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Abstract. Observations of phytoplankton abundances and community structure are critical towards understanding marine 

ecosystems. Common approaches to determine group-specific abundances include measuring phytoplankton pigments viawith 15 

high-performance liquid chromatography and DNA-based metabarcoding. Increasingly, mRNA abundances viawith 

metatranscriptomics are also employed. As phytoplankton pigments are used to develop and validate remote sensing 

algorithms, further comparisons between pigments and other metrics are needed to validate the extent to which these 

measurements agree for group-specific abundances; however, most previous comparisons have been hindered by 

metabarcoding and metatranscriptomics solely producing relative abundance data. By employing quantitative approaches that 20 

express both 18S rDNArRNA genes (DNA) and total mRNA as concentrations, we show that these measurements are related 

for several eukaryotic phytoplankton groups. We further propose that integration of these can be used to examine ecological 

patterns more deeply. For example, productivity-diversity relationships of both the whole community and individual groups 

show a dinoflagellate-driven negative trend rather than the commonly- found unimodal pattern. Pigments are also shown to 

relate to certain harmful algal bloom-forming taxa as well as the expression of sets of genes. Altogether, these results suggest 25 

that potential models of pigment concentrations via hyperspectral remote sensing may enable improved assessments of global 

phytoplankton community structure, including the detection of harmful algal blooms, and support the development of 

ecosystem models.   

1 Introduction 

Marine phytoplankton comprise both prokaryotic cyanobacteria and diverse lineages of eukaryotes with distinct evolutionary 30 

histories (Pierella Karlusich et al., 2020). Collectively, they are responsible for approximately 50% of global primary 
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production, support marine food webs, and extensively contribute to biogeochemical cycling (Huang et al., 2021).  Their 

distinct evolutionary trajectories have also given rise to different traits, functional roles, and niches. For example, diatoms 

(Bacillariophyta) tend to dominate under well-mixed, nutrient-rich conditions, are considered principal contributors to carbon 

export with fast sinking rates, and are a significant component of the silicon cycle due to their formation of silica cell walls 35 

(Guidi et al., 2016; Agusti et al., 2015; Bowler et al., 2010) Dinoflagellates (Dinoflagellata) may be major contributors to 

carbon export in oligotrophic regions, and many species are mixotrophs, which enables them to serve multiple important roles 

in marine food webs (Guidi et al., 2016; Stoecker et al., 2017). Prymnesiophytes (Haptophyta) include coccolithophores with 

calcium carbonate shells, the formation of which influences upper ocean alkalinity and air-sea carbon dioxide exchange (Rost 

and Riebesell, 2004). The prymnesiophytes also include the bloom-forming Phaeocystis spp. which are a major source of the 40 

sulfur compound, dimethylsulfoniopropanate (DMSP), that is hypothesized to influence cloud formation and climate (Smith 

Jr and Trimborn, 2023). Cryptophytes (Cryptophyta) are considered to be ubiquitous and may be highly abundant in the 

Sargasso Sea and Southern Ocean (Richardson, 2022; Cotti-Rausch et al., 2016; Mendes et al., 2018). Lastly, theprominent 

chlorophytes (Chlorophyta) and pelagophytes (Pelagophyceae) are additional picoeukaryotes that are important primary 

producers, particularly in the open ocean (Worden et al., 2012; Not et al., 2012; Lopes dos Santos et al., 2017; Guérin et al., 45 

2022).  

 

Due to these contributions to ecosystem function and differing roles, assessing phytoplankton abundances and disentangling 

phytoplankton community composition (PCC) is necessary to understand marine environments (Cetinić et al., 2024). For 

example, current Earth systemssystem models (ESMs) are unable to confidently project if primary productivity will increase 50 

or decrease under future climate scenarios (Kwiatkowski et al., 2020). By examining the effects of natural climate variability 

and anthropogenic change on phytoplankton communities as well as their physiology, more accurate and detailed 

representation of different groups can be generated to improve these model predictions (Tagliabue, 2023; Cetinić et al., 2024). 

Knowledge of PCC may also further help estimate carbon export flux (Kramer et al., 2024a).(Kramer et al., 2025). 

Additionally, monitoring for harmful algal blooms (HABs) is important for human health as well as understanding their 55 

impacts on fisheries and ecosystems (Anderson et al., 2012), and fisheries managers may benefit from knowledge of PCC to 

aid stock assessments and identify suitable fishing zones (Satterthwaite et al., 2023; Sathyendranath et al., 2023). 

 

A common approach to estimate phytoplankton abundances and determine PCC is the measurement of phytoplankton pigments 

via high-performance liquid chromatography (HPLC). Specifically, certain accessory pigments can be used as proxies, or 60 

diagnostic pigments, to determine the abundances of specific groups, even though some of these pigments are shared among 

groups (Jeffrey et al., 2011; Kramer and Siegel, 2019). As pigments directly alter the shapes and magnitudes of remote sensing 

reflectance spectra, HPLC-measured pigments are also extensively used to develop and validate satellite-based remote sensing 

algorithms. Given the recent availability of hyperspectral remote sensing reflectance data from NASA’s Plankton, Aerosol, 

Cloud, ocean Ecology (PACE) mission, the continued development of remote sensing algorithms based on HPLC pigments 65 
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may enable global scale estimation of phytoplankton pigment concentrations and PCC (Kramer et al., 2022; Cetinić et al., 

2024). 

 

As a result, it is important to compare phytoplankton pigments to other metrics of PCC. If other metrics agree with pigments, 

they may also be useful for validating remote sensing algorithms. Conversely, it is important to compare other metrics of PCC 70 

to phytoplankton pigments as it remains uncertain whether indirect approaches such as DNA and RNA sequencing are 

reflective of phytoplankton biomass. DNA metabarcoding is increasingly being used to determine PCC, primarily by 

sequencing hypervariable regions of the 16S gene for prokaryotes and phytoplankton plastids or the 18S gene for eukaryotes 

(Lopes dos Santos et al., 2022), and it is increasingly common to use environmental mRNA sequencing, or 

metatranscriptomics, to determine PCC (Cohen et al., 2022). 75 

 

Initial comparisons between phytoplankton pigments and DNA indicate that the metrics are correlated in some cases; however, 

these comparisons have been hindered by the compositional nature of sequencing data (Catlett et al., 2023; Kramer et al., 

2024b2024). By default, DNA and RNA sequencing produce relative abundance data, which complicates their interpretability 

and can lead to spurious correlations (Gloor et al., 2017). This is because there are multiple scenarios that could lead to a 80 

taxonomic group having the same or different relative abundances among samples, and potential differences in relative 

abundances are not necessarily reflective of differences in their true abundances. For example, one group’s true abundance 

could be the same in two samples while another group’s is lower in just one sample leading to a higher relative abundance of 

the first group even though the two abundances are equal. Alternatively, both groups’ true abundances could be higher in one 

sample but to different degrees, resulting in lower relative abundances in one group even though its true abundance has 85 

increased. 

 

To compare phytoplankton pigments and relative DNA abundances, previous studies have also normalized diagnostic pigment 

concentrations to total chlorophyll a (TChla) concentrations or the sum of diagnostic pigments, thereby making both DNA and 

pigment data relative quantities (Catlett et al., 2023; Kramer et al., 2024b2024). However, the use of these approaches while 90 

only using relative abundances of prokaryotic or eukaryotic taxa presents other issues. As an example, high total chlorophyll 

aTChla could be driven by relatively high cyanobacterial abundances that would not be captured in 18S sequencing, which 

targets eukaryotes. If the eukaryotic phytoplankton community is then dominated by one group, this group would have a high 

relative abundance that is coupled to low concentrations of their diagnostic pigment relative to total chlorophyll a.TChla. The 

use of 16S alone to capture both prokaryotic cyanobacteria and eukaryotic plastids may circumvent this issue, but references 95 

for plastid 16S sequences are not as comprehensive and are influenced by potentially greater variability in plastid copy number 

(Lopes dos Santos et al., 2022; Decelle et al., 2015). Alternatively, simultaneous metabarcoding of the 16S and 18S rRNA 

gene with three domain primers addresses this issue, but it may also require greater sequencing depth to capture the diversity 

of the eukaryotic community (Yeh et al., 2021). Even if eukaryotic relative abundances are only compared to the sum of 
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eukaryotic diagnostic pigments, the DNA-based relative abundances are still influenced by non-photosynthetic taxa. 100 

Altogether, these problems with normalization and potential discrepancies between true abundances and relative metrics can 

be severe issues that produce misleading correlations. 

 

The estimation of absolute abundances via internal standards avoids these issues and enables comparisons between gene or 

transcript concentrations and phytoplankton pigment concentrations (Lin et al., 2019; Cohen et al., 2022). This approach was 105 

used in a study in the Western Antarctic Peninsula to compare 18S DNArRNA gene concentrations to group-specific 

chlorophyll a concentrations (Lin et al., 2019). With a small sample size (n = 16) and cryptophyte-dominated communities, 

strong relationships forwith cryptophytes and Phaeocystis were observed, but not with diatoms. Other groups were not 

examined, and it remains unclear if these relationships persist with larger sample sizes, other regions with different 

communities, or across the entire spectrum of phytoplankton abundances. within eukaryotic phytoplankton.  110 

 

Quantitative 16S sequencing has previously been shown to strongly agree with cell abundances of the prokaryotic genera 

Prochlorococcus and Synechococcus measured with flow cytometry (Jones-Kellett et al., 2024), although a separate 

comparison of Prochloroccocus abundances from flow cytometry only showed moderate correlations with pigment 

concentrations indicating that pigment concentrations may be decoupled from 16S DNA and cell abundances (Kramer et al., 115 

2024). Furthermore, it remains unclear if absolute quantities of mRNA from metatranscriptomics and phytoplankton pigments 

relate to one another.; however, total mRNA concentrations have also been shown to agree with imaging flow cytometry-

derived carbon biomass estimates with eukaryotic phytoplankton, indicating that total mRNA is reflective of phytoplankton 

biomass (Coesel et al., 2025).  

