

Enhancing SO₃ Hydrolysis and Nucleation: The Role of

2 3

4

Formic Sulfuric Anhydride

Rui Wang ^a, Rongrong Li ^a, Shasha Chen ^a, Ruxue Mu ^a, Changming Zhang ^b, Xiaohui Ma ^{c, *}, Majid Khan ^d, Tianlei Zhang ^{a, *}

5 ^a Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi

6 University of Technology, Hanzhong, Shaanxi 723001, P. R. China

7 ^b Shaanxi Key Laboratory of Catalysis, School of Mechanical Engineering, Shaanxi University of

8 Technology, Hanzhong, Shaanxi 723001, P. R. China

9 ^c School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan
 450001, China

¹¹ ^d College of Chemistry, Fuzhou University, 350116, Fuzhou, China

12

13 Abstract

14 Although the nucleation route driven by sulfuric acid (H₂SO₄) and ammonia (NH₃) primarily 15 dominates new particle formation (NPF) in the atmosphere, exploring the role of other trace species 16 on H₂SO₄-NH₃ system is crucial for a more comprehensive insight into NPF processes. Formic 17 sulfuric anhydride (FSA) has been observed in atmospheric environment and is found in abundance 18 in atmospheric fine particles. Nevertheless, its effect on SO₃ hydrolysis and NPF remain poorly 19 understood. Here, we studied the enhancing effect of FSA on gaseous and interfacial SO₃ hydrolysis 20 as well as its impact on H₂SO₄-NH₃-driven NPF occurring through quantum chemical calculations, 21 atmospheric clusters dynamics code (ACDC) kinetics combined with Born-Oppenheimer molecular 22 dynamics (BOMD). Gaseous-phase findings indicate that FSA-catalyzed SO3 hydrolysis is nearly 23 barrierless. At an [FSA] = 10^7 molecules cm⁻³, this reaction competes effectively with SO₃ 24 hydrolysis in the presence of HNO₃ (10⁹ molecules cm⁻³), HCOOH (10⁸ molecules cm⁻³) and H₂SO₄ 25 (10⁶ molecules cm⁻³) in the range of 280.0-320.0 K. At the gas-liquid nanodroplet interface, BOMD 26 simulations reveal that FSA-mediated SO₃ hydrolysis follows a stepwise mechanism, completing 27 within a few picoseconds. Notably, FSA enhances the formation rate of H₂SO₄-NH₃ clusters by over 28 10⁷ times in regions with relatively high [FSA] at elevated temperatures. Additionally, interfacial 29 FSA⁻ ion has the ability to appeal precursor species for particle formation from the gaseous phase 30 to the water nanodroplet interface, thereby facilitating particle growth. These results present new 31 comprehensions into both the pathways of H₂SO₄ formation and aerosol particle growth in polluted 32 boundary layer. 33 Keywords: gas phase, atmospheric behavior, new particle formation, air pollution

^{*} Corresponding authors. Tel: +86-0916-2641083, Fax: +86-0916-2641083.

e-mail: ztianlei88@l63.com (T. L Zhang) and mxhsdu@163.com (X. H Ma)

34 1. Introduction

35 Sulfuric acid (H₂SO₄) is an important atmospheric pollutant closely associated with new 36 particle formation (NPF) events and is recognized as a vital precursor in the process of converting 37 gases into particles. It facilitates the formation of sulfate aerosols and acid rain in diverse 38 environments, influencing cloud formation, precipitation and the Earth's radiation balance, 39 ultimately contributing to climate change (Yao et al., 2018; Venkataraman et al., 2001; Kumar et 40 al., 2024). Experimental (Couling et al., 2003; Reiner and Arnold, 1993; Bondybey and English, 41 1985) and theoretical studies (Feng and Wang, 2023; Kumar et al., 2024; Zhang et al., 2025) have 42 shown that atmospheric gaseous H₂SO₄ primarily forms via SO₃ hydrolysis (Sarkar et al., 2019; Tao 43 et al., 2018; Carmona-García et al., 2021). However, the likelihood of direct SO₃ hydrolysis in the 44 atmosphere is low due to the high activation energy associated with the process (Chen and Plummer, 45 1985). Introducing a second water molecule has been shown to significantly lower the activation 46 energy, making SO₃ hydrolysis more efficient (Morokuma and Muguruma, 1994). Further research 47 indicates that, besides water molecules, other species such as formic acid (Kangas et al., 2020), 48 oxalic acid (Yang et al., 2021), nitric acid (Long et al., 2022), H₂SO₄ (Wang et al., 2024) and 49 ammonia (Sarkar et al., 2019) exhibit even greater catalytic efficiency in promoting SO₃ hydrolysis 50 for H₂SO₄ formation. These findings provide valuable theoretical insights for understanding H₂SO₄ 51 sources, particularly in regions where pollutant concentrations are notably elevated. Nevertheless, 52 further investigation is necessary to fully understand the SO₃ hydrolysis mechanism in areas with 53 high levels of specific pollutants, to better assess its behavior and effects under different atmospheric 54 conditions.

55 Carboxylic sulfuric anhydrides (CSAs) are a recently identified class of atmospheric 56 organosulfides, formed by the cycloaddition of SO₃ with organic carboxylic acids present (Fleig et al., 2012). These CSAs exhibit strong acidity and can act as proton transfer bridges, potentially 57 influencing SO3 hydrolysis and promoting the formation of H2SO4 in regions with high CSA 58 concentrations. Research indicates that the gaseous CSA concentration can reach 107 molecules cm⁻ 59 60 3 (Smith et al., 2020), creating conditions that may impact SO₃ hydrolysis. As the simplest CSA, formic sulfuric anhydride (FSA) has been characterized using microwave spectroscopic (Mackenzie 61 62 et al., 2015). FSA is more acidic than formic acid and may facilitate proton transfer in the gaseous

63 hydrolysis of SO₃. However, its role in this process has not yet been explored. Besides, it has been 64 reported that the interfacial environment both initiates the organization and clustering of hydrophilic 65 groups and acts as an effective medium for various atmospheric reactions (Ma et al., 2020; Zhong 66 et al., 2019; Tan et al., 2022; Wan et al., 2023). Notably, proton transfer routes induced by interfacial water molecules accelerate numerous atmospheric reactions taking place on aerosols and droplets 67 68 surfaces. These reactions typically proceed at accelerated rates and can differ from similar processes 69 in the gas phase or bulk water (Tang et al., 2024; Fang et al., 2024; Martins-Costa and Ruiz-López, 70 2024). Thus, it is essential to investigate whether FSA accelerates SO_3 hydrolysis at the gas-liquid 71 nanodroplet interface, as this could offer valuable insights into atmospheric chemistry and the 72 mechanisms driving particle formation

73 Additionally, new species generated from gas-phase reactions of SO₃ with trace substances (Li 74 et al., 2018; Liu et al., 2019) can also significantly influence the NPF process. For example, Li et al. (Li et al., 2018) revealed that NH₂SO₃H, formed from the reaction of SO₃ with NH₃, not only 75 76 contributes directly to H₂SO₄-(CH₃)₂NH cluster formation but also enhances the maximum rate of 77 NPF from H₂SO₄ and (CH₃)₂NH by approximately twofold in heavily polluted areas with high 78 concentrations of basic substances. Similarly, Liu et al. (Liu et al., 2019) predicted that methyl 79 hydrogen sulfate (MHS), formed from the reaction of SO₃ with methanol, significantly impacts 80 H₂SO₄-(CH₃)₂NH nucleation, particularly in dry regions with high alcohol concentrations. FSA, 81 produced from the reaction of SO₃ with HCOOH, contains the -OSO₃H functional group and 82 exhibits a binding capability comparable to that of H₂SO₄ with nucleation precursors like NH₃. The 83 potential role of FSA in enhancing H₂SO₄-NH₃ nucleation in the atmosphere requires further 84 investigation to fully understand its contribution to NPF processes.

85 This work examined the catalytic effect of FSA on SO₃ hydrolysis and H₂SO₄-NH₃ nucleation 86 particle formation. Specifically, the catalytic effects of FSA on gaseous SO₃ hydrolysis were firstly 87 explored. Following this, the differences between the gaseous and interfacial reactions of FSAcatalyzed SO3 hydrolysis were evaluated using BOMD simulations. Subsequently, a qualitative 88 evaluation of FSA's nucleation capability was conducted through molecular dynamics (MD) 89 90 simulations. Finally, the atmospheric implications of FSA on particle formation were analyzed. This 91 study not only deepens our understanding of the impact of FSA on SO3 hydrolysis but also provides 92 new molecular-level mechanisms for the contribution to H₂SO₄-NH₃ particle formation.

