Ryder, O. S., Trueblood, J. V, Collins, D. B., Ruppel,
655 M. J., Cuadra-Rodriguez, L. A., Prather, K. A., & Grassian, V. H. (2014). Heterogeneous
656 Reactivity of Nitric Acid with Nascent Sea Spray Aerosol: Large Differences Observed
657 between and within Individual Particles. *The Journal of Physical Chemistry Letters*, 5(15),
658 2493–2500. <https://doi.org/10.1021/jz5008802>

659 Baker, A. R., & Jickells, T. D. (2006). Mineral particle size as a control on aerosol iron

660 solubility. *Geophysical Research Letters*, 33(17), 1–4.
 661 <https://doi.org/10.1029/2006GL026557>

662 Balkanski, Y., Schulz, M., Clauquin, T., & Guibert, S. (2007). Reevaluation of Mineral aerosol
 663 radiative forcings suggests a better agreement with satellite and AERONET data.
Atmospheric Chemistry and Physics, 7(1), 81–95. <https://doi.org/10.5194/acp-7-81-2007>

664 Barkley, A. E., Prospero, J. M., Mahowald, N., Hamilton, D. S., Popendorf, K. J., Oehlert, A.
 665 M., Pourmand, A., Gatineau, A., Panechou-Pulcherie, K., Blackwelder, P., & Gaston, C. J.
 666 (2019). African biomass burning is a substantial source of phosphorus deposition to the
 667 Amazon, Tropical Atlantic Ocean, and Southern Ocean. *Proceedings of the National
 668 Academy of Sciences*, 116(33), 16216 LP – 16221. <https://doi.org/10.1073/pnas.1906091116>

669 Bauer, S. E., Mishchenko, M. I., Lacis, A. A., Zhang, S., Perlitz, J., & Metzger, S. M. (2007).
 670 Do sulfate and nitrate coatings on mineral dust have important effects on radiative
 671 properties and climate modeling? *Journal of Geophysical Research: Atmospheres*, 112(D6).
 672 [https://doi.org/https://doi.org/10.1029/2005JD006977](https://doi.org/10.1029/2005JD006977)

673 Behnke, W., George, C., Scheer, V., & Zetzsch, C. (1997). Production and decay of ClNO₂ from
 674 the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments. *Journal of
 675 Geophysical Research Atmospheres*, 102(3), 3795–3804. <https://doi.org/10.1029/96jd03057>

676 Bondy, A. L., Bonanno, D., Moffet, R. C., Wang, B., Laskin, A., & Ault, A. P. (2018). The
 677 diverse chemical mixing state of aerosol particles in the southeastern United States.
Atmospheric Chemistry and Physics, 18(16), 12595–12612. <https://doi.org/10.5194/acp-18-12595-2018>

678 Bondy, Amy L., Wang, B., Laskin, A., Craig, R. L., Nhliziyo, M. V., Bertman, S. B., Pratt, K. A.,
 679 Shepson, P. B., & Ault, A. P. (2017). Inland Sea Spray Aerosol Transport and Incomplete
 680 Chloride Depletion: Varying Degrees of Reactive Processing Observed during SOAS.
Environmental Science & Technology, 51(17), 9533–9542.
<https://doi.org/10.1021/acs.est.7b02085>

681 Carlson, T. N., & Prospero, J. M. (1972). The Large-Scale Movement of Saharan Air Outbreaks
 682 over the Northern Equatorial Atlantic. *Journal of Applied Meteorology and Climatology*,
 683 11(2), 283–297. [https://doi.org/10.1175/1520-0450\(1972\)011<0283:TLSMOS>2.0.CO;2](https://doi.org/10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2)

684 Chen, Y., & Siefert, R. L. (2004). Seasonal and spatial distributions and dry deposition fluxes of
 685 atmospheric total and labile iron over the tropical and subtropical North Atlantic Ocean.
Journal of Geophysical Research: Atmospheres, 109(D9).
<https://doi.org/https://doi.org/10.1029/2003JD003958>

686 Chen, Y.Z., Wang, Z.Y., Fang, Z.Y., Huang, C.P., Xu, H., Zhang, H.H., Zhang, T.Y., Wang, F.,
 687 Luo, L., Shi, G.L., Wang, X.M., & Tang, M.J. (2024) Dominant contribution of non-dust
 688 primary emissions and secondary processes to dissolved aerosol iron. *Environmental
 689 Science & Technology*, 58, 17355–17363.

690 Chiapello, I., Bergametti, G., Gomes, L., Chatenet, B., Dulac, F., Pimenta, J., & Suares, E. S.
 691 (1995). An additional low layer transport of Sahelian and Saharan dust over the north-
 692 eastern Tropical Atlantic. *Geophysical Research Letters*, 22(23), 3191–3194.
<https://doi.org/https://doi.org/10.1029/95GL03313>

693 Choël, M., Deboudt, K., Flament, P., Aimoz, L., & Mériaux, X. (2007). Single-particle analysis
 694 of atmospheric aerosols at Cape Gris-Nez, English Channel: Influence of steel works on
 695 iron apportionment. *Atmospheric Environment*, 41(13), 2820–2830.
<https://doi.org/https://doi.org/10.1016/j.atmosenv.2006.11.038>