 120 

Here we investigateTo further explore these potential relationships between, we compare phytoplankton pigments andwith 

quantitative DNA- or RNA-based abundances withfrom paired samples collected over a seven-year period on seasonal 

California Cooperative Oceanic Fisheries Investigations (CalCOFI) surveys. Within cyanobacteria, flow cytometry was also 

used to measure Prochloroccocus and Synechococcus cell abundances. The CalCOFI sampling area is within the California 

Current Ecosystem, a coastal upwelling biome associated with an eastern boundary current. Although the sampling area is 125 

largely restricted to the southern California Current (Figs. 1A and 1B), it is alongincludes a major biogeographic boundary at 

Point Conception, and contains phytoplankton taxa commonly associated with both the central North Pacific Subtropical Gyre 

and the subarctic Northeast Pacific; thus, it captures, that is, communities associated with the broader region (Checkley and 

Barth, 2009; Venrick, 1998). The range in phytoplankton abundances closely aligns with those observed globally and is 

captured by sampling the gradients from nearshore stations influenced by upwelling to offshore oligotrophic stations  (Deutsch 130 

et al., 2021; James et al., 2022; Venrick, 2002). CalCOFI additionallyalso conducts four cruises per year, capturing; therefore, 

the samples include potential differences from seasonal and interannual variability. Beyond examining PCC, we explore 

additional applications stemming from relationships between phytoplankton pigments and DNA- or RNA-based abundances 



 

5 
 

including investigating productivity-diversity relationships, forecasting harmful algal blooms, and inferring expression of 

specific genes. 135 



 

6 
 

 



 

7 
 

 

Figure 1. Overview of CalCOFI samples used in this study. (A, B) Locations and quantity of samples for DNA and RNA with 
corresponding phytoplankton pigment samples. (C, D) Temperature (°C) and nitrate concentrations (µmol L-1) across seasons for 
the paired DNA and pigment samples used here. Corresponding data for the RNA samples are shown in Fig. S1. Nitrate 140 
concentrations are shown on a cube-root scale. (E) Phytoplankton pigment concentrations. Pigment abbreviations: TChla, total 
chlorophyll a; Allo, alloxanthin; ButFuco, 19'-butanoyloxyfucoxanthin; DVChla, divinyl chlorophyll a; Fuco, fucoxanthin; 
HexFuco; 19'-hexanoyloxyfucoxanthin; MVChlb, monovinyl chlorophyll b; Perid, peridininPeridinin; Zea, zeaxanthin. (F, G) 
Relative abundances of different phytoplankton groups using the 18S-V4 rRNA gene (red), 18S-V9 rRNA gene (blue), or transcript 
abundance (metaT, green).) abundances. For prokaryota, the 16S V4-V5 region was used and is shown in red. (H, I) Absolute 145 
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abundances for 18S or 16S rRNA genes (copies L-1, left y-axis) and transcripts (transcripts L-1, right y-axis). Different metrics are 
colored as in panels F and G. 

2 Materials and Methods 

2.1 Sample collection and biogeochemical measurements 

From select stations on seasonal CalCOFI cruises from 2014 to 2020, 417 DNA and 118 RNA samples were collected 150 

concurrently with phytoplankton pigments within the euphotic zone along CalCOFI lines 80.0 and 90.0 and at the Santa 

Barbara Basin (Station 81.8 46.9) (Figs. 1A and 1B). These data represent only a subset of the on-going NOAA-CalCOFI 

Ocean Genomics (NCOG) time series, with no DNA and are restricted to samples from 2017 and only RNA samples from 

2017-2020 to examine samples only where quantitative approaches for DNA and RNA were employed with concurrent 

sampling of phytoplankton pigmentspigment samples (James et al., 2022). As such, no DNA samples from 2017 are included 155 

and RNA samples only span from 2017 to 2020.  

 

CalCOFI cruises survey the California Current Ecosystem in a standardized grid pattern with most stations in the southern 

California Current region. During this time period, winter cruises occurred during January and February, spring cruises 

occurred during April, summer cruises occurred in July and August, and autumn cruises occurred in October and November. 160 

There was no Spring cruise during 2020 due to the COVID-19 pandemic. At each station, seawater was collected from the 

near-surface (normally 10 m) and the subsurface chlorophyll maximum layer (SCML) with a CTD rosette for pigments, DNA, 

RNA, and flow cytometry. For the DNA samples, 219 were from the near-surface (0 – 14 m, mean = 10 m), and 198 were 

from the SCML (18 – 130 m, mean = 53 m). Temperature data are derived from duplicate Seabird SBE 3Plus sensors on a 

Seabird 911+ CTD.  Macronutrient concentrations were measured on a QuAAtro continuous segmented flow autoanalyzer 165 

(SEAL Analytical) alongside reference materials (KANSO technos) (Armstrong et al., 1967; Gordon et al., 1992)(Armstrong 

et al., 1967; Gordon et al., 1992). The nitracline depth is defined as the depth where nitrate first exceeds 1 µM.  

 

Primary productivity was estimated via 14C uptake at select stations. Briefly, seawater was collected from six depths 

representing 56%, 30%, 10%, 3%, 1%, and 0.3% surface light levels shortly before local apparent noon and. Light levels were 170 

estimated with a Secchi disk with the assumptions that the 1% light level is three times the Secchi depth and that the extinction 

coefficient is constant. Following collection, seawater was dispensed into triplicate 250 mL polycarbonate bottles (two light 

bottles and one dark control). Bottles were then inoculated with a 200 µL solution containing NaH14CO3 andthat was prepared 

by diluting 50 mL of NaH14CO3 (approximately 50-57 µCi mmol-1; MP Biomedicals, LLC) with 350 mL of 2.8 mM Na2CO3 

and then adjusting the pH to ~10 with 1 N NaOH (Fitzwater et al., 1982). Bottles were then incubated until civil twilight in 175 

tubes with flow-through seawater and neutral-density screens to simulate in situ light levels. Following incubation, samples 

were filtered onto 0.45 µm HAmixed-cellulose ester filters (type HA, Millipore), acidified with 0.5 mL of 10% HCl, immersed 
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in scintillation fluor, and measured with a scintillation counter once back onshore. HalfAs the incubations occurred from local 

noon until civil twilight, half light-day productivity at each depth was averaged between calculated by averaging the two light 

bottles and corrected with the dark uptake bottle. Half light-day productivity was then multiplied by 1.8 to obtain 24 hour 180 

productivity (Eppley, 1992).as determined by Eppley (1992). When comparing productivity to diversity from DNA, samples 

from the entire NCOG dataset (2014 to 2020) that were closest to the collection depthswithin 20 m of productivity samples 

were used (n = 757).434). The average vertical distance between DNA and productivity samples was 1.79 m.  

2.2 High-performance liquid chromatography pigment analysis 

Phytoplankton pigment concentrations were determined with high-performance liquid chromatography (HPLC). Samples were 185 

collected with 0.5, 1.04, or 2.2L opaque brown bottles depending on the fluorescence measured by the CTD and filtered onto 

25 mm GF/F filters under low vacuum pressure (≤ 40 mm Hg). Once completed filtering, the filters were carefully folded in 

half, blotted on a paper towel to remove excess water, and stored in 2 mL cryovials in liquid nitrogen until analysis at the Horn 

Point Analytical Services Laboratory at the University of Maryland. Taxon-specific contributions to total chlorophyll a 

concentrations were determined with phytoclass v1.0.0 (Hayward et al., 2023).  190 

2.3 Nucleic acid sample collection and extraction 

For DNA samples, 0.2 to 10.4 L (mean = 3.3 L) of seawater was filtered onto 0.22 µm Sterivex™ filters. RNA samples were 

collected simultaneously following the same approach but with generally higher volumes (2.0 to 4.8 L, mean = 4.0 L). RNA 

samples were alsoPhytoplankton pigment concentrations were determined with HPLC. Samples were collected with 0.5, 1.04, 

or 2.2L opaque brown bottles depending on the fluorescence measured by the CTD and filtered onto 25 mm GF/F filters under 195 

low vacuum pressure (≤ 40 mm Hg). Once completed filtering, the filters were carefully folded in half, blotted on a paper 

towel to remove excess water, and stored in 2 mL cryovials in liquid nitrogen until analysis at the Horn Point Analytical 

Services Laboratory at the University of Maryland with the HPL method as described in Hooker (2005). Briefly, filters were 

extracted in 95% acetone and sonicated on ice for 30 s with an output of 40 W. Samples were then clarified by filtering them 

through a HPLC syringe cartridge filter (0.45 µm) and a glass-fiber prefilter. Extracts were then analyzed with an automated 200 

HP 1100 HPLC system with external calibration standards that were either purchased or isolated from naturally occurring 

sources as described in Van Heukelem and Thomas (2001). The pigments that were measured and used here are Peridinin, 19ꞌ-
butanoyloxyfucoxanthin, fucoxanthin, neoxanthin, prasinoxanthin, violaxanthin, 19ꞌ-hexanoyloxyfucoxanthin, alloxanthin, 

zeaxanthin, divinyl chlorophyll a, and TChla. The precision including filter extraction and analysis of TChla is estimated to be 

5.1%. As described later in the results and discussion, several of these pigments are diagnostic pigments for certain 205 

phytoplankton lineages. Although other pigments are measured with HPLC, they do not provide as much specificity as the 

diagnostic pigments used here; therefore, they were not included in the analysis (Kramer and Siegel, 2019).  In addition to use 

diagnostic pigments directly, taxon-specific contributions to TChla concentrations based on the aforementioned pigment 
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concentrations were determined with phytoclass v2.0.0 (Hayward et al., 2023). To account for potential differences in pigment 

ratios due to environmental conditions, surface and SCML samples were analyzed with phytoclass separately.  210 

2.3 Nucleic acid sample collection and extraction 

For DNA samples, 0.2 to 10.4 L (mean = 3.3 L) of seawater was filtered onto 0.22 µm Sterivex™ filters. RNA samples were 

collected simultaneously following the same approach but with generally higher volumes (2.0 to 4.8 L, mean = 4.0 L). RNA 

samples were only collected near local apparent noon to minimize bias from the diel cycle.  

