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Abstract. Observations of phytoplankton abundances and community structure are critical towards understanding marine 

ecosystems. Common approaches to determine group-specific abundances include measuring phytoplankton pigments with 15 

high-performance liquid chromatography and DNA-based metabarcoding. Increasingly, mRNA abundances with 

metatranscriptomics are also employed. As phytoplankton pigments are used to develop and validate remote sensing 

algorithms, further comparisons between pigments and other metrics are needed to validate the extent to which these 

measurements agree for group-specific abundances; however, most previous comparisons have been hindered by 

metabarcoding and metatranscriptomics solely producing relative abundance data. By employing quantitative approaches that 20 

express both 18S rRNA genes (DNA) and total mRNA as concentrations, we show that these measurements are related for 

several eukaryotic phytoplankton groups. We further propose that integration of these can be used to examine ecological 

patterns more deeply. For example, productivity-diversity relationships of both the whole community and individual groups 

show a dinoflagellate-driven negative trend rather than the commonly found unimodal pattern. Pigments are also shown to 

relate to certain harmful algal bloom-forming taxa as well as the expression of sets of genes. Altogether, these results suggest 25 

that potential models of pigment concentrations via hyperspectral remote sensing may enable improved assessments of global 

phytoplankton community structure., These assessments may further supportincluding the detection of harmful algal blooms 

and, and support the development of ecosystemEarth system models.   

1 Introduction 

Marine phytoplankton comprise both prokaryotic cyanobacteria and diverse lineages of eukaryotes with distinct evolutionary 30 

histories (Pierella Karlusich et al., 2020). Collectively, they are responsible for approximately 50% of global primary 
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production, support marine food webs, and extensively contribute to biogeochemical cycling (Huang et al., 2021).  Their 

distinct evolutionary trajectories have also given rise to different traits, functional roles, and niches. For example, diatoms 

(Bacillariophyta) tend to dominate under well-mixed, nutrient-rich conditions, are considered principal contributors to carbon 

export with fast sinking rates, and are a significant component of the silicon cycle due to their formation of silica cell walls 35 

(Guidi et al., 2016; Agusti et al., 2015; Bowler et al., 2010) Dinoflagellates (Dinoflagellata) may be major contributors to 

carbon export in oligotrophic regions, and many species are mixotrophs, which enables them to serve multiple important roles 

in marine food webs (Guidi et al., 2016; Stoecker et al., 2017). Prymnesiophytes (Haptophyta) include coccolithophores with 

calcium carbonate shells, the formation of which influences upper ocean alkalinity and air-sea carbon dioxide exchange (Rost 

and Riebesell, 2004). The prymnesiophytes also include the bloom-forming Phaeocystis spp. which are a major source of the 40 

sulfur compound, dimethylsulfoniopropanate (DMSP), that is hypothesized to influence cloud formation and climate (Smith 

Jr and Trimborn, 2023). Cryptophytes (Cryptophyta) are considered to be ubiquitous and may be highly abundant in the 

Sargasso Sea and Southern Ocean (Richardson, 2022; Cotti-Rausch et al., 2016; Mendes et al., 2018). Lastly, prominent 

chlorophytes (Chlorophyta) and pelagophytes (Pelagophyceae) are additional picoeukaryotes that are important primary 

producers, particularly in the open ocean (Worden et al., 2012; Not et al., 2012; Lopes dos Santos et al., 2017; Guérin et al., 45 

2022).  

 

Due to these contributions to ecosystem function and differing roles, assessing phytoplankton abundances and disentangling 

phytoplankton community composition (PCC) is necessary to understand marine environments (Cetinić et al., 2024). For 

example, current Earth system models (ESMs) are unable to confidently project if primary productivity will increase or 50 

decrease under future climate scenarios (Kwiatkowski et al., 2020). By examining the effects of natural climate variability and 

anthropogenic change on phytoplankton communities as well as their physiology, more accurate and detailed representation 

of different groups can be generated to improve these model predictions (Tagliabue, 2023; Cetinić et al., 2024). Knowledge of 

PCC may also further help estimate carbon export flux (Kramer et al., 2025). Additionally, monitoring for harmful algal blooms 

(HABs) is important for human health as well as understanding their impacts on fisheries and ecosystems (Anderson et al., 55 

2012), and fisheries managers may benefit from knowledge of PCC to aid stock assessments and identify suitable fishing zones 

(Satterthwaite et al., 2023; Sathyendranath et al., 2023). 

 

A common approach to estimate phytoplankton abundances and determine PCC is the measurement of phytoplankton pigments 

via high-performance liquid chromatography (HPLC). Specifically, certain accessory pigments can be used as proxies, or 60 

diagnostic pigments, to determine the abundances of specific groups, even though some of these pigments are shared among 

groups (Jeffrey et al., 2011; Kramer and Siegel, 2019). As pigments directly alter the shapes and magnitudes of remote sensing 

reflectance spectra, HPLC-measured pigments are also extensively used to develop and validate satellite-based remote sensing 

algorithms. Given the recent availability of hyperspectral remote sensing reflectance data from NASA’s Plankton, Aerosol, 

Cloud, ocean Ecology (PACE) mission, the continued development of remote sensing algorithms based on HPLC pigments 65 
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may enable global scale estimation of phytoplankton pigment concentrations and PCC (Kramer et al., 2022; Cetinić et al., 

2024). 

 

As a result, it is important to compare phytoplankton pigments to other metrics of PCC. If other metrics agree with pigments, 

they may also be useful for validating remote sensing algorithms. Conversely, it is important to compare other metrics of PCC 70 

to phytoplankton pigments as it remains uncertain whether indirect approaches such as DNA and RNA sequencing are 

reflective of phytoplankton biomass. DNA metabarcoding is increasingly being used to determine PCC, primarily by 

sequencing hypervariable regions of the 16S gene for prokaryotes and phytoplankton plastids or the 18S gene for eukaryotes 

(Lopes dos Santos et al., 2022), and it is increasingly common to use environmental mRNA sequencing, or 

metatranscriptomics, to determine PCC (Cohen et al., 2022). 75 

 

Initial comparisons between phytoplankton pigments and DNA indicate that the metrics are correlated in some cases; however, 

these comparisons have been hindered by the compositional nature of sequencing data (Catlett et al., 2023; Kramer et al., 

2024). By default, DNA and RNA sequencing produce relative abundance data, which complicates their interpretability and 

can lead to spurious correlations (Gloor et al., 2017). This is because there are multiple scenarios that could lead to a taxonomic 80 

group having the same or different relative abundances among samples, and potential differences in relative abundances are 

not necessarily reflective of differences in their true abundances. For example, one group’s true abundance could be the same 

in two samples while another group’s is lower in just one sample leading to a higher relative abundance of the first group even 

though the two abundances are equal. Alternatively, both groups’ true abundances could be higher in one sample but to 

different degrees, resulting in lower relative abundances in one group even though its true abundance has increased. 85 

 

To compare phytoplankton pigments and relative DNA abundances, previous studies have normalized diagnostic pigment 

concentrations to total chlorophyll a (TChla) concentrations or the sum of diagnostic pigments, thereby making both DNA and 

pigment data relative quantities (Catlett et al., 2023; Kramer et al., 2024). However, the use of these approaches while only 

using relative abundances of prokaryotic or eukaryotic taxa presents other issues. As an example, high TChla could be driven 90 

by relatively high cyanobacterial abundances that would not be captured in 18S sequencing, which targets eukaryotes. If the 

eukaryotic phytoplankton community is then dominated by one group, this group would have a high relative abundance that 

is coupled to low concentrations of their diagnostic pigment relative to TChla. The use of 16S alone to capture both prokaryotic 

cyanobacteria and eukaryotic plastids may circumvent this issue, but references for plastid 16S sequences are not as 

comprehensive and are influenced by potentially greater variability in plastid copy number (Lopes dos Santos et al., 2022; 95 

Decelle et al., 2015). Alternatively, simultaneous metabarcoding of the 16S and 18S rRNA gene with three domain primers 

addresses this issue, but it may also require greater sequencing depth to capture the diversity of the eukaryotic community 

(Yeh et al., 2021). Even if eukaryotic relative abundances are only compared to the sum of eukaryotic diagnostic pigments, 

the DNA-based relative abundances are still influenced by non-photosynthetic taxa. Altogether, these problems with 
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normalization and potential discrepancies between true abundances and relative metrics can be severe issues that produce 100 

misleading correlations. 