93 **2. Computational Methods**

2.1 Quantum Chemical Details. To investigate the impact of formic sulfuric anhydride 94 95 (FSA) on gaseous SO₃ hydrolysis, the M06-2X/6-311++G(2df, 2pd) computational method, as 96 implemented in Gaussian 09 software (Frisch, 2009), was employed to analyze the geometric 97 structures and vibrational frequencies of the relevant species. We also carried out the 98 calculation of intrinsic reaction coordinate to conduct the connections between the transition 99 states and their corresponding pre-reactive and post-reactive complexes. To enhance the 100 reliability of the relative Gibbs free energies, single-point energies at the CCSD(T)-F12/cc-101 pVDZ-F12 level were calculated using the ORCA software (Neese, 2012).

102 The most stable structure of the $(FSA)_x(SA)_y(A)_z$ ($z \le x + y \le 3$) clusters were obtained by 103 the following three steps. Initially, the ABCluster program (Zhang and Dolg, 2015) was utilized to 104 randomly produce $n \times 1000$ initial isomers (where n = 2 to 4) which were subsequently evaluated 105 using the PM6 method via MOPAC 2016 (Partanen et al., 2016). Next, up to $n \times 100$ lowest-energy 106 isomers were chosen and further refined using the method of M06-2X/6-31+G(d,p). Lastly, the top 107 $n \times 10$ isomers were re-optimized at the M06-2X/6-311++G(2df, 2pd) method level to ascertain their 108 isomers with the lowest energy. The optimized structures and their Gibbs free energies are detailed in Fig. S10 and Table S6, respectively. 109

110 2.2 Rate Coefficient Computations. Rate coefficients for FSA-assisted SO₃ hydrolysis were 111 calculated via two steps as follows. First, the VRC-VTST methodology (Zhang et al., 2023; Zhang 112 et al., 2024) was applied using the Polyrate program (Meana-Pañeda et al., 2024) to calculate the 113 rate coefficients under high-pressure conditions. Next, the Master Equation Solver for Multi-Energy 114 Well Reactions (Glowacki et al., 2012) was engaged in computing the rate coefficients for FSA-115 assisted SO3 hydrolysis across a temperature range of 280.0 to 320.0 K. To estimate the rate 116 coefficients for the barrier less formation of pre-reactive complexes from the separated reactants, 117 we applied the Inverse Laplace Transform (ILT) method (Kumar et al., 2021). In parallel, RRKM 118 theory (Bao et al., 2016) was utilized to estimate the rate coefficients for the transition from the pre-119 reactive complex to the post-reactive complex through a transition stat. Details of the ILT methods 120 and RRKM theory are provided in Part 1 and Part 2 in the Supplement, respectively.

121 **2.3 BOMD Simulations**. BOMD simulations were conducted with the CP2K program

122 (Hutter et al., 2014). The BLYP functional was applied to address exchange and correlation 123 interactions (Becke, 1988; Lee et al., 1988). Grimme's dispersion-corrected method (Grimme 124 et al., 2010) was employed to account for the dispersion interactions and effectively handle 125 weak dispersion effects. The Goedecker-Teter-Hutter conservation pseudopotentials 126 (Goedecker et al., 1996) were done by using Gaussian DZVP basis set (Phillips et al., 2005) 127 and an auxiliary plane wave basis, ensuring accurate treatment of both valence and core 128 electrons. The plane wave basis set was established with a 280 Ry energy cutoff, while the Gaussian 129 basis set cutoff was set at 40 Ry. A supercell side length of 15 Å was used in gas phase simulations 130 to eliminate periodic boundary conditions with step of 0.5 fs. For interfacial reactions, a water 131 droplet containing 191 water molecules was initially pre-optimized through BOMD simulation for 132 approximately 5.0 ps at 300 K. Subsequently, SO₃ and FSA were positioned at the gas-liquid 133 nanodroplet interface to perform the simulations over 10 ps. A supercell side length of 35 Å was 134 set for gas-liquid nanodroplet interface simulations to prevent periodic interactions between 135 neighbouring water droplets, using a step of 1.0 fs. In all simulations under the NVT ensemble, a 136 stable temperature of 300 K was maintained using the Nose-Hoover thermostat.

137 2.4 Molecular Dynamics Simulation of Nucleation. Complete nucleation pathway was 138 simulated using the GROMACS 2024.3 software (Abraham et al., 2024), employing the general 139 AMBER force field, a widely utilized approach for modelling molecular dynamics (Li et al., 140 2024b; Cheng et al., 2025; Zhao et al., 2019). The electrostatic potential was computed at M06-141 2X/6-311++G(2df,2pd) level and the restrained electrostatic potential charges were determined 142 using Multiwfn 3.8 (Lu and Chen, 2012). The AMBER parameter and coordinate files were 143 constructed using Sobtop (Lu, 2023) and Packmol (Martínez et al., 2009), respectively. The 144 simulation was performed within a cubic simulation box, each side measuring 200 Å in length. 145 Following energy minimization, the system was further simulated under the NVT and NPT ensembles at 298 K for durations of 100 ps and 40 ns, respectively. The Berendsen pressure coupling 146 147 method (Berendsen et al., 1984) and the velocity rescaling thermostat (Bussi et al., 2007) were used 148 to regulate pressure and temperature, respectively. The system applied periodic boundary conditions 149 to mimic an infinite environment, with a 1 fs time step. The electrostatic and van der Waals 150 interactions were set with a 1.4 nm cutoff distance, and the Particle-Mesh Ewald method (York et 151 al., 1993) was implemented for long-range electrostatics. Bond lengths were restricted by the

- 152 LINCS algorithm (Hess et al., 1997) to preserve structural integrity during the simulation.
- 153 **2.5** Atmospheric Cluster Dynamics Code (ACDC) Model. The ACDC (McGrath et al., 154 2012) was employed to investigate cluster formation rates and growth mechanisms for 155 $(FSA)_x(SA)_y(A)_z$ clusters. The ACDC simulations were supplied with thermodynamic data, 156 which was derived from quantum chemical calculations performed by M06-2X/6-157 311++G(2df,2pd). Accounting for all potential collision and evaporation processes, the 158 following formulation represents the birth-death equations:

159
$$\frac{dc_i}{dt} = \frac{1}{2} \sum_{j < i} \beta_{j,(i-j)} C_j C_{(i-j)} + \sum_j \gamma_{(i+j) \to i} C_{i+j} - \sum_j \beta_{i,j} C_i C_j - \frac{1}{2} \sum_{j < i} \gamma_{i \to j} C_i + Q_i - S_i$$
(1)

160 In the above equation, c_i represents the concentration of *i* cluster, while $\beta_{i,i}$ stands for the 161 collision rate between i and j clusters. The term $\gamma_{(i+j) \rightarrow i} \rightarrow i$ refers to the rate at which the larger i+jcluster breaks down (or evaporates) into i and j clusters. Additionally, Q_i accounts for any possible 162 163 external source of *i* cluster. To consider the external losses of *i* cluster, a coagulation sink coefficient of 2×10^{-2} s⁻¹ was used, aligning with values typically found in polluted environments (Liu et al., 164 165 2021b). In ACDC, boundary clusters must be sufficiently stable, which allows them to continue growing. Therefore, the clusters of (FSA)2 · (SA)2 · (A)3, (FSA)1 · (SA)3 · (A)3, (SA)4 · (A)3 and 166 167 $(SA)_4 \cdot (A)_4$ were selected as the boundary clusters in the SA-A-FSA system.

168 **3. Results and discussion**

169 **3.1 The Hydrolysis of SO₃ Assisted by FSA**

170 The SO₃ hydrolysis with HCOOSO₃H (FSA) can initially occur via the interaction between SO3 (or FSA) and H2O to form SO3····H2O (or FSA···H2O) dimer. Subsequently, the SO3····H2O 171 dimer collides with FSA, and the FSA···H2O dimer interacts with SO3. The predicted relative Gibbs 172 free energies of SO₃····H₂O was 0.8 kcal·mol⁻¹ at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-173 174 311++G(2df,2pd) level, which is nearly previously reported values (-0.2 to 1.0 kcal·mol⁻¹) (Long et al., 2013; Long et al., 2012; Lv et al., 2019; Bandyopadhyay et al., 2017). As compared with 175 176 FSA····H₂O, the binding free energy of SO₃····H₂O is less stable by 2.6 kcal·mol⁻¹, which leads to the equilibrium coefficient of FSA····H₂O (2.63×10^{-18} - 2.49×10^{-19} molecules·cm⁻³) (Table S2) 177 being at least 10 times larger than that of SO₃···H₂O (2.45×10^{-20} - 5.10×10^{-21} molecules·cm⁻³ within 178 179 280.0-320.0 K). Under the available concentrations ([FSA] = 1.0×10^7 , [SO₃] = 1.0×10^3 molecules cm⁻³) (Liu et al., 2019), the concentration of FSA····H₂O is 1.36×10^{6} - 6.80×10^{6} 180