 215 

Following filtration, samples were immediately flash frozen in liquid nitrogen and stored at -80°C. DNA was extracted with 

the Macherey-Nagel NucleoMag Plant kit on an Eppendorf epMotion 5075TMX and assessed on a 1.8% agarose gel. At the 

start of DNA extraction during the addition of lysis buffer, 1.74 to 3.78 ng of Schizosaccharomyces pombe genomic DNA and 

3.36 to 7.09 ng of Thermus thermophilus genomic DNA was added to each sample as an internal standard (Lin et al., 2019). 

RNA was also extracted on the Eppendorf epMotion but with the Machery-Nagel NucleoMag RNA kit. As an internal standard, 220 

2 to 5 billion copies of Invitrogen™ ArrayControl™ RNA Spikes #1 and #8 were added to the lysis buffer of each sample at 

a 2.66:1 ratio. 

2.4 Amplicon library preparation and sequencing 

Amplicon libraries separately targeting the V4-V5 region of the 16S rRNA gene, the V4 and V9 regions of the 18S rRNA 

gene, and the ITS2 gene from the diatom genus Pseudo-nitzschia were constructed via a one-step PCR with the TruFi DNA 225 

Polymerase PCR kit to simultaneously amplify the region of interest and barcode each sample. For 16S, the 515F-Y (5′-GTG 

YCA GCM GCC GCG GTA A-3′) and 926R (5′-CCG YCA ATT YMT TTR AGT TT-3′) primer set was used (Parada et al., 

2016). For 18S-V4, the V4F (5′-CCA GCA SCY GCG GTA ATT CC-3′) and V4RB (5′-CCA GCA SCY GCG GTA ATT 

CC-3′) primer set was used (Berdjeb et al., 2018).For 18S-V4, the V4F (5′-CCA GCA SCY GCG GTA ATT CC-3′) and V4RB 

(5′-ACT GTT CTT GAT YR-3′) primer set based on those used by Berdjeb et al. (2018) was used. For 18S-V9, the 1389F (5′-230 

TTG TAC ACA CCG CCC-3′) and 1510R (5′-CCT TCY GCA GGT TCA CCT AC-5′) primer set was used (Amaral-Zettler 

et al., 2009). For Pseudo-nitzschia ITS2, the 5.8SF (5′-TGC TTG TCT GAG TGT CTG TGG A-3′) and 28SR (5'-TAT GCT 

TAA ATT CAG CGG GT-3′) primer set was used (Lim et al., 2018). 

 

Each reaction was performed with an initial denaturing step at 95°C for 1 minute followed by 30 cycles of 95°C for 15 seconds, 235 

56°C for 15 seconds, and 72°C for 30 seconds. 2.5 µL of each PCR reaction was run on a 1.8% agarose gel to confirm 

amplification, then PCR products were purified with Beckman Coulter AMPure XP beads following the manufacturer’s 

instructions. PCR quantification was performed in duplicate using the Invitrogen Quant-iT PicoGreen dsDNA Assay kit. 

Samples were then combined in equal proportions into multiple pools followed by another 0.8x AMPure XP bead purification 

on the final pool. DNA quality of each pool was evaluated on an Agilent 2200 TapeStation, and quantification was performed 240 
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with the Qubit HS dsDNA kit. Each 16S or 18S pool was sequenced on an Illumina MiSeq (2 x 300 bp for 16S and V4 or 2 x 

150 bp for V9) except for the one pool for the 2014-2016 euphotic zone V9 samples, which was run on an Illumina NextSeq 

(Mid Output, 2 x 150 bp). The Pseudo-nitzschia ITS2 pool was sequenced on a single lane of an Illumina NovaSeq 6000 with 

a SP flow cell (2 x 250 bp). For all 16S and 18S libraries, mock communities were included as described in Yeh et al. (2021). 

The results from the mock community samples are shown in James et al. (2022), which validate the absence of taxon 245 

disappearance observed in previous studies. In addition to the mock communities, PCR blank samples and unused barcodes 

were also analyzed to confirm minimal index hopping. 

2.5 Analysis of amplicon sequence data 

Amplicons were first analyzed with QIIME2 v2019.10 for the 16S and 18S data or QIIME2 v2021.2 for the Pseudo-nitzschia 

ITS2 data (Bolyen et al., 2019). Briefly, paired-end reads were trimmed to remove adapter and primer sequences with cutadapt 250 

(Martin, 2011).(Martin, 2011). Trimmed reads were then denoised with DADA2 to produce amplicon sequence variants 

(ASVs). Each MiSeq run was denoised with DADA2 separately to account for different error profiles in each run then merged. 

Taxonomic annotation of ASVs was performed with the q2-feature-classifier naïve bayes classifier using the SILVA database 

(Release 138) for 16S ASVs and the PR2 database (v4.13.0) for 18S ASVs (Bokulich et al., 2018; Pedregosa et al., 2011; 

Guillou et al., 2012; Pruesse et al., 2007). For ITS2 ASVs, annotation was performed using BLAST (classify-consensus-blast) 255 

with Pseudo-nitzschia ITS2 sequences database as references (Brunson et al., 2024; Lim et al., 2018). When examining 16S 

relative abundances, all eukaryotic, plastid, and mitochondrial ASVs were removed, and when examining 18S relative 

abundances, dinoflagellates excludeexcludes Syndiniales and prymnesiophytes refers to all Prymnesiophyceae unless 

otherwise noted. The Shannon Diversity Index was calculated for each group with the QIIME2 diversity plugin.  

 260 

To estimate absolute abundances of 16S and 18S ASVs, recovery of the aforementioned internal standards was used (Lin et 

al., 2019). For each ASV within each sample, the number of reads was divided by the ratio of T. thermophilus or S. pombe 

reads to the number of rRNA copies added. The total number of copies was then normalized to the volume filtered for each 

sample to estimate copies L-1. 

2.6 Metatranscriptome sequencing, assembly, and analysis 265 

To examine eukaryotic mRNA sequences, poly-A selected RNA-Seq libraries were created. Poly-A selected cDNA from total 

RNA was generated with the SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing (Takara Bio USA, Inc.), which 

was then sheared with a Covaris® E210 focused-ultrasonicator targeting 300 bp fragments. The final sequencing library was 

then constructed with the NEB NEBNext® Ultra™ II DNA Library Kit with NEBNext® Multiplex Oligos for Illumina® and 

sequenced on three lanes of a NovaSeq 6000 with a S4 flow cell (2 x 150 bp).  270 
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For prokaryotic sequences, sequencing libraries were constructed following ribosomal RNA (rRNA) depletion. For samples 

from 2014-2019, rRNA was depleted with a 2:1:1 mixture of Ribo-Zero Plant, Bacteria, and Human/Mouse/Rat (Illumina) 

following the manufacturer’s low input protocol. For samples from 2020, rRNA depletion was performed with siTOOLs 

riboPOOLs with a 6:1:1 mixture of the pan-prokaryote, pan-plant, and pan-mammal riboPOOLs following the manufacturer’s 275 

instructions for low inputs. rRNA depletion was confirmed with all samples on an Agilent TapeStation 2200 with High 

Sensitivity RNA ScreenTape. cDNA was then synthesized using the Ovation RNA-Seq System V2 kit (NuGEN) using both 

poly-A and random hexamer primers followed by fragmentation with a Covaris® E210 focused-ultrasonicator targeting 300 

bp fragments. cDNA was then purified with Agencourt RNAClean XP beads, and library preparation was performed with the 

Ovation Ultralow System V2 with unique dual indexes (NuGEN). After end repair, ligation, and amplification, the libraries 280 

were assessed on an Agilent TapeStation 2200 with High Sensitivity DNA ScreenTape. A subset of samples from 2014-2016 

were sequenced separately in four pools on an Illumina HiSeq 4000 (2 x 150 bp). The remaining libraries were sequenced 

across five pools on an Illumina NovaSeq 6000 with a S4 flow cell (2 x 150 bp). 

 

For both types of libraries, the resulting raw reads were trimmed for quality and to remove Illumina adaptors. Ribosomal RNA 285 

sequences were also removed with Ribopicker v0.4.3 (Schmieder et al., 2011). Trimmed and filtered reads were then used for 

assembly into contigs, and abundances were quantified by mapping these reads to the assembly. Both assembly and read 

mapping were performed with CLC Bio Genomics Server v21.0.3. Gene prediction was performed with FragGeneScan v1.16, 

and rRNA removal was performed again with Ribopicker (Rho et al., 2010). Predicted proteins were further filtered to remove 

those less than 10 amino acids long or with greater than or equal to 20% stop codons. Gene clusters were generated from the 290 

predicted proteins with MCL with the inflation option (-I) set to 4 and scheme option (-scheme) set to 6 (Enright et al., 2002). 

 

With the final assemblies, taxonomic annotation of each protein coding gene was assigned via DIAMOND BLASTP 

alignments using PhyloDB v1.076 as a reference database (Bertrand et al., 2015). Final taxonomic assignments were based on 

highest Lineage Probability Index values (Podell and Gaasterland, 2007). For functional annotation, DIAMOND BLASTP 295 

alignments were performed with the Kyoto Encyclopedia of Genes and Genomes (KEGG; Release 94.1)) (Kanehisa et al., 

2017). KEGG Ortholog (KO) assignment was performed with KofamKOALA, which uses hmmsearch against KOfam, an 

HMM database of KOs (Aramaki et al., 2019). E-value cutoffs of 1e-5 were used throughout. 