 

The estimation of absolute abundances via internal standards avoids these issues and enables comparisons between gene or 

transcript concentrations and phytoplankton pigment concentrations (Lin et al., 2019; Cohen et al., 2022). This approach was 

used in a study in the Western Antarctic Peninsula to compare 18S rRNA gene concentrations to group-specific chlorophyll a 105 

concentrations (Lin et al., 2019). With a small sample size (n = 16) and cryptophyte-dominated communities, strong 

relationships with cryptophytes and Phaeocystis were observed, but not with diatoms. Other groups were not examined, and it 

remains unclear if these relationships persist with larger sample sizes, other regions with different communities, or across the 

entire spectrum of phytoplankton abundances within eukaryotic phytoplankton.  

 110 

Quantitative 16S sequencing has previously been shown to strongly agree with cell abundances of the prokaryotic genera 

Prochlorococcus and Synechococcus measured with flow cytometry (Jones-Kellett et al., 2024), although a separate 

comparison of Prochloroccocus abundances from flow cytometry only showed moderate correlations with pigment 

concentrations indicating that pigment concentrations may be decoupled from 16S DNA and cell abundances (Kramer et al., 

2024). Furthermore, it remains unclear if absolute quantities of mRNA from metatranscriptomics and phytoplankton pigments 115 

relate to one another; however, total mRNA concentrations have also been shown to agree with imaging flow cytometry-

derived carbon biomass estimates with eukaryotic phytoplankton, indicating that total mRNA is reflective of phytoplankton 

biomass (Coesel et al., 2025).  

 

To further explore these potential relationships, we compare phytoplankton pigments with quantitative DNA- or RNA-based 120 

abundances from paired samples collected over a seven-year period on seasonal California Cooperative Oceanic Fisheries 

Investigations (CalCOFI) surveys. Within cyanobacteria, flow cytometry was also used to measure Prochloroccocus and 

Synechococcus cell abundances. The CalCOFI sampling area is within the California Current Ecosystem, a coastal upwelling 

biome associated with an eastern boundary current. Although the sampling area is largely restricted to the southern California 

Current (Figs. 1A and 1B), it includes a major biogeographic boundary at Point Conception and phytoplankton taxa commonly 125 

associated with both the central North Pacific Subtropical Gyre and the subarctic Northeast Pacific, that is, communities 

associated with the broader region (Checkley and Barth, 2009; Venrick, 1998). The range in phytoplankton abundances closely 

aligns with those observed globally and is captured by sampling the gradients from nearshore stations influenced by upwelling 

to offshore oligotrophic stations  (Deutsch et al., 2021; James et al., 2022; Venrick, 2002). CalCOFI also conducts four cruises 

per year; therefore, the samples include potential differences from seasonal and interannual variability. Beyond examining 130 

PCC, we explore additional applications stemming from relationships between phytoplankton pigments and DNA- or RNA-

based abundances including investigating productivity-diversity relationships, forecasting harmful algal blooms, and inferring 

expression of specific genes. 
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Figure 1. Overview of CalCOFI samples used in this study. (A, B) Locations and quantity of samples for DNA and RNA with 135 
corresponding phytoplankton pigment samples. (C, D) Temperature (°C) and nitrate concentrations (µmol L-1) across seasons for 
the paired DNA and pigment samples used here. Corresponding data for the RNA samples are shown in Fig. S1. Nitrate 
concentrations are shown on a cube-root scale. (E) Phytoplankton pigment concentrations. Pigment abbreviations: TChla, total 
chlorophyll a; Allo, alloxanthin; ButFuco, 19'-butanoyloxyfucoxanthin; DVChla, divinyl chlorophyll a; Fuco, fucoxanthin; 
HexFuco; 19'-hexanoyloxyfucoxanthin; MVChlb, monovinyl chlorophyll b; Perid, Peridinin; Zea, zeaxanthin. (F, G) Relative 140 
abundances of different phytoplankton groups using 18S-V4 rRNA gene (red), 18S-V9 rRNA gene (blue), or transcript (metaT, 
green) abundances. For prokaryota, the 16S V4-V5 region was used and is shown in red. (H, I) Absolute abundances for 18S or 16S 
rRNA genes (copies L-1, left y-axis) and transcripts (transcripts L-1, right y-axis). Different metrics are colored as in panels F and G. 
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2 Materials and Methods 

2.1 Sample collection and biogeochemical measurements 145 

From select stations on seasonal CalCOFI cruises from 2014 to 2020, 417 DNA and 118 RNA samples were collected 

concurrently with phytoplankton pigments within the euphotic zone along CalCOFI lines 80.0 and 90.0 and at the Santa 

Barbara Basin (Station 81.8 46.9) (Figs. 1A and 1B). These data represent only a subset of the on-going NOAA-CalCOFI 

Ocean Genomics (NCOG) time series, and are restricted to samples where quantitative approaches for DNA and RNA were 

employed with phytoplankton pigment samples (James et al., 2022). As such, no DNA samples from 2017 are included and 150 

RNA samples only span from 2017 to 2020.  

 

CalCOFI cruises survey the California Current Ecosystem in a standardized grid pattern with most stations in the southern 

California Current region. During this time period, winter cruises occurred during January and February, spring cruises 

occurred during April, summer cruises occurred in July and August, and autumn cruises occurred in October and November. 155 

There was no Spring cruise during 2020 due to the COVID-19 pandemic. At each station, seawater was collected from the 

near-surface (normally 10 m) and the subsurface chlorophyll maximum layer (SCML) with a CTD rosette for pigments, DNA, 

RNA, and flow cytometry. For the DNA samples, 219 were from the near-surface (0 – 14 m, mean = 10 m), and 198 were 

from the SCML (18 – 130 m, mean = 53 m). Temperature data are derived from duplicate Seabird SBE 3Plus sensors on a 

Seabird 911+ CTD.  Macronutrient concentrations were measured on a QuAAtro continuous segmented flow autoanalyzer 160 

(SEAL Analytical) alongside reference materials (KANSO technos) (Armstrong et al., 1967; Gordon et al., 1992). The 

nitracline depth is defined as the depth where nitrate first exceeds 1 µM.  

 

Primary productivity was estimated via 14C uptake at select stations. Briefly, seawater was collected from six depths 

representing 56%, 30%, 10%, 3%, 1%, and 0.3% surface light levels shortly before local apparent noon. Light levels were 165 

estimated with a Secchi disk with the assumptions that the 1% light level is three times the Secchi depth and that the extinction 

coefficient is constant. Following collection, seawater was dispensed into triplicate 250 mL polycarbonate bottles (two light 

bottles and one dark control). Bottles were then inoculated with a 200 µL solution containing NaH14CO3 that was prepared by 

diluting 50 mL of NaH14CO3 (approximately 50-57 µCi mmol-1; MP Biomedicals, LLC) with 350 mL of 2.8 mM Na2CO3 and 

then adjusting the pH to ~10 with 1 N NaOH (Fitzwater et al., 1982). Bottles were then incubated until civil twilight in tubes 170 

with flow-through seawater and neutral-density screens to simulate in situ light levels. Following incubation, samples were 

filtered onto 0.45 µm mixed-cellulose ester filters (type HA, Millipore), acidified with 0.5 mL of 10% HCl, immersed in 

scintillation fluor, and measured with a scintillation counter once back onshore. As the incubations occurred from local noon 

until civil twilight, half light-day productivity at each depth was calculated by averaging the two light bottles corrected with 

the dark uptake bottle. Half light-day productivity was then multiplied by 1.8 to obtain 24 hour productivity as determined by 175 

Eppley (1992). When comparing productivity to diversity from DNA, samples from the entire NCOG dataset (2014 to 2020) 
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that were within 20 m of productivity samples were used (n = 434). The average vertical distance between DNA and 

productivity samples was 1.79 m.  

2.2 High-performance liquid chromatography pigment analysis 

Phytoplankton pigment concentrations were determined with HPLC. Samples were collected with 0.5, 1.04, or 2.2L opaque 180 

brown bottles depending on the fluorescence measured by the CTD and filtered onto 25 mm GF/F filters under low vacuum 

pressure (≤ 40 mm Hg). Once completed filtering, the filters were carefully folded in half, blotted on a paper towel to remove 

excess water, and stored in 2 mL cryovials in liquid nitrogen until analysis at the Horn Point Analytical Services Laboratory 

(HPL) at the University of Maryland with the HPL method as described in Hooker (2005). Briefly, filters were extracted in 

95% acetone and sonicated on ice for 30 s with an output of 40 W. Samples were then clarified by filtering them through a 185 

HPLC syringe cartridge filter (0.45 µm) and a glass-fiber prefilter. Extracts were then analyzed with an automated HP 1100 

HPLC system with external calibration standards that were either purchased or isolated from naturally occurring sources as 

described in Van Heukelem and Thomas (2001). The pigments that were measured and used here are Peridinin, 19ꞌ-

butanoyloxyfucoxanthin, fucoxanthin, neoxanthin, prasinoxanthin, violaxanthin, 19ꞌ-hexanoyloxyfucoxanthin, alloxanthin, 

zeaxanthin, divinyl chlorophyll a, and TChla. The precision including filter extraction and analysis of TChla is estimated to be 190 

5.1%. As described later in the results and discussion, several of these pigments are diagnostic pigments for certain 

phytoplankton lineages. Although other pigments are measured with HPLC, they do not provide as much specificity as the 

diagnostic pigments used here; therefore, they were not included in the analysis (Kramer and Siegel, 2019).  In addition to use 

diagnostic pigments directly, taxon-specific contributions to TChla concentrations based on the aforementioned pigment 

concentrations were determined with phytoclass v2.0.0 (Hayward et al., 2023). To account for potential differences in pigment 195 

ratios due to environmental conditions, surface and SCML samples were analyzed with phytoclass separately.  