696 Cziczo, D. J., Murphy, D. M., Hudson, P. K., & Thomson, D. S. (2004). Single particle

706 measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE.
707 *Journal of Geophysical Research: Atmospheres*, 109(D4).
708 <https://doi.org/https://doi.org/10.1029/2003JD004032>

709 DeMott, P. J., Sassen, K., Poellot, M. R., Baumgardner, D., Rogers, D. C., Brooks, S. D., Prenni,
710 A. J., & Kreidenweis, S. M. (2003). African dust aerosols as atmospheric ice nuclei.
711 *Geophysical Research Letters*, 30(14).
712 <https://doi.org/https://doi.org/10.1029/2003GL017410>

713 Denjean, C., Caquineau, S., Desboeufs, K., Laurent, B., Maille, M., Quiñones Rosado, M.,
714 Vallejo, P., Mayol-Bracero, O. L., & Formenti, P. (2015). Long-range transport across the
715 Atlantic in summertime does not enhance the hygroscopicity of African mineral dust.
716 *Geophysical Research Letters*, 42(18), 7835–7843.
717 <https://doi.org/https://doi.org/10.1002/2015GL065693>

718 Desboeufs, K., Formenti, P., Torres-Sánchez, R., Schepanski, K., Chaboureau, J.-P., Andersen,
719 H., Cermak, J., Feuerstein, S., Laurent, B., Klopper, D., Namwoonde, A., Cazaunau, M.,
720 Chevaillier, S., Feron, A., Mirande-Bret, C., Triquet, S., & Piketh, S. J. (2024). Fractional
721 solubility of iron in mineral dust aerosols over coastal Namibia: a link to marine biogenic
722 emissions? *Atmospheric Chemistry and Physics*, 24(2), 1525–1541.
723 <https://doi.org/10.5194/acp-24-1525-2024>

724 Elliott, H. E., Popendorf, K. J., Blades, E., Royer, H. M., Pollier, C. G. L., Oehlert, A. M.,
725 Kukkadapu, R., Ault, A., & Gaston, C. J. (2024). Godzilla mineral dust and La Soufrière
726 volcanic ash fallout immediately stimulate marine microbial phosphate uptake, 10.
727 <https://doi.org/https://doi.org/10.3389/fmars.2023.1308689>

728 Fitzgerald, E., Ault, A. P., Zauscher, M. D., Mayol-Bracero, O. L., & Prather, K. A. (2015).
729 Comparison of the mixing state of long-range transported Asian and African mineral dust.
730 *Atmospheric Environment*, 115, 19–25.
731 <https://doi.org/https://doi.org/10.1016/j.atmosenv.2015.04.031>

732 Gaston, C. J. (2020). Re-examining Dust Chemical Aging and Its Impacts on Earth's Climate.
733 *Accounts of Chemical Research*, 53(5), 1005–1013.
734 <https://doi.org/10.1021/acs.accounts.0c00102>

735 Gaston, C. J., Pratt, K. A., Qin, X., & Prather, K. A. (2010). Real-time detection and mixing state
736 of methanesulfonate in single particles at an inland urban location during a phytoplankton
737 bloom. *Environmental Science and Technology*, 44(5), 1566–1572.
738 <https://doi.org/10.1021/es902069d>

739 Gaston, C. J., Furutani, H., Guazzotti, S. A., Coffee, K. R., Bates, T. S., Quinn, P. K., Aluwihare,
740 L. I., Mitchell, B. G., & Prather, K. A. (2011). Unique ocean-derived particles serve as a
741 proxy for changes in ocean chemistry. *Journal of Geophysical Research Atmospheres*,
742 116(18), 1–13. <https://doi.org/10.1029/2010JD015289>

743 Gaston, C. J., Quinn, P. K., Bates, T. S., Gilman, J. B., Bon, D. M., Kuster, W. C., & Prather, K.
744 A. (2013). The impact of shipping, agricultural, and urban emissions on single particle
745 chemistry observed aboard the R/V Atlantis during CalNex. *Journal of Geophysical
746 Research Atmospheres*, 118(10), 5003–5017. <https://doi.org/10.1002/jgrd.50427>

747 **Gaston, C.J., Prospero, J.M., Foley, K., Pye, H.O.T., Custals, L., Blades, E., Sealy, P., &
748 Christie, J.A. (2024) Diverging trends in aerosol sulfate and nitrate measured in the remote
749 North Atlantic on Barbados are attributed to clean air policies, African smoke, and
750 anthropogenic emissions. *Atmospheric Chemistry & Physics*, 24(13), 8049-8066.**

751 Gibson, E. R., Gierlus, K. M., Hudson, P. K., & Grassian, V. H. (2007). Generation of Internally

752 Mixed Insoluble and Soluble Aerosol Particles to Investigate the Impact of Atmospheric
753 Aging and Heterogeneous Processing on the CCN Activity of Mineral Dust Aerosol.
754 *Aerosol Science and Technology*, 41(10), 914–924.
755 <https://doi.org/10.1080/02786820701557222>

756 Gierlus, K. M., Laskina, O., Abernathy, T. L., & Grassian, V. H. (2012). Laboratory study of the
757 effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol.
758 *Atmospheric Environment*, 46, 125–130.
759 <https://doi.org/https://doi.org/10.1016/j.atmosenv.2011.10.027>