 

To normalize read counts, raw reads were first converted to transcripts per million (TPM)) (Li et al., 2009). Absolute quantities 300 

(transcripts L-1), i.e. quantitative metatranscriptomics,) were then calculated based on the average recovery of the 

aforementioned Invitrogen™ ArrayControl™ RNA Spikes and the volume of sample filtered as described in Cohen et al. 

(2022). For performing correlations with individual genes, transcripts L-1 within each taxonomic group and sample were 

summed by KO annotation, and if KO annotation was absent, the KEGG gene annotation was used. The domoic acid 

biosynthesis gene, dabA, was annotated using the sequences reported in Brunson et al. (2018).  305 
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2.7 Flow Cytometry 

TwoTo measure Prochloroccus and Synechococcus cell abundances with flow cytometry, providing an additional metric of 

comparison, two mL samples of seawater were collected in cryovials and fixed with 100 µL of 0.2 µm filtered 10% 

paraformaldehyde for a 0.5% final concentration. Fixation was allowed to occur for 10 min before freezing the sample in liquid 

nitrogen. Once onshore, samples were stored at -80°C or on dry ice until analysis at the SOEST Flow Cytometry Facility, 310 

University of Hawaii at Manoa.  

 

Prior to analysis, thawed samples were stained with Hoechst 33342 (1 µg mL-1, v/v, final concentration) at room temperature 

in the dark for 1 hour (Monger and Landry, 1993). Aliquots (100 µl) were analyzed using a Beckman-Coulter EPICS Altra 

flow cytometer with a Harvard Apparatus syringe pump for volumetric sample delivery. Simultaneous (co-linear) excitation 315 

of the plankton was provided by two argon ion lasers, tuned to 488 nm (1 W) and the UV range (200 mW). The optical filter 

configuration distinguished Prochlorococcus and Synechococcus populations based on chlorophyll a (red fluorescence, 680 

nm), phycoerythrin (orange fluorescence, 575 nm), DNA (blue fluorescence, 450 nm), and forward and 90° side-scatter 

signatures. Blue-fluorescence and red-fluorescence signals arewere used to distinguish DNA-containing heterotrophic (non-

pigmented) from phototrophic (chlorophyll-containing) cells. (Monger and Landry, 1993).  Standardized fluorescence and 320 

scatter parameters were determined relative to 0.5- and 1.0-µm yellow-green calibration beads and 0.5-µm UV calibration 

beads run in each sample. Bead-normalized red-fluorescence values are also used as a measure of cellular chlorophyll a 

(Landry et al., 2003). Raw data (listmode files) were processed using the software FlowJo (Treestar Inc., www.flowjo.com). 

Cell abundance estimates were then calculated accounting for the volume dilutions from the added preservative and stain 

solutions. 325 

2.7 Statistics 

All correlations and models were generated with R v4.3.2. Generalized additive models (GAMs) were fit withSpecifically, 

Pearson correlations were performed with the function cor.test(x, y, method = “pearson”). Linear regressions were performed 

with the function lm(y~x), and residuals from the linear models were calculated with the resid() function. Generalized additive 

models (GAMs) were fit using the function gam(y~x, method = “REML”) from the mgcv package v 1.9-1 (Wood, 2017). 330 

When examining multiple gene correlations, P-values were adjusted using the Benjamini & Hochberg procedure using the 

p.adjust(p, method = “BH”) function. (Benjamini and Hochberg, 1995).  
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3 Results and Discussion 

3.1 Quantitative relationships among pigments, DNA, and RNA 

As the sampling locations span nearshore stations influenced by coastal upwelling to offshore oligotrophic conditions (James 335 

et al., 2022; Venrick, 2002), the paired phytoplankton pigment and DNA or RNA samples encompass a wide range of 

environmental conditions (Figs. 1A-1D and S1). Seasonal and interannual variability were also captured with notably lower 

temperatures and higher nutrients in the Spring season relating to seasonal upwelling as well as an unprecedented marine 

heatwave from mid-2014 to 2016 associated with El Niño in 2015 (Di Lorenzo and Mantua, 2016; Jacox et al., 2018). 

Concurrent with the wide-ranging environmental conditions, total chlorophyll aTChla and accessory pigment concentrations 340 

often spanned several orders of magnitude with all accessory pigments detected in concentrations as low as 0.001 to 0.005 µg 

L-1 (Fig. 1E). Fucoxanthin (Fuco) exhibited the greatest range with concentrations reachingranging from 0.001 to 6.81 µg L-1, 

and. While 19'-hexanoyloxyfucoxanthin (HexFuco) exceededconcentrations ranged from 0.005 to 1.170 µg L-1 in several 

samples. All, all other pigment concentrations examined here were always less than 10.697 µg L-1. 

 345 

DNA metabarcoding of both the V4 and V9 regions of the 18S rRNA gene for eukaryotes as well as the V4-V5 regions of the 

16S rRNA gene for prokaryotes similarly showed wide ranges in relative abundances (Figs. 1F and 1G). Among eukaryotes, 

diatoms exhibited the greatest range in accordance with their known dominance during blooms in the region (Goericke, 2011; 

Venrick, 2012; Taylor and Landry, 2018). Chlorophytes also exhibited a wide range of relative abundances, and their average 

abundance exceeded that of diatoms. Dinoflagellates were also found in high abundances, and while they indeed bloom in the 350 

region (Kahru et al., 2021; Anderson et al., 2008), their high abundances via 18S metabarcoding may be due to bias from high 

18S gene copy numbers (Martin et al., 2022). Other eukaryotic phytoplankton groups were typically less than 10% of the total 

eukaryotic community. In particular, cryptophytes were less than 1% of the community on average but were found to be as 

high as 5%. Within eukaryotic mRNA expressed as relative abundances [transcripts per million (TPM)], intragroup variability 

was less pronounced, and most groups displayed higher relative abundances compared to their 18S DNA abundances (Figs. 355 

1F). The sole exception was with dinoflagellates which had lower relative abundances with RNA compared to DNA, further 

suggesting bias in their DNA relative abundances due to high 18S DNA copy numbers. 

 

Within prokaryotes, all cyanobacteria combined and the cyanobacterial genus Prochlorococcus displayed similar distributions, 

indicating that Prochlorococcus was often the dominant member of the cyanobacterial community (Figs. 1G and 1I). Cell 360 

abundances measured via flow cytometry also show that Prochlorococcus is dominant in these samples, with Prochlorococcus 

displaying higher abundances than Synechococcus in 76% of samples (Fig. S2). On average, Prochlorococcus and 

Synechococcus accounted for 99.2% of 16S reads, with only minor contributions from ASVs that were either not resolved to 

lower taxonomic levels or cyanobacterial diazotrophs such as Richelia and UCYN-A. Cyanobacteria as a whole and 

Prochlorococcus also displayed lower relative abundances from transcripts compared to 16S rRNA genes (Fig. 1G).  365 



 

15 
 

 

When converted to absolute abundances based on the recovery of internal standards and normalizing to the volume filtered 

(gene copies L-1 or transcripts L-1), differences and distributions among groups were similar to those observed with relative 

abundances (Figs. 1F-1I). However, such quantitative approaches have not been widely adopted, and most metabarcoding data 

are solely expressed as relative abundances. As previously described, other studies have normalized phytoplankton pigments 370 

to total chlorophyll aTChla concentrations in an attempt to make DNA-based relative abundances and phytoplankton pigments 

comparable (Catlett et al., 2023; Kramer et al., 2024b2024). When using pigments directly, diagnostic pigments used for 

specific phytoplankton groups include monovinyl chlorophyll b (MVChlb) for chlorophytes, alloxanthin (Allo) for 

cryptophytes, fucoxanthin (Fuco) for diatoms, peridininPeridinin (Perid) for dinoflagellates, 19'-butanoyloxyfucoxanthin 

(ButFuco) for pelagophytes, 19'-hexanoyloxyfucoxanthin (HexFuco) for prymnesiophytes, zeaxanthin (Zea) for 375 

cyanobacteria, and divinyl chlorophyll a (DVChla) for Prochlorococcus (Catlett et al., 2023; Kramer and Siegel, 2019). 

 

Within eukaryotic taxa, comparisons between TChla-normalized pigment concentrations and DNA-based relative abundances 

showed moderate to strong correlations (Pearson) for several groups (Fig. 2A). In particular, the relative abundances of diatoms 

and Fuco displayed the strongest agreement (r = 0.79-0.82) followed by pelagophytes and ButFuco (r = 0.71-0.77). 380 

Cryptophytes with Allo and chlorophytes with MVChlb were also moderately well correlated (r = 0.51-0.65) whereas 

dinoflagellates with Perid and prymnesiophytes with HexFuco were weakly correlated (r = 0.32-0.42). Previous studies using 

samples from the California Current (Plumes and Blooms), North Atlantic Ocean (NAAMES), and Northeast Pacific Ocean 

(EXPORTS) have shown similar results where relationships are notable for chlorophytes, cryptophytes and pelagophytes, 

weak for prymnesiophytes and dinoflagellates, and inconsistent among the studies for diatoms (Catlett et al., 2023; Kramer et 385 

al., 2024b2024). In another previous study in the Western Antarctic Peninsula where a chemotaxonomic approach that 

partitions total chlorophyll aTChla (CHEMTAX) was used rather than diagnostic pigments directly, cryptophytes were 

moderately well correlated between the measurements whereas diatoms were not (Lin et al., 2019; Mackey et al., 1996). Within 

these studies, abundances for some groups were also too low to be included. 