2.3 Nucleic acid sample collection and extraction 

For DNA samples, 0.2 to 10.4 L (mean = 3.3 L) of seawater was filtered onto 0.22 µm Sterivex™ filters. RNA samples were 

collected simultaneously following the same approach but with generally higher volumes (2.0 to 4.8 L, mean = 4.0 L). RNA 

samples were only collected near local apparent noon to minimize bias from the diel cycle.  200 

 

Following filtration, samples were immediately flash frozen in liquid nitrogen and stored at -80°C. DNA was extracted with 

the Macherey-Nagel NucleoMag Plant kit on an Eppendorf epMotion 5075TMX and assessed on a 1.8% agarose gel. At the 

start of DNA extraction during the addition of lysis buffer, 1.74 to 3.78 ng of Schizosaccharomyces pombe genomic DNA and 

3.36 to 7.09 ng of Thermus thermophilus genomic DNA was added to each sample as an internal standard (Lin et al., 2019). 205 

RNA was also extracted on the Eppendorf epMotion but with the Machery-Nagel NucleoMag RNA kit. As an internal standard, 

2 to 5 billion copies of Invitrogen™ ArrayControl™ RNA Spikes #1 and #8 were added to the lysis buffer of each sample at 

a 2.66:1 ratio. 
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2.4 Amplicon library preparation and sequencing 

Amplicon libraries separately targeting the V4-V5 region of the 16S rRNA gene, the V4 and V9 regions of the 18S rRNA 210 

gene, and the ITS2 gene from the diatom genus Pseudo-nitzschia were constructed via a one-step PCR with the TruFi DNA 

Polymerase PCR kit to simultaneously amplify the region of interest and barcode each sample. For 16S, the 515F-Y (5′-GTG 

YCA GCM GCC GCG GTA A-3′) and 926R (5′-CCG YCA ATT YMT TTR AGT TT-3′) primer set was used (Parada et al., 

2016). For 18S-V4, the V4F (5′-CCA GCA SCY GCG GTA ATT CC-3′) and V4RB (5′-ACT GTT CTT GAT YR-3′) primer 

set based on those used by Berdjeb et al. (2018) was used. For 18S-V9, the 1389F (5′-TTG TAC ACA CCG CCC-3′) and 215 

1510R (5′-CCT TCY GCA GGT TCA CCT AC-5′) primer set was used (Amaral-Zettler et al., 2009). For Pseudo-nitzschia 

ITS2, the 5.8SF (5′-TGC TTG TCT GAG TGT CTG TGG A-3′) and 28SR (5'-TAT GCT TAA ATT CAG CGG GT-3′) primer 

set was used (Lim et al., 2018). 

 

Each reaction was performed with an initial denaturing step at 95°C for 1 minute followed by 30 cycles of 95°C for 15 seconds, 220 

56°C for 15 seconds, and 72°C for 30 seconds. 2.5 µL of each PCR reaction was run on a 1.8% agarose gel to confirm 

amplification, then PCR products were purified with Beckman Coulter AMPure XP beads following the manufacturer’s 

instructions. PCR quantification was performed in duplicate using the Invitrogen Quant-iT PicoGreen dsDNA Assay kit. 

Samples were then combined in equal proportions into multiple pools followed by another 0.8x AMPure XP bead purification 

on the final pool. DNA quality of each pool was evaluated on an Agilent 2200 TapeStation, and quantification was performed 225 

with the Qubit HS dsDNA kit. Each 16S or 18S pool was sequenced on an Illumina MiSeq (2 x 300 bp for 16S and V4 or 2 x 

150 bp for V9) except for the one pool for the 2014-2016 euphotic zone V9 samples, which was run on an Illumina NextSeq 

(Mid Output, 2 x 150 bp). The Pseudo-nitzschia ITS2 pool was sequenced on a single lane of an Illumina NovaSeq 6000 with 

a SP flow cell (2 x 250 bp). For all 16S and 18S libraries, mock communities were included as described in Yeh et al. (2021). 

The results from the mock community samples are shown in James et al. (2022), which validate the absence of taxon 230 

disappearance observed in previous studies. In addition to the mock communities, PCR blank samples and unused barcodes 

were also analyzed to confirm minimal index hopping. 

2.5 Analysis of amplicon sequence data 

Amplicons were first analyzed with QIIME2 v2019.10 for the 16S and 18S data or QIIME2 v2021.2 for the Pseudo-nitzschia 

ITS2 data (Bolyen et al., 2019). Briefly, paired-end reads were trimmed to remove adapter and primer sequences with cutadapt 235 

(Martin, 2011). Trimmed reads were then denoised with DADA2 to produce amplicon sequence variants (ASVs). Each MiSeq 

run was denoised with DADA2 separately to account for different error profiles in each run then merged. Taxonomic 

annotation of ASVs was performed with the q2-feature-classifier naïve bayes classifier using the SILVA database (Release 

138) for 16S ASVs and the PR2 database (v4.13.0) for 18S ASVs (Bokulich et al., 2018; Pedregosa et al., 2011; Guillou et al., 

2012; Pruesse et al., 2007). For ITS2 ASVs, annotation was performed using BLAST (classify-consensus-blast) with Pseudo-240 
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nitzschia ITS2 sequences database as references (Brunson et al., 2024; Lim et al., 2018). When examining 16S relative 

abundances, all eukaryotic, plastid, and mitochondrial ASVs were removed, and when examining 18S relative abundances, 

dinoflagellates excludes Syndiniales and prymnesiophytes refers to all Prymnesiophyceae unless otherwise noted. The 

Shannon Diversity Index was calculated for each group with the QIIME2 diversity plugin.  

 245 

To estimate absolute abundances of 16S and 18S ASVs, recovery of the aforementioned internal standards was used (Lin et 

al., 2019). For each ASV within each sample, the number of reads was divided by the ratio of T. thermophilus or S. pombe 

reads to the number of rRNA copies added. The total number of copies was then normalized to the volume filtered for each 

sample to estimate copies L-1. 

2.6 Metatranscriptome sequencing, assembly, and analysis 250 

To examine eukaryotic mRNA sequences, poly-A selected RNA-Seq libraries were created. Poly-A selected cDNA from total 

RNA was generated with the SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing (Takara Bio USA, Inc.), which 

was then sheared with a Covaris® E210 focused-ultrasonicator targeting 300 bp fragments. The final sequencing library was 

then constructed with the NEB NEBNext® Ultra™ II DNA Library Kit with NEBNext® Multiplex Oligos for Illumina® and 

sequenced on three lanes of a NovaSeq 6000 with a S4 flow cell (2 x 150 bp).  255 

 

For prokaryotic sequences, sequencing libraries were constructed following ribosomal RNA (rRNA) depletion. For samples 

from 2014-2019, rRNA was depleted with a 2:1:1 mixture of Ribo-Zero Plant, Bacteria, and Human/Mouse/Rat (Illumina) 

following the manufacturer’s low input protocol. For samples from 2020, rRNA depletion was performed with siTOOLs 

riboPOOLs with a 6:1:1 mixture of the pan-prokaryote, pan-plant, and pan-mammal riboPOOLs following the manufacturer’s 260 

instructions for low inputs. rRNA depletion was confirmed with all samples on an Agilent TapeStation 2200 with High 

Sensitivity RNA ScreenTape. cDNA was then synthesized using the Ovation RNA-Seq System V2 kit (NuGEN) using both 

poly-A and random hexamer primers followed by fragmentation with a Covaris® E210 focused-ultrasonicator targeting 300 

bp fragments. cDNA was then purified with Agencourt RNAClean XP beads, and library preparation was performed with the 

Ovation Ultralow System V2 with unique dual indexes (NuGEN). After end repair, ligation, and amplification, the libraries 265 

were assessed on an Agilent TapeStation 2200 with High Sensitivity DNA ScreenTape. A subset of samples from 2014-2016 

were sequenced separately in four pools on an Illumina HiSeq 4000 (2 x 150 bp). The remaining libraries were sequenced 

across five pools on an Illumina NovaSeq 6000 with a S4 flow cell (2 x 150 bp). 

