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Abstract. Observations of phytoplankton abundances and community structure are critical towards understanding marine 

ecosystems. Common approaches to determine group-specific abundances include measuring phytoplankton pigments via 15 

high-performance liquid chromatography and DNA-based metabarcoding. Increasingly, mRNA abundances via 

metatranscriptomics are also employed. As phytoplankton pigments are used to develop and validate remote sensing 

algorithms, further comparisons between pigments and other metrics are needed to validate the extent to which these 

measurements agree for group-specific abundances; however, most previous comparisons have been hindered by 

metabarcoding and metatranscriptomics solely producing relative abundance data. By employing quantitative approaches that 20 

express both 18S rDNA and total mRNA as concentrations, we show that these measurements are related for several eukaryotic 

phytoplankton groups. We further propose that integration of these can be used to examine ecological patterns more deeply. 

For example, productivity-diversity relationships of both the whole community and individual groups show a dinoflagellate-

driven negative trend rather than the commonly-found unimodal pattern. Pigments are also shown to relate to certain harmful 

algal bloom-forming taxa as well as the expression of sets of genes. Altogether, these results suggest that potential models of 25 

pigment concentrations via hyperspectral remote sensing may enable improved assessments of global phytoplankton 

community structure, including the detection of harmful algal blooms, and support the development of ecosystem models.   

1 Introduction 

Marine phytoplankton comprise both prokaryotic cyanobacteria  and diverse lineages of eukaryotes with distinct evolutionary 

histories (Pierella Karlusich et al., 2020). Collectively, they are responsible for approximately 50% of global primary 30 

production, support marine food webs and extensively contribute to biogeochemical cycling (Huang et al., 2021).  Their distinct 
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evolutionary trajectories have also given rise to different traits, functional roles, and niches. For example, diatoms 

(Bacillariophyta) tend to dominate under well-mixed, nutrient-rich conditions, are considered principal contributors to carbon 

export with fast sinking rates, and are a significant component of the silicon cycle due to their formation of silica cell walls 

(Guidi et al., 2016; Agusti et al., 2015; Bowler et al., 2010) Dinoflagellates (Dinoflagellata) may be major contributors to 35 

carbon export in oligotrophic regions, and many species are mixotrophs, which enables them to serve multiple important roles 

in marine food webs (Guidi et al., 2016; Stoecker et al., 2017). Prymnesiophytes (Haptophyta) include coccolithophores with 

calcium carbonate shells, the formation of which influences upper ocean alkalinity and air-sea carbon dioxide exchange (Rost 

and Riebesell, 2004). The prymnesiophytes also include the bloom-forming Phaeocystis spp. which are a major source of the 

sulfur compound, dimethylsulfoniopropanate (DMSP), that is hypothesized to influence cloud formation and climate (Smith 40 

Jr and Trimborn, 2023). Cryptophytes (Cryptophyta) are considered to be ubiquitous and may be highly abundant in the 

Sargasso Sea and Southern Ocean (Richardson, 2022; Cotti-Rausch et al., 2016; Mendes et al., 2018). Lastly, the chlorophytes 

(Chlorophyta) and pelagophytes (Pelagophyceae) are additional picoeukaryotes that are important primary producers, 

particularly in the open ocean (Worden et al., 2012; Not et al., 2012; Lopes dos Santos et al., 2017; Guérin et al., 2022).  

 45 

Due to these contributions to ecosystem function and differing roles, assessing phytoplankton abundances and disentangling 

phytoplankton community composition (PCC) is necessary to understand marine environments (Cetinić et al., 2024). For 

example, current Earth systems models (ESMs) are unable to confidently project if primary productivity will increase or 

decrease under future climate scenarios (Kwiatkowski et al., 2020). By examining the effects of natural climate variability and 

anthropogenic change on phytoplankton communities as well as their physiology, more accurate and detailed representation 50 

of different groups can be generated to improve these model predictions (Tagliabue, 2023; Cetinić et al., 2024). Knowledge of 

PCC may also further help estimate carbon export flux (Kramer et al., 2024a). Additionally, monitoring for harmful algal 

blooms (HABs) is important for human health as well as understanding their impacts on fisheries and ecosystems (Anderson 

et al., 2012), and fisheries managers may benefit from knowledge of PCC to aid stock assessments and identify suitable fishing 

zones (Satterthwaite et al., 2023; Sathyendranath et al., 2023). 55 

 

A common approach to estimate phytoplankton abundances and determine PCC is the measurement of phytoplankton pigments 

via  high-performance liquid chromatography (HPLC). Specifically, certain accessory pigments can be used as proxies, or 

diagnostic pigments, to determine the abundances of specific groups, even though some of these pigments are shared among 

groups (Jeffrey et al., 2011; Kramer and Siegel, 2019). As pigments directly alter the shapes and magnitudes of remote sensing 60 

reflectance spectra, HPLC-measured pigments are also extensively used to develop and validate satellite-based remote sensing 

algorithms. Given the recent availability of hyperspectral remote sensing reflectance data from NASA’s Plankton, Aerosol, 

Cloud, ocean Ecology (PACE) mission, the continued development of remote sensing algorithms based on HPLC pigments 

may enable global scale estimation of phytoplankton pigment concentrations and PCC (Kramer et al., 2022; Cetinić et al., 

2024). 65 
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As a result, it is important to compare phytoplankton pigments to other metrics of PCC. If other metrics agree with pigments, 

they may also be useful for validating remote sensing algorithms. Conversely, it is important to compare other metrics of PCC 

to phytoplankton pigments as it remains uncertain whether indirect approaches such as DNA and RNA sequencing are 

reflective of phytoplankton biomass. DNA metabarcoding is increasingly being used to determine PCC, primarily by 70 

sequencing hypervariable regions of the 16S gene for prokaryotes and phytoplankton plastids or the 18S gene for eukaryotes 

(Lopes dos Santos et al., 2022), and it is increasingly common to use environmental mRNA sequencing, or 

metatranscriptomics, to determine PCC (Cohen et al., 2022). 

 

Initial comparisons between phytoplankton pigments and DNA indicate that the metrics are correlated in some cases; however, 75 

these comparisons have been hindered by the compositional nature of  sequencing data  (Catlett et al., 2023; Kramer et al., 

2024b). By default, DNA and RNA sequencing produce relative abundance data, which complicates their interpretability and 

can lead to spurious correlations (Gloor et al., 2017). This is because there are multiple scenarios that could lead to a taxonomic 

group having the same or different relative abundances among samples, and potential differences in relative abundances are 

not necessarily reflective of differences in their true abundances. For example, one group’s true abundance could be the same 80 

in two samples while another group’s is lower in just one sample leading to a higher relative abundance of the first group even 

though the two abundances are equal. Alternatively, both groups’ true abundances could be higher in one sample but to 

different degrees, resulting in lower relative abundances in one group even though its true abundance has increased. 

 

To compare phytoplankton pigments and relative DNA abundances, previous studies have also normalized diagnostic pigment 85 

concentrations to total chlorophyll a concentrations or the sum of diagnostic pigments, thereby making both DNA and pigment 

data relative quantities (Catlett et al., 2023; Kramer et al., 2024b). However, the use of these approaches while only using 

relative abundances of prokaryotic or eukaryotic taxa presents other issues. As an example, high total chlorophyll a could be 

driven by relatively high cyanobacteria l abundances that would not be captured in 18S sequencing, which targets eukaryotes. 