181	molecules cm ⁻³ within 280.0-320.0 K, which is 10^6 times larger than that of SO ₃ …H ₂ O (Table S3).
182	Therefore, it is predicted that SO ₃ hydrolysis with FSA predominantly take places via the collision
183	between $FSA \cdots H_2O$ and SO_3 .
184	Starting from the FSA····H ₂ O + SO ₃ reactants, an eight-membered ring pre-reactive complex
185	$SO_3 \cdots H_2 O \cdots FSA$ (named as IM_{SA_FSA}) was found and its Gibbs free energy relative to the isolated
186	SO ₃ , H ₂ O and FSA reactants was -2.0 kcal·mol ⁻¹ . In comparison to the previously reported neutral
187	(SO ₃ ···2H ₂ O) and acidic complexes SO ₃ ···H ₂ O···X ($X = HNO_3$, HCOOH, (COOH) ₂ and H ₂ SO ₄)
188	(Yang et al., 2021; Long et al., 2012; Torrent-Sucarrat et al., 2012; Long et al., 2013), the stability
189	of the SO_3 ···H ₂ O···FSA complex is notably enhanced by 0.2-2.7 kcal·mol ⁻¹ . This is because the
190	positive electrostatic potential (ESP) of the hydrogen atom in the FSA molecule (Fig. S4) is stronger
191	than those in $\mathrm{H}_2\mathrm{O}$ and X molecules, resulting in stronger intermolecular interactions of
192	SO_3…H_2O…FSA. Following the IM_{SA_FSA} complex, the reaction proceeds via TS_{SA_FSA}, leading to
193	the H_2SO_4 FSA formation. For the FSA-catalyzed SO_3 hydrolysis, its Gibbs free energy barrier is
194	2.5 kcal·mol ⁻¹ , representing a reduction of 22.1 kcal·mol ⁻¹ relative to the SO ₃ hydrolysis without
195	FSA (Table S1). Moreover, it is also 1.0-4.0 kcal·mol ⁻¹ lower in free energy barrier than those of
196	the SO_3 hydrolysis with $\rm H_2O, HNO_3$ and $\rm H_2SO_4$ (Table S1). Therefore, FSA is clearly more effective
197	than $\rm H_2O,HNO_3$ and $\rm H_2SO_4$ in decreasing the energy barrier for SO_3 hydrolysis. H_2SO_4…FSA is
198	an eight-membered ring complex, similar to $H_2SO_4\cdots X$ complexes in the SO ₃ hydrolysis with X.
199	The predicted free energy of H_2SO_4 ···FSA (-12.9 kcal·mol ⁻¹) is lower by 10.9 kcal·mol ⁻¹ compared
200	to that of the IM_{SA_FSA} complex. This indicates the thermodynamic favorability of FSA-assisted SO_3
201	hydrolysis.

202 The computed rate coefficients for the hydrolysis of SO3 with and without FSA, H2O and X 203 within 280.0-320.0 K are shown in Table 1. As observed at 298.0 K, the rate coefficient for the SO₃ 204 hydrolysis with FSA (k_{FSA}) is 7.71 × 10⁻¹¹ cm³·molecule⁻¹·s⁻¹, surpassing that of the uncatalyzed SO₃ hydrolysis by a factor of 10^{12} . Additionally, the value of k_{FSA} at 298.0 K is larger by factors of 205 206 60.23 and 84.63 than those for the SO₃ hydrolysis with H₂O (k_{WM}) and HNO₃ (k_{NA}), respectively. 207 Similarly, within 280.0-320.0 K in Table 1, FSA can compete with HCOOH, (COOH)2 and H2SO4 208 with the value of k_{FSA} being larger by factors of 1.02-1.64 than those of k_{FA} , k_{OA} and k_{SA} . These 209 findings indicate that the catalytic efficiency of FSA in SO_3 hydrolysis surpasses that of H_2O and 210 HNO₃, and is comparable to HCOOH, (COOH)₂ and H₂SO₄.

211	To consider a contribution of FSA on SO ₃ hydrolysis, the rate ratios between FSA- and X-
212	catalyzed SO ₃ hydrolysis reactions were calculated, as shown in Table S5. As observed, the SO ₃
213	hydrolysis with H ₂ O is more favorable than with FSA because the [H ₂ O] (10^{16} - 10^{18} molecules cm ⁻
214	³) is significantly greater than [FSA] (10^7 molecules cm ⁻³). When the acid catalysts HNO ₃ (10^9
215	molecules·cm ⁻³), HCOOH (10 ⁸ molecules·cm ⁻³) and SA (10 ⁶ molecules·cm ⁻³) are considered, FSA
216	dominates over them within 280.0-320.0 K as the rate ratio v_{WM}/v_X is greater than 1. This reveals
217	that the FSA-assisted reaction is indispensable in SO_3 hydrolysis within regions affected by FSA
218	pollution and can significantly promote the hydrolysis of SO ₃ within 280.0-320.0 K.

219 3.2 FSA-Catalyzed SO₃ Hydrolysis at the Gas-liquid Nanodroplet Interface

220 Aqueous interfaces are widespread across Earth's atmosphere. (Li et al., 2024a; Zhong et al.; 221 2017; Sun et al., 2024; Gao et al., 2024; Dong et al., 2024). The gas-liquid nanodroplet interface 222 serves as a significant site for adsorption and reactions, potentially enhancing atmospheric reaction 223 rates and leading to the emergence of novel mechanisms. However, at the gas-liquid nanodroplet 224 interface, comprehensive understanding of the mechanism for FSA-assisted SO₃ hydrolysis was 225 lacking. Notably, during the 150 ns simulation, SO₃, the FSA molecule and the SO₃-FSA complex 226 were observed to reside at the interface for 35.8%, 46.3% and 40.5% (Fig. S5), respectively, 227 revealing that the presence of SO₃, FSA molecule and SO₃-FSA complex cannot be ignored at the 228 gas-liquid nanodroplet interface. To further investigate this prediction, we performed BOMD 229 simulations to assess the FSA-assisted hydrolysis of SO3 at the gas-liquid nanodroplet interface. 230 Similar to the reactions of SO₃ with other acidic species at this interface, the interaction between 231 SO_3 and FSA at the aqueous interface might take place via three pathways: (i) direct interaction of 232 SO₃ with adsorbed FSA; (ii) interaction of adsorbed SO₃ with FSA; or (iii) reaction starting from 233 the SO₃-FSA complex. Given the high reactivity and the brief residency time of SO₃ and FSA at the 234 interface, as evidenced by their short lifetimes (Fig. S6) of only a few picoseconds and rapid formation of SA⁻ and FSA⁻ ion, the simulations have primarily considered the model of (iii). This 235 focus enabled a deeper understanding of the interfacial dynamics and the mechanisms underpinning 236 237 these rapid transformations.

Unlike the gaseous hydrolysis mechanism of SO₃ with FSA, which occurs through the onestep mechanism, interfacial SO₃ hydrolysis mediated by FSA occurs via a stepwise mechanism (Fig.
2, Fig. S7 and Movie S1), consisting of three steps: *i*) SO₃ hydrolysis along with proton transfer

241	outside the ring; <i>ii</i>) the deprotonation of FSA; and <i>iii</i>) the deprotonation of H ₂ SO ₄ . Specifically, at
242	0 ps, a loop-structure complex, SO ₃ \cdots (H ₂ O) ₂ \cdots FSA, was initially found with the formations of three
243	hydrogen bonds ($d_{(O6\cdots H4)} = 1.75$; $d_{(O3\cdots H2)} = 1.92$ and $d_{(O5\cdots H3)} = 2.39$ Å) and a van der Waals
244	interaction ($d_{(01\cdots S)} = 2.31$ Å). Then, the loop structure mechanism proceeded along with the
245	simultaneous event of the proton transfer outside the ring. At 1.01 ps, an arrangement resembling a
246	transition state was found for the interfacial SO3 hydrolysis, characterized by shortening of the S-
247	O1 and O2-H1 bonds and elongation of the O1-H1 bond. By 1.14 ps, the S-O1 and O2-H1 bond
248	lengths had reduced to 1.45 Å and 0.97 Å, respectively, while the O1-H1 bond had elongated to
249	1.42 Å, indicating the formation of HSO_4^- and H_3O^+ ions. Due to the strong acidity of FSA, the H3
250	atom of FSA was moved to the O5 atom of the HSO_4^- ion at 1.87 ps, leading to H_2SO_4 molecule and
251	FSA ⁻ ion. Finally, the deprotonation of H_2SO_4 was completed at 2.18 ps, with the H2 atom of H_2SO_4
252	moved to one interfacial water molecule inside the ring. In contrast to the SO ₃ hydrolysis with FSA
253	in the gas phase, which does not proceed within 100 ps, the reaction at the gas-liquid nanodroplet
254	interface rapidly proceeds within just a few picoseconds. This indicates that interfacial water
255	molecules at the gas-liquid nanodroplet interface can accelerate the SO ₃ hydrolysis.