 

For both types of libraries, the resulting raw reads were trimmed for quality and to remove Illumina adaptors. Ribosomal RNA 270 

sequences were also removed with Ribopicker v0.4.3 (Schmieder et al., 2011). Trimmed and filtered reads were then used for 

assembly into contigs, and abundances were quantified by mapping these reads to the assembly. Both assembly and read 

mapping were performed with CLC Bio Genomics Server v21.0.3. Gene prediction was performed with FragGeneScan v1.16, 
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and rRNA removal was performed again with Ribopicker (Rho et al., 2010). Predicted proteins were further filtered to remove 

those less than 10 amino acids long or with greater than or equal to 20% stop codons. Gene clusters were generated from the 275 

predicted proteins with MCL with the inflation option (-I) set to 4 and scheme option (-scheme) set to 6 (Enright et al., 2002). 

 

With the final assemblies, taxonomic annotation of each protein coding gene was assigned via DIAMOND BLASTP 

alignments using PhyloDB v1.076 as a reference database (Bertrand et al., 2015). Final taxonomic assignments were based on 

highest Lineage Probability Index values (Podell and Gaasterland, 2007). For functional annotation, DIAMOND BLASTP 280 

alignments were performed with the Kyoto Encyclopedia of Genes and Genomes (KEGG; Release 94.1) (Kanehisa et al., 

2017). KEGG Ortholog (KO) assignment was performed with KofamKOALA, which uses hmmsearch against KOfam, an 

HMM database of KOs (Aramaki et al., 2019). E-value cutoffs of 1e-5 were used throughout. 

 

To normalize read counts, raw reads were first converted to transcripts per million (TPM) (Li et al., 2009). Absolute quantities 285 

(transcripts L-1) were then calculated based on the average recovery of the aforementioned Invitrogen™ ArrayControl™ RNA 

Spikes and the volume of sample filtered as described in Cohen et al. (2022). For performing correlations with individual 

genes, transcripts L-1 within each taxonomic group and sample were summed by KO annotation, and if KO annotation was 

absent, the KEGG gene annotation was used. The domoic acid biosynthesis gene, dabA, was annotated using the sequences 

reported in Brunson et al. (2018).  290 

2.7 Flow Cytometry 

To measure Prochloroccus and Synechococcus cell abundances with flow cytometry, providing an additional metric of 

comparison, two mL samples of seawater were collected in cryovials and fixed with 100 µL of 0.2 µm filtered 10% 

paraformaldehyde for a 0.5% final concentration. Fixation was allowed to occur for 10 min before freezing the sample in liquid 

nitrogen. Once onshore, samples were stored at -80°C or on dry ice until analysis at the SOEST Flow Cytometry Facility, 295 

University of Hawaii at Manoa.  

 

Prior to analysis, thawed samples were stained with Hoechst 33342 (1 µg mL-1, v/v, final concentration) at room temperature 

in the dark for 1 hour (Monger and Landry, 1993). Aliquots (100 µl) were analyzed using a Beckman-Coulter EPICS Altra 

flow cytometer with a Harvard Apparatus syringe pump for volumetric sample delivery. Simultaneous (co-linear) excitation 300 

of the plankton was provided by two argon ion lasers, tuned to 488 nm (1 W) and the UV range (200 mW). The optical filter 

configuration distinguished Prochlorococcus and Synechococcus populations based on chlorophyll a (red fluorescence, 680 

nm), phycoerythrin (orange fluorescence, 575 nm), DNA (blue fluorescence, 450 nm), and forward and 90° side-scatter 

signatures. Blue-fluorescence and red-fluorescence signals were used to distinguish DNA-containing heterotrophic (non-

pigmented) from phototrophic (chlorophyll-containing) cells (Monger and Landry, 1993).  Standardized fluorescence and 305 

scatter parameters were determined relative to 0.5- and 1.0-µm yellow-green calibration beads and 0.5-µm UV calibration 
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beads run in each sample. Bead-normalized red-fluorescence values are also used as a measure of cellular chlorophyll a 

(Landry et al., 2003). Raw data (listmode files) were processed using the software FlowJo (Treestar Inc., www.flowjo.com). 

Cell abundance estimates were then calculated accounting for the volume dilutions from the added preservative and stain 

solutions. 310 

2.7 Statistics 

All correlations and models were generated with R v4.3.2. Specifically, Pearson correlations were performed with the function 

cor.test(x, y, method = “pearson”). Linear regressions were performed with the function lm(y~x), and residuals from the linear 

models were calculated with the resid() function. Generalized additive models (GAMs) were fit using the function gam(y~x, 

method = “REML”) from the mgcv package v 1.9-1 (Wood, 2017). When examining multiple gene correlations, P-values were 315 

adjusted using the Benjamini & Hochberg procedure using the p.adjust(p, method = “BH”) function. (Benjamini and Hochberg, 

1995).  

3 Results and Discussion 

3.1 Quantitative relationships among pigments, DNA, and RNA 

As the sampling locations span nearshore stations influenced by coastal upwelling to offshore oligotrophic conditions (James 320 

et al., 2022; Venrick, 2002), the paired phytoplankton pigment and DNA or RNA samples encompass a wide range of 

environmental conditions (Figs. 1A-1D and S1). Seasonal and interannual variability were also captured with notably lower 

temperatures and higher nutrients in the Spring season relating to seasonal upwelling as well as an unprecedented marine 

heatwave from mid-2014 to 2016 associated with El Niño in 2015 (Di Lorenzo and Mantua, 2016; Jacox et al., 2018). 

Concurrent with the wide-ranging environmental conditions, TChla and accessory pigment concentrations often spanned 325 

several orders of magnitude with all accessory pigments detected in concentrations as low as 0.001 to 0.005 µg L-1 (Fig. 1E). 

Fucoxanthin (Fuco) exhibited the greatest range with concentrations ranging from 0.001 to 6.81 µg L-1. While 19'-

hexanoyloxyfucoxanthin (HexFuco) concentrations ranged from 0.005 to 1.170 µg L-1, all other pigment concentrations 

examined here were always less than 0.697 µg L-1. 

 330 

DNA metabarcoding of both the V4 and V9 regions of the 18S rRNA gene for eukaryotes as well as the V4-V5 regions of the 

16S rRNA gene for prokaryotes similarly showed wide ranges in relative abundances (Figs. 1F and 1G). Among eukaryotes, 

diatoms exhibited the greatest range in accordance with their known dominance during blooms in the region (Goericke, 2011; 

Venrick, 2012; Taylor and Landry, 2018). Chlorophytes also exhibited a wide range of relative abundances, and their average 

abundance exceeded that of diatoms. Dinoflagellates were also found in high abundances, and while they indeed bloom in the 335 

region (Kahru et al., 2021; Anderson et al., 2008), their high abundances via 18S metabarcoding may be due to bias from high 

18S gene copy numbers (Martin et al., 2022). Other eukaryotic phytoplankton groups were typically less than 10% of the total 
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eukaryotic community. In particular, cryptophytes were less than 1% of the community on average but were found to be as 

high as 5%. Within eukaryotic mRNA expressed as relative abundances [transcripts per million (TPM)], intragroup variability 

was less pronounced, and most groups displayed higher relative abundances compared to their 18S DNA abundances (Figs. 340 

1F). The sole exception was with dinoflagellates which had lower relative abundances with RNA compared to DNA, further 

suggesting bias in their DNA relative abundances due to high 18S DNA copy numbers. 

 

Within prokaryotes, all cyanobacteria combined and the cyanobacterial genus Prochlorococcus displayed similar distributions, 

indicating that Prochlorococcus was often the dominant member of the cyanobacterial community (Figs. 1G and 1I). Cell 345 

abundances measured via flow cytometry also show that Prochlorococcus is dominant in these samples, with Prochlorococcus 

displaying higher abundances than Synechococcus in 76% of samples (Fig. S2). On average, Prochlorococcus and 

Synechococcus accounted for 99.2% of 16S reads, with only minor contributions from ASVs that were either not resolved to 

lower taxonomic levels or cyanobacterial diazotrophs such as Richelia and UCYN-A. Cyanobacteria as a whole and 

Prochlorococcus also displayed lower relative abundances from transcripts compared to 16S rRNA genes (Fig. 1G).  350 

 

When converted to absolute abundances based on the recovery of internal standards and normalizing to the volume filtered 

(gene copies L-1 or transcripts L-1), differences and distributions among groups were similar to those observed with relative 

abundances (Figs. 1F-1I). However, such quantitative approaches have not been widely adopted, and most metabarcoding data 

are solely expressed as relative abundances. As previously described, other studies have normalized phytoplankton pigments 355 

to TChla concentrations in an attempt to make DNA-based relative abundances and phytoplankton pigments comparable 

(Catlett et al., 2023; Kramer et al., 2024). When using pigments directly, diagnostic pigments used for specific phytoplankton 

groups include monovinyl chlorophyll b (MVChlb) for chlorophytes, alloxanthin (Allo) for cryptophytes, fucoxanthin (Fuco) 

for diatoms, Peridinin (Perid) for dinoflagellates, 19'-butanoyloxyfucoxanthin (ButFuco) for pelagophytes, 19'-

hexanoyloxyfucoxanthin (HexFuco) for prymnesiophytes, zeaxanthin (Zea) for cyanobacteria, and divinyl chlorophyll a 360 

(DVChla) for Prochlorococcus (Catlett et al., 2023; Kramer and Siegel, 2019). 