760 Gutleben, M., Groß, S., Heske, C., & Wirth, M. (2022). Wintertime Saharan dust transport
761 towards the Caribbean: an airborne lidar case study during EUREC⁴A. *Atmospheric
762 Chemistry and Physics*, 22(11), 7319–7330. <https://doi.org/10.5194/acp-22-7319-2022>

763 Han, X., Zhang, M., Han, Z., Xin, J., & Liu, X. (2011). Simulation of aerosol direct radiative
764 forcing with RAMS-CMAQ in East Asia. *Atmospheric Environment*, 45(36), 6576–6592.
765 <https://doi.org/https://doi.org/10.1016/j.atmosenv.2011.08.006>

766 Hand, V. L., Capes, G., Vaughan, D. J., Formenti, P., Haywood, J. M., & Coe, H. (2010).
767 Evidence of internal mixing of African dust and biomass burning particles by individual
768 particle analysis using electron beam techniques. *Journal of Geophysical Research:
769 Atmospheres*, 115(D13). <https://doi.org/https://doi.org/10.1029/2009JD012938>

770 Haywood, J., Francis, P., Osborne, S., Glew, M., Loeb, N., Highwood, E., Tanré, D., Myhre, G.,
771 Formenti, P., & Hirst, E. (2003). Radiative properties and direct radiative effect of Saharan
772 dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. *Journal of
773 Geophysical Research: Atmospheres*, 108(D18).
774 <https://doi.org/https://doi.org/10.1029/2002JD002687>

775 Hickman, J. E., Andela, N., Tsigaridis, K., Galy-Lacaux, C., Ossouhou, M., & Bauer, S. E.
776 (2021). Reductions in NO₂ burden over north equatorial Africa from decline in biomass
777 burning in spite of growing fossil fuel use, 2005 to 2017. *Proceedings of the National
778 Academy of Sciences*, 118(7), e2002579118. <https://doi.org/10.1073/pnas.2002579118>

779 Hopkins, R. J., Desyaterik, Y., Tivanski, A. V., Zaveri, R. A., Berkowitz, C. M., Tyliszczak, T.,
780 Gilles, M. K., & Laskin, A. (2008). Chemical speciation of sulfur in marine cloud droplets
781 and particles: Analysis of individual particles from the marine boundary layer over the
782 California current. *Journal of Geophysical Research: Atmospheres*, 113(D4).
783 <https://doi.org/https://doi.org/10.1029/2007JD008954>

784 Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J.,
785 Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S.,
786 Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., & Torres, R. (2005). Global Iron
787 Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. *Science*,
788 308(5718), 67–71. <https://doi.org/10.1126/science.1105959>

789 Kandler, K., Lieke, K., Benker, N., Emmel, C., Küpper, M., Müller-Ebert, D., Ebert, M.,
790 Scheuvens, D., Schladitz, A., Schütz, L., & Weinbruch, S. (2011). Electron microscopy of
791 particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment:
792 particle chemistry, shape, mixing state and complex refractive index. *Tellus B: Chemical
793 and Physical Meteorology*, 63(4), 475–496. <https://doi.org/10.1111/j.1600-0889.2011.00550.x>

795 Kandler, K., Schneiders, K., Ebert, M., Hartmann, M., Weinbruch, S., Prass, M., & Pöhlker, C.
796 (2018). Composition and mixing state of atmospheric aerosols determined by electron
797 microscopy: method development and application to aged Saharan dust deposition in the

798 Caribbean boundary layer. *Atmos. Chem. Phys.*, 18(18), 13429–13455.
799 <https://doi.org/10.5194/acp-18-13429-2018>

800 Kelly, J. T., Chuang, C. C., & Wexler, A. S. (2007). Influence of dust composition on cloud
801 droplet formation. *Atmospheric Environment*, 41(14), 2904–2916.
802 <https://doi.org/10.1016/j.atmosenv.2006.12.008>

803 Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Petters, M. D., Prenni, A. J., & Carrico, C. M.
804 (2009). Hygroscopicity and cloud droplet activation of mineral dust aerosol. *Geophysical
805 Research Letters*, 36(8). [https://doi.org/https://doi.org/10.1029/2009GL037348](https://doi.org/10.1029/2009GL037348)

806 Krueger, B. J., Grassian, V. H., Laskin, A., & Cowin, J. P. (2003). The transformation of solid
807 atmospheric particles into liquid droplets through heterogeneous chemistry: Laboratory
808 insights into the processing of calcium containing mineral dust aerosol in the troposphere.
809 *Geophysical Research Letters*, 30(3). [https://doi.org/https://doi.org/10.1029/2002GL016563](https://doi.org/10.1029/2002GL016563)

810 Krueger, B. J., Grassian, V. H., Cowin, J. P., & Laskin, A. (2004). Heterogeneous chemistry of
811 individual mineral dust particles from different dust source regions: The importance of
812 particle mineralogy. *Atmospheric Environment*, 38(36), 6253–6261.
813 <https://doi.org/10.1016/j.atmosenv.2004.07.010>

814 Lance, S., Raatikainen, T., Onasch, T. B., Worsnop, D. R., Yu, X.-Y., Alexander, M. L.,
815 Stolzenburg, M. R., McMurry, P. H., Smith, J. N., & Nenes, A. (2013). Aerosol mixing
816 state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006.
817 *Atmospheric Chemistry and Physics*, 13(9), 5049–5062. <https://doi.org/10.5194/acp-13-5049-2013>