If the eukaryotic phytoplankton community is then dominated by one group, this group would have a high relative abundance 90 

that is coupled to low concentrations of their diagnostic pigment relative to total chlorophyll a. The use of 16S alone to capture 

both prokaryotic cyanobacteria and eukaryotic plastids may circumvent this issue, but references for plastid 16S sequences are 

not as comprehensive and are influenced by potentially greater variability in plastid copy number (Lopes dos Santos et al., 

2022; Decelle et al., 2015). Alternatively, simultaneous metabarcoding of the 16S and 18S rRNA gene with three domain 

primers addresses this issue, but it may also require greater sequencing depth to capture the diversity of the eukaryotic 95 

community (Yeh et al., 2021). Even if eukaryotic relative abundances are only compared to the sum of eukaryotic diagnostic 

pigments, the DNA-based relative abundances are still influenced by non-photosynthetic taxa. Altogether, these problems with 

normalization and potential discrepancies between true abundances and relative metrics can be severe issues that produce 

misleading correlations. 
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 100 

The estimation of absolute abundances via internal standards avoids these issues and enables comparisons between gene or 

transcript concentrations and phytoplankton pigment concentrations (Lin et al., 2019; Cohen et al., 2022). This approach was 

used in a study in the Western Antarctic Peninsula to compare 18S DNA concentrations to  group-specific chlorophyll a 

concentrations (Lin et al., 2019). With a small sample size (n = 16) and cryptophyte-dominated communities, strong 

relationships for cryptophytes and Phaeocystis were observed, but not with diatoms. Other groups were not examined, and it 105 

remains unclear if these relationships persist with larger sample sizes, other regions with different communities, or across the 

entire spectrum of phytoplankton abundances. Furthermore, it remains unclear if absolute quantities of mRNA from 

metatranscriptomics and phytoplankton pigments relate to one another.  

 

Here we investigate relationships between phytoplankton pigments and quantitative DNA- or RNA-based abundances with 110 

paired samples collected over a seven-year period on seasonal California Cooperative Oceanic Fisheries Investigations 

(CalCOFI) surveys. The CalCOFI sampling area is within the California Current Ecosystem, a coastal upwelling biome 

associated with an eastern boundary current. Although the sampling area is largely restricted to the southern California Current 

(Figs. 1A and 1B), it is along a  major biogeographic boundary at Point Conception, and contains phytoplankton taxa commonly 

associated with both the central North Pacific Subtropical Gyre and the subarctic Northeast Pacific; thus, it captures 115 

communities associated with the broader region (Checkley and Barth, 2009; Venrick, 1998). The range in phytoplankton 

abundances closely aligns with those observed globally and is captured by sampling the gradients from nearshore stations 

influenced by upwelling to offshore oligotrophic stations  (Deutsch et al., 2021; James et al., 2022; Venrick, 2002). CalCOFI 

additionally conducts four cruises per year, capturing differences from seasonal and interannual variability. Beyond examining 

PCC, we explore additional applications stemming from relationships between phytoplankton pigments and DNA- or RNA-120 

based abundances including investigating productivity-diversity relationships, forecasting harmful algal blooms, and inferring 

expression of specific genes. 
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Figure 1. Overview of CalCOFI samples used in this study. (A, B) Locations and quantity of samples for DNA and RNA with 
corresponding phytoplankton pigment samples. (C, D) Temperature (°C) and nitrate concentrations (µmol L-1) across seasons for 125 
the paired DNA and pigment samples used here. Corresponding data for the RNA samples are shown in Fig. S1. (E) Phytoplankton 

pigment concentrations. Pigment abbreviations: TChla, total chlorophyll a; Allo, alloxanthin; ButFuco, 19'-

butanoyloxyfucoxanthin; DVChla, divinyl chlorophyll a; Fuco, fucoxanthin; HexFuco; 19'-hexanoyloxyfucoxanthin; MVChlb, 

monovinyl chlorophyll b; Perid, peridinin; Zea, zeaxanthin. (F, G) Relative abundances of different phytoplankton groups using the 
18S-V4 (red), 18S-V9 (blue), or transcript abundance (metaT, green). For prokaryota, the 16S V4-V5 region was used and is shown 130 
in red. (H, I) Absolute abundances for 18S or 16S rRNA genes (copies L-1, left y-axis) and transcripts (transcripts L-1, right y-axis). 

Different metrics are colored as in panels F and G. 
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2 Materials and Methods 

2.1 Sample collection and biogeochemical measurements 

From select stations on seasonal CalCOFI cruises from 2014 to 2020, 417 DNA and 118 RNA samples were collected 135 

concurrently with phytoplankton pigments within the euphotic zone along CalCOFI lines 80.0 and 90.0 and at the Santa 

Barbara Basin (Station 81.8 46.9) (Figs. 1A and 1B). These data represent only a subset of the on-going NOAA-CalCOFI  

Ocean Genomics (NCOG) time series, with no DNA samples from 2017 and only RNA samples from 2017-2020 to examine 

samples only where quantitative approaches for DNA and RNA were employed with concurrent sampling of phytoplankton 

pigments (James et al., 2022). CalCOFI cruises survey the California Current Ecosystem in a standardized grid pattern with 140 

most stations in the southern California Current region. During this time period, winter cruises occurred during January and 

February, spring cruises occurred during April, summer cruises occurred in July and August, and autumn cruises occurred in 

October and November. There was no Spring cruise during 2020 due to the COVID-19 pandemic. At each station, seawater 

was collected from the near-surface (normally 10 m) and the subsurface chlorophyll maximum layer (SCML) with a CTD 

rosette for pigments, DNA, RNA, and flow cytometry. Temperature data are derived from duplicate Seabird SBE 3Plus sensors 145 

on a Seabird 911+ CTD.  Macronutrient concentrations were measured on a QuAAtro continuous segmented flow autoanalyzer 

(SEAL Analytical) alongside reference materials (KANSO technos) (Armstrong et al., 1967; Gordon et al., 1992). The 

nitracline depth is defined as the depth where nitrate first exceeds 1 µM.  

 

Primary productivity was estimated via 14C uptake at select stations. Briefly, seawater was collected from six depths 150 

representing 56%, 30%, 10%, 3%, 1%, and 0.3% surface light levels shortly before local apparent noon and dispensed into 

triplicate 250 mL polycarbonate bottles (two light bottles and one dark control). Bottles were inoculated with NaH 14CO3 and 

incubated until civil twilight in tubes with flow-through seawater and neutral-density screens to simulate in situ light levels. 

Following incubation, samples were filtered onto 0.45 µm HA filters (Millipore), acidified with HCl, immersed in scintillation  

fluor, and measured with a scintillation counter once back onshore. Half-day productivity at each depth was averaged between 155 

the two light bottles and corrected with the dark uptake bottle then multiplied by 1.8 to obtain 24 hour productivity (Eppley, 

1992). When comparing productivity to diversity from DNA, samples from the entire NCOG dataset (2014 to 2020) that were 

closest to the collection depths of productivity samples were used (n = 757). 

2.2 High-performance liquid chromatography pigment analysis 

Phytoplankton pigment concentrations were determined with high-performance liquid chromatography (HPLC). Samples were 160 

collected with 0.5, 1.04, or 2.2L opaque brown bottles depending on the fluorescence measured by the CTD and filtered onto 

25 mm GF/F filters under low vacuum pressure (≤ 40 mm Hg). Once completed filtering, the filters were carefully folded in 

half, blotted on a paper towel to remove excess water, and stored in 2 mL cryovials in liquid nitrogen until analysis  at the Horn 
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Point Analytical Services Laboratory at the University of Maryland. Taxon-specific contributions to total chlorophyll a 

concentrations were determined with phytoclass v1.0.0  (Hayward et al., 2023).  165 

2.3 Nucleic acid sample collection and extraction 

For DNA samples, 0.2 to 10.4 L (mean = 3.3 L) of seawater was filtered onto 0.22 µm Sterivex ™ filters. RNA samples were 

collected simultaneously following the same approach but with generally higher volumes (2.0 to 4.8 L, mean = 4.0 L). RNA 

samples were also only collected near local apparent noon to minimize bias from the diel cycle.  