 

Within eukaryotic taxa, comparisons between TChla-normalized pigment concentrations and DNA-based relative abundances 

showed moderate to strong correlations (Pearson) for several groups (Fig. 2A). In particular, the relative abundances of diatoms 

and Fuco displayed the strongest agreement (r = 0.79-0.82) followed by pelagophytes and ButFuco (r = 0.71-0.77). 365 

Cryptophytes with Allo and chlorophytes with MVChlb were also moderately well correlated (r = 0.51-0.65) whereas 

dinoflagellates with Perid and prymnesiophytes with HexFuco were weakly correlated (r = 0.32-0.42). Previous studies using 

samples from the California Current (Plumes and Blooms), North Atlantic Ocean (NAAMES), and Northeast Pacific Ocean 

(EXPORTS) have shown similar results where relationships are notable for chlorophytes, cryptophytes and pelagophytes, 

weak for prymnesiophytes and dinoflagellates, and inconsistent among the studies for diatoms (Catlett et al., 2023; Kramer et 370 

al., 2024). In another previous study in the Western Antarctic Peninsula where a chemotaxonomic approach that partitions 
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TChla (CHEMTAX) was used rather than diagnostic pigments directly, cryptophytes were moderately well correlated between 

the measurements whereas diatoms were not (Lin et al., 2019; Mackey et al., 1996). Within these studies, abundances for some 

groups were also too low to be included. 

 375 

Although these results suggest that there are moderately strong relationships between pigments and DNA-based relative 

abundances for several phytoplankton groups, these analyses are hindered by the compositional nature of relative abundance 

data as previously described. The estimation of absolute abundances via internal standards removes compositionality and 

enables the comparison of DNA- or RNA-based concentrations (copies L-1 or transcripts L-1) to phytoplankton pigment 

concentrations (µg L-1). By doing so here, all correlations were stronger than those with relative abundances for eukaryotic 380 

phytoplankton taxa (Fig. 2B). In particular, the relationships between dinoflagellates and Perid were dramatically stronger with 

both marker genes (r = 0.77-0.79). The relationships for prymnesiophytes were also stronger but not to the same degree (r = 

0.46-0.51). Furthermore, all groups were most strongly correlated with their diagnostic pigments except prymnesiophytes, 

which had similarly strong correlations with Peridinin (Fig. S3). By using taxon-specific biomass as chlorophyll a 

concentrations with a chemotaxonomic approach (phytoclass) (Hayward et al., 2023), correlations were often similar (Fig. S4). 385 

Moreover, strong correlations were also observed among absolute transcript abundances and pigment concentrations (r = 0.66-

0.88) except for prymnesiophytes which had a similar correlation when using their DNA-based abundances (r = 0.43) (Fig. 

2C). 

 

These results indicate that abundances of diagnostic phytoplankton pigments and phytoplankton DNA or RNA often agree. 390 

Furthermore, they suggest that the aforementioned issues with compositionality or normalization of pigments to TChla may 

lead to misleading conclusions about these relationships, particularly for dinoflagellates. Besides compositionality, DNA- and 

RNA-based abundances have other biases that can also lead to discrepancies. Copies of 18S DNA can vary orders of magnitude 

among closely related phytoplankton species (Zhu et al., 2005), and DNA sequencing may also capture deceased cells that 

have lost some or all of their pigments. RNA abundances may be variable within a cell, instead reflecting overall activity or 395 

differential transcription rates in response to environmental stimuli (Moran et al., 2012). Both metrics are also influenced by 

the comprehensiveness of reference databases where unknown phytoplankton sequences may be unassigned (Krinos et al., 

2023). 
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 400 

Figure 2. Correlations among abundance metrics for each major eukaryotic phytoplankton group. Pearson correlations are all 
significant (P < 0.05) and coefficients are displayed in each panel. Lines with 95% confidence intervals show linear models with 
significant relationships between variables (P < 0.05). (A) Diagnostic pigments normalized to total chlorophyll a (TChla) against 
relative abundances of either the 18S-V4 (red) and 18S-V9 (blue) rRNA gene abundance. (B) Diagnostic pigment concentrations 
against absolute abundances of the 18S-V4 (red) and 18S-V9 (blue) rRNA genes (copies L-1). (C) Diagnostic pigment concentrations 405 
against absolute abundances of mRNA (transcripts L-1). 
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Differences in pigment abundances may also be a source of variability. For example, reduced light availability may lead to 

cellular increases in all accessory pigments examined here (Henriksen et al., 2002). Using mixed layer depth as a proxy for 

light history, decreased light availability has been shown to have a small but significant effect on discrepancies between 

phytoplankton pigments and DNA relative abundances (Catlett et al., 2023). To examine the effects of light history, we 410 

performed linear regressions on the residuals from linear models for absolute abundances with depth as a predictor variable 

and coarse proxy for reduced light availability (Fig. S5). Besides with cryptophytes, depth was found to positively and 

significantly predict residuals, aligning with an increase in pigments at depth which may be attributed to reduced light. High 

variability in near-surface samples was also observed and may reflect large differences in light conditions from sampling 

throughout the diel cycle. 415 

 

To further examine the effects of light and depth on these relationships, separate correlations were performed with the absolute 

abundances from near-surface (≤ 14 m) or SCML (≥ 18 m) samples. For chlorophytes, cryptophytes, diatoms, dinoflagellates, 

and prymnesiophytes, the strength of the correlations were similar or higher for both depth categories when separated compared 

to all samples combined (Figs. 2 and S6). Only pelagophyte correlations were consistently lower when separated, albeit the 420 

differences were relatively minor (r = 0.65 – 0.70 versus r = 0.74 - 0.75). Linear regressions also displayed similar results 

between depth categories, except for chlorophytes and prymnesiophytes, where the slope of the regressions were 46-49% lower 

with SCML samples. In these cases, pigment concentrations exhibited a reduced range, where concentrations were elevated 

wat lower DNA abundances but reached similar concentrations at higher DNA abundances, indicating that pigment 

concentrations for these taxa are elevated under lower abundance regimes within the SCML.  425 

 

Some pigments are also shared among certain groups; therefore, the presence of one group may influence pigment 

concentrations that are diagnostic of a different group. Fucoxanthin, for example, is not only found in diatoms but also other 

photosynthetic eukaryotes with red algal-derived plastids (Jeffrey et al., 2011; Kramer and Siegel, 2019). Previous studies 

suggest that shared pigments are an important source of disagreement between the two measurements, but the strong 430 

correlations for many groups, particularly with diatoms, suggests that it may be a less prevalent issue in certain cases (Catlett 

et al., 2023; Kramer et al., 2024).  

 

Intragroup variability in pigment composition may also be a contributing factor with different species having different pigment 

concentrations (Zapata et al., 2004; Neeley et al., 2022). In particular, dinoflagellates may be influenced by taxa that no longer 435 

have Peridinin. The previously shown dinoflagellate correlations were performed without Syndiniales, an early branching 

clade that are likely parasitic and have lost their plastid altogether (Decelle et al., 2022; Guillou et al., 2008). Overall, 

Syndiniales accounted for 30 to 34% of dinoflagellate 18S copies in our data, and their removal considerably increased the 

strength of dinoflagellate-Peridinin correlations (Fig. S7 and Table S1). Other dinoflagellate taxa appear to have instead 

replaced their plastids with others via kleptoplasty, integration of a new plastid, or obtaining endosymbionts (Novák Vanclová 440 
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and Dorrell, 2024). For example, the Kareniaceae family (e.g., the genera Karenia, Karlodinium, and Takayama) and 

Kryptoperidiniceae family (e.g., the genus Durinskia) contain fucoxanthin from an ancestral haptophyte or diatom 

endosymbiont respectively, members of the genus Dinophysis have a complex kleptoplastidic relationship with a cryptophyte, 

and the genus Lepidodinium contains plastids originating from a chlorophyte (Novák Vanclová and Dorrell, 2024; Kamikawa 

et al., 2015; Zapata et al., 2012). However, neither Kryptoperidiniceae nor Lepidodinium were detected in these data with 445 

either 18S marker, and filtering of other groups did not alter the strength of the correlation between Dinoflagellates and Perid 

indicating that besides Syndiniales, these groups do not influence the dinoflagellate-Perid relationship in this region (Table 

S1). The prymnesiophyte Phaeocystis globosa has also been suggested to contain ButFuco rather than HexFuco (Wang et al., 

2022; Antajan et al., 2004), and while filtering ASVs annotated as this species marginally improved the strength of the 

correlation for prymnesiophytes with the V4 data (from r = 0.46 to r = 0.48), it was lower in the V9 data (from r = 0.51 to r 450 

= 0.45). 