818 Laskin, A., Wietsma, T. W., Krueger, B. J., & Grassian, V. H. (2005). Heterogeneous chemistry
819 of individual mineral dust particles with nitric acid: A combined CCSEM/EDX, ESEM, and
820 ICP-MS study. *Journal of Geophysical Research: Atmospheres*, 110(D10).
821 <https://doi.org/https://doi.org/10.1029/2004JD005206>

822 Laskin, Alexander, Moffet, R. C., Gilles, M. K., Fast, J. D., Zaveri, R. A., Wang, B., Nigge, P.,
823 & Shutthanandan, J. (2012). Tropospheric chemistry of internally mixed sea salt and
824 organic particles: Surprising reactivity of NaCl with weak organic acids. *Journal of
825 Geophysical Research: Atmospheres*, 117(D15).
826 <https://doi.org/https://doi.org/10.1029/2012JD017743>

827 Levin, Z., Teller, A., Ganor, E., & Yin, Y. (2005). On the interactions of mineral dust, sea-salt
828 particles, and clouds: A measurement and modeling study from the Mediterranean Israeli
829 Dust Experiment campaign. *Journal of Geophysical Research: Atmospheres*, 110(D20).
830 <https://doi.org/https://doi.org/10.1029/2005JD005810>

831 Levin, Zev, Ganor, E., & Gladstein, V. (1996). The Effects of Desert Particles Coated with
832 Sulfate on Rain Formation in the Eastern Mediterranean. *Journal of Applied Meteorology
833 and Climatology*, 35(9), 1511–1523. [https://doi.org/https://doi.org/10.1175/1520-0450\(1996\)035<1511:TEODPC>2.0.CO;2](https://doi.org/https://doi.org/10.1175/1520-0450(1996)035<1511:TEODPC>2.0.CO;2)

834 Li-Jones, X., & Prospero, J. M. (1998). Variations in the size distribution of non-sea-salt sulfate
835 aerosol in the marine boundary layer at Barbados: Impact of African dust. *Journal of
836 Geophysical Research: Atmospheres*, 103(D13), 16073–16084.
837 <https://doi.org/https://doi.org/10.1029/98JD00883>

838 Li, J., Pósfai, M., Hobbs, P. V., & Buseck, P. R. (2003). Individual aerosol particles from
839 biomass burning in southern Africa: 2, Compositions and aging of inorganic particles.
840 *Journal of Geophysical Research: Atmospheres*, 108(D13).
841 <https://doi.org/https://doi.org/10.1029/2002JD002310>

844 Li, W., Shao, L., Shi, Z., Chen, J., Yang, L., Yuan, Q., Yan, C., Zhang, X., Wang, Y., Sun, J.,
845 Zhang, Y., Shen, X., Wang, Z., & Wang, W. (2014). Mixing state and hygroscopicity of
846 dust and haze particles before leaving Asian continent. *Journal of Geophysical Research: Atmospheres*, 119(2), 1044–1059. [https://doi.org/https://doi.org/10.1002/2013JD021003](https://doi.org/10.1002/2013JD021003)

847 Li, Y., Zhou, Y., Guo, W., Zhang, X., Huang, Y., He, E., Li, R., Yan, B., Wang, H., Mei, F., Liu,
848 M., & Zhu, Z. (2023). Molecular Imaging Reveals Two Distinct Mixing States of PM_{2.5}
849 Particles Sampled in a Typical Beijing Winter Pollution Case. *Environmental Science &
850 Technology*, 57(15), 6273–6283. <https://doi.org/10.1021/acs.est.2c08694>

851 Ma, C.-J., Tohno, S., Kasahara, M., & Hayakawa, S. (2004). Properties of the size-resolved and
852 individual cloud droplets collected in western Japan during the Asian dust storm event.
853 *Atmospheric Environment*, 38(27), 4519–4529.
854 <https://doi.org/https://doi.org/10.1016/j.atmosenv.2004.05.032>

855 Mahowald, N. (2011). Aerosol Indirect Effect on Biogeochemical Cycles and Climate. *Science*,
856 334(6057), 794–796. <https://doi.org/10.1126/science.1207374>

857 Metzger, S., Mihalopoulos, N., & Lelieveld, J. (2006). Importance of mineral cations and
858 organics in gas-aerosol partitioning of reactive nitrogen compounds: case study based on
859 MINOS results. *Atmospheric Chemistry and Physics*, 6(9), 2549–2567.
860 <https://doi.org/10.5194/acp-6-2549-2006>

861 Myhre, G., & Stordal, F. (2001). Global sensitivity experiment of the radiative forcing due to
862 mineral aerosols. *Journal of Geophysical Research*, 106, 18193–18204.
863 <https://doi.org/10.1029/2000JD900536>

864 Nenes, A., Krom, M. D., Mihalopoulos, N., Van Cappellen, P., Shi, Z., Bougiatioti, A., Zarmpas,
865 P., & Herut, B. (2011). Atmospheric acidification of mineral aerosols: a source of
866 bioavailable phosphorus for the oceans. *Atmospheric Chemistry and Physics*, 11(13), 6265–
867 6272. <https://doi.org/10.5194/acp-11-6265-2011>

868 Olson, N.E., May, N.W., Kirpes, R.M., Watson, A.E., Hajny, K.D., Slade, J.H., Shepson, P.B.,
869 Stirm, B.H., Pratt, K.A., & Ault, A.P. (2019) Lake spray aerosol incorporated into Great
870 Lakes Clouds. *ACS Earth & Space Chemistry*, 3, (12), 2765–2774.