 390 

Although these results suggest that there are moderately strong relationships between pigments and DNA-based relative 

abundances for several phytoplankton groups, these analyses are hindered by the compositional nature of relative abundance 

data as previously described. The estimation of absolute abundances via internal standards removes compositionality and 

enables the comparison of DNA- or RNA-based concentrations (copies L-1 or transcripts L-1) to phytoplankton pigment 

concentrations (µg L-1). By doing so here, all correlations were stronger than those with relative abundances for eukaryotic 395 

phytoplankton taxa (Fig. 2B). In particular, the relationships between dinoflagellates and Perid waswere dramatically stronger 

with both marker genes (r = 0.77-0.79). The relationshiprelationships for prymnesiophytes waswere also stronger but not to 

the same degree (r = 0.46-0.51). Furthermore, all groups were most strongly correlated with their diagnostic pigments except 

prymnesiophytes, which had similarly strong correlations with peridininPeridinin (Fig. S3). By using taxon-specific biomass 
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as chlorophyll a concentrations with a chemotaxonomic approach (phytoclass) (Hayward et al., 2023), correlations were often 400 

similar (Fig. S4). Moreover, strong correlations were also observed among absolute transcript abundances and pigment 

concentrations (r = 0.66-0.88) except for prymnesiophytes which had a similar correlation when using their DNA-based 

abundances (r = 0.43) (Fig. 2C). 

 

These results indicate that abundances of diagnostic phytoplankton pigments and phytoplankton DNA or RNA often agree. 405 

Furthermore, they suggest that the aforementioned issues with compositionality or normalization of pigments to total 

chlorophyll aTChla may lead to misleading conclusions about these relationships, particularly for dinoflagellates. Besides 

compositionality, DNA- and RNA-based abundances have other biases that can also lead to discrepancies. Copies of 18S DNA 

can vary orders of magnitude among closely related phytoplankton species (Zhu et al., 2005), and DNA sequencing may also 

capture deceased cells that have lost some or all of their pigments. RNA abundances may be variable within a cell, instead 410 

reflecting overall activity or differential transcription rates in response to environmental stimuli (Moran et al., 2012). Both 

metrics are also influenced by the comprehensiveness of reference databases where unknown phytoplankton sequences may 

be unassigned (Krinos et al., 2023). 
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 415 

 
Figure 2. Correlations among abundance metrics for each major eukaryotic phytoplankton group. Pearson correlations are all 
significant (P < 0.05) and coefficients are displayed in each panel. Lines with 95% confidence intervals show linear models with 
significant relationships between variables (P < 0.05). (A) Diagnostic pigments normalized to total chlorophyll a (TChla) against 
relative abundances of either the 18S-V4 (red) and 18S-V9 (blue) rRNA gene abundance. (B) Diagnostic pigment concentrations 420 
against absolute abundances of the 18S-V4 (red) and 18S-V9 (blue) rRNA genes (copies L-1). (C) Diagnostic pigment concentrations 
against absolute abundances of mRNA (transcripts L-1). 
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Differences in pigment abundances may also be a source of variability. For example, reduced light availability may lead to 

cellular increases in all accessory pigments examined here (Henriksen et al., 2002). Using mixed layer depth as a proxy for 

light history, decreased light availability has been shown to have a small but significant effect on discrepancies between 425 

phytoplankton pigments and DNA relative abundances (Catlett et al., 2023). To examine the effects of light history, we 

performed linear regressions on the residuals from linear models for absolute abundances with depth as a predictor variable 

and coarse proxy for reduced light availability (Fig. S5). Besides with cryptophytes, depth was found to positively and 

significantly predict residuals, aligning with an increase in pigments at depth which may be attributed to reduced light. High 

variability in near-surface samples was also observed and may reflect large differences in light conditions from sampling 430 

throughout the diel cycle. 

 

Furthermore, as someTo further examine the effects of light and depth on these relationships, separate correlations were 

performed with the absolute abundances from near-surface (≤ 14 m) or SCML (≥ 18 m) samples. For chlorophytes, 

cryptophytes, diatoms, dinoflagellates, and prymnesiophytes, the strength of the correlations were similar or higher for both 435 

depth categories when separated compared to all samples combined (Figs. 2 and S6). Only pelagophyte correlations were 

consistently lower when separated, albeit the differences were relatively minor (r = 0.65 – 0.70 versus r = 0.74 - 0.75). Linear 

regressions also displayed similar results between depth categories, except for chlorophytes and prymnesiophytes, where the 

slope of the regressions were 46-49% lower with SCML samples. In these cases, pigment concentrations exhibited a reduced 

range, where concentrations were elevated wat lower DNA abundances but reached similar concentrations at higher DNA 440 

abundances, indicating that pigment concentrations for these taxa are elevated under lower abundance regimes within the 

SCML.  

 

Some pigments are also shared among certain groups; therefore, the presence of one group may influence pigment 

concentrations that are diagnostic of a different group. Fucoxanthin, for example, is not only found in diatoms but also other 445 

photosynthetic eukaryotes with red algal-derived plastids (Jeffrey et al., 2011; Kramer and Siegel, 2019). Previous studies 

suggest that shared pigments are an important source of disagreement between the two measurements, but the strong 

correlations for many groups, particularly with diatoms, suggests that it may be a less prevalent issue in certain cases (Catlett 

et al., 2023; Kramer et al., 2024b2024).  

 450 

Intragroup variability in pigment composition may also be a contributing factor with different species having different pigment 

concentrations (Zapata et al., 2004; Neeley et al., 2022). In particular, dinoflagellates may be influenced by taxa that no longer 

have peridininPeridinin. The previously shown dinoflagellate correlations were performed without Syndiniales, an early 

branching clade that are likely parasitic and have lost their plastid altogether (Decelle et al., 2022; Guillou et al., 2008). Overall, 

Syndiniales accounted for 30 to 34% of dinoflagellate 18S copies in our data, and their removal considerably increased the 455 

strength of dinoflagellate-peridininPeridinin correlations (Fig. S6S7 and Table S1). Other dinoflagellate taxa appear to have 



 

20 
 

instead replaced their plastids with others via kleptoplasty, integration of a new plastid, or obtaining endosymbionts (Novák 

Vanclová and Dorrell, 2024). For example, the Kareniaceae family (e.g., the genera Karenia, Karlodinium, and Takayama) 

and Kryptoperidiniceae family (e.g., the genus Durinskia) contain fucoxanthin from an ancestral haptophyte or diatom 

endosymbiont respectively, members of the genus Dinophysis have a complex kleptoplastidic relationship with a cryptophyte, 460 

and the genus Lepidodinium contains plastids originating from a chlorophyte (Novák Vanclová and Dorrell, 2024; Kamikawa 

et al., 2015; Zapata et al., 2012). However, neither Kryptoperidiniceae nor Lepidodinium were detected in these data with 

either 18S marker, and filtering of other groups did not alter the strength of the correlation between Dinoflagellates and 

peridininPerid indicating that besides Syndiniales, these groups do not influence the dinoflagellate-peridininPerid relationship 

in this region (Table S1). The prymnesiophyte Phaeocystis globosa has also been suggested to contain ButFuco rather than 465 

HexFuco (Wang et al., 2022; Antajan et al., 2004), and while filtering ASVs annotated as this species marginally improved 

the strength of the correlation for prymnesiophytes with the V4 data (from r = 0.46 to r = 0.48), it was lower in the V9 data 

(from r = 0.51 to r = 0.45). 
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 470 

For 
Figure 3. Correlations among abundance metrics for cyanobacteria. (A) Average bead-normalized red fluorescence per cell , 
correlations were strong when using relative abundances (r = 0.86, Fig. 3A and 3C), but unlike the eukaryotic data, the strengths of 
the correlations were lower when using absolute abundances (Fig. 3B and 3D). DVChla, which is the diagnostic pigment for 
Prochlorococcus versus depth (m). The fluorescence units are arbitrary. (B), was also not detected in 12.4% of samples, generally 475 
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corresponding to where Prochlorococcus 16S abundances were lower (Fig. 3C and 3D). As previously observed in the greater region, 
Prochlorococcus cell abundances measured with flow cytometry and DNA-based absolute abundances (copies L-1) against cellular 
abundances. (C, D) Relative and absolute abundance comparisons between all cyanobacteria and zeaxanthin (Zea). (E, F) Relative 
and absolute abundance comparisons between Prochlorococcus and divinyl chlorophyll a (DVChla). Pearson correlations are 
significant (P < 0.05) and coefficients are displayed in panels B-F. Lines with 95% confidence intervals shows linear models with 480 
significant relationships between variables (P < 0.05). 

Within cyanobacteria, Prochlorococcus chlorophyll content significantly increased with depth, suggesting an increase in 

pigments as light availability is reduced (Fig. 3A). Furthermore, Prochlorococcus absolute abundances strongly agreed with 

cell abundances from flow cytometry throughout the water column as previously observed in the greater region (Fig. 3B)(r = 

0.78, Fig. 3F), demonstrating that the 16S copies reflect cell abundances (Jones-Kellett et al., 2024). In combination, these 485 

results suggest that DNA-basedHowever, cell abundances and were only moderately correlated with DVChla (r = 0.48, Fig. 

3E), further indicating that DVChla may be less reflective of changes in Prochlorococcus abundances. 

 

Within Prochlorococcus, chlorophyll a content per cell significantly increased with depth, indicating that pigments are 

increasingly uncoupledincrease as light availability is reduced. To minimize effects (Fig. S8). However, there was also high 490 

chlorophyll a variability within each depth, suggesting that Prochloroccous pigment content is highly dynamic and can be 

decoupled from light, only cell abundances leading to the weaker correlations observed with absolute abundances. Although 

separating near-surface and SCML samples from the upper 20 m of the water column were further examined. When using 

relative abundances,showed stronger correlations than all samples together except for all cyanobacteria withand Zea and 

Prochloroccocus with DVChla (r = 0.55), the relationships were strongly correlated (Fig. 3C-F). However, DVChla, was not 495 

detected in 12.5% of samples which generally corresponded to lower DNA abundances (Fig. 3F). Unlike the eukaryotic data, 

the strengths of these correlations were lower when using absolute abundances, albeit still moderately well correlated. 