256 Interestingly, the formation of FSA⁻ and HSO₄⁻ is highly stable, and their dissociation did not 257 occur within 10 ps. Species such as H₂SO₄ (SA), NH₃ (A), HNO₃, and (COOH)₂ are identified as 258 candidates for particle formation, with the SA-A cluster serving as a significant precursor to 259 atmospheric aerosols. Calculated binding free energies of the corresponding bimolecular clusters 260 were shown in Table 2 where the computed binding free energies agree well with previous values (Zhong et al., 2019). As shown, the interactions of FSA -SA (-21.2 kcal·mol⁻¹) and FSA -HNO₃ (-261 12.1 kcal·mol⁻¹) are stronger than that of SA-A (-8.9 kcal·mol⁻¹), illustrating that interfacial FSA-262 263 and H₃O⁺ ions can attract precursor molecules from the gaseous phase to the aqueous nanodroplet surface, and thus facilitating particle growth. Additionally, the enhancing potential of the FSA⁻ ion 264 on the SA-A cluster was assessed by examining the binding free energies of the SA-A-FSA⁻ and 265 SA-A-Y (Y = HOOCCH₂COOH, HOCCOOSO₃H, CH₃OSO₃H, HOOCCH₂CH(NH₂)COOH and 266 267 HOCH₂COOH) clusters. The binding free energies of SA-A-FSA⁻ and SA-A-Y clusters listed in 268 Table 2 were consistent with previously reported values (Rong et al., 2020; Zhang et al., 2018; 269 Zhang et al., 2017; Gao et al., 2023; Liu et al., 2021a). Notably, compared to SA-A-Y, the binding 270 free energy of SA-A-FSA⁻ (-25.6 kcal·mol⁻¹) was larger than 5.2-12.8 kcal·mol⁻¹, indicating that the

- 271 FSA⁻ at the interface exhibits a greater nucleation capability than gaseous molecule Y. Consequently,
- 272 FSA is expected to demonstrate enhanced nucleation potential at the gas-liquid interface.

273 **3.3 FSA's Role in Nucleation and Cluster Formation**

Electrostatic potential (ESP) analysis was conducted to predict the potential hydrogen bond binding sites among FSA, SA and A. The -OH moiety in the FSA molecule contains a highly electrophilic hydrogen atom, making it a favorable donor site for hydrogen bonds (ESP value: +60.6 kcal·mol⁻¹) (Fig. 3). Meanwhile, the terminal oxygen atoms of the -SO₃H and -COOH moieties in FSA can act as an effective hydrogen bond receptor site due to their stronger electronegativity (ESP values: -23.8, -22.4 and -13.0 kcal·mol⁻¹). Thus, FSA can form stable clusters by forming hydrogen bonds with SA and A.

281 Using MD simulations, the aggregation behavior of FSA with SA and A molecules was 282 investigated at various atmospheric temperatures (Fig. 4 and Figs. S8-S9). In these simulation 283 systems, 5 FSA, 5 SA, 10 A, 20 H₂O, 41 O₂ and 154 N₂ molecules were included. Notably, the 284 complete stable $(FSA)_5 \cdot (SA)_5 \cdot (A)_{10}$ cluster was observed at all the three simulations temperatures. 285 With rising temperatures, the aggregation time for the formation of $(FSA)_5 \cdot (SA)_5 \cdot (A)_{10}$ cluster (Fig. 286 4(a)) increases. This observed phenomenon of aggregation implies that lower temperatures are more 287 conducive to form the $(FSA)_5 \cdot (SA)_5 \cdot (A)_{10}$ cluster. Fig. 4(b) displayed the snapshots of the nucleation 288 simulation at 258.15 K. The initial simulation at 0 ns shows that there is not effective nucleation, as 289 all molecules in the system are scattered (Fig. 4(b)). Subsequently, FSA can bind with SA and A to 290 form FSA·A, FSA·SA·A and FSA·SA·(A)₃ clusters at 1.5 ns, and then the FSA·SA·A. 291 (FSA)₂·SA·(A)₃ and (FSA)₂·(SA)₂·(A)₃ clusters are formed at 3.0 ns. Next, with further aggregation 292 of FSA molecules, (FSA)₂·SA·(A)₄ and (FSA)₃·(SA)₃·(A)₄ clusters are observed within 4.0 ns. 293 Finally, the FSA molecules fully aggregate to form (FSA)5 (SA)5 (A)10 clusters at 7.5 ns, and this 294 complete cluster stays stable throughout the entire simulation period. It is noteworthy that the 295 numbers of FSA molecules can gradually interact with SA and A molecules to form relatively large 296 clusters, where hydrogen bonds among SA, A and FSA play a crucial role. Therefore, it is initially 297 predicted that FSA could act as a "participator" in NPF and could be directly involved in SA-A 298 nucleation. Further predictions regarding for the enhancement effect of FSA on SA-A molecular 299 clustering have been studied by considering the cluster stability, the formation rate and the growth 300 pathways.

301 3.4 The Impact of Atmospheric Conditions on the Thermodynamic Clusters 302 Stability

The Gibbs free energies of formation (ΔG , kcal·mol⁻¹) and evaporation rate coefficients (γ , s⁻¹) 303 304 of the $(FSA)_x(SA)_y(A)_z$ clusters were analyzed to estimate the thermodynamic stability of the 305 clusters involved in the SA-A-FSA system (Tables S6-S7). The ΔG and γ of the important pure 306 SAA clusters and FSA-containing stable clusters were primarily discussed at three temperature. At 307 298.15 K, the ΔG value of the SA·A cluster was 2.1 kcal·mol⁻¹ greater than that of the FSA·A cluster 308 (Fig. 5). Meanwhile, its y value was about 10 times greater than that of the FSA·A cluster, suggesting 309 that the FSAA cluster is more stable and likely to participate in subsequent growth as an initial cluster. For the (FSA)₂·(A)₂ cluster, its ΔG (-31.1 kcal·mol⁻¹) was smaller by 4.6 kcal·mol⁻¹ than that 310 of the (SA)₂·(A)₂ cluster (-26.5 kcal·mol⁻¹) with the γ value of the former one (5.34 × 10¹ s⁻¹) at least 311 10^4 times lower than that of the latter one (6.13 × 10^5 s⁻¹), indicating that the (FSA)₂·(A)₂ cluster is 312 more stable than clusters containing SA and A with the same acid-base number. For the (FSA)3 (A)3 313 314 cluster, its γ (3.30 × 10⁻¹ s⁻¹) was nearly 10³ times lower than that of the (SA)₃·(A)₃ (2.25 × 10² s⁻¹) 315 cluster, allowing (FSA)₃·(A)₃ to serve as a critical nucleation cluster and participate in subsequent 316 growth. Similarly, at 278.15 K and 258.15 K, the FSA·A, (FSA)₂·(A)₂ and (FSA)₃·(A)₃ clusters 317 were all more stable than the SA-A binary nucleation clusters with the same acid-base number. 318 Regarding for the (FSA)₂·SA·(A)₃ and FSA·(SA)₂·(A)₃ clusters at 298.15 K, the ΔG values (-56.7 319 and -54.1 kcal·mol⁻¹) were lower than that of $(SA)_3 \cdot (A)_3 (-52.0 \text{ kcal·mol⁻¹})$. Simultaneously, the γ 320 values of the (FSA)₂·SA·(A)₃ ($8.49 \times 10^{-4} \text{ s}^{-1}$) and FSA·(SA)₂·(A)₃ ($5.75 \times 10^{1} \text{ s}^{-1}$) clusters were respectively lower 10⁶ and 10 times lower than that of $(SA)_3 \cdot (A)_3 (2.25 \times 10^2 \text{ s}^{-1})$. Likewise, the 321 322 $(FSA)_2$ $(A)_3$ and FSA $(SA)_2$ $(A)_3$ clusters were more stable than the $(SA)_3$ $(A)_3$ cluster at low 323 temperatures (278.15 K and 258.15 K) due to their significantly lower evaporation rates. Therefore, 324 compared to pure SA-A clusters, clusters containing FSA molecules exhibit higher stability and are 325 more likely to engage in nucleation and subsequent cluster growth processes as stable clusters. The 326 clusters of (SA)₃·(A)₃, (FSA)₂·SA·(A)₃ and FSA·(SA)₂·(A)₃ have the potential to further grow into 327 the boundary clusters $[(FSA)_2 (SA)_2 (A)_3, (FSA)_1 (SA)_3 (A)_3, (SA)_4 (A)_3 and (SA)_4 (A)_4]$. 3.5 Influence of Particle Formation Rates Under Varying Temperatures and 328 329 **Nucleation Precursor Concentrations**

330 To investigate the cluster formation rate $(J, \text{ cm}^{-3} \cdot \text{s}^{-1})$ and the enhancement factor (R) of cluster