871 Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., & Lelieveld, J. (2010). Global distribution of the
872 effective aerosol hygroscopicity parameter for CCN activation. *Atmospheric Chemistry and
873 Physics*, 10(12), 5241–5255. <https://doi.org/10.5194/acp-10-5241-2010>

874 Prospero, J M. (1968). atmospheric dust studies on Barbados. *Bulletin of the American
875 Meteorological Society*, 49(6), 645–652. <https://doi.org/10.1175/1520-0477-49.6.645>

876 Prospero, J. M., & Mayol-Bracero, O. L. (2013). Understanding the transport and impact of
877 African dust on the Caribbean Basin. *Bulletin of the American Meteorological Society*,
878 94(9), 1329–1337. <https://doi.org/10.1175/BAMS-D-12-00142.1>

879 Prospero, J. M. (1999). Long-range transport of mineral dust in the global atmosphere: Impact of
880 African dust on the environment of the southeastern United States. *Proceedings of the
881 National Academy of Sciences*, 96(7), 3396 LP – 3403.
882 <https://doi.org/10.1073/pnas.96.7.3396>

883 Prospero, J.M, Blades, E., Mathison, G., & Naidu, R. (2005). Interhemispheric transport of
884 viable fungi and bacteria from Africa to the Caribbean with soil dust. *Aerobiologia*, 21(1),
885 1–19. <https://doi.org/10.1007/s10453-004-5872-7>

886 Prospero, J. M, Delany, A. C., Delany, A. C., & Carlson, T. N. (2021). The Discovery of African
887 Dust Transport to the Western Hemisphere and the Saharan Air Layer: A History. *Bulletin
888 of the American Meteorological Society*, 102(6), E1239–E1260.

889

890 https://doi.org/10.1175/BAMS-D-19-0309.1
891 Quinn, P. K., Thompson, E. J., Coffman, D. J., Baidar, S., Bariteau, L., Bates, T. S., Bigorre, S.,
892 Brewer, A., de Boer, G., de Szoek, S. P., Drushka, K., Foltz, G. R., Intrieri, J., Iyer, S.,
893 Fairall, C. W., Gaston, C. J., Jansen, F., Johnson, J. E., Krüger, O. O., Marchbanks, R. D.,
894 Moran, K. P., Noone, D., Pezoa, S., Pincus, R., Plueddemann, A. J., Pöhlker, M. L., Pöschl,
895 U., Quinones Melendez, E., Royer, H. M., Szczodrak, M., Thomson, J., Upchurch, L. M.,
896 Zhang, C., Zhang, D., & Zuidema, P. (2021). Measurements from the RV Ronald H. Brown
897 and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale
898 Interaction Campaign (ATOMIC). *Earth Syst. Sci. Data*, 13(4), 1759–1790.
899 https://doi.org/10.5194/essd-13-1759-2021
900 Rickly, P. S., Guo, H., Campuzano-Jost, P., Jimenez, J. L., Wolfe, G. M., Bennett, R., Bourgeois,
901 I., Crounse, J. D., Dibb, J. E., DiGangi, J. P., Diskin, G. S., Dollner, M., Gargulinski, E. M.,
902 Hall, S. R., Halliday, H. S., Hanisco, T. F., Hannun, R. A., Liao, J., Moore, R., Nault, B. A.,
903 Nowak, J. B., Peischl, J., Robinson, C. E., Ryerson, T., Sanchez, K. J., Schöberl, M., Soja,
904 A. J., St. Clair, J. M., Thornhill, K. L., Ullmann, K., Wennberg, P. O., Weinzierl, B.,
905 Wiggins, E. B., Winstead, E. L., & Rollins, A. W. (2022). Emission factors and evolution of
906 SO₂ measured from biomass burning in wildfires and agricultural fires. *Atmospheric
907 Chemistry and Physics*, 22(23), 15603–15620. https://doi.org/10.5194/acp-22-15603-2022
908 Rodriguez, S., Alastuey, A., Alonso-Pérez, S., Querol, X., Cuevas, E., Abreu-Afonso, J., Viana,
909 M., Pérez, N., Pandolfi, M., & de la Rosa, J. (2011). Transport of desert dust mixed with
910 North African industrial pollutants in the subtropical Saharan Air Layer. *Atmospheric
911 Chemistry & Physics*, 11, 6663–6685.
912 Rodríguez, S., Prospero, J.M., López-Darias, J., García-Alvarez, M.-I., Zuidema, P., Nava, S.,
913 Lucarelli, F., Gaston, C.J., Galindo, L., & Sosa, E. (2021). Tracking the changes of iron
914 solubility and air pollutants traces as African dust transits the Atlantic in the Saharan dust
915 outbreaks. *Atmospheric Environment*, 246, https://doi.org/10.1016/j.atmosenv.2020.118092.
916 Rosenfeld, D., Rudich, Y., & Lahav, R. (2001). Desert dust suppressing precipitation: A possible
917 desertification feedback loop. *Proceedings of the National Academy of Sciences*, 98(11),
918 5975 LP – 5980. https://doi.org/10.1073/pnas.101122798
919 Royer, H. M., Pöhlker, M. L., Krüger, O., Blades, E., Sealy, P., Lata, N. N., Cheng, Z., China, S.,
920 Ault, A. P., Quinn, P. K., Zuidema, P., Pöhlker, C., Pöschl, U., Andreae, M., & Gaston, C.
921 J. (2023). African smoke particles act as cloud condensation nuclei in the wintertime
922 tropical North Atlantic boundary layer over Barbados. *Atmospheric Chemistry and Physics*,
923 23(2), 981–998. https://doi.org/10.5194/acp-23-981-2023
924 Ryder, C. L., Marenco, F., Brooke, J. K., Estelles, V., Cotton, R., Formenti, P., McQuaid, J. B.,
925 Price, H. C., Liu, D., Ausset, P., Rosenberg, P. D., Taylor, J. W., Choularton, T., Bower, K.,
926 Coe, H., Gallagher, M., Crosier, J., Lloyd, G., Highwood, E. J., & Murray, B. J. (2018).
927 Coarse-mode mineral dust size distributions, composition and optical properties from AER-
928 D aircraft measurements over the tropical eastern Atlantic. *Atmospheric Chemistry and
929 Physics*, 18(23), 17225–17257. https://doi.org/10.5194/acp-18-17225-2018
930 Savoie, D L, & Prospero, J. M. (1982). Particle size distribution of nitrate and sulfate in the
931 marine atmosphere. *Geophysical Research Letters*, 9(10), 1207–1210.
932 https://doi.org/https://doi.org/10.1029/GL009i010p01207
933 Savoie, Dennis L, Arimoto, R., Keene, W. C., Prospero, J. M., Duce, R. A., & Galloway, J. N.
934 (2002). Marine biogenic and anthropogenic contributions to non-sea-salt sulfate in the
935 marine boundary layer over the North Atlantic Ocean. *Journal of Geophysical Research*:

936 *Atmospheres*, 107(D18), AAC 3-1-AAC 3-21.
937 <https://doi.org/https://doi.org/10.1029/2001JD000970>

938 Shen, H., Peters, T. M., Casuccio, G. S., Lersch, T. L., West, R. R., Kumar, A., Kumar, N., &
939 Ault, A. P. (2016). Elevated Concentrations of Lead in Particulate Matter on the
940 Neighborhood-Scale in Delhi, India As Determined by Single Particle Analysis.
941 *Environmental Science & Technology*, 50(10), 4961–4970.
942 <https://doi.org/10.1021/acs.est.5b06202>

943 Shi, Z., Zhang, D., Hayashi, M., Ogata, H., Ji, H., & Fujiie, W. (2008). Influences of sulfate and
944 nitrate on the hygroscopic behaviour of coarse dust particles. *Atmospheric Environment*,
945 42(4), 822–827. <https://doi.org/https://doi.org/10.1016/j.atmosenv.2007.10.037>

946 Sobanska, S., Coeur, C., Maenhaut, W., & Adams, F. (2003). SEM-EDX Characterisation of
947 Tropospheric Aerosols in the Negev Desert (Israel). *Journal of Atmospheric Chemistry*,
948 44(3), 299–322. <https://doi.org/10.1023/A:1022969302107>

949 Sokolik, I. N., Winker, D. M., Bergametti, G., Gillette, D. A., Carmichael, G., Kaufman, Y. J.,
950 Gomes, L., Schuetz, L., & Penner, J. E. (2001). Introduction to special section: Outstanding
951 problems in quantifying the radiative impacts of mineral dust. *Journal of Geophysical
952 Research: Atmospheres*, 106(D16), 18015–18027.
953 <https://doi.org/https://doi.org/10.1029/2000JD900498>

954 Spokes, L. J., & Jickells, T. D. (1995). Factors controlling the solubility of aerosol trace metals
955 in the atmosphere and on mixing into seawater. *Aquatic Geochemistry*, 1(4), 355–374.
956 <https://doi.org/10.1007/BF00702739>

957 **Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., & Ngan, F. (2015).**
958 **NOAA's HYSPLIT atmospheric transport and dispersion modeling system. *Bulletin of the
959 American Meteorological Society*, 96(12), 2059-2077.**