Although variability in pigments was reduced by removing samples deeper than 20 m, other factors such as cloud cover may 

further contribute the remaining observed pigment variability and a weaker correlation with absolute abundances. Thisweaker 

than with relative abundances (Fig. S9).  500 

 

The variation in pigments in Prochlorococcus may be normalized when dividing by total chlorophyll a leading to , thereby 

producing higher correlations with relative abundances. Some of the discrepancy with absolute abundances may also be caused 

by Prochlorococcus cell sizes which are smaller than the pore size of the GF/F filters used for pigments here (nominally 0.7 

µm), leading to some Prochlorococcus cells being missed while being captured by flow cytometry or DNA that used a smaller 505 

pore size (0.2 µm) (Ting et al., 2007; Partensky et al., 1999). As in eukaryotic phytoplankton, the absolute abundances of 

transcripts were also moderately well correlated for cyanobacteria with Zea and Prochloroccocus with DVChla, but still lower 

than with the 16S relative abundances (Fig. S10). 

 

 510 
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Figure 3. Correlations among abundance metrics for (Fig. S7). cyanobacteria. (A, B) Relative and absolute abundance comparisons between 
all cyanobacteria and zeaxanthin (Zea). (C, D) Relative and absolute abundance comparisons between Prochlorococcus and divinyl 
chlorophyll a (DVChla). (E) Comparison between Prochloroccus cell abundances from flow cytometry and DVChla concentrations. (F) 515 
Comparison between Prochlorococcus cell abundances from flow cytometry and absolute abundances of 16S rRNA genes.  

 



 

24 
 

3.2 Applications from integrating phytoplankton pigments with molecular data 

The strong agreement among eukaryotic phytoplankton pigments and DNA or RNA for several groups indicates that these 

metrics are comparable proxies for phytoplankton abundances and community composition. As phytoplankton pigments 520 

directly impact remote sensing reflectance spectra, HPLC pigments are useful for validating remote-sensing algorithms; 

however, these results suggest that the absolute abundances of DNA or RNA may also be useful for model development. 

Furthermore, these resultsthese results further support that potential models for phytoplankton pigment concentrations via 

remote sensing may be able to provide comparable global estimates of different phytoplankton groupsPCC (Kramer et al., 

2022)..  While HPLC pigments are used validating remote-sensing algorithms, these results also suggest that the absolute 525 

abundances of DNA or RNA may be useful metrics to validate for model development of PCC as well. In the following 

sections, we further examine relationships gleaned by integrating phytoplankton pigments and DNA- or RNA-based metrics 

to demonstrate potential applications for addressing ecological questions, monitoring harmful algal blooms, or inferring 

phytoplankton group-specific activity. 

3.2.1 Increased taxonomic resolution with biomass estimation in ecological assessments 530 

Phytoplankton pigments and DNA-based metabarcoding have separate strengths that can be leveraged when integrated: 

phytoplankton contributions to total chlorophyll a can be estimated with chemotaxonomic approachesTChla can be estimated 

with chemotaxonomic approaches, such as phytoclass (Hayward et al., 2023), providing a standardized estimate of biomass 

for each group, and DNA offers marker gene-level resolution into the composition of each sample. This increased resolution 

is possible even when the DNA-based data are expressed solely as relative abundances. 535 

 

To illustrate this combined approach, diversity expressed as the Shannon index (H’) was compared to both total chlorophyll 

aTChla and taxon-specific chlorophyll a concentrations as proxies for phytoplankton biomass (Fig. 4). Biomass is often used 

as a proxy for productivity, thus enabling investigation of productivity-diversity relationships (PDRs) (Smith, 2007; Irigoien 

et al., 2004). PDRs may exhibit different trends, but marine phytoplankton are presumed to exhibit a unimodal distribution 540 

with maximum diversity at an intermediate level of productivity, including within models of phytoplankton communities in 

the California Current Ecosystem (Irigoien et al., 2004; Li, 2002; Goebel et al., 2013). PDRs may also be positive, negative, 

or flat, with other studies suggesting that there is no relationship when accounting for potentially inadequate sampling 

(Cermeño et al., 2013; Smith, 2007). Examination of these relationships is particularly important for understanding how 

environmental change may impact diversity and productivity. 545 

 

When comparing total chlorophyll aTChla concentrations and the diversity of all six eukaryotic phytoplankton groups 

examined here, the PDR for the region was negative rather than unimodal, with diversity remaining high at low and 

intermediate biomass levels before declining at high biomass (Fig. 4A). During the same cruises, additional samples 
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concurrently measured DNA abundances and net primary productivity (NPP, mg C m-3 d-1). When comparing diversity and 550 

NPP directly, the relationship was similarly flat then negative (Fig. S8AS11A). The Shannon index considers both richness 

and evenness, thereby downweighing the influence of rare taxa in comparison to richness, defined here as the number of ASVs 

(Ibarbalz et al., 2019; Ma, 2018). Despite substantially more variability, richness also displayed a negative trend including 

when adding cyanobacterial richness (Fig. S8BS11B and S9S12).  

 555 

 

 

 
Figure 4. Productivity-diversity relationships in the region with biomass (chlorophyll a concentrations) as a proxy for productivity 
and diversity expressed as the Shannon Index (H’) for both the 18S-V4 (red) and 18S-V9 (blue) data. (A) The diversity of all 560 
eukaryotic phytoplankton groups and total chlorophyll a concentrations. (B-D) Environmental variables against total chlorophyll a 
concentrations colored by near-surface (purple) or subsurface chlorophyll max (SCM, green) samples. (E-J) Diversity of individual 
phytoplankton groups against their taxon-specific chlorophyll a concentrations estimated with phytoclass. Lines represent GAMs 
and corresponding 95% confidence intervals where significant (P < 0.05). The deviance explained by each GAM or “NS” for not 
significant (P > 0.05) is shown above each panel for each amplicon.   565 
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By partitioning total chlorophyll aTChla concentrations into separate eukaryotic phytoplankton groups and leveraging the high 

taxonomic resolution of the DNA-based data, PDRs were examined within each group (Fig. 4). Dinoflagellates, diatoms, and 

cryptophytes displayed significant relationships whereas other groups did not for both amplicons. Furthermore, diatoms and 

dinoflagellates displayed opposing trends, where diatoms displayed the expected unimodal relationship while dinoflagellates 

displayed a negative relationship. When considering richness, the trend for diatoms was largely positive, indicating a decline 570 

in evenness at the highest levels of biomass leading to lower diversity, and for cryptophytes, the relationship was slightly 

positive with both metrics (Fig. 4 and S10S13). Dinoflagellates had the highest richness with as many as 353 ASVs, while 

diatoms had a maximum of 93 ASVs (Fig. S10S13). Cryptophytes and pelagophytes had low richness with maxima of 15 and 

9 ASVs, respectively (Fig. S10S13). For pelagophytes, the relatively low richness and lack of trend may be due to dominance 

of a single species, Pelagomonas calceolata, that is highly prevalent in SCMLs (Guérin et al., 2022; DupontCoale et al., 575 

20152025). Meanwhile, chlorophytes and prymnesiophytes did not display significant relationships between biomass and 

richness. Considering the relatively high richness and sole negative trend, dinoflagellates appear to be the primary drivers of 

the community-wide trend, besides at high biomass where diatoms have a high influence. This dominance by dinoflagellates 

is further evidenced by a shift to a more unimodal distribution by examining the community in the absence of dinoflagellates 

(Fig. S11S14). 580 
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Figure 4. Productivity-diversity relationships in the region with biomass (chlorophyll a concentrations) as a proxy for productivity 
and diversity expressed as the Shannon Index (H’) for both the 18S-V4 (red) and 18S-V9 (blue) data. (A) The diversity of all 
eukaryotic phytoplankton groups and total chlorophyll a concentrations. (B-D) Environmental variables against total chlorophyll a 585 
concentrations colored by near-surface (purple) or subsurface chlorophyll max (SCM, green) samples. (E-J) Diversity of individual 
phytoplankton groups against their taxon-specific biomass estimated with phytoclass. Lines represent GAMs and corresponding 
95% confidence intervals where significant (P < 0.05). The deviance explained by each GAM or “NS” for not significant (P > 0.05) 
is shown above each panel for each amplicon.   

 590 

The observations of unimodal PDRs have led to hypotheses for the mechanisms that underlying them. Indeed, our observed 

negative trend aligns with the negative side of unimodal PDRs where diversity decreases with increased productivity. This 

decline is predicted to be associated with high productivity nearshore upwelling conditions where there is strong competition 

for light and opportunist large cells such as diatoms escape grazing (Goebel et al., 2013; Irigoien et al., 2004; Vallina et al., 

2014). In agreement, the observed low diversity aligns with the nearshore environment, shallow nitracline depths, and increase 595 

in diatom biomass relative to dinoflagellates (Figs. 4 and S12S15). However, increased diatom richness with biomass indicates 
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that the negative trend is not entirely driven by the dominance of a few opportunist diatom taxa that escape predation (Fig. 

S10CS13C). Rather, many diatoms appear to flourish when competition for nutrients is minimized under upwelling conditions, 

although evenness likely declines at the highest levels.  