 

For cyanobacteria, correlations were strong when using relative abundances (r = 0.86, Fig. 3A and 3C), but unlike the 

eukaryotic data, the strengths of the correlations were lower when using absolute abundances (Fig. 3B and 3D). DVChla, 

which is the diagnostic pigment for Prochlorococcus, was also not detected in 12.4% of samples, generally corresponding to 455 

where Prochlorococcus 16S abundances were lower (Fig. 3C and 3D). As previously observed in the greater region, 

Prochlorococcus cell abundances measured with flow cytometry and DNA-based absolute abundances strongly agreed (r = 

0.78, Fig. 3F), demonstrating that the 16S copies reflect cell abundances (Jones-Kellett et al., 2024). However, cell abundances 

were only moderately correlated with DVChla (r = 0.48, Fig. 3E), further indicating that DVChla may be less reflective of 

changes in Prochlorococcus abundances. 460 

 

Within Prochlorococcus, chlorophyll a content per cell significantly increased with depth, indicating that pigments increase 

as light availability is reduced (Fig. S8). However, there was also high chlorophyll a variability within each depth, suggesting 

that Prochloroccous pigment content is highly dynamic and can be decoupled from cell abundances leading to the weaker 

correlations observed with absolute abundances. Although separating near-surface and SCML samples showed stronger 465 

correlations than all samples together except for all cyanobacteria and Zea (r = 0.55), the relationships were still weaker than 

with relative abundances (Fig. S9).  

 

The variation in pigments in Prochlorococcus may be normalized when dividing by total chlorophyll a, thereby producing 

higher correlations with relative abundances. Some of the discrepancy with absolute abundances may also be caused by 470 

Prochlorococcus cell sizes which are smaller than the pore size of the GF/F filters used for pigments here (nominally 0.7 µm), 

leading to some Prochlorococcus cells being missed while being captured by flow cytometry or DNA that used a smaller pore 

size (0.2 µm) (Ting et al., 2007; Partensky et al., 1999). As in eukaryotic phytoplankton, the absolute abundances of transcripts 
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were also moderately well correlated for cyanobacteria with Zea and Prochloroccocus with DVChla, but still lower than with 

the 16S relative abundances (Fig. S10). 475 

 

 

 

 

Figure 3. Correlations among abundance metrics for cyanobacteria. (A, B) Relative and absolute abundance comparisons between all 480 
cyanobacteria and zeaxanthin (Zea). (C, D) Relative and absolute abundance comparisons between Prochlorococcus and divinyl chlorophyll 
a (DVChla). (E) Comparison between ProchlorococcusProchloroccus cell abundances from flow cytometry and DVChla concentrations. 
(F) Comparison between Prochlorococcus cell abundances from flow cytometry and absolute abundances of 16S rRNA genes.  
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3.2 Applications from integrating phytoplankton pigments with molecular data 485 

The strong agreement among eukaryotic phytoplankton pigments and DNA or RNA for several groups indicates that these 

metrics are comparable proxies for phytoplankton abundances and community composition. As phytoplankton pigments 

directly impact remote sensing reflectance spectra, these results further support that potential models for phytoplankton 

pigment concentrations via remote sensing may be able to provide comparable global estimates of PCC (Kramer et al., 2022).  

While HPLC pigments are used for validating remote-sensing algorithms, these results also suggest that the absolute 490 

abundances of DNA or RNA may be useful metrics to validate for model development of PCC as well. In the following 

sections, we further examine relationships gleaned by integrating phytoplankton pigments and DNA- or RNA-based metrics 

to demonstrate potential applications for addressing ecological questions, monitoring harmful algal blooms, or inferring 

phytoplankton group-specific activity. 

3.2.1 Increased taxonomic resolution with biomass estimation in ecological assessments 495 

Phytoplankton pigments and DNA-based metabarcoding have separate strengths that can be leveraged when integrated: 

phytoplankton contributions to TChla can be estimated with chemotaxonomic approaches, such as phytoclass (Hayward et al., 

2023), providing a standardized estimate of biomass for each group, and DNA offers marker gene-level resolution into the 

composition of each sample. This increased resolution is possible even when the DNA-based data are expressed solely as 

relative abundances. 500 

 

To illustrate this combined approach, diversity expressed as the Shannon index (H’) was compared to both TChla and taxon-

specific chlorophyll a concentrations as proxies for phytoplankton biomass (Fig. 4). Biomass is often used as a proxy for 

productivity, thus enabling investigation of productivity-diversity relationships (PDRs) (Smith, 2007; Irigoien et al., 2004). 

PDRs may exhibit different trends, but marine phytoplankton are presumed to exhibit a unimodal distribution with maximum 505 

diversity at an intermediate level of productivity, including within models of phytoplankton communities in the California 

Current Ecosystem (Irigoien et al., 2004; Li, 2002; Goebel et al., 2013). PDRs may also be positive, negative, or flat, with 

other studies suggesting that there is no relationship when accounting for potentially inadequate sampling (Cermeño et al., 

2013; Smith, 2007). Examination of these relationships is particularly important for understanding how environmental change 

may impact diversity and productivity. 510 

 

When comparing TChla concentrations and the diversity of all six eukaryotic phytoplankton groups examined here, the PDR 

for the region was negative rather than unimodal, with diversity remaining high at low and intermediate biomass levels before 

declining at high biomass (Fig. 4A). During the same cruises, additional samples concurrently measured DNA abundances and 

net primary productivity (NPP, mg C m-3 d-1). When comparing diversity and NPP directly, the relationship was similarly flat 515 
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then negative (Fig. S11A). The Shannon index considers both richness and evenness, thereby downweighing the influence of 

rare taxa in comparison to richness, defined here as the number of ASVs (Ibarbalz et al., 2019; Ma, 2018). Despite substantially 

more variability, richness also displayed a negative trend including when adding cyanobacterial richness (Fig. S11B and S12).  

 

 520 

 

 

Figure 4. Productivity-diversity relationships in the region with biomass (chlorophyll a concentrations) as a proxy for productivity 
and diversity expressed as the Shannon Index (H’) for both the 18S-V4 (red) and 18S-V9 (blue) data. (A) The diversity of all 
eukaryotic phytoplankton groups and total chlorophyll a concentrations. (B-D) Environmental variables against total chlorophyll a 525 
concentrations colored by near-surface (purple) or subsurface chlorophyll max (SCM, green) samples. (E-J) Diversity of individual 
phytoplankton groups against their taxon-specific chlorophyll a concentrations estimated with phytoclass. Lines represent GAMs 
and corresponding 95% confidence intervals where significant (P < 0.05). The deviance explained by each GAM or “NS” for not 
significant (P > 0.05) is shown above each panel for each amplicon.   
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By partitioning TChla concentrations into separate eukaryotic phytoplankton groups and leveraging the high taxonomic 530 

resolution of the DNA-based data, PDRs were examined within each group (Fig. 4). Dinoflagellates, diatoms, and cryptophytes 

displayed significant relationships whereas other groups did not for both amplicons. Furthermore, diatoms and dinoflagellates 

displayed opposing trends, where diatoms displayed the expected unimodal relationship while dinoflagellates displayed a 

negative relationship. When considering richness, the trend for diatoms was largely positive, indicating a decline in evenness 

at the highest levels of biomass leading to lower diversity, and for cryptophytes, the relationship was slightly positive with 535 

both metrics (Fig. 4 and S13). Dinoflagellates had the highest richness with as many as 353 ASVs, while diatoms had a 

maximum of 93 ASVs (Fig. S13). Cryptophytes and pelagophytes had low richness with maxima of 15 and 9 ASVs, 

respectively (Fig. S13). For pelagophytes, the relatively low richness and lack of trend may be due to dominance of a single 

species, Pelagomonas calceolata, that is highly prevalent in SCMLs (Guérin et al., 2022; Coale et al., 2025). Meanwhile, 

chlorophytes and prymnesiophytes did not display significant relationships between biomass and richness. Considering the 540 

relatively high richness and sole negative trend, dinoflagellates appear to be the primary drivers of the community-wide trend, 

besides at high biomass where diatoms have a high influence. This dominance by dinoflagellates is further evidenced by a shift 

to a more unimodal distribution by examining the community in the absence of dinoflagellates (Fig. S14). 