 170 

Following filtration, samples were immediately flash frozen in liquid nitrogen and stored at -80°C. DNA was extracted with 

the Macherey-Nagel NucleoMag Plant kit on an Eppendorf epMotion 5075TMX and assessed on a 1.8% agarose gel. At the 

start of DNA extraction during the addition of lysis buffer, 1.74 to 3.78 ng of Schizosaccharomyces pombe genomic DNA was 

added to each sample as an internal standard (Lin et al., 2019). RNA was also extracted on the Eppendorf epMotion but with 

the Machery-Nagel NucleoMag RNA kit. As an internal standard, 2 to 5 billion copies of Invitrogen™ ArrayControl™ RNA 175 

Spikes #1 and #8 were added to the lysis buffer of each sample at a  2.66:1 ratio.  

2.4 Amplicon library preparation and sequencing 

Amplicon libraries separately targeting the V4-V5 region of the 16S rRNA gene, the V4 and V9 regions of the 18S rRNA 

gene, and the ITS2 gene from the diatom genus Pseudo-nitzschia were constructed via a one-step PCR with the TruFi DNA 

Polymerase PCR kit to simultaneously amplify the region of interest and barcode each sample. For 16S, the 515F-Y (5′-GTG 180 

YCA GCM GCC GCG GTA A-3′) and 926R (5′-CCG YCA ATT YMT TTR AGT TT-3′) primer set was used (Parada et al., 

2016). For 18S-V4, the V4F (5′-CCA GCA SCY GCG GTA ATT CC-3′) and V4RB (5′-CCA GCA SCY GCG GTA ATT 

CC-3′) primer set was used (Berdjeb et al., 2018). For 18S-V9, the 1389F (5′-TTG TAC ACA CCG CCC-3′) and 1510R (5′-

CCT TCY GCA GGT TCA CCT AC-5′) primer set was used (Amaral-Zettler et al., 2009). For Pseudo-nitzschia ITS2, the 

5.8SF (5′-TGC TTG TCT GAG TGT CTG TGG A-3′) and 28SR (5'-TAT GCT TAA ATT CAG CGG GT-3′) primer set was 185 

used (Lim et al., 2018). 

 

Each reaction was performed with an initial denaturing step at 95°C for 1 minute followed by 30 cycles of 95°C for 15 seconds , 

56°C for 15 seconds, and 72°C for 30 seconds. 2.5 µL of each PCR reaction was run on a 1.8% agarose gel to confirm 

amplification, then PCR products were purified with Beckman Coulter AMPure XP beads following the manufacturer’s 190 

instructions. PCR quantification was performed in duplicate using the Invitrogen Quant-iT PicoGreen dsDNA Assay kit. 

Samples were then combined in equal proportions into multiple pools followed by another 0.8x AMPure XP bead purification 

on the final pool. DNA quality of each pool was evaluated on an Agilent 2200 TapeStation, and quantification was performed 

with the Qubit HS dsDNA kit. Each 16S or 18S pool was sequenced on an Illumina MiSeq (2 x 300 bp for 16S and V4 or 2 x 

150 bp for V9) except for the one pool for the 2014-2016 euphotic zone V9 samples, which was run on an Illumina NextSeq 195 
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(Mid Output, 2 x 150 bp). The Pseudo-nitzschia ITS2 pool was sequenced on a single lane of an Illumina NovaSeq 6000 with 

a SP flow cell (2 x 250 bp). 

2.5 Analysis of amplicon sequence data 

Amplicons were first analyzed with QIIME2 v2019.10 for the 16S and 18S data or QIIME2 v2021.2 for the Pseudo-nitzschia 

ITS2 data  (Bolyen et al., 2019). Briefly, paired-end reads were trimmed to remove adapter and primer sequences with cutadapt 200 

(Martin, 2011). Trimmed reads were then denoised with DADA2 to produce amplicon sequence variants (ASVs). Each MiSeq 

run was denoised with DADA2 separately to account for different error profiles in each run then merged. Taxonomic 

annotation of ASVs was performed with the q2-feature-classifier naïve bayes classifier using the SILVA database (Release 

138) for 16S ASVs and the PR2 database (v4.13.0) for 18S ASVs (Bokulich et al., 2018; Pedregosa et al., 2011; Guillou et al., 

2012; Pruesse et al., 2007). For ITS2 ASVs, annotation was performed using BLAST (classify-consensus-blast) with Pseudo-205 

nitzschia ITS2 sequences database as references (Brunson et al., 2024; Lim et al., 2018). When examining 16S relative 

abundances, all eukaryotic, plastid, and mitochondrial ASVs were removed , and when examining 18S relative abundances, 

dinoflagellates exclude Syndiniales and prymnesiophytes refers to all Prymnesiophyceae unless otherwise noted. 

 

To estimate absolute abundances of 16S and 18S ASVs, recovery of the aforementioned internal standards was used (Lin et 210 

al., 2019). For each ASV within each sample, the number of reads was divided by the ratio of T. thermophilus or S. pombe 

reads to the number of rRNA copies added. The total number of copies was then normalized to the volume filtered for each 

sample to estimate copies L-1. 

2.6 Metatranscriptome sequencing, assembly, and analysis 

To examine eukaryotic sequences, poly-A selected RNA-Seq libraries were created. Poly-A selected cDNA from total RNA 215 

was generated with the SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing (Takara Bio USA, Inc.), which was then 

sheared with a Covaris® E210 focused-ultrasonicator targeting 300 bp fragments. The final sequencing library was then 

constructed with the NEB NEBNext® Ultra ™ II DNA Library Kit and sequenced on three lanes of a Nova Seq 6000 with a  S4 

flow cell (2 x 150 bp).  

 220 

For prokaryotic sequences, sequencing libraries were constructed following ribosomal RNA (rRNA) depletion. For samples 

from 2014-2019, rRNA was depleted with a 2:1:1 mixture of Ribo-Zero Plant, Bacteria , and Human/Mouse/Rat (Illumina) 

following the manufacturer’s low input protocol. For samples from 2020, rRNA depletion was performed with siTOOLs 

riboPOOLs with a 6:1:1 mixture of the pan-prokaryote, pan-plant, and pan-mammal riboPOOLs following the manufacturer’s 

instructions for low inputs. rRNA depletion was confirmed with all samples on an Agilent TapeStation 2200 with High 225 

Sensitivity RNA ScreenTape. cDNA was then synthesized using the Ovation RNA-Seq System V2 kit (NuGEN) using both 

poly-A and random hexamer primers followed by fragmentation with a Covaris® E210 focused-ultrasonicator targeting 300 
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bp fragments. cDNA was then purified with Agencourt RNAClean XP beads, and library preparation was performed with the 

Ovation Ultralow System V2 (NuGEN). After end repair, ligation, and amplification, the libraries were assessed on an Agilent  

TapeStation 2200 with High Sensitivity DNA ScreenTape. A subset of samples from 2014-2016 were sequenced separately in 230 

four pools on an Illumina HiSeq 4000 (2 x 150 bp). The remaining libraries were sequenced across five pools on an Illumin a 

NovaSeq 6000 with a S4 flow cell (2 x 150 bp). 

 

For both types of libraries, the resulting raw reads were trimmed for quality and to remove Illumina adaptors. Ribosomal RNA 

sequences were also removed with Ribopicker v0.4.3 (Schmieder et al., 2011). Trimmed and filtered reads were then used for 235 

assembly into contigs, and abundances were quantified by mapping these reads to the assembly. Both assembly and read 

mapping were performed with CLC Bio Genomics Server v21.0.3. Gene prediction was performed with FragGeneScan v1.16 , 

and rRNA removal was performed again with Ribopicker (Rho et al., 2010). Predicted proteins were further filtered to remove 

those less than 10 amino acids long or with greater than or equal to 20% stop codons. Gene clusters were generated from the 

predicted proteins with MCL with the inflation option (-I) set to 4 and scheme option (-scheme) set to 6 (Enright et al., 2002). 240 

 

With the final assemblies, taxonomic annotation of each protein coding gene was assigned via DIAMOND BLASTP 

alignments using PhyloDB v1.076 as a reference database (Bertrand et al., 2015). Final taxonomic assignments were based on 

highest Lineage Probability Index values (Podell and Gaasterland, 2007). For functional annotation, DIAMOND BLASTP 

alignments were performed with the Kyoto Encyclopedia of Genes and Genomes (KEGG; Release 94.1)(Kanehisa et al., 2017). 245 

KEGG Ortholog (KO) assignment was performed with KofamKOALA, which uses hmmsearch against KOfam, an HMM 

database of KOs (Aramaki et al., 2019). E-value cutoffs of 1e-5 were used throughout. 