331	formation rate by FSA, a range of ACDC simulations were performed using thermodynamic data
332	for the SA-A-FSA clusters at varying temperatures and monomer concentrations ([SA] = $10^4 - 10^8$,
333	$[A] = 10^7 - 10^{11}$ and $[FSA] = 10^3 - 10^7$ molecules cm ⁻³). The value of <i>R</i> is defined as $R = J_{SA-A-FSA}/J_{S$
334	$_A$. The values of J and R for the SA-A-FSA system at varying temperatures (Fig. 6) showed that J
335	increased as the temperature decreased, due to the smaller values of both ΔG and γ at lower
336	temperatures. Meanwhile, J increased with increasing [FSA], attributable to the formation of more
337	SA-A-FSA clusters. Variations in [FSA] and temperature can also affect R. A significant increase in
338	R with the rising [FSA] has been observed, suggesting that FSA can strongly enhance the nucleation
339	rate in SA-A NPF. Interestingly, as the temperature increases (Fig. $6(b)$), the value of R becomes
340	greater. In summary, the inclusion of FSA can substantially improve J for SA-A nucleation in
341	regions with relatively high [FSA] during summer or at lower altitudes with high temperatures.
342	In addition to temperature and [FSA], J and R can also be affected by [SA] and [A]. At 278.15
343	K, J increased with increase of [SA] or [A] (Fig. 7(a)). Nevertheless, R decreased with increasing
344	[SA] (Fig. 7(b)). This trend may be due to both FSA and SA are acidic molecules, creating a
345	competitive relationship when they interact with A. Additionally, the changes in J with [SA] or [A]
346	and R with [SA] were similar at other temperatures of 258.15 K and 298.15 K. Similar negative
347	dependencies between R and [A] were observed at both 278.15 K and 298.15 K. This occurs because,
348	as the $\left[A\right]$ increases, the interaction between FSA and SA in the SA-A-FSA system may be disrupted,
349	leading to a decrease in the saturation of FSA interaction sites and a reduction in R. Notably, at the
350	lower temperature of 258.15 K, when [FSA] was high, the value of R initially decreased and then
351	increased with increasing [A] (as depicted in Fig. S12 (b)). This may be attributed to the following
352	reasons. First, as [A] increases, the interaction between FSA and SA in the ternary cluster may be
353	disrupted, leading to a decrease in the saturation of FSA interaction sites and a reduction in <i>R</i> . Then,
354	as the concentration of A further increases, excess A molecules bind to FSA molecules, leading to
355	an increase in R. In summary, FSA primarily enhances SA-A nucleation in regions with higher
356	temperatures and lower [A] and [SA].
357	3.6 FSA-Driven Nucleation Enhancement Mechanism

The clusters formed in the system via two main pathways: the pure SA-A pathway and SA-AFSA pathways (Fig. 8). The pure SA-A nucleation pathway primarily formed stable (SA)₃·(A)₃
clusters through monomer addition and collision with SA·A cluster. The SA-A-FSA nucleation

361	pathway can be categorized into two routes. One route involved the initial formation of the stable
362	cluster FSA·A, which then collided with one SA molecule, an FSA molecule, or another FSA·A
363	cluster to form subsequent stable clusters and continue growing. The other route involved the initial
364	formation of the stable $(SA)_2$ ·A cluster, which then collided with one FSA·A cluster to form the
365	stable $(SA)_2 \cdot (A)_2 \cdot FSA$, continuing to grow through the addition of an A molecule or an FSA
366	molecule. Interestingly, at varying temperatures and concentrations of nucleating precursors, the
367	FSA molecule exhibited distinct effects and contributions in the SA-A system. As the temperature
368	increased, the contribution of the SA-A-FSA pathway rose from 51% to 97% (Fig. 9(a)). Therefore,
369	the cluster growth pathway involving FSA appears to prevail at relatively higher temperatures, such
370	as during summer or at lower altitudes. The involvement of FSA in the primary cluster formation
371	pathway may also be influenced by the concentration of the precursors. Specifically, the contribution
372	of the FSA participation pathway exhibited a negative correlation with [SA] or [A] at 278.15 K (Fig.
373	9(b-c)). Consequently, the contributions of the SA-A-FSA pathway may be more substantial in the
374	clean atmospheric boundary layer with low [A] and [SA], such as in area distant from heavy traffic
375	and emission sources of SA. Additionally, the contribution of the SA-A-FSA pathway increases as
376	[FSA] rises (Fig. 9(d)). At low [FSA] (10 ³ molecules cm ⁻³), the contribution of SA-A-FSA pathway
377	was only 35%, with cluster growth pathways predominantly governed by the formation of pure SA-
378	A clusters. However, as [FSA] increased to 10 ⁴ molecules cm ⁻³ , the contribution of FSA-involving
379	clusters rose to 84%, making the pathway involving FSA dominant for cluster formation in the SA-
380	A-FSA system. Moreover, the SA-A-FSA mechanism contributed more significantly (97%) at
381	higher [FSA] concentrations (10^{5} - 10^{7} molecules cm ⁻³). In summary, consistent with the variation
382	observed in R with temperature and precursor concentrations, the contribution of the pathway
383	involving FSA is significantly dominant in the NPF process with decreasing [SA] and [A] and
384	increasing temperature and [FSA]. These results suggest that FSA could be a significant contributor
385	to SA-A atmospheric NPF, and the SA-A-FSA pathway may dominate in regions with high FSA
386	emissions and relatively high temperatures.

387 4. Summary and Conclusions

388 The potential contribution of FSA to gaseous and interfacial SO₃ hydrolysis, as well as its 389 enhancement of atmospheric particle formation was investigated. Gaseous results indicated that SO₃

390	hydrolysis with FSA has a Gibbs free energy barrier as low as 1.5 kcal·mol ⁻¹ and can effectively
391	compete with SO ₃ hydrolysis by HNO ₃ (10^9 molecules cm ⁻³), HCOOH (10^8 molecules cm ⁻³) and
392	$\rm H_2SO_4$ (10^6 molecules cm^3) over a temperature range of 280.0-320.0 K. Interfacial BOMD
393	simulations illustrated that FSA-mediated SO3 hydrolysis at the gas-liquid interface occurs through
394	a stepwise mechanism and can be completed within a few picoseconds. ACDC kinetic simulations
395	indicated that FSA significantly enhances cluster formation rates in the H_2SO_4 - NH_3 system during
396	summer, increasing rates by more than 10^7 times under conditions of high FSA concentrations and
397	low H_2SO_4 and NH_3 levels. The $H_2SO_4\text{-}NH_3\text{-}FSA$ nucleation mechanism exhibits a stronger
398	nucleation ability than classical nucleation, making it a promising process for urban polluted
399	environments rich in FSA sources. Meanwhile, the interfacial species formed, such as $\rm HSO_4^-, \rm H_3O^+$
400	and FSA ⁻ , act to attract precursor species (e.g., H_2SO_4 , NH_3 and HNO_3) from the gas phase to the
401	nanodroplet interface, thereby facilitating further particle growth. This study broadens our
402	understanding of a novel SO3 hydrolysis pathway involving FSA in polluted regions, identifies
403	previously overlooked new particle formation (NPF) sources in industrial areas, and deepens
404	knowledge of the atmospheric organic-sulfur cycle.

405 Acknowledgments

- 406 This work was supported by the National Natural Science Foundation of China (No: 22203052;
- 407 22073059; 42107109); the Key Cultivation Project of Shaanxi University of Technology (No:
- 408 SLG2101); the Education Department of Shaanxi Provincial Government (No. 23JC023).
- 409 **Declaration of competing interest**
- 410 The authors declare that they have no known competing financial interests or personal
- 411 relationships that could have appeared to influence the work reported in this paper.

412 **Reference**

Abraham, M., Alekseenko, A., Basov, V., Bergh, C., Briand, E., Brown, A., Doijade, M., Fiorin, G.,
Fleischmann, S., Gorelov, S., Gouaillardet, G., Grey, A., Irrgang, M. E., Jalalypour, F., Jordan,
J., Kutzner, C., Lemkul, J. A., Lundborg, M., Merz, P., Miletic, V., Morozov, D., Nabet, J., Pall,
S., Pasquadibisceglie, A., Pellegrino, M., Santuz, H., Schulz, R., Shugaeva, T., Shvetsov, A.,
Villa, A., Wingbermuehle, S., Hess, B., Lindahl, E. GROMACS 2024.3 Manual.,
https://doi.org/10.5281/zenodo.13457083, 2024.
Bandyopadhyay, B., Kumar, P., and Biswas, P.: Ammonia catalyzed formation of sulfuric acid in

troposphere: The curious case of a base promoting acid rain, J. Phys. Chem. A, 121, 3101-3108,
https://doi.org/10.1021/acs.jpca.7b01172, 2017.