960 Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall, C., Karstensen, J., Quinn, P. K.,
961 Speich, S., Acquistapace, C., Aemisegger, F., Albright, A. L., Bellenger, H., Bodenschatz,
962 E., Caesar, K.-A., Chewitt-Lucas, R., de Boer, G., Delanoë, J., Denby, L., Ewald, F.,
963 Fildier, B., Forde, M., George, G., Gross, S., Hagen, M., Hausold, A., Heywood, K. J.,
964 Hirsch, L., Jacob, M., Jansen, F., Kinne, S., Klocke, D., Kölling, T., Konow, H., Lothon,
965 M., Mohr, W., Naumann, A. K., Nuijens, L., Olivier, L., Pincus, R., Pöhlker, M., Reverdin,
966 G., Roberts, G., Schnitt, S., Schulz, H., Siebesma, A. P., Stephan, C. C., Sullivan, P.,
967 Touzé-Peiffer, L., Vial, J., Vogel, R., Zuidema, P., Alexander, N., Alves, L., Aixi, S.,
968 Asmath, H., Bagheri, G., Baier, K., Bailey, A., Baranowski, D., Baron, A., Barrau, S.,
969 Barrett, P. A., Batier, F., Behrendt, A., Bendinger, A., Beucher, F., Bigorre, S., Blades, E.,
970 Blossey, P., Bock, O., Böing, S., Bosser, P., Bourras, D., Bouruet-Aubertot, P., Bower, K.,
971 Branellec, P., Branger, H., Brennek, M., Brewer, A., Brilouet, P.-E., Brügmann, B.,
972 Buehler, S. A., Burke, E., Burton, R., Calmer, R., Canonici, J.-C., Carton, X., Cato Jr., G.,
973 Charles, J. A., Chazette, P., Chen, Y., Chilinski, M. T., Choularton, T., Chuang, P., Clarke,
974 S., Coe, H., Cornet, C., Coutris, P., Couvreux, F., Crewell, S., Cronin, T., Cui, Z., Cuypers,
975 Y., Daley, A., Damerell, G. M., Dauhut, T., Deneke, H., Desbios, J.-P., Dörner, S., Donner,
976 S., Douet, V., Drushka, K., Dütsch, M., Ehrlich, A., Emanuel, K., Emmanouilidis, A.,
977 Etienne, J.-C., Etienne-Leblanc, S., Faure, G., Feingold, G., Ferrero, L., Fix, A., Flamant,
978 C., Flatau, P. J., Foltz, G. R., Forster, L., Furtuna, I., Gadian, A., Galewsky, J., Gallagher,
979 M., Gallimore, P., Gaston, C., Gentemann, C., Geyskens, N., Giez, A., Gollop, J., Gouirand,
980 I., Gourbeyre, C., de Graaf, D., de Groot, G. E., Grosz, R., Gütler, J., Gutleben, M., Hall,
981 K., Harris, G., Helfer, K. C., Henze, D., Herbert, C., Holanda, B., Ibanez-Landeta, A.,

982 Intrieri, J., Iyer, S., Julien, F., Kalesse, H., Kazil, J., Kellman, A., Kidane, A. T., Kirchner,
983 U., Klingebiel, M., Körner, M., Kremer, L. A., Kretzschmar, J., Krüger, O., Kumala, W.,
984 Kurz, A., L'Hégaret, P., Labaste, M., Lachlan-Cope, T., Laing, A., Landschützer, P., Lang,
985 T., Lange, D., Lange, I., Laplace, C., Lavik, G., Laxenaire, R., Le Bihan, C., Leandro, M.,
986 Lefevre, N., Lena, M., Lenschow, D., Li, Q., Lloyd, G., Los, S., Losi, N., Lovell, O.,
987 Luneau, C., Makuch, P., Malinowski, S., Manta, G., Marinou, E., Marsden, N., Masson, S.,
988 Maury, N., Mayer, B., Mayers-Als, M., Mazel, C., McGeary, W., McWilliams, J. C., Mech,
989 M., Mehlmann, M., Meroni, A. N., Mieslinger, T., Minikin, A., Minnett, P., Möller, G.,
990 Morfa Avalos, Y., Muller, C., Musat, I., Napoli, A., Neuberger, A., Noisel, C., Noone, D.,
991 Nordsiek, F., Nowak, J. L., Oswald, L., Parker, D. J., Peck, C., Person, R., Philippi, M.,
992 Plueddemann, A., Pöhlker, C., Pörtge, V., Pöschl, U., Pologne, L., Posyniak, M., Prange,
993 M., Quiñones Meléndez, E., Radtke, J., Ramage, K., Reimann, J., Renault, L., Reus, K.,
994 Reyes, A., Ribbe, J., Ringel, M., Ritschel, M., Rocha, C. B., Rochetin, N., Röttenbacher, J.,
995 Rollo, C., Royer, H., Sadoulet, P., Saffin, L., Sandiford, S., Sandu, I., Schäfer, M.,
996 Schemann, V., Schirmacher, I., Schlenczek, O., Schmidt, J., Schröder, M.,
997 Schwarzenboeck, A., Sealy, A., Senff, C. J., Serikov, I., Shohan, S., Siddle, E., Smirnov, A.,
998 Späth, F., Spooner, B., Stolla, M. K., Szkolka, W., de Szoke, S. P., Tarot, S., Tetoni, E.,
999 Thompson, E., Thomson, J., Tomassini, L., Totems, J., Ubele, A. A., Villiger, L., von Arx,
1000 J., Wagner, T., Walther, A., Webber, B., Wendisch, M., Whitehall, S., Wiltshire, A., Wing,
1001 A. A., Wirth, M., Wiskandt, J., Wolf, K., Worbes, L., Wright, E., Wulfmeyer, V., Young,
1002 S., Zhang, C., Zhang, D., Ziemen, F., Zinner, T., & Zöger, M. (2021). EUREC4A. *Earth
1003 Syst. Sci. Data*, 13(8), 4067–4119. <https://doi.org/10.5194/essd-13-4067-2021>

1004 Stockdale, A., Krom, M. D., Mortimer, R. J. G., Benning, L. G., Carslaw, K. S., Herbert, R. J.,
1005 Shi, Z., Myriokefalitakis, S., Kanakidou, M., & Nenes, A. (2016). Understanding the nature
1006 of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the
1007 oceans. *Proceedings of the National Academy of Sciences*, 113(51), 14639–14644.
1008 <https://doi.org/10.1073/pnas.1608136113>