 

To normalize read counts, raw reads were first converted to transcripts per million (TPM)(Li et al., 2009). Absolute quantities 

(transcripts L-1), i.e. quantitative metatranscriptomics, were then calculated based on the average recovery of the 250 

aforementioned Invitrogen™ ArrayControl™ RNA Spikes and the volume of sample filtered as described in Cohen et al. 

(2022). For performing correlations with individual genes, transcripts L-1 within each taxonomic group and sample were 

summed by KO annotation, and if KO annotation was absent, the KEGG gene annotation was used.  The domoic acid 

biosynthesis gene, dabA, was annotated using the sequences reported in Brunson et al. (2018).  

2.7 Flow Cytometry 255 

Two mL samples of seawater were collected in cryovials and fixed with 100 µL of 0.2 µm filtered 10% paraformaldehyde for 

a 0.5% final concentration. Fixation was allowed to occur for 10 min before freezing the sample in liquid nitrogen. Once 

onshore, samples were stored at -80°C or on dry ice until analysis at the SOEST Flow Cytometry Facility, University of Hawaii 

at Manoa.  

 260 
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Prior to analysis, thawed samples were stained with Hoechst 33342 (1 µg mL -1, v/v, final concentration) at room temperature 

in the dark for 1 hour (Monger and Landry, 1993). Aliquots (100 µl) were analyzed using a Beckman-Coulter EPICS Altra 

flow cytometer with a Harvard Apparatus syringe pump for volumetric sample delivery. Simultaneous (co -linear) excitation 

of the plankton was provided by two argon ion lasers, tuned to 488 nm (1 W) and the UV range (200 mW). The optical filter 

configuration distinguished populations based on chlorophyll a (red fluorescence, 680 nm), phycoerythrin (orange 265 

fluorescence, 575 nm), DNA (blue fluorescence, 450 nm), and forward and 90° side-scatter signatures. Blue-fluorescence and 

red-fluorescence signals are used to distinguish DNA-containing heterotrophic (non-pigmented) from phototrophic 

(chlorophyll-containing) cells.  Standardized fluorescence and scatter parameters were determined relative to 0.5- and 1.0-µm 

yellow-green calibration beads and 0.5-µm UV calibration beads run in each sample. Bead-normalized red-fluorescence values 

are also used as a measure of cellular chlorophyll a (Landry et al., 2003). Raw data (listmode files) were processed using the 270 

software FlowJo (Treestar Inc., www.flowjo.com). Cell abundance estimates were then calculated accounting for the volume 

dilutions from the added preservative and stain solutions. 

2.7 Statistics 

All correlations and models were generated with R v4.3.2. Generalized additive models (GAMs) were fit with the mgcv 

package v 1.9-1 (Wood, 2017). When examining multiple gene correlations, P-values were adjusted using the Benjamini & 275 

Hochberg procedure (Benjamini and Hochberg, 1995).  

3 Results and Discussion 

3.1 Quantitative relationships among pigments, DNA, and RNA 

As the sampling locations span nearshore stations influenced by coastal upwelling to offshore oligotrophic conditions (James 

et al., 2022; Venrick, 2002), the paired phytoplankton pigment and DNA or RNA samples encompass a wide range of 280 

environmental conditions (Figs. 1A-1D and S1). Seasonal and interannual variability were also captured with notably lower 

temperatures and higher nutrients in the Spring season relating to seasonal upwelling as well as an unprecedented marine 

heatwave from mid-2014 to 2016 associated with El Niño in 2015 (Di Lorenzo and Mantua, 2016; Jacox et al., 2018). 

Concurrent with the wide-ranging environmental conditions, total chlorophyll a and accessory pigment concentrations often 

spanned several orders of magnitude with all accessory pigments detected in concentrations as low as 0.001  to 0.005 µg L-1 285 

(Fig. 1E). Fucoxanthin (Fuco) exhibited the greatest range with concentrations reaching 6.81 µg L-1, and 19'-

hexanoyloxyfucoxanthin (HexFuco) exceeded 1 µg L-1 in several samples. All other pigment concentrations examined here 

were always less than 1 µg L-1. 

 

DNA metabarcoding of both the V4 and V9 regions of the 18S rRNA gene for eukaryotes a s well as the V4-V5 regions of the 290 

16S rRNA gene for prokaryotes similarly showed wide ranges in relative abundances (Figs. 1F and 1G). Among eukaryotes, 
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diatoms exhibited the greatest range in accordance with their known dominance during blooms in the region  (Goericke, 2011; 

Venrick, 2012). Chlorophytes also exhibited a wide range of relative abundances, and their average abundance exceeded that 

of diatoms. Dinoflagellates were also found in high abundances, and while they indeed bloom in the region (Kahru et al., 2021; 

Anderson et al., 2008), their high abundances via 18S metabarcoding may be due to bias from high 18S gene copy numbers 295 

(Martin et al., 2022). Other eukaryotic phytoplankton groups were typically less than 10% of the total eukaryotic community. 

In particular, cryptophytes were less than 1% of the community on average but were found to be as high as 5%. Within 

eukaryotic mRNA expressed as relative abundances [transcripts per million (TPM)], intragroup variability was less 

pronounced, and most groups displayed higher relative abundances compared to their 18S DNA abundances (Figs. 1F). The 

sole exception was with dinoflagellates which had lower relative abundances with RNA compared to DNA, further suggesting 300 

bias in their DNA relative abundances due to high 18S DNA copy numbers. 

 

Within prokaryotes, all cyanobacteria combined and the cyanobacterial genus Prochlorococcus displayed similar distributions, 

indicating that Prochlorococcus was often the dominant member of the cyanobacterial community (Figs. 1G and 1I). Cell 

abundances measured via flow cytometry also show that Prochlorococcus is dominant in these samples, with Prochlorococcus 305 

displaying higher abundances than Synechococcus in 76% of samples (Fig. S2). Cyanobacteria as a whole and Prochlorococcus 

also displayed lower relative abundances from transcripts compared to 16S rRNA genes (Fig. 1G).  

 

When converted to absolute abundances based on the recovery of internal standards and normalizing to the volume filtered 

(gene copies L-1 or transcripts L-1), differences and distributions among groups were similar to those observed with relative 310 

abundances (Figs. 1F-1I). However, such quantitative approaches have not been widely adopted, and most metabarcoding data 

are solely expressed as relative abundances. As previously described, other studies have normalized phytoplankton pigments 

to total chlorophyll a concentrations in an attempt to make DNA-based relative abundances and phytoplankton pigments 

comparable (Catlett et al., 2023; Kramer et al., 2024b). When using pigments directly, diagnostic pigments used for specific 

phytoplankton groups include monovinyl chlorophyll b (MVChlb) for chlorophytes, alloxanthin (Allo) for cryptophytes, 315 

fucoxanthin (Fuco) for diatoms, peridinin (Perid) for dinoflagellates, 19'-butanoyloxyfucoxanthin (ButFuco) for pelagophytes, 

19'-hexanoyloxyfucoxanthin (HexFuco) for prymnesiophytes, zeaxanthin (Zea) for cyanobacteria, and divinyl chlorophyll a 

(DVChla) for Prochlorococcus (Catlett et al., 2023; Kramer and Siegel, 2019). 