422	Bao, I. L. Zhang, X. and Truhlar, D. G. Barrierless association of CF ₂ and dissociation of C ₂ F ₄ by
423	variational transition-state theory and system-specific quantum Rice-Ramsperger-Kassel
423	theory Proc Natl Acad Sci USA 113 13606-13611
425	https://doi.org/10.1073/ppas.1616208113.2016
426	Becke A D Density-functional exchange-energy approximation with correct asymptotic behavior
420	Phys. Rev. A 38 3098-3100 https://doi.org/10.1103/physreva.38.3098.1088
127	Berendsen H. I.C. Postma, I.P.M. van Gunsteren W.F. DiNola A. and Haak, I.P.: Molecular
420	dynamics with counting to an external bath I Chem Phys. 81 3684 3600
429	https://doi.org/10.1062/1.448118.1084
430	Pondybay V E and English I H : Infrared spectra of SO. polymers and complexes in rare gas
431	matrices I Mol Spectrosc 100 221 228 https://doi.org/10.1016/0022.2852(85)00308 X
432	1085
433	1905. Pussi G. Donadio D. and Porringllo M: Canonical campling through velocity receasing I. Chem.
434	Bussi, G., Donadio, D., and Farmeno, M Canonical sampling unough velocity rescaming, J. Chem.
435	Filys., 120, 014101, https://doi.org/10.1005/1.2408420, 200/.
430	Camiona-Garcia, J., Habelsi, I., Hances-Monerris, A., Cuevas, C. A., Saiz-Lopez, A., Koca-
437	sanjuan, D., and Francisco, J. S., Flotochennistry of HOSO ₂ and SO ₃ and implications for the
430	bttree//dei.arg/10.1021/iags.1a10152, 2021
439	Chan T and Diummar D L A h initia MO investigation of the and phase reaction sulfur triavide +
440	unter fuderation of the gas-phase reaction sufficiency of the second s
441	water. Iwdarw. sulfuric acid, J. Phys. Chem., 89, 3089-3093,
442	nups://doi.org/10.1021/j100203a025, 1985.
443	Cheng, Y., Ding, C., Zhang, I., Wang, K., Mu, K., Li, Z., Li, K., Shi, J., and Zhu, C.: Barrieriess
444	reactions of C2 Criegee intermediates with H_2SO_4 and their implication to oligomers and new
445	particle formation, J. Environ. Sci., 149, 574-584, https://doi.org/10.1016/j.jes.2025.12.020,
440	2023.
447	couling, S. B., Sully, K. J., and Horn, A. B.: Experimental study of the heterogeneous interaction
448	of SO ₃ and H ₂ O: formation of condensed phase molecular sulfunct acid hydrates, J. Am. Chem.
449	Soc., 125, 1994-2003, https://doi.org/10.1021/ja0210/04, 2003.
450	Dong, Z., Francisco, J. S., and Long, B.: Ammonolysis of glyoxal at the air-water hanodroplet
451	interrace, Angew. Chem. Int. Ed., 63, e202316060, https://doi.org/10.1002/anie.202316060,
452	2024.
455	rang, YG., wei, L., Francisco, J. S., Zhu, C., and Fang, WH.: Mechanistic insights into chloric
454	acid production by hydrolysis of chlorine trioxide at an air-water interface, J. Am. Chem. Soc., 14(-21052, 210(0, 1)) (10, 1021/j. 4, 0) (200, 2004)
455	146, 21052-21060, https://doi.org/10.1021/jacs.4c06269, 2024.
456	Feng, Y., and Wang, C.: Surface Confinement of finite-size water droplets for SO ₃ hydrolysis
457	reaction revealed by molecular dynamics simulations based on a machine learning force field, $L = C_1 + C_2 + 145 + 10(21 + 10(40 + 10)) + (10 + 1001)^2 + 2 + 00(00 + 2002)$
458	J. Am. Chem. Soc., 145, 10631-10640, https://doi.org/10.1021/jacs.3c00698, 2023.
459	Fleig, D. G., Vainio, E., Andersson, K., Brink, A., Johnsson, F., and Hupa, M.: Evaluation of SO ₃
460	measurement techniques in air and oxy-fuel combustion, Energy Fuels, 26, 5537-5549,
461	https://doi.org/10.1021/EF30112/X, 2012.
462	Frisch, M. J., Irucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R.,
463	Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X.,
464	Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara,
465	M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai,

466	H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J.,
467	Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K.,
468	Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene,
469	M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann,
470	R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L.,
471	Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S.,
472	Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J:
473	Gaussian09 Revision D. 01, Gaussian Inc. Wallingford CT, http://www.gaussian.com, 2009.
474	Gao, J., Wang, R., Zhang, T., Liu, F., and Wang, W.: Effect of methyl hydrogen sulfate on the
475	formation of sulfuric acid-ammonia clusters: A theoretical study, J. Chin. Chem. Soc., 70, 689-
476	698, https://doi.org/10.1002/jccs.202200148, 2023.
477	Gao, Q., Dong, Z., and Long, B.: Reactions of sulfur trioxide with hypochlorous acid catalyzed by
478	water in gas phase and at the air-water nanodroplet interface in the atmosphere: An important
479	sink for hypochlorous acid, Atmospheric Environ., 331, 120574,
480	https://doi.org/10.1016/j.atmosenv.2024.120574, 2024.
481	Glowacki, D. R., Liang, C. H., Morley, C., Pilling, M. J., and Robertson, S. H.: MESMER: an open-
482	source master equation solver for multi-energy well reactions, J. Phys. Chem. A, 116, 9545-
483	9560, https://doi.org/10.1021/jp3051033, 2012.
484	Goedecker, S., Teter, M., and Hutter, J.: Separable dual-space Gaussian pseudopotentials, Phys. Rev.
485	B, 54, 1703, https://doi.org/10.1103/PhysRevB.54.1703, 1996.
486	Grimme, S., Antony, J., Ehrlich, S., and Krieg, H.: A consistent and accurate ab initio
487	parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,
100	L Chem Phys 132 154104 https://doi.org/10.1063/1.3382344.2010
400	J. chem. 1 mys., 152, 154104, https://doi.org/10.1005/1.5502544, 2010.
488 489	Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver
488 489 490	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472,
488 489 490 491	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H,
488 489 490 491 492	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997.
488 489 490 491 492 493	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of
488 489 490 491 492 493 494	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25,
488 489 490 491 492 493 494 495	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014.
488 489 490 491 492 493 494 495 496	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis
488 489 490 491 492 493 494 495 496 497	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124,
488 489 490 491 492 493 494 495 496 497 498	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922-1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020.
488 489 490 491 492 493 494 495 496 497 498 499	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922-1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020. Kumar, A., Mallick, S., and Kumar, P.: Oxidation of HOSO⁻ by Cl⁻: a new source of SO₂ in the
488 489 490 491 492 493 494 495 496 497 498 499 500	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922-1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020. Kumar, A., Mallick, S., and Kumar, P.: Oxidation of HOSO[•] by Cl[•]: a new source of SO₂ in the atmosphere?, Phys. Chem. Chem. Phys., 23, 18707-18711,
 488 489 490 491 492 493 494 495 496 497 498 499 500 501 	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922-1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020. Kumar, A., Mallick, S., and Kumar, P.: Oxidation of HOSO' by CI': a new source of SO₂ in the atmosphere?, Phys. Chem. Chem. Phys., 23, 18707-18711, https://doi.org/10.1039/D1CP01048D, 2021
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922-1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020. Kumar, A., Mallick, S., and Kumar, P.: Oxidation of HOSO' by CI': a new source of SO₂ in the atmosphere?, Phys. Chem. Chem. Phys., 23, 18707-18711, https://doi.org/10.1039/D1CP01048D, 2021 Kumar, A., Iyer, S., Barua, S., Brean, J., Besic, E., Seal, P., Dall'Osto, M., Beddows, D. C. S.,
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922-1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020. Kumar, A., Mallick, S., and Kumar, P.: Oxidation of HOSO' by CI': a new source of SO₂ in the atmosphere?, Phys. Chem. Chem. Phys., 23, 18707-18711, https://doi.org/10.1039/D1CP01048D, 2021 Kumar, A., Iyer, S., Barua, S., Brean, J., Besic, E., Seal, P., Dall'Osto, M., Beddows, D. C. S., Sarnela, N., Jokinen, T., Sipilä, M., Harrison, R. M., and Rissanen, M.: Direct measurements
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922-1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020. Kumar, A., Mallick, S., and Kumar, P.: Oxidation of HOSO' by CI': a new source of SO₂ in the atmosphere?, Phys. Chem. Chem. Phys., 23, 18707-18711, https://doi.org/10.1039/D1CP01048D, 2021 Kumar, A., Jyer, S., Barua, S., Brean, J., Besic, E., Seal, P., Dall'Osto, M., Beddows, D. C. S., Sarnela, N., Jokinen, T., Sipilä, M., Harrison, R. M., and Rissanen, M.: Direct measurements of covalently bonded sulfuric anhydrides from gas-phase reactions of SO₃ with acids under
 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922-1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020. Kumar, A., Mallick, S., and Kumar, P.: Oxidation of HOSO' by CI': a new source of SO₂ in the atmosphere?, Phys. Chem. Chem. Phys., 23, 18707-18711, https://doi.org/10.1039/D1CP01048D, 2021 Kumar, A., Iyer, S., Barua, S., Brean, J., Besic, E., Seal, P., Dall'Osto, M., Beddows, D. C. S., Sarnela, N., Jokinen, T., Sipilä, M., Harrison, R. M., and Rissanen, M.: Direct measurements of covalently bonded sulfuric anhydrides from gas-phase reactions of SO₃ with acids under ambient conditions, J. Am. Chem. Soc., 146, 15562-15575,
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922-1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020. Kumar, A., Mallick, S., and Kumar, P.: Oxidation of HOSO' by Cl': a new source of SO₂ in the atmosphere?, Phys. Chem. Chem. Phys., 23, 18707-18711, https://doi.org/10.1039/D1CP01048D, 2021 Kumar, A., Iyer, S., Barua, S., Brean, J., Besic, E., Seal, P., Dall'Osto, M., Beddows, D. C. S., Sarnela, N., Jokinen, T., Sipilä, M., Harrison, R. M., and Rissanen, M.: Direct measurements of covalently bonded sulfuric anhydrides from gas-phase reactions of SO₃ with acids under ambient conditions, J. Am. Chem. Soc., 146, 15562-15575, https://doi.org/10.1021/jacs.4c04531, 2024.
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922-1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020. Kumar, A., Mallick, S., and Kumar, P.: Oxidation of HOSO' by CI': a new source of SO₂ in the atmosphere?, Phys. Chem. Chem. Phys., 23, 18707-18711, https://doi.org/10.1039/D1CP01048D, 2021 Kumar, A., Iyer, S., Barua, S., Brean, J., Besic, E., Seal, P., Dall'Osto, M., Beddows, D. C. S., Sarnela, N., Jokinen, T., Sipilä, M., Harrison, R. M., and Rissanen, M.: Direct measurements of covalently bonded sulfuric anhydrides from gas-phase reactions of SO₃ with acids under ambient conditions, J. Am. Chem. Soc., 146, 15562-15575, https://doi.org/10.1021/jacs.4c04531, 2024. Lee, C., Yang, W., and Parr, R. G.: Development of the Colle-Salvetti correlation-energy formula
 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 	 Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4, 15-25, https://doi.org/10.1002/wcms.1159, 2014. Kangas, P., Hänninen, V., and Halonen, L.: An ab initio molecular dynamics study of the hydrolysis reaction of sulfur trioxide catalyzed by a formic acid or water molecule, J. Phys. Chem. A, 124, 1922-1928, https://doi.org/10.1021/acs.jpca.9b11954, 2020. Kumar, A., Mallick, S., and Kumar, P.: Oxidation of HOSO' by CI': a new source of SO₂ in the atmosphere?, Phys. Chem. Chem. Phys., 23, 18707-18711, https://doi.org/10.1039/D1CP01048D, 2021 Kumar, A., Iyer, S., Barua, S., Brean, J., Besic, E., Seal, P., Dall'Osto, M., Beddows, D. C. S., Sarnela, N., Jokinen, T., Sipilä, M., Harrison, R. M., and Rissanen, M.: Direct measurements of covalently bonded sulfuric anhydrides from gas-phase reactions of SO₃ with acids under ambient conditions, J. Am. Chem. Soc., 146, 15562-15575, https://doi.org/10.1021/jacs.4c04531, 2024. Lee, C., Yang, W., and Parr, R. G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785-789,