1009 Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., & Prather, K. A. (2007). Direct observations
1010 of the atmospheric processing of Asian mineral dust. *Atmospheric Chemistry and Physics*,
1011 7(5), 1213–1236. <https://doi.org/10.5194/acp-7-1213-2007>

1012 Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., & Prather,
1013 K. A. (2009). Effect of chemical mixing state on the hygroscopicity and cloud nucleation
1014 properties of calcium mineral dust particles. *Atmospheric Chemistry and Physics*, 9(10),
1015 3303–3316. <https://doi.org/10.5194/acp-9-3303-2009>

1016 Sullivan, R. C., & Prather, K. A. (2007). Investigations of the diurnal cycle and mixing state of
1017 oxalic acid in individual particles in Asian aerosol outflow. *Environmental Science and
1018 Technology*, 41(23), 8062–8069. <https://doi.org/10.1021/es071134g>

1019 Tang, M. J., Cziczo, D. J., and Grassian, V. H. (2016) **Interactions of water with mineral dust
1020 aerosol: Water adsorption, hygroscopicity, cloud condensation and ice nucleation.**
1021 *Chemical Reviews*, 116, 4205–4259.

1022 Tegen, I. (2003). Modeling the mineral dust aerosol cycle in the climate system. *Quaternary
1023 Science Reviews*, 22(18), 1821–1834. [https://doi.org/https://doi.org/10.1016/S0277-3791\(03\)00163-X](https://doi.org/https://doi.org/10.1016/S0277-3791(03)00163-X)

1025 Tsamalis, C., Chédin, A., Pelon, J., & Capelle, V. (2013). The seasonal vertical distribution of
1026 the Saharan Air Layer and its modulation by the wind. *Atmos. Chem. Phys.*, 13(22), 11235–
1027 11257. <https://doi.org/10.5194/acp-13-11235-2013>

1028 Ullerstam, M., Vogt, R., Langer, S., & Ljungström, E. (2002). The kinetics and mechanism of
1029 SO₂ oxidation by O₃ on mineral dust. *Physical Chemistry Chemical Physics*, 4(19), 4694–
1030 4699. <https://doi.org/10.1039/B203529B>

1031 van Herpen, M.M.J.W., Li, Q., Saiz-Lopez, A., Liisberg, J.B., Röckmann, T., Cuevas, C.A.,
1032 Fernandez, R.P., Mak, J.E., Mahowald, N.M., Hess, P., Meidan, D., Stuut, J.-B.W., &
1033 Johnson, M.S. (2023). Photocatalytic chlorine atom production on mineral dust-sea spray
1034 aerosols over the North Atlantic. *Proceedings of the National Academy of Sciences*,
1035 120(31), <https://doi.org/10.1073/pnas.2303974120>.

1036 Weinzierl, B., Ansmann, A., Prospero, J. M., Althausen, D., Benker, N., Chouza, F., Dollner, M.,
1037 Farrell, D., Fomba, W. K., Freudenthaler, V., Gasteiger, J., Groß, S., Haarig, M., Heinold,
1038 B., Kandler, K., Kristensen, T. B., Mayol-Bracero, O. L., Müller, T., Reitebuch, O., Sauer,
1039 D., Schäfler, A., Schepanski, K., Spanu, A., Tegen, I., Toledano, C., & Walser, A. (2017).
1040 The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment:
1041 Overview and Selected Highlights. *Bulletin of the American Meteorological Society*, 98(7),
1042 1427–1451. <https://doi.org/https://doi.org/10.1175/BAMS-D-15-00142.1>

1043 Wu, Z., Birmili, W., Poulain, L., Wang, Z., Merkel, M., Fahlbusch, B., van Pinxteren, D.,
1044 Herrmann, H., & Wiedensohler, A. (2013). Particle hygroscopicity during atmospheric new
1045 particle formation events: implications for the chemical species contributing to particle
1046 growth. *Atmospheric Chemistry and Physics*, 13(13), 6637–6646.
1047 <https://doi.org/10.5194/acp-13-6637-2013>

1048 Wurzler, S., Reisin, T. G., & Levin, Z. (2000). Modification of mineral dust particles by cloud
1049 processing and subsequent effects on drop size distributions. *Journal of Geophysical
1050 Research: Atmospheres*, 105(D4), 4501–4512.
1051 <https://doi.org/https://doi.org/10.1029/1999JD900980>

1052 Zhang, H.H., Li, R., Huang, C.P., Li, X.F., Dong, S.W., Wang, F., Li, T.T., Chen, Y.Z., Zhang,
1053 G.H., Ren, Y., Chen, Q.C., Huang, R.J., Chen, S.Y., Xue, T., Wang, X.M., & Tang, M.J.
1054 (2023) Seasonal variation of aerosol iron solubility in coarse and fine particles at an inland
1055 city in northwestern China. *Atmospheric Chemistry & Physics*, 23, 3543–3559.

1056 Zuidema, P., Alvarez, C., Kramer, S. J., Custals, L., Izaguirre, M., Sealy, P., Prospero, J. M., &
1057 Blades, E. (2019). Is Summer African Dust Arriving Earlier to Barbados? The Updated
1058 Long-Term In Situ Dust Mass Concentration Time Series from Ragged Point, Barbados,
1059 and Miami, Florida. *Bulletin of the American Meteorological Society*, 100(10), 1981–1986.
1060 <https://doi.org/10.1175/BAMS-D-18-0083.1>

1061
1062
1063