 

Within eukaryotic taxa, comparisons between normalized pigment concentrations  and DNA-based relative abundances showed 320 

moderate to strong correlations for several groups (Fig. 2A). In particular, the relative abundances of diatoms and Fuco 

displayed the strongest agreement (r = 0.79-0.82) followed by pelagophytes and ButFuco (r = 0.71-0.77). Cryptophytes with 

Allo and chlorophytes with MVChlb were also moderately well correlated  (r = 0.51-0.65) whereas dinoflagellates with Perid  

and prymnesiophytes with HexFuco were weakly correlated (r = 0.32-0.42). Previous studies using samples from the California 

Current (Plumes and Blooms), North Atlantic Ocean (NAAMES), and Northeast Pacific Ocean (EXPORTS) have shown 325 
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similar results where relationships are notable for chlorophytes, cryptophytes and pelagophytes , weak for prymnesiophytes 

and dinoflagellates, and inconsistent among the studies for diatoms (Catlett et al., 2023; Kramer et al., 2024b). In another 

previous study in the Western Antarctic Peninsula where a chemotaxonomic approach that partitions total chlorophyll a 

(CHEMTAX) was used rather than diagnostic pigments directly, cryptophytes were moderately well correlated between the 

measurements whereas diatoms were not (Lin et al., 2019; Mackey et al., 1996). Within these studies, abundances for some 330 

groups were also too low to be included. 

 

Although these results suggest that there are moderately strong relationships between pigments and DNA-based relative 

abundances for several phytoplankton groups, these analyses are hindered by the compositional nature of relative abundance 

data  as previously described. The estimation of absolute abundances via internal standards removes compositionality and 335 

enables the comparison of DNA- or RNA-based concentrations (copies L-1 or transcripts L-1) to phytoplankton pigment 

concentrations (µg L-1). By doing so here, all correlations were stronger than those with relative abundances for eukaryotic 

phytoplankton taxa (Fig. 2B). In particular, the relationships between dinoflagellates and Perid was dramatically stronger with 

both marker genes (r = 0.77-0.79). The relationship for prymnesiophytes was also stronger but not to the same degree  (r = 

0.46-0.51). Furthermore, all groups were most strongly correlated with their diagnostic pigments except prymnesiophytes, 340 

which had similarly strong correlations with peridinin (Fig. S3). By using taxon-specific biomass as chlorophyll a 

concentrations with a chemotaxonomic approach (phytoclass) (Hayward et al., 2023), correlations were often similar (Fig. S4). 

Moreover, strong correlations were also observed among absolute transcript abundances and pigment concentrations  (r = 0.66-

0.88) except for prymnesiophytes which had a similar correlation when using their DNA-based abundances (r = 0.43) (Fig. 

2C). 345 

 

These results indicate that abundances of diagnostic phytoplankton pigments and phytoplankton DNA or RNA often agree. 

Furthermore, they suggest that the aforementioned issues with compositionality or normalization of pigments to total 

chlorophyll a may lead to misleading conclusions about these relationships, particularly for dinoflagellates. Besides 

compositionality, DNA- and RNA-based abundances have other biases that can also lead to discrepancies. Copies of 18S DNA 350 

can vary orders of magnitude among closely related phytoplankton species (Zhu et al., 2005), and DNA sequencing may also 

capture deceased cells that have lost some or all of their pigments. RNA abundances may be variable within a cell, instead 

reflecting overall activity or differential transcription rates in response to environmental stimuli (Moran et al., 2012). Both 

metrics are also influenced by the comprehensiveness of reference databases where unknown phytoplankton sequences may 

be unassigned (Krinos et al., 2023). 355 
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Figure 2. Correlations among abundance metrics for each major eukaryotic phytoplankton group. Pearson correlations are all 
significant (P < 0.05) and coefficients are displayed in each panel. Lines with 95% confidence intervals show linear models with 

significant relationships between variables (P < 0.05). (A) Diagnostic pigments normalized to total chlorophyll a (TChla) against 360 
relative abundances of either the 18S-V4 (red) and 18S-V9 (blue) rRNA gene abundance. (B) Diagnostic pigment concentrations 

against absolute abundances of the 18S-V4 (red) and 18S-V9 (blue) rRNA genes (copies L-1). (C) Diagnostic pigment concentrations 

against absolute abundances of mRNA (transcripts L-1). 
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Differences in pigment abundances may also be a source of variability. For example, reduced light availability may lead to 

cellular increases in accessory pigments (Henriksen et al., 2002). Using mixed layer depth as a proxy for light history, 365 

decreased light availability has been shown to have a small but significant effect on discrepancies between phytoplankton 

pigments and DNA relative abundances (Catlett et al., 2023). To examine the effects of light history, we performed linear 

regressions on the residuals from linear models for absolute abundances with depth as a predictor variable and coarse proxy 

for reduced light availability (Fig. S5). Besides with cryptophytes, depth was found to positively and significantly predict 

residuals, aligning with an increase in pigments at depth which may be attributed to reduced light. High variability in near-370 

surface samples was also observed and may reflect large differences in light conditions from sampling throughout the diel 

cycle. 

 

Furthermore, as some pigments are shared among certain groups, the presence of one group may influence pigment 

concentrations that are diagnostic of a different group. Fucoxanthin, for example, is not only found in diatoms but also other 375 

photosynthetic eukaryotes with red algal-derived plastids (Jeffrey et al., 2011; Kramer and Siegel, 2019). Previous studies 

suggest that shared pigments are an important source of disagreement between the two measurements, but the strong 

correlations for many groups, particularly with diatoms, suggests that it may be a less prevalent issue in certain cases (Catlett 

et al., 2023; Kramer et al., 2024b).  

 380 

Intragroup variability in pigment composition may also be a  contributing factor with different species having different pigment 

concentrations (Zapata et al., 2004; Neeley et al., 2022). In particular, dinoflagellates may be influenced by taxa that no longer 

have peridinin. The previously shown dinoflagellate correlations were performed without Syndiniales, an early branching clade 

that are likely parasitic and have lost their plastid altogether (Decelle et al., 2022; Guillou et al., 2008). Overall, Syndiniales 

accounted for 30 to 34% of dinoflagellate 18S copies in our data, and their removal considerably increased the strength of 385 

dinoflagellate-peridinin correlations (Fig. S6 and Table S1). Other dinoflagellate taxa appear to have instead replaced their 

plastids with others via kleptoplasty, integration of a new plastid, or obtaining endosymbionts (Novák Vanclová and Dorrell, 

2024). For example, the Kareniaceae family (e.g., the genera Karenia, Karlodinium, and Takayama) and Kryptoperidiniceae 

family (e.g., the genus Durinskia) contain fucoxanthin from an ancestral haptophyte or diatom endosymbiont respectively, 

members of the genus Dinophysis have a complex kleptoplastidic relationship with a cryptophyte, and the genus Lepidodinium 390 

contains plastids originating from a chlorophyte (Novák Vanclová and Dorrell, 2024; Kamikawa et al., 2015; Zapata et al., 

2012). However, neither Kryptoperidiniceae nor Lepidodinium were detected in these data with either 18S marker, and filtering 

of other groups did not alter the strength of the correlation between Dinoflagellates and peridinin indicating that besides 

Syndiniales, these groups do not influence the dinoflagellate-peridinin relationship in this region (Table S1). The 

prymnesiophyte Phaeocystis globosa has also been suggested to contain ButFuco rather than HexFuco  (Wang et al., 2022; 395 

Antajan et al., 2004), and while filtering ASVs annotated as this species marginally improved the strength of the correlation 

for prymnesiophytes with the V4 data (from r = 0.46 to r = 0.48), it was lower in the V9 data (from r = 0.51 to r = 0.45). 
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Figure 3. Correlations among abundance metrics for cyanobacteria. (A) Average bead-normalized red fluorescence per cell for 400 
Prochlorococcus versus depth (m). The fluorescence units are arbitrary. (B) Prochlorococcus DNA-based absolute abundances 