510	Li, H., Zhong, J., Vehkamäki, H., Kurtén, T., Wang, W., Ge, M., Zhang, S., Li, Z., Zhang, X.,
511	Francisco, J. S., and Zeng, X. C.: Self-Catalytic reaction of SO3 and NH3 to produce sulfamic
512	acid and its implication to atmospheric particle formation, J. Am. Chem. Soc., 140, 11020-
513	11028, https://doi.org/10.1021/jacs.8b04928, 2018.
514	Li, M., Li, L., Liu, S., Zhang, Q., Wang, W., and Wang, Q.: Insights into the catalytic effect of
515	atmospheric organic trace species on the hydration of Criegee intermediates, Sci. Total.
516	Environt., 949, 174877, https://doi.org/10.1016/j.scitotenv.2024.174877, 2024a.
517	Li, M., Zhang, Y., Yu, X., Li, L., Wang, S., Zhang, Q., Wang, W., and Wang, Q.: Mechanistic insights
518	into Criegee intermediates with benzoic acid at gas-phase and air-water interface and
519	nucleation of product, Atmospheric Environ., 320, 120338,
520	https://doi.org/10.1016/j.atmosenv.2024.120338, 2024b.
521	Liu, J., Liu, L., Rong, H., and Zhang, X.: The potential mechanism of atmospheric new particle
522	formation involving amino acids with multiple functional groups, Phys. Chem. Chem. Phys.,
523	23, 10184-10195, https://doi.org/10.1039/D0CP06472F, 2021a.
524	Liu, L., Zhong, J., Vehkamäki, H., Kurtén, T., Du, L., Zhang, X., Francisco, J. S., and Zeng, X. C.:
525	Unexpected quenching effect on new particle formation from the atmospheric reaction of
526	methanol with SO ₃ , Proc. Natl. Acad. Sci. U.S.A., 116, 24966-24971,
527	https://doi.org/10.1073/pnas.1915459116, 2019.
528	Liu, L., Yu, F., Tu, K., Yang, Z., and Zhang, X.: Influence of atmospheric conditions on the role of
529	trifluoroacetic acid in atmospheric sulfuric acid-dimethylamine nucleation, Atmos. Chem.
530	Phys., 21, 6221-6230, https://doi.org/10.5194/acp-21-6221-2021, 2021b.
531	Long, B., Long, Z. W., Wang, Y. B., Tan, X. F., Han, Y. H., Long, C. Y., Qin, S. J., and Zhang, W. J.:
532	Formic acid catalyzed gas-phase reaction of H2O with SO3 and the reverse reaction: A
533	theoretical study, ChemPhysChem, 13, 323-329, https://doi.org/10.1002/cphc.201100558,
534	2012.
535	Long, B., Chang, CR., Long, ZW., Wang, YB., Tan, XF., and Zhang, WJ.: Nitric acid
536	catalyzed hydrolysis of SO3 in the formation of sulfuric acid: A theoretical study, Chem. Phys.
537	Lett., 581, 26-29, https://doi.org/10.1016/j.cplett.2013.07.012, 2013.
538	Long, B., Xia, Y., Bao, J. L., Carmona-García, J., Gómez Martín, J. C., Plane, J. M. C., Saiz-Lopez,
539	A., Roca-Sanjuán, D., and Francisco, J. S.: Reaction of SO3 with HONO2 and implications for
540	sulfur partitioning in the atmosphere, J. Am. Chem. Soc., 144, 9172-9177,
541	https://doi.org/10.1021/jacs.2c03499, 2022.
542	Lu, T., and Chen, F.: Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33,
543	580-592, https://doi.org/10.1002/jcc.22885, 2012.
544	Lu, T.: Sobtop, Version 1.0, http://sobereva.com/soft/Sobtop/, 2023.
545	Lv, G., Sun, X., Zhang, C., and Li, M.: Understanding the catalytic role of oxalic acid in SO3
546	hydration to form H ₂ SO ₄ in the atmosphere, Atmos. Chem. Phys., 19, 2833-2844,
547	https://doi.org/10.5194/acp-19-2833-2019, 2019.
548	Ma, X., Zhao, X., Huang, Z., Wang, J., Lv, G., Xu, F., Zhang, Q., and Wang, W.: Determination of
549	reactions between Criegee intermediates and methanesulfonic acid at the air-water interface,
550	Sci. Tot. Environ., 707, 135804, https://doi.org/10.1016/j.scitotenv.2019.135804, 2020.
551	Mackenzie, R. B., Dewberry, C. T., and Leopold, K. R.: Gas phase observation and microwave
552	spectroscopic characterization of formic sulfuric anhydride, Science, 349, 58-61,
553	https://doi.org/10.1126/science.aaa9704, 2015.