 600 

High diversity at intermediate productivity has been suggested to be associated with offshore oligotrophic conditions (Goebel 

et al., 2013). Although offshore oligotrophic samples aligned with the lowest biomass levels, they were in part responsible for 

intermediate NPP along with SCMLs at intermediate depths, in agreement with model predictions (Fig. 4 and S8S10). The 

low productivity and low diversity end of the unimodal distribution is expected to be caused by light limitation (Goebel et al., 

2013), and while chlorophyll a concentrations suggest that the deepest SCML samples align with intermediate biomass, they 605 

are influenced by reduced light causing elevated chlorophyll content (Cullen, 2015). As predicted, the deepest SCML samples 

displayed the lowest NPP rates; however, contrary to predictions, diversity and richness remained high in these samples 

resulting in an absence of the positive side of a unimodal distribution (Fig. S8).that phytoplankton communities are expected 

to display (Fig. S10) (Irigoien et al., 2004; Li, 2002; Goebel et al., 2013). 

 610 

The low productivity and diversity end of unimodal distributions have also been attributed to selective grazing with the 

dominance of a few slow-growing nutrient specialists (Vallina et al., 2014). As diversity and richness instead remained high, 

many phytoplankton taxa, particularly dinoflagellates, appear to coexist within low productivity regimes. Within 

dinoflagellates, this coexistence may beWith low nutrient availability as inferred by deeper nitracline depths (Fig. 4D), diverse 

phytoplankton taxa within these regimes may be sustained by recycled nutrients including nitrogen and iron as well as nitrogen 615 

fixation (Boyd et al., 2017; Zehr and Ward, 2002). Within dinoflagellates, this coexistence may be further supported by 

mixotrophy or diel vertical migrations where nutrient availability at depth is exploited at night and photosynthesis in the near-

surface occurs during the day (Zheng et al., 2023; Stoecker et al., 2017). Within prymnesiophytes, there may also be some 

mixotrophic taxa (Koppelle et al., 2022). Small cells such as chlorophytes, pelagophytes, and prymnesiophytes are also at an 

advantage under oligotrophic conditions due to more effective resource acquisition and use (Raven, 1998), although their 620 

diversity is maintained across their biomass ranges (Fig. 4). Even though diatom diversity is lower under oligotrophic 

conditions, certain diatoms such as those that form symbiotic relationships with diazotrophs may be favored under these 

conditions and contribute to the increased diversity (Kemp and Villareal, 2018).  

 

Overall, these results highlight the contrasting strategies of different phytoplankton groups and align with the classical view 625 

of diatoms and dinoflagellates on opposite ends of the r-selected vs K-selected continuum (Margalef, 1978). However, these 

results may differ from other regions that exhibit greater stability or experience frequent blooms of groups besides diatoms. 

Continued warming in the region is anticipated to lead to increased stratification resulting in conditions analogous to those in 

the offshore oligotrophic region with deeper nitraclines (Ducklow et al., 2022; Lund, 2024). These projections imply that 

increased stratification leads to low productivity but high phytoplankton community diversity, although diatom diversity will 630 
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be lower. In such a scenario, the high level of diversity will instead be driven by dinoflagellates and supplemented by a variety 

of picoeukaryotes, contrasting with predictions of lower diversity in ecosystem models of open ocean regions (Henson et al., 

2021). 

3.2.2 Monitoring and forecasting harmful algal blooms 

The strong relationships between pigments and abundances of certain groups may also be useful for monitoring or forecasting 635 

harmful algal blooms (HABs). For example, certain species in the diatom genus, Pseudo-nitzschia, produce the neurotoxin 

domoic acid (DA) resulting in HABs worldwide (Bates et al., 2018). They are also commonly responsible for HABs in our 

study region and California Current at large (Lewitus et al., 2012).  

 

 640 
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Figure 5. Pseudo-nitzschia abundances. (A) Relative abundances of the top three diatom genera based on total copies L-1. (B) Pseudo-
nitzschia absolute abundances against diatom (Bacillariophyta) absolute abundances. (C) Pseudo-nitzschia absolute abundances 
against total chlorophyll a concentrations (D) Pseudo-nitzschia absolute abundances against fucoxanthin concentrations. (E) Total 
dabA expression against fucoxanthin concentrations. (F) Relative abundances of Pseudo-nitzschia species from ITS2 sequencing (left 645 
y-axis) and total dabA expression (right y-axis) for samples where dabA was detected. Samples are ordered by fucoxanthin 
concentrations as shown in Panel E.  

With absolute abundances accounting for 10% to 11% of diatom 18S copies, Pseudo-nitzschia was among the most dominant 

diatom genera,In the California Current region, Pseudo-nitzschia abundances and DA production are forecasted by the 

California Harmful Algae Risk Mapping (C-HARM) system, which uses satellite remote-sensing data and a regional ocean 650 

circulation model. Specifically, the remote-sensing data used as inputs are chlorophyll a concentrations and reflectance at 488 

and 555 nm from the S-NPP NOAA VIIRS instrument. As Fuco offers greater specificity for diatoms, substituting Fuco for 

chlorophyll a may improve model predictions, particularly if Pseudo-nitzschia is a dominant diatom overall.  

 

With the absolute abundance data here, Pseudo-nitzschia was indeed among the most dominant diatom genera, accounting for 655 

10% to 11% of diatom 18S copies and only exceeded by Thalassiosira and Chaetoceros (Fig. 5A). Pseudo-nitzschia was also 

detected in 74% to 79% of samples when diatoms were present with an equivalent number when fucoxanthinFuco was detected. 

Overall, a strong positive relationship between Pseudo-nitzschia and total diatom abundances was observed, and 

fucoxanthinFuco concentrations explained 10% more of the variance in Pseudo-nitzschia abundances than chlorophyll aTChla 

concentrations (Fig. 5). Expression of dabA, the first gene in the domoic acid biosynthetic pathway (Brunson et al., 2018), was 660 

also detected in 13 metatranscriptomics samples, and 7 of the 11 samples with greater than 0.5 µg L-1 concentrations of 

fucoxanthinFuco had detectable dabA expression (Fig. 5E). These samples comprised diverse Pseudo-nitzschia species with 

an overall dominance of P. delicatissima; however, the highest dabA expression occurred when P. australis relative 

abundances were elevated (Fig. 5F). 

 665 

Not all species of Pseudo-nitzschia have been shown to produce domoic acidDA, and DA production is influenced by 

environmental conditions (Bates et al., 2018). Similarly, expression of dabA does not always confer detectable particulate DA 

(Brunson et al., 2024). However, current models in the region that predict Pseudo-nitzschia HABs and domoic acid production 

use a variety of data including remotely-sensed chlorophyll a and two reflectance wavebands, suggesting that fucoxanthin 

detection in conjunction with other measurements and cellular modeling may offer better predictions for Pseudo-nitzschia and 670 

domoic acid (Anderson et al., 2016; Moreno et al., 2022). However, the stronger relationship between Pseudo-nitzschia 

abundances and Fuco compared to TChla as well as the increased detection of dabA where Fuco concentrations are elevated 

implies that substitution of chlorophyll a with Fuco within C-HARM may improve model accuracy. Pending the development 

and implementation of models for remotely-sensed Fuco concentrations (Kramer et al., 2022), such potential improvements 

for Pseudo-nitzschia forecasts will require validation with in situ measurements. Moreover, the utility of remotely-sensed Fuco 675 

concentrations for Pseudo-nitzschia HAB monitoring would only apply to other regions where Pseudo-nitzschia is a dominant 

diatom.  
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Certain dinoflagellates may also cause HABs globally and in the region (Anderson et al., 2012; Anderson et al., 2021). These 

HABs are caused by certain species inSome dinoflagellates, including certain members of the genera Alexandrium, Dinophysis, 680 

and Gonyaulax as well as the species Gymnodinium catenatum and Lingulodinium polyedra, may also cause HABs in both 

this region and others (Anderson et al., 2021; Trainer et al., 2010; Ternon et al., 2023; Anderson et al., 2012). These genera 

were also among the most dominant dinoflagellate genera detected, although 39% of V4 and 55% of V9 18S copies for 

dinoflagellates were unassigned on a genus level (Fig. S13). S7B).  

 685 

 
 
Figure 5. Pseudo-nitzschia abundances. (A) Relative abundances of the top three diatom genera based on total copies L-1. (B) Pseudo-
nitzschia absolute abundances against diatom (Bacillariophyta) absolute abundances. (C) Pseudo-nitzschia absolute abundances 
against total chlorophyll a concentrations (D) Pseudo-nitzschia absolute abundances against fucoxanthin concentrations. (E) Total 690 
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dabA expression against fucoxanthin concentrations. (F) Relative abundances of Pseudo-nitzschia species from ITS2 sequencing (left 
y-axis) and total dabA expression (right y-axis). Samples are ordered by fucoxanthin concentrations as shown in Panel E.  

 

Despite dinoflagellate diversity declining with increasing biomass, dinoflagellate richness was the highest among 

phytoplankton groups, including where the highest dinoflagellate biomass was observed (Fig. 4 and S10S13). As a result, the 695 

samples with high dinoflagellate abundances still comprise many genera. Considering that peridininPerid concentrations did 

not exceed 1 µg L-1, an intense dinoflagellate bloom that may have resulted in even lower diversity was not captured here. 

Nevertheless, peridininPerid concentrations and V4-based abundances of the dinoflagellate genera Alexandrium, Gonyaulax, 

and Gymnodinium were significantly related (Fig. S13). PeridininPerid concentrations also explained 9-16% more of the 

variance in the abundances of these genera compared to total chlorophyll aTChla concentrations. In contrast, no significant 700 

relationships were observed for Lingulodinium and Dinophysis, the latter of which does not contain peridinin as previously 

noted.Perid. As in Pseudo-nitzschia, there are non-toxic members of these genera, and their presence does not imply the 

production of their respective toxins (Anderson et al., 2012). HoweverAgain however, the potential ability to distinguish either 

increased peridininPerid or fucoxanthinFuco concentrations with remote sensing suggests increases in the genera identified 

here in this region, and may aid HAB monitoring efforts where high pigment concentrations largely correspond to an increase 705 

in HAB-forming taxa. 