(copies L-1) against cellular abundances. (C, D) Relative and absolute abundance comparisons between all cyanobacteria and 

zeaxanthin (Zea). (E, F) Relative and absolute abundance comparisons between Prochlorococcus and divinyl chlorophyll a (DVChla). 
Pearson correlations are significant (P < 0.05) and coefficients are displayed in panels B-F. Lines with 95% confidence intervals 

shows linear models with significant relationships between variables (P < 0.05). 405 
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Within cyanobacteria, Prochlorococcus chlorophyll content significantly increased with depth, suggesting an increase in 

pigments as light availability is reduced (Fig. 3A). Furthermore, Prochlorococcus absolute abundances strongly agreed with 

cell abundances from flow cytometry throughout the water column as previously observed in the greater region (Fig. 3B) 

(Jones-Kellett et al., 2024). In combination, these results suggest that DNA-based abundances and pigments are increasingly  

uncoupled as light availability is reduced. To minimize effects from light, only samples from the upper 20 m of the water 410 

column were further examined. When using relative abundances, a ll cyanobacteria with Zea and Prochloroccocus with 

DVChla were strongly correlated (Fig. 3C-F). However, DVChla, was not detected in 12.5% of samples which generally 

corresponded to lower DNA abundances (Fig. 3F). Unlike the eukaryotic data, the strengths of these correlations were lower 

when using absolute abundances, albeit still moderately well correlated. Although variability in pigments was reduced by 

removing samples deeper than 20 m, other factors such as cloud cover may further contribute  the remaining observed pigment 415 

variability and a  weaker correlation with absolute abundances. This variation in pigments may be normalized when dividing 

by total chlorophyll a leading to higher correlations with relative abundances. Some of the discrepancy with absolute 

abundances may also be caused by Prochlorococcus cell sizes which are smaller than the pore size of the GF/F filters used for 

pigments here (nominally 0.7 µm), leading to some Prochlorococcus cells being missed while being captured by flow 

cytometry or DNA that used a smaller pore size (0.2 µm ) (Ting et al., 2007; Partensky et al., 1999). As in eukaryotic 420 

phytoplankton, the absolute abundances of transcripts were also moderately well correlated for cyanobacteria with Zea and 

Prochloroccocus with DVChla (Fig. S7). 

3.2 Applications from integrating phytoplankton pigments with molecular data 

The strong agreement among eukaryotic phytoplankton pigments and DNA or RNA for several groups indicates that these 

metrics are comparable proxies for phytoplankton abundances and community composition. As phytoplankton pigments 425 

directly impact remote sensing reflectance spectra, HPLC pigments are useful for validating remote-sensing algorithms; 

however, these results suggest that the absolute abundances of DNA or RNA may also be useful for model development. 

Furthermore, these results support that potential models for phytoplankton pigment concentrations via remote sensing may be 

able to provide comparable global estimates of different phytoplankton groups (Kramer et al., 2022). In the following sections, 

we further examine relationships gleaned by integrating phytoplankton pigments and DNA- or RNA-based metrics to 430 

demonstrate potential applications for addressing ecological questions, monitoring harmful algal blooms, or inferring 

phytoplankton group-specific activity. 

3.2.1 Increased taxonomic resolution with biomass estimation in ecological assessments 

Phytoplankton pigments and DNA-based metabarcoding have separate strengths that can be leveraged when integrated: 

phytoplankton contributions to total chlorophyll a can be estimated with chemotaxonomic approaches providing a standardized 435 

estimate of biomass for each group, and DNA offers marker gene-level resolution into the composition of each sample. This 

increased resolution is possible even when the DNA-based data  are expressed solely as relative abundances. 
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To illustrate this combined approach, diversity expressed as the Shannon index (H’) was compared to both total chlorophyll a 

and taxon-specific chlorophyll a as proxies for phytoplankton biomass (Fig. 4). Biomass is often used as a proxy for 440 

productivity, thus enabling investigation of productivity-diversity relationships (PDRs) (Smith, 2007; Irigoien et al., 2004). 

PDRs may exhibit different trends, but marine phytoplankton are presumed to exhibit a  unimodal distribution with maximum 

diversity at an intermediate level of productivity , including within models of phytoplankton communit ies in the California 

Current Ecosystem (Irigoien et al., 2004; Li, 2002; Goebel et al., 2013). PDRs may also be positive, negative, or flat, with 

other studies suggesting that there is no relationship when accounting for potentially inadequate sampling (Cermeño et al., 445 

2013; Smith, 2007). Examination of these relationships is particularly important for understanding how environmental change 

may impact diversity and productivity. 

 

When comparing total chlorophyll a concentrations and the diversity of all six eukaryotic phytoplankton groups examined 

here, the PDR for the region was negative rather than unimodal, with diversity remaining high at low and intermediate biomass 450 

levels before declining at high biomass (Fig. 4A). During the same cruises, additional samples concurrently measured DNA 

abundances and net primary productivity (NPP, mg C m -3 d-1). When comparing diversity and NPP directly, the relationship 

was similarly flat then negative (Fig. S8A). The Shannon index considers both richness and evenness, thereby downweighing 

the influence of rare taxa  in comparison to richness, defined here as the number of ASVs (Ibarbalz et al., 2019; Ma, 2018). 

Despite substantially more variability, richness also displayed a  negative trend including when adding cyanobacterial richness 455 

(Fig. S8B and S9).  

 

By partitioning total chlorophyll a concentrations into separate eukaryotic phytoplankton groups and leveraging the high 

taxonomic resolution of the DNA-based data, PDRs were examined within each group (Fig. 4). Dinoflagellates, diatoms, and 

cryptophytes displayed significant relationships whereas other groups did not for both amplicons. Furthermore, diatoms and 460 

dinoflagellates displayed opposing trends, where diatoms displayed the expected unimodal relationship while dinoflagellates 

displayed a negative relationship. When considering richness, the trend for diatoms was largely positive, indicating a decline 

in evenness at the highest levels of biomass leading to lower diversity, and for cryptophytes, the relationship was slightly  

positive with both metrics (Fig. 4 and S10). Dinoflagellates had the highest richness with as many as 353 ASVs, while diatoms 

had a maximum of 93 ASVs (Fig. S10). Cryptophytes and pelagophytes had low richness with maxima of 15 and 9 ASVs, 465 

respectively (Fig. S10). For pelagophytes, the relatively low richness and lack of trend may be due to dominance of a single 

species, Pelagomonas calceolata, that is highly prevalent in SCMLs (Guérin et al., 2022; Dupont et al., 2015). Meanwhile, 

chlorophytes and prymnesiophytes did not display significant relationships between biomass and richness. Considering the 

relatively high richness and sole negative trend, dinoflagellates appear to be the primary drivers of the community -wide trend, 

besides at high biomass where diatoms have a high influence. This dominance by dinoflagellates is further evidenced by a shift 470 

to a more unimodal distribution by examining the community in the absence of dinoflagellates (Fig. S11). 
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Figure 4. Productivity-diversity relationships in the region with biomass (chlorophyll a concentrations) as a proxy for productivity 

and diversity expressed as the Shannon Index (H’) for both the 18S-V4 (red) and 18S-V9 (blue) data. (A) The diversity of all 475 
eukaryotic phytoplankton groups and total chlorophyll a concentrations. (B-D) Environmental variables against total chlorophyll a 

concentrations colored by near-surface (purple) or subsurface chlorophyll max (SCM, green) samples. (E-J) Diversity of individual 
phytoplankton groups against their taxon-specific biomass estimated with phytoclass. Lines represent GAMs and corresponding 

95% confidence intervals where significant (P < 0.05). The deviance explained by each GAM or “NS” for not significant (P > 0.05) 

is shown above each panel for each amplicon.   480 

The observations of unimodal PDRs have led to hypotheses for the mechanisms that underlying them. Indeed, our observed 

negative trend aligns with the negative side of unimodal PDRs where diversity decreases with increased productivity.  This 

decline is predicted to be associated with high productivity nearshore upwelling conditions where there is strong competition 

for light and opportunist large cells such as diatoms escape grazing (Goebel et al., 2013; Irigoien et al., 2004; Vallina et al., 

2014). In agreement, the observed low diversity aligns with the nearshore environment, shallow nitracline depths, and increase 485 

in diatom biomass relative to dinoflagellates (Figs. 4 and S12). However, increased diatom richness with biomass indicates 

that the negative trend is not entirely driven by the dominance of a few opportunist diatom taxa that escape predation (Fig. 
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S10C). Rather, many diatoms appear to flourish when competition for nutrients is minimized under upwelling conditions, 

although evenness likely declines at the highest levels.  