 

The observations of unimodal PDRs have led to hypotheses for the mechanisms underlying them. Indeed, our observed 545 

negative trend aligns with the negative side of unimodal PDRs where diversity decreases with increased productivity. This 

decline is predicted to be associated with high productivity nearshore upwelling conditions where there is strong competition 

for light and opportunist large cells such as diatoms escape grazing (Goebel et al., 2013; Irigoien et al., 2004; Vallina et al., 

2014). In agreement, the observed low diversity aligns with the nearshore environment, shallow nitracline depths, and increase 

in diatom biomass relative to dinoflagellates (Figs. 4 and S15). However, increased diatom richness with biomass indicates 550 

that the negative trend is not entirely driven by the dominance of a few opportunist diatom taxa that escape predation (Fig. 

S13C). Rather, many diatoms appear to flourish when competition for nutrients is minimized under upwelling conditions, 

although evenness likely declines at the highest levels.  

 

High diversity at intermediate productivity has been suggested to be associated with offshore oligotrophic conditions (Goebel 555 

et al., 2013). Although offshore oligotrophic samples aligned with the lowest biomass levels, they were in part responsible for 

intermediate NPP along with SCMLs at intermediate depths, in agreement with model predictions (Fig. 4 and S10). The low 

productivity and low diversity end of the unimodal distribution is expected to be caused by light limitation (Goebel et al., 

2013), and while chlorophyll a concentrations suggest that the deepest SCML samples align with intermediate biomass, they 

are influenced by reduced light causing elevated chlorophyll content (Cullen, 2015). As predicted, the deepest SCML samples 560 

displayed the lowest NPP rates; however, diversity and richness remained high in these samples resulting in an absence of the 

positive side of a unimodal distribution that phytoplankton communities are expected to display (Fig. S10) (Irigoien et al., 

2004; Li, 2002; Goebel et al., 2013). 
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The low productivity and diversity end of unimodal distributions have also been attributed to selective grazing with the 565 

dominance of a few slow-growing nutrient specialists (Vallina et al., 2014). As diversity and richness instead remained high, 

many phytoplankton taxa, particularly dinoflagellates, appear to coexist within low productivity regimes. With low nutrient 

availability as inferred by deeper nitracline depths (Fig. 4D), diverse phytoplankton taxa within these regimes may be sustained 

by recycled nutrients including nitrogen and iron as well as nitrogen fixation (Boyd et al., 2017; Zehr and Ward, 2002). Within 

dinoflagellates, this coexistence may be further supported by mixotrophy or diel vertical migrations where nutrient availability 570 

at depth is exploited at night and photosynthesis in the near-surface occurs during the day (Zheng et al., 2023; Stoecker et al., 

2017). Within prymnesiophytes, there may also be some mixotrophic taxa (Koppelle et al., 2022). Small cells such as 

chlorophytes, pelagophytes, and prymnesiophytes are also at an advantage under oligotrophic conditions due to more effective 

resource acquisition and use (Raven, 1998), although their diversity is maintained across their biomass ranges (Fig. 4). Even 

though diatom diversity is lower under oligotrophic conditions, certain diatoms such as those that form symbiotic relationships 575 

with diazotrophs may be favored under these conditions and contribute to the increased diversity (Kemp and Villareal, 2018).  

 

Overall, these results highlight the contrasting strategies of different phytoplankton groups and align with the classical view 

of diatoms and dinoflagellates on opposite ends of the r-selected vs K-selected continuum (Margalef, 1978). However, these 

results may differ from other regions that exhibit greater stability or experience frequent blooms of groups besides diatoms. 580 

Continued warming in the region is anticipated to lead to increased stratification resulting in conditions analogous to those in 

the offshore oligotrophic region with deeper nitraclines (Ducklow et al., 2022; Lund, 2024). These projections imply that 

increased stratification leads to low productivity but high phytoplankton community diversity, although diatom diversity will 

be lower. In such a scenario, the high level of diversity will instead be driven by dinoflagellates and supplemented by a variety 

of picoeukaryotes, contrasting with predictions of lower diversity in ecosystem models of open ocean regions (Henson et al., 585 

2021). 

3.2.2 Monitoring and forecasting harmful algal blooms 

The strong relationships between pigments and abundances of certain groups may also be useful for monitoring or forecasting 

harmful algal blooms (HABs). For example, certain species in the diatom genus, Pseudo-nitzschia, produce the neurotoxin 

domoic acid (DA) resulting in HABs worldwide (Bates et al., 2018). They are also commonly responsible for HABs in our 590 

study region and California Current at large (Lewitus et al., 2012).  
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Figure 5. Pseudo-nitzschia abundances. (A) Relative abundances of the top three diatom genera based on total copies L-1. (B) Pseudo-595 
nitzschia absolute abundances against diatom (Bacillariophyta) absolute abundances. (C) Pseudo-nitzschia absolute abundances 
against total chlorophyll a concentrations (D) Pseudo-nitzschia absolute abundances against fucoxanthin concentrations. (E) Total 
dabA expression against fucoxanthin concentrations. (F) Relative abundances of Pseudo-nitzschia species from ITS2 sequencing (left 
y-axis) and total dabA expression (right y-axis) for samples where dabA was detected. Samples are ordered by fucoxanthin 
concentrations as shown in Panel E.  600 

In the California Current region, Pseudo-nitzschia abundances and DA production are forecasted by the California Harmful 

Algae Risk Mapping (C-HARM) system, which uses satellite remote-sensing data and a regional ocean circulation model. 

Specifically, the remote-sensing data used as inputs are chlorophyll a concentrations and reflectance at 488 and 555 nm from 

the S-NPP NOAA VIIRS instrument. As Fuco offers greater specificity for diatoms, substituting Fuco for chlorophyll a may 

improve model predictions, particularly if Pseudo-nitzschia is a dominant diatom overall.  605 
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With the absolute abundance data here, Pseudo-nitzschia was indeed among the most dominant diatom genera, accounting for 

10% to 11% of diatom 18S copies and only exceeded by Thalassiosira and Chaetoceros (Fig. 5A). Pseudo-nitzschia was also 

detected in 74% to 79% of samples when diatoms were present with an equivalent number when Fuco was detected. Overall, 

a strong positive relationship between Pseudo-nitzschia and total diatom abundances was observed, and Fuco concentrations 610 

explained 10% more of the variance in Pseudo-nitzschia abundances than TChla concentrations (Fig. 5). Expression of dabA, 

the first gene in the domoic acid biosynthetic pathway (Brunson et al., 2018), was also detected in 13 metatranscriptomics 

samples, and 7 of the 11 samples with greater than 0.5 µg L-1 concentrations of Fuco had detectable dabA expression (Fig. 

5E). These samples comprised diverse Pseudo-nitzschia species with an overall dominance of P. delicatissima; however, the 

highest dabA expression occurred when P. australis relative abundances were elevated (Fig. 5F). 615 

 

Not all species of Pseudo-nitzschia have been shown to produce DA, and DA production is influenced by environmental 

conditions (Bates et al., 2018). Similarly, expression of dabA does not always confer detectable particulate DA (Brunson et 

al., 2024). However, the stronger relationship between Pseudo-nitzschia abundances and Fuco compared to TChla as well as 

the increased detection of dabA where Fuco concentrations are elevated implies that substitution of chlorophyll a with Fuco 620 

within C-HARM may improve model accuracy. Pending the development and implementation of models for remotely-sensed 

Fuco concentrations (Kramer et al., 2022), such potential improvements for Pseudo-nitzschia forecasts will require validation 

with in situ measurements. Moreover, the utility of remotely-sensed Fuco concentrations for Pseudo-nitzschia HAB monitoring 

would only apply to other regions where Pseudo-nitzschia is a dominant diatom.  

 625 

Some dinoflagellates, including certain members of the genera Alexandrium, Dinophysis, and Gonyaulax as well as the species 

Gymnodinium catenatum and Lingulodinium polyedra, may also cause HABs in both this region and others (Anderson et al., 

2021; Trainer et al., 2010; Ternon et al., 2023; Anderson et al., 2012). These genera were also among the most dominant 

dinoflagellate genera detected, although 39% of V4 and 55% of V9 18S copies for dinoflagellates were unassigned on a genus 

level (Fig. S7B). Despite dinoflagellate diversity declining with increasing biomass, dinoflagellate richness was the highest 630 

among phytoplankton groups, including where the highest dinoflagellate biomass was observed (Fig. 4 and S13). As a result, 

the samples with high dinoflagellate abundances still comprise many genera. Considering that Perid concentrations did not 

exceed 1 µg L-1, an intense dinoflagellate bloom that may have resulted in even lower diversity was not captured here. 