3.2.3 Towards increased inference of biogeochemical or metabolic activity 

Current ESMs are unable to confidently predict climate-driven changes to NPP, and improving these models to better account 

for phytoplankton abundances and functions is a critical component to address this uncertainty (Kwiatkowski et al., 2020; 

Tagliabue, 2023). ModelESM parameters include biological rates and biogeochemical fluxes, and there is increasing interest 710 

in the ability to connect ‘omics data with rates such that the ‘omics can inform these model parameters (Strzepek et al., 2022; 

Saito et al., 2024). The absolute quantities of certain proteins have shown promise for inferring rates of nitrite oxidation and 

carbon fixation (Saito et al., 2020; Roberts et al., 2024), although it is unclear if absolute transcript abundances will be able to 

serve a similar purpose (McCain et al., 20242025). 

 715 

The strong correlations between pigments and total transcript abundances in most groups examined here suggestssuggest that 

pigment abundances may also relate to the expression of specific genes (Fig. 2C). Within each group, the absolute abundances 

of genes clustered by KEGG annotations (Sect. 2.6) were correlated with their respective diagnostic pigments (Fig. 6). In 

chlorophytes, there was only one strongly significant correlation with a light-harvesting chlorophyll-binding protein (LHCB) 

and Prochlorococcus which had no significant correlationcorrelations. In other groups however, 67 to 2,312 genes were 720 

strongly correlated with their respective groups’ diagnostic pigments (r > 0.60, FDR < 0.05). For some taxa, specific genes 

displayed stronger correlations than both 18S rDNArRNA genes and all transcripts combined (Fig. 2), indicating that they may 

individually be used as indicators of abundances. These include the pentose phosphate pathway genes 6-phosphogluconate 
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dehydrogenase (PGD) and glucose-6-phosphate dehydrogenase (G6PD) in dinoflagellates as well as several accessory light 

harvesting complex (LHCF) proteins in prymnesiophytes.  With 34% to 65% of genes with no assigned function, the remaining 725 

genes fall into diverse sets of metabolic categories (Fig. 6).  

 

 

 
 730 

Figure 6. Strongly significant correlations between diagnostic pigments and gene expression (transcripts L-1) associated with each 
respective group (r > 0.60, FDR < 0.05) and organized by KEGG module classes. To examine correlations, genes were aggregated 
by KEGG Ortholog annotations and if not present, the KEGG gene annotations were used. 
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a 

In cryptophytes and dinoflagellates, several genes related to carbon fixation and photosynthesis were strongly correlated (Fig. 735 

6). Cryptophytes and diatoms also showed strong correlations with several nitrogen metabolism genes. In baker’s yeast 

(Saccharomyces cerevisiae), the abundances of individual proteins are generally poor predictors of their corresponding 

reaction rates (McCain et al., 2024), but the combined abundances of functional units of genes, i.e. modules or subsystems, 

that are responsible for specific pathways may more accurately predict rates. Similarly, increases in the abundances of specific 

pigments here is indicative of the expression of certain pathways which may be useful in predicting group-specific reaction 740 

rates in situ. Further establishment of these relationships or between pigments and protein abundances may potentially support 

global estimates of these group-specific reaction rates. (McCain et al., 2025). Similarly, increases in the abundances of specific 

pigments here correlates with the expression of certain pathways. If the expression of these pathways are also found to 

correspond to changes in group-specific reaction rates, then the detection of these pigments with remote sensing may be useful 

for inferring group-specific activities, which could better constrain ESM parameters leading to more accurate predictions.  745 

 

Although these relatively strong correlations between pigments and transcripts indicates that this application has potential use 

to infer activity, direct relationships with rates remain to be demonstrated, and establishing these relationships would require 

extensive additional validation with field-based studies that integrate these measurements. Moreover, as a large percentage of 

these genes remain of unknown function, improved characterization of their function may provide insight into how to better 750 

leverage the pigments with which they correlate.   
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Figure 6. Strongly significant correlations between diagnostic pigments and gene expression (transcripts L-1) associated with each 755 
respective group (r > 0.60, FDR < 0.05) and organized by KEGG module classes. To examine correlations, genes were aggregated 
by KEGG Ortholog annotations and if not present, the KEGG gene annotations were used. 
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4 Conclusions 

By integrating phytoplankton pigments with quantitative abundances of 18S DNArRNA genes and total mRNA via 760 

metabarcoding and metatranscriptomics respectively, we demonstrate that diagnostic pigments for specific eukaryotic 

phytoplankton groups correlate with both their DNA- and RNA-based abundances. Although there are inherent biases 

associated with each of these measurements, their relationships suggest that they are comparable and may be useful for the 

development of satellite-based remote sensing models of phytoplankton group-specific abundances. Rather than the 18S rRNA 

gene which suffers from variable copy numbers, other sequencing-based markers may be more useful for drawing these 765 

comparisons. For example, the photosystem gene psbO is universal among phytoplankton which normally have one or two at 

most copies per genome (Pierella Karlusich et al., 2023). It is also unclear if 18S sequencing of rRNA rather than the rRNA 

gene from DNA offers a less biased assessment. However, these results also provide increased confidence that both DNA- and 

RNA-based abundances are reflective of phytoplankton group-specific biomass. Prymnesiophytes displayed the weakest 

correlations out of all groups examined here, but the calcium carbonate shells of coccolithophores are highly optically 770 

refractive enabling easier detection via satellite-based remote sensing (Balch, 2018).all individually be useful for validating 

potential models of PCC from hyperspectral remote sensing reflectance with satellites such as PACE. These relationships also 

suggest that the potential development of models for remotely sensed pigment concentrations will provide reasonable estimates 

for the abundances of different phytoplankton groups (Kramer et al., 2022). When coupled to other satellite, glider, or float-

based measurements of photophysiology (Lin et al., 2016; Ryan-Keogh et al., 2023), phytoplankton group-specific 775 

abundances, community composition, and physiological assessments may be able to be remotely and collectively assembled. 

 

Although this assessment was only performed in the California Current Ecosystem, these relationships may extend to other 

regions. Previous use of quantitative metabarcoding in the Western Antarctic Peninsula with relatively high abundances of 

cryptophytes showed that their chemotaxonomic abundances were well correlated with their DNA-based abundances (Lin et 780 

al., 2019). Diatoms were not strongly correlated, but this result may be an artifact from a small sample size that did not capture 

a large range of diatom abundances in the region. Considering that the strengths of correlations in all eukaryotic groups 

improved when translating relative abundances into absolute abundances here, previous studies in the California Current, North 

Atlantic and Northeast Pacific that used relative abundances were likely affected by issues when correlating compositional 

data, and we hypothesize that stronger correlations would be observed had quantitative approaches been employed. In 785 

particular, dinoflagellates displayed relatively low correlations with relative abundances (Kramer et al., 2024b2024; Catlett et 

al., 2023), but the strength of these correlations dramatically improved by using quantitative approaches here (Fig. 2A). For 

cyanobacterial abundances, pigment and transcriptional variability likely contributed to weaker correlations when using 

absolute abundances. Smaller filter pore sizes such as those obtained by combusting GF/F filters may also need to be 

considered when drawing these comparisons in future studies (Nayar and Chou, 2003). 790 
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The existence of relationships among these metrics also opens the door tocreates possibilities for several applications beyond 

simply assessing phytoplankton abundances and community composition. For example, PDRs can be examined in detail with 

not only the whole phytoplankton community but also within individual phytoplankton groups. By doing so, we show that the 

PDR for the whole community in the region is negative rather than the expected unimodal distribution (Fig. 4A). By 795 

partitioning biomass into separate groups and leveraging the high resolution provided by DNA, we show that this negative 

trend is driven by dinoflagellates while diatoms largely show the opposite trend (Figs. 4G and 4H). These differences in PDRs 

align with the classical view of diatoms and dinoflagellates on opposite ends of the r- and K-selected continuum, while also 

showing that diatom richness increases under bloom scenarios rather than selecting for a small number of opportunists 

(Margalef, 1978). The results also suggest that a shift to a more stratified less productive regime from climate change may 800 

support a more diverse phytoplankton community, but one that has low diatom diversity.  

 

Increases in diatom and dinoflagellate pigments also align with increases in genera that contain harmful bloom-forming taxa 

(Fig. 5 and S12). With the harmful diatom genus Pseudo-nitzschia, gene expression for toxin biosynthesis was also often 

elevated under higher fucoxanthinFuco concentrations (Fig. 5E).  Although increases in these genera does not always imply 805 

that there is toxin production, the detection of these pigments, and in particular, the substitution of remotely -sensed chlorophyll 

a for phytoplankton pigments will likelysuch as Fuco may improve HAB detection and forecasts, specifically in regions where 

HAB-forming taxa dominate their respective groups. Increases in pigments also corresponds to higher expression of genes 

specific to their respective group besides with Chlorophyteschlorophytes. These genes fall into diverse metabolic categories, 

and as connections between gene expression and rate processes emerge as done with quantitative protein measurements 810 

(McCain et al., 2024), the detection of pigments may aid the inference of group-specific metabolic activity and support the 

development of ESMsmay emerge as shown in the laboratory with model organisms and quantitative protein measurements 

(McCain et al., 2025), the detection of pigments may aid the inference of group-specific metabolic activity and help constrain 

phytoplankton activity within ESMs. However, for both HAB forecasts and the inference of phytoplankton activity, significant 

additional validation will be required. 815 

Data availability 

Phytoplankton pigment and flow cytometry data are available on CCE-LTER Datazoo: 

https://oceaninformatics.ucsd.edu/datazoo/catalogs/ccelter/datasets. The DNA and RNA sequence data reported in this study 

have been deposited in the National Center for Biotechnology (NCBI) sequence read archive under the BioProject accession 

numbers PRJNA555783, PRJNA665326, and PRJNA804265. 820 
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