 490 

High diversity at intermediate productivity has been suggested to be associated with offshore oligotrophic conditions  (Goebel 

et al., 2013). Although offshore oligotrophic samples aligned with the lowest biomass levels, they were in part responsible for 

intermediate NPP along with SCMLs at intermediate depths, in agreement with model predictions (Fig. 4 and S8). The low 

productivity and low diversity end of the unimodal distribution is expected to be caused by light limitation (Goebel et al., 

2013), and while chlorophyll a concentrations suggest that the deepest SCML samples align with intermediate biomass, they 495 

are influenced by reduced light causing elevated chlorophyll content (Cullen, 2015). As predicted, the deepest SCML samples 

displayed the lowest NPP rates; however, contrary to predictions, diversity and richness remained high in these samples 

resulting in an absence of the positive side of a unimodal distribution (Fig. S8). 

 

The low productivity and diversity end of unimodal distributions have also been attributed to selective grazing with the 500 

dominance of a few slow-growing nutrient specialists (Vallina et al., 2014). As diversity and richness instead remained high, 

many phytoplankton taxa, particularly dinoflagellates, appear to coexist within low productivity regimes. Within 

dinoflagellates, this coexistence may be supported by mixotrophy or diel vertical migrations where nutrient availability at 

depth is exploited at night and photosynthesis in the near-surface occurs during the day (Zheng et al., 2023; Stoecker et al., 

2017). Within prymnesiophytes, there may also be some mixotrophic taxa (Koppelle et al., 2022). Small cells such as 505 

chlorophytes, pelagophytes, and prymnesiophytes are also at an advantage under oligotrophic conditions due to more effective 

resource acquisition and use (Raven, 1998), although their diversity is maintained across their biomass ranges (Fig. 4). Even 

though diatom diversity is lower under oligotrophic conditions, certain diatoms such as those that form symbiotic relationships 

with diazotrophs may be favored under these conditions and contribute to the increased diversity (Kemp and Villareal, 2018).  

 510 

Overall, these results highlight the contrasting strategies of different phytoplankton groups and align with the classical view 

of diatoms and dinoflagellates on opposite ends of the r-selected vs K-selected continuum (Margalef, 1978). However, these 

results may differ from other regions that exhibit greater stability or experience frequent blooms of groups besides diatoms. 

Continued warming in the region is anticipated to lead to increased stratification  resulting in conditions analogous to those in 

the offshore oligotrophic region with deeper nitraclines (Ducklow et al., 2022; Lund, 2024). These projections imply that 515 

increased stratification leads to low productivity but high phytoplankton community diversity, although diatom diversity will 

be lower. In such a scenario, the high level of diversity will instead be driven by dinoflagellates and supplemented by a variety 

of picoeukaryotes, contrasting with predictions of lower diversity in ecosystem models of open ocean regions (Henson et al., 

2021). 
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3.2.2 Monitoring and forecasting harmful algal blooms 520 

The strong relationships between pigments and abundances of certain groups may also be useful for monitoring or forecasting 

harmful algal blooms (HABs). For example, certain species in the diatom genus, Pseudo-nitzschia, produce the neurotoxin 

domoic acid (DA) resulting in HABs worldwide (Bates et al., 2018). They are also commonly responsible for HABs in our 

study region and California Current at large (Lewitus et al., 2012). With absolute abundances accounting for 10% to 11% of 

diatom 18S copies, Pseudo-nitzschia was among the most dominant diatom genera, only exceeded by Thalassiosira and 525 

Chaetoceros (Fig. 5A). Pseudo-nitzschia was also detected in 74% to 79% of samples when diatoms were present with an 

equivalent number when fucoxanthin was detected. Overall, a  strong positive relationship between Pseudo-nitzschia and total 

diatom abundances was observed, and fucoxanthin concentrations explained 10% more of the variance in Pseudo-nitzschia 

abundances than chlorophyll a concentrations (Fig. 5). Expression of dabA, the first gene in the domoic acid biosynthetic 

pathway (Brunson et al., 2018), was also detected in 13 metatranscriptomics samples, and 7 of the 11 samples with greater 530 

than 0.5 µg L-1 concentrations of fucoxanthin had detectable dabA expression (Fig. 5E). These samples comprised diverse 

Pseudo-nitzschia species with an overall dominance of P. delicatissima; however, the highest dabA expression occurred when 

P. australis relative abundances were elevated (Fig. 5F). 

 

Not all species of Pseudo-nitzschia have been shown to produce domoic acid, and DA production is influenced by 535 

environmental conditions (Bates et al., 2018). Similarly, expression of dabA does not always confer detectable particulate DA 

(Brunson et al., 2024). However, current models in the region that predict Pseudo-nitzschia HABs and domoic acid production 

use a variety of data including remotely-sensed chlorophyll a and two reflectance wavebands, suggesting that fucoxanthin 

detection in conjunction with other measurements and cellular modeling may offer better predictions for Pseudo-nitzschia and 

domoic acid (Anderson et al., 2016; Moreno et al., 2022).   540 

 

Certain dinoflagellates may also cause HABs globally and in the region (Anderson et al., 2012; Anderson et al., 2021). These 

HABs are caused by certain species in the genera Alexandrium, Dinophysis, and Gonyaulax as well as the species 

Gymnodinium catenatum and Lingulodinium polyedra (Anderson et al., 2021; Trainer et al., 2010; Ternon et al., 2023). These 

genera were also among the most dominant dinoflagellate genera detected, although 39% of V4 and 55% of V9 18S copies for 545 

dinoflagellates were unassigned on a genus level (Fig. S13).  
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Figure 5. Pseudo-nitzschia abundances. (A) Relative abundances of the top three diatom genera based on total copies L-1. (B) Pseudo-550 
nitzschia absolute abundances against diatom (Bacillariophyta) absolute abundances. (C) Pseudo-nitzschia absolute abundances 

against total chlorophyll a concentrations (D) Pseudo-nitzschia absolute abundances against fucoxanthin concentrations. (E) Total 

dabA expression against fucoxanthin concentrations. (F) Relative abundances of Pseudo-nitzschia species from ITS2 sequencing (left 

y-axis) and total dabA expression (right y-axis). Samples are ordered by fucoxanthin concentrations as shown in Panel E.  

 555 

Despite dinoflagellate diversity declining with increasing biomass, dinoflagellate richness was the highest among groups, 

including where the highest dinoflagellate biomass was observed (Fig. 4 and S10). As a result, the samples with high 

dinoflagellate abundances still comprise many genera. Considering that peridinin concentrations did not exceed 1 µg L -1, an 

intense dinoflagellate bloom that may have resulted in even lower diversity was not captured here. Nevertheless, peridinin  

concentrations and V4-based abundances of the dinoflagellate genera Alexandrium, Gonyaulax, and Gymnodinium were 560 
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significantly related (Fig. S13). Peridinin concentrations also explained 9-16% more of the variance in the abundances of these 

genera compared to total chlorophyll a concentrations. In contrast, no significant relationships were observed for 

Lingulodinium and Dinophysis, the latter of which does not contain peridinin as previously noted. As in Pseudo-nitzschia, 

there are non-toxic members of these genera , and their presence does not imply the production of their respective toxins 

(Anderson et al., 2012). However, the ability to distinguish increased peridinin or fucoxanthin concentrations with remote 565 

sensing suggests increases in the genera identified here and may aid HAB monitoring efforts. 