Nevertheless, Perid concentrations and V4-based abundances of the dinoflagellate genera Alexandrium, Gonyaulax, and 

Gymnodinium were significantly related (Fig. S13). Perid concentrations also explained 9-16% more of the variance in the 635 

abundances of these genera compared to TChla concentrations. In contrast, no significant relationships were observed for 

Lingulodinium and Dinophysis, the latter of which does not contain Perid. As in Pseudo-nitzschia, there are non-toxic members 

of these genera, and their presence does not imply the production of their respective toxins (Anderson et al., 2012). Again 

however, the potential ability to distinguish either increased Perid or Fuco concentrations with remote sensing suggests 
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increases in the genera identified here in this region, and may aid HAB monitoring efforts where high pigment concentrations 640 

largely correspond to an increase in HAB-forming taxa. 

3.2.3 Towards increased inference of biogeochemical or metabolic activity 

Current ESMs are unable to confidently predict climate-driven changes to NPP, and improving these models to better account 

for phytoplankton abundances and functions is a critical component to address this uncertainty (Kwiatkowski et al., 2020; 

Tagliabue, 2023). ESM parameters include biological rates and biogeochemical fluxes, and there is increasing interest in the 645 

ability to connect ‘omics data with rates such that the ‘omics can inform these model parameters (Strzepek et al., 2022; Saito 

et al., 2024). The absolute quantities of certain proteins have shown promise for inferring rates of nitrite oxidation and carbon 

fixation (Saito et al., 2020; Roberts et al., 2024), although it is unclear if absolute transcript abundances will be able to serve a 

similar purpose (McCain et al., 2025). 

 650 

The strong correlations between pigments and total transcript abundances in most groups examined here suggest that pigment 

abundances may also relate to the expression of specific genes (Fig. 2C). Within each group, the absolute abundances of genes 

clustered by KEGG annotations (Sect. 2.6) were correlated with their respective diagnostic pigments (Fig. 6). In chlorophytes, 

there was only one strongly significant correlation with a light-harvesting chlorophyll-binding protein (LHCB) and 

Prochlorococcus had no significant correlations. In other groups however, 67 to 2,312 genes were strongly correlated with 655 

their respective groups’ diagnostic pigments (r > 0.60, FDR < 0.05). For some taxa, specific genes displayed stronger 

correlations than both 18S rRNA genes and all transcripts combined (Fig. 2), indicating that they may individually be used as 

indicators of abundances. These include the pentose phosphate pathway genes 6-phosphogluconate dehydrogenase (PGD) and 

glucose-6-phosphate dehydrogenase (G6PD) in dinoflagellates as well as several accessory light harvesting complex (LHCF) 

proteins in prymnesiophytes.  With 34% to 65% of genes with no assigned function, the remaining genes fall into diverse sets 660 

of metabolic categories (Fig. 6).  
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 665 

Figure 6. Strongly significant correlations between diagnostic pigments and gene expression (transcripts L-1) associated with each 
respective group (r > 0.60, FDR < 0.05) and organized by KEGG module classes. To examine correlations, genes were aggregated 
by KEGG Ortholog annotations and if not present, the KEGG gene annotations were used. 

 

In cryptophytes and dinoflagellates, several genes related to carbon fixation and photosynthesis were strongly correlated (Fig. 670 

6). Cryptophytes and diatoms also showed strong correlations with several nitrogen metabolism genes. In baker’s yeast 

(Saccharomyces cerevisiae), the abundances of individual proteins are generally poor predictors of their corresponding 

reaction rates but the combined abundances of functional units of genes, i.e. modules or subsystems, that are responsible for 



26 
 

specific pathways may more accurately predict rates (McCain et al., 2025). Similarly, increases in the abundances of specific 

pigments here correlates with the expression of certain pathways. If the expression of these pathways are also found to 675 

correspond to changes in group-specific reaction rates, then the detection of these pigments with remote sensing may be useful 

for inferring group-specific activities, which could better constrain ESM parameters leading to more accurate predictions.  

 

Although these relatively strong correlations between pigments and transcripts indicates that this application has potential use 

to infer activity, direct relationships with rates remain to be demonstrated, and establishing these relationships would require 680 

extensive additional validation with field-based studies that integrate these measurements. Moreover, as a large percentage of 

these genes remain of unknown function, improved characterization of their function may provide insight into how to better 

leverage the pigments with which they correlate.   

4 Conclusions 

By integrating phytoplankton pigments with quantitative abundances of 18S rRNA genes and total mRNA via metabarcoding 685 

and metatranscriptomics respectively, we demonstrate that diagnostic pigments for specific eukaryotic phytoplankton groups 

correlate with both their DNA- and RNA-based abundances. Although there are inherent biases associated with each of these 

measurements, their relationships suggest that they are comparable and may all individually be useful for validating potential 

models of PCC from hyperspectral remote sensing reflectance with satellites such as PACE. These relationships also suggest 

that the potential development of models for remotely sensed pigment concentrations will provide reasonable estimates for the 690 

abundances of different phytoplankton groups (Kramer et al., 2022). When coupled to other satellite, glider, or float-based 

measurements of photophysiology (Lin et al., 2016; Ryan-Keogh et al., 2023), phytoplankton group-specific abundances, 

community composition, and physiological assessments may be able to be remotely and collectively assembled. 

 

Although this assessment was only performed in the California Current Ecosystem, these relationships may extend to other 695 

regions. Previous use of quantitative metabarcoding in the Western Antarctic Peninsula with relatively high abundances of 

cryptophytes showed that their chemotaxonomic abundances were well correlated with their DNA-based abundances (Lin et 

al., 2019). Diatoms were not strongly correlated, but this result may be an artifact from a small sample size that did not capture 

a large range of diatom abundances in the region. Considering that the strengths of correlations in all eukaryotic groups 

improved when translating relative abundances into absolute abundances here, previous studies in the California Current, North 700 

Atlantic and Northeast Pacific that used relative abundances were likely affected by issues when correlating compositional 

data, and we hypothesize that stronger correlations would be observed had quantitative approaches been employed. In 

particular, dinoflagellates displayed relatively low correlations with relative abundances (Kramer et al., 2024; Catlett et al., 

2023), but the strength of these correlations dramatically improved by using quantitative approaches here (Fig. 2A). For 

cyanobacterial abundances, pigment and transcriptional variability likely contributed to weaker correlations when using 705 
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absolute abundances. Smaller filter pore sizes such as those obtained by combusting GF/F filters may also need to be 

considered when drawing these comparisons in future studies (Nayar and Chou, 2003). 

 

The existence of relationships among these metrics also creates possibilities for several applications beyond simply assessing 

phytoplankton abundances and community composition. For example, PDRs can be examined in detail with not only the whole 710 

phytoplankton community but also within individual phytoplankton groups. By doing so, we show that the PDR for the whole 

community in the region is negative rather than the expected unimodal distribution (Fig. 4A). By partitioning biomass into 

separate groups and leveraging the high resolution provided by DNA, we show that this negative trend is driven by 

dinoflagellates while diatoms largely show the opposite trend (Figs. 4G and 4H). These differences in PDRs align with the 

classical view of diatoms and dinoflagellates on opposite ends of the r- and K-selected continuum, while also showing that 715 

diatom richness increases under bloom scenarios rather than selecting for a small number of opportunists (Margalef, 1978). 

The results also suggest that a shift to a more stratified less productive regime from climate change may support a more diverse 

phytoplankton community, but one that has low diatom diversity.  

 

Increases in diatom and dinoflagellate pigments also align with increases in genera that contain harmful bloom-forming taxa 720 

(Fig. 5 and S12). With the harmful diatom genus Pseudo-nitzschia, gene expression for toxin biosynthesis was also often 

elevated under higher Fuco concentrations (Fig. 5E).  Although increases in these genera does not always imply that there is 

toxin production, the detection of these pigments, and in particular, the substitution of remotely-sensed chlorophyll a for 

phytoplankton pigments such as Fuco may improve HAB detection and forecasts, specifically in regions where HAB-forming 

taxa dominate their respective groups. Increases in pigments also corresponds to higher expression of genes specific to their 725 

respective group besides with chlorophytes. These genes fall into diverse metabolic categories, and as connections between 

gene expression and rate processes may emerge as shown in the laboratory with model organisms and quantitative protein 

measurements (McCain et al., 2025), the detection of pigments may aid the inference of group-specific metabolic activity and 

help constrain phytoplankton activity within ESMs. However, for both HAB forecasts and the inference of phytoplankton 

activity, significant additional validation will be required. 730 

Data availability 
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have been deposited in the National Center for Biotechnology (NCBI) sequence read archive under the BioProject accession 
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