3.2.3 Towards increased inference of biogeochemical or metabolic activity 

Current ESMs are unable to confidently predict climate-driven changes to NPP, and improving these models to better account 

for phytoplankton abundances and functions is a critical component to address this uncertainty (Kwiatkowski et al., 2020; 

Tagliabue, 2023). Model parameters include biological rates and biogeochemical fluxes, and there is increasing interest in the 570 

ability to connect ‘omics data with rates such that the ‘omics can inform these model parameters (Strzepek et al., 2022; Saito 

et al., 2024). The absolute quantities of certain proteins have shown promise for inferring rates of nitrite oxidation and carbon 

fixation (Saito et al., 2020; Roberts et al., 2024), although it is unclear if absolute transcript abundances will be able to serve a 

similar purpose (McCain et al., 2024). 

 575 

The strong correlations between pigments and total transcript abundances in most groups examined here suggests that pigment 

abundances may also relate to the expression of specific genes (Fig. 2C). Within each group, the absolute abundances of genes 

clustered by KEGG annotations (Sect. 2.6) were correlated with their respective diagnostic pigments (Fig. 6). In chlorophytes, 

there was only one strongly significant correlation with a light-harvesting chlorophyll-binding protein (LHCB) and 

Prochlorococcus which had no significant correlation. In other groups however, 67 to 2,312 genes were strongly correlated (r 580 

> 0.60, FDR < 0.05). For some taxa, specific genes displayed stronger correlations than both 18S rDNA and all transcripts 

combined (Fig. 2), indicating that they may individually be used as indicators of abundances. These include the pentose 

phosphate pathway genes 6-phosphogluconate dehydrogenase (PGD) and glucose-6-phosphate dehydrogenase (G6PD) in 

dinoflagellates as well as several accessory light harvesting complex (LHCF) proteins in prymnesiophytes.  With 34% to 65% 

of genes with no assigned function, the remaining genes fall into diverse sets of metabolic categories (Fig. 6).  585 

 

In cryptophytes and dinoflagellates, several genes related to carbon fixation and photosynthesis  were strongly correlated (Fig. 

6). Cryptophytes and diatoms also showed strong correlations with several nitrogen metabolism genes. In baker’s yeast 

(Saccharomyces cerevisiae), the abundances of individual proteins are generally poor predictors of their corresponding 

reaction rates (McCain et al., 2024), but the combined abundances of functional units of genes, i.e. modules or subsystems, 590 

that are responsible for specific pathways may more accurately predict rates. Similarly, increases in the abundances of specific 

pigments here is indicative of the expression of certain pathways which may be useful in predicting group-specific reaction 
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rates in situ. Further establishment of these relationships or between pigments and protein abundances may potentially support 

global estimates of these group-specific reaction rates. 

 595 

 

 

Figure 6. Strongly significant correlations between diagnostic pigments and gene expression (transcripts L -1) associated with each 

respective group (r > 0.60, FDR < 0.05) and organized by KEGG module classes. To examine correlations, genes were aggregated 

by KEGG Ortholog annotations and if not present, the KEGG gene annotations were used. 600 
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4 Conclusions 

By integrating phytoplankton pigments with quantitative abundances of 18S DNA and total mRNA via metabarcoding and 

metatranscriptomics respectively, we demonstrate that diagnostic pigments for specific eukaryotic phytoplankton groups 

correlate with both their DNA- and RNA-based abundances. Although there are inherent biases associated with each of these 605 

measurements, their relationships suggest that they are comparable and may be useful for the development of satellite-based 

remote sensing models of phytoplankton group-specific abundances. Rather than the 18S rRNA gene which suffers from 

variable copy numbers, other sequencing-based markers may be more useful for drawing these comparisons. For example, the 

photosystem gene psbO is universal among phytoplankton which normally have one or two at most copies per genome (Pierella  

Karlusich et al., 2023). It is also unclear if 18S sequencing of rRNA rather than the rRNA gene from DNA offers a less biased 610 

assessment. However, these results also provide increased confidence that both DNA- and RNA-based abundances are 

reflective of phytoplankton group-specific biomass. Prymnesiophytes displayed the weakest correlations out of all groups 

examined here, but the calcium carbonate shells of coccolithophores are highly optically refractive enab ling easier detection 

via satellite-based remote sensing (Balch, 2018). When coupled to other satellite, glider, or float-based measurements of 

photophysiology (Lin et al., 2016; Ryan-Keogh et al., 2023), phytoplankton group-specific abundances, community 615 

composition, and physiological assessments may be able to be remotely and collectively assembled. 

 

Although this assessment was only performed in the California Current Ecosystem, these relationships may extend to other 

regions. Previous use of quantitative metabarcoding in the Western Antarctic Peninsula with relatively high abundances of 

cryptophytes showed that their chemotaxonomic abundances were well correlated with their DNA-based abundances (Lin et 620 

al., 2019). Diatoms were not strongly correlated, but this result may be an artifact from a small sample size that did not capture 

a large range of diatom abundances in the region. Considering that the strengths of correlations in all eukaryotic groups 

improved when translating relative abundances into absolute abundances here, previous studies in the California Current, North 

Atlantic and Northeast Pacific that used relative abundances were likely affected by issues when correlating compositional 

data , and we hypothesize that stronger correlations would be observed had quantitative approaches been employed. In 625 

particular, dinoflagellates displayed relatively low correlations with relative abundances (Kramer et al., 2024b; Catlett et al., 

2023), but the strength of these correlations dramatically improved by using quantitative approaches here (Fig. 2A). For 

cyanobacterial abundances, pigment and transcriptional variability likely contributed to weaker correlations when using 

absolute abundances. Smaller filter pore sizes such as those obtained by combusting GF/F filters may also need to be 

considered when drawing these comparisons in future studies (Nayar and Chou, 2003) 630 

 

The existence of relationships among these metrics also opens the door to several applications beyond simply assessing 

phytoplankton abundances and community composition . For example, PDRs can be examined in detail with not only the whole 

phytoplankton community but also within individual phytoplankton groups. By doing so, we show that the PDR for the whole 
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community in the region is negative rather than the expected unimodal distribution  (Fig. 4A). By partitioning biomass into 635 

separate groups and leveraging the high resolution provided by DNA, we show that this negative trend is driven by 

dinoflagellates while diatoms largely show the opposite trend (Figs. 4G and 4H). These differences in PDRs align with the 

classical view of diatoms and dinoflagellates on opposite ends of the r- and K-selected continuum, while also showing that 

diatom richness increases under bloom scenarios rather than selecting for a small number of opportunists (Margalef, 1978). 

The results also suggest that a shift to a more stratified less productive regime from climate change may support a more dive rse 640 

phytoplankton community, but one that has low diatom diversity.  

 

Increases in diatom and dinoflagellate pigments also align with increases in genera that contain harmful bloom-forming taxa 

(Fig. 5 and S12). With the harmful diatom genus Pseudo-nitzschia, gene expression for toxin biosynthesis was also often 

elevated under higher fucoxanthin concentrations (Fig. 5E).  Although increases in these genera does not always imply that 645 

there is toxin production, the detection of these pigments, and in particular, the substitution of remotely sensed chlorophyll a 

for phytoplankton pigments will likely improve HAB detection and forecasts. Increases in pigments also corresponds to higher 

expression of genes specific to their respective group besides with Chlorophytes. These genes fall into diverse metabolic 

categories, and as connections between gene expression and rate processes emerge as done with quantitative protein 

measurements (McCain et al., 2024), the detection of pigments may aid the inference of group-specific metabolic activity and 650 

support the development of ESMs. 
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