554	Martínez, L., Andrade, R., Birgin, E. G., and Martínez, J. M.: PACKMOL: A package for building
555	initial configurations for molecular dynamics simulations, J. Comput. Chem., 30, 2157-2164,
556	https://doi.org/10.1002/jcc.21224, 2009.
557	Martins-Costa, M. T., and Ruiz-López, M. F.: The structure of carbon dioxide at the air-water
558	interface and its chemical implications, Chem. Eur. J. 30, e202400825,
559	https://doi.org/10.1002/chem.202400825, 2024.
560	McGrath, M. J., Olenius, T., Ortega, I. K., Loukonen, V., Paasonen, P., Kurtén, T., Kulmala, M., and
561	Vehkamäki, H.: Atmospheric Cluster Dynamics Code: a flexible method for solution of the
562	birth-death equations, Atmos. Chem. Phys., 12, 2345-2355, https://doi.org/10.5194/acp-12-
563	2345-2012, 2012.
564	Meana-Pañeda, R., Zheng, J., Bao, J. L., Zhang, S., Lynch, B. J., Corchado, J. C., Chuang, YY.,
565	Fast, P. L., Hu, WP., Liu, YP., Lynch, G. C., Nguyen, K. A., Jackels, C. F., Fernández-Ramos,
566	A., Ellingson, B. A., Melissas, V. S., Villà, J., Rossi, I., Coitiño, E. L., Pu, J., Albu, T. V., Zhang,
567	R. M., Xu, X., Ratkiewicz, A., Steckler, R., Garrett, B. C., Isaacson, A. D., and Truhlar, D. G.:
568	Polyrate 2023: A computer program for the calculation of chemical reaction rates for
569	polyatomics. New version announcement, Comput. Phys. Commun., 294, 108933,
570	https://doi.org/10.1016/j.cpc.2023.108933, 2024.
571	Morokuma, K., and Muguruma, C.: Ab initio molecular orbital study of the mechanism of the gas
572	phase reaction SO ₃ + H ₂ O: Importance of the second water molecule, J. Am. Chem. Soc., 116,
573	10316-10317, https://doi.org/10.1021/JA00101A068, 1994.
574	Neese, F.: The ORCA program system, WIREs Comput. Mol. Sci., 2, 73-78,
575	https://doi.org/10.1002/wcms.81, 2012.
576	Partanen, L., Vehkamäki, H., Hansen, K., Elm, J., Henschel, H., Kurtén, T., Halonen, R., and
577	Zapadinsky, E.: Effect of conformers on free energies of atmospheric complexes, J. Phys.
578	Chem. A, 120, 8613-8624, https://doi.org/10.1021/acs.jpca.6b04452, 2016.
579	Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D.,
580	Kalé, L., and Schulten, K.: Scalable molecular dynamics with NAMD, J. Comput. Chem., 26,
581	1781-1802, https://doi.org/10.1002/jcc.20289, 2005.
582	Reiner, T., and Arnold, F.: Laboratory flow reactor measurements of the reaction $SO_3 + H_2O + M$
583	\rightarrow H ₂ SO ₄ + M: Implications for gaseous H ₂ SO ₄ and aerosol formation in the plumes of jet
584	aircraft, J. Geophys. Res., 20, 2659-2662, https://doi.org/10.1029/93GL02996, 1993.
585	Rong, H., Liu, L., Liu, J., and Zhang, X.: Glyoxylic sulfuric anhydride from the gas-phase reaction
586	between glyoxylic acid and SO3: A potential nucleation precursor, J. Phys. Chem. A, 124, 3261-
587	3268, https://doi.org/10.1021/acs.jpca.0c01558, 2020.
588	Sarkar, S., Oram, B. K., and Bandyopadhyay, B.: Influence of ammonia and water on the fate of
589	sulfur trioxide in the troposphere: Theoretical investigation of sulfamic acid and sulfuric acid
590	formation pathways, J. Phys. Chem. A, 123, 3131-3141,
591	https://doi.org/10.1021/acs.jpca.8b09306, 2019.
592	Smith, C. J., Huff, A. K., Ward, R. M., and Leopold, K. R.: Carboxylic sulfuric anhydrides, J. Phys.
593	Chem. A, 124, 601-612, https://doi.org/10.1126/science.1180315, 2020.
594	Sun, G., Li, H., Hou, J., Wang, H., Wang, J., Lu, Z., and Gao, X.: Molecular behavior of ethylene
595	glycol/1,2-Butanediol Mixtures at the vapor-liquid interface, Ind. Eng. Chem. Res., 63, 4853-
596	4865, https://doi.org/10.1021/acs.iecr.3c03410, 2024.

597	Tan, S., Zhang, X., Lian, Y., Chen, X., Yin, S., Du, L., and Ge, M.: OH group orientation leads to
598	organosulfate formation at the liquid aerosol surface, J. Am. Chem. Soc., 144, 16953-16964,
599	https://doi.org/10.1021/jacs.2c05807, 2022.
600	Tang, B., Bai, Q., Fang, YG., Francisco, J. S., Zhu, C., and Fang, WH.: Mechanistic insights into
601	N2O5-Halide ions chemistry at the air-water interface, J. Am. Chem. Soc., 146, 21742-21751,
602	https://doi.org/10.1021/jacs.4c05850, 2024.
603	Tao, E. L., Li, J. Y., Soriano, S., and Tao, FM. J. C. J. o. C. P.: Quantum chemical study of potential
604	energy surface in the formation of atmospheric sulfuric acid, Chin. J. Chem. Phys. 31, 503-509,
605	https://doi.org/10.1063/1674-0068/31/cjcp1805126, 2018.
606	Torrent-Sucarrat, M., Francisco, J. S., and Anglada, J. M.: Sulfuric acid as autocatalyst in the
607	formation of sulfuric acid, J. Am. Chem. Soc., 134, 20632-20644,
608	https://doi.org/10.1021/ja307523b, 2012.
609	Venkataraman, C., Mehra, A., and Mhaskar, P.: Mechanisms of sulphate aerosol production in
610	clouds: effect of cloud characteristics and season in the Indian region, Tellus B, 53, 260-272,
611	https://doi.org/10.3402/tellusb.v53i3.16595, 2001.
612	Wan, Z., Zhu, C., and Francisco, J. S.: Molecular insights into the spontaneous generation of Cl ₂ O
613	in the reaction of ClONO2 and HOCl at the air-water interface, J. Am. Chem. Soc., 145, 17478-
614	17484, https://doi.org/10.1021/jacs.3c06527, 2023.
615	Wang, R., Cheng, Y., Chen, S., Li, R., Hu, Y., Guo, X., Zhang, T., Song, F., and Li, H.: Reaction of
616	SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the
617	air-water interface, Atmos. Chem. Phys., 24, 4029-4046, https://doi.org/10.5194/acp-24-4029-
(10	2024 2024
618	2027, 2027.
618 619	Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of
618 619 620	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem.
619 620 621	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021.
618 619 620 621 622	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B.,
 618 619 620 621 622 623 	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B.,
 618 619 620 621 622 623 624 	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, V
 618 619 620 621 622 623 624 625 	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle
 618 619 620 621 622 623 624 625 626 	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281,
 618 619 620 621 622 623 624 625 626 627 	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018.
 618 619 620 621 622 623 624 625 626 627 628 	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions
618 619 620 621 622 623 624 625 626 627 628 629	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list
 618 619 620 621 622 623 624 625 626 627 628 629 630 	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345-8348, https://doi.org/10.1063/1.465608, 1993.
618 619 620 621 622 623 624 625 626 627 628 629 630 631	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345-8348, https://doi.org/10.1063/1.465608, 1993. Zhang, H., Kupiainen-Määttä, O., Zhang, X., Molinero, V., Zhang, Y., and Li, Z.: The enhancement
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345-8348, https://doi.org/10.1063/1.465608, 1993. Zhang, H., Kupiainen-Määttä, O., Zhang, X., Molinero, V., Zhang, Y., and Li, Z.: The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345-8348, https://doi.org/10.1063/1.465608, 1993. Zhang, H., Kupiainen-Määttä, O., Zhang, X., Molinero, V., Zhang, Y., and Li, Z.: The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters, J. Chem. Phys., 146, 184308, https://doi.org/10.1063/1.4982929, 2017.
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345-8348, https://doi.org/10.1063/1.465608, 1993. Zhang, H., Kupiainen-Määttä, O., Zhang, X., Molinero, V., Zhang, Y., and Li, Z.: The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters, J. Chem. Phys., 146, 184308, https://doi.org/10.1063/1.4982929, 2017.
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345-8348, https://doi.org/10.1063/1.465608, 1993. Zhang, H., Kupiainen-Määttä, O., Zhang, X., Molinero, V., Zhang, Y., and Li, Z.: The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters, J. Chem. Phys., 146, 184308, https://doi.org/10.1063/1.4982929, 2017. Zhang, H., Wang, W., Pi, S., Liu, L., Li, H., Chen, Y., Zhang, Y., Zhang, X., and Li, Z.: Gas phase transformation from organic acid to organic sulfuric anhydride: Possibility and atmospheric
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345-8348, https://doi.org/10.1063/1.465608, 1993. Zhang, H., Kupiainen-Määttä, O., Zhang, X., Molinero, V., Zhang, Y., and Li, Z.: The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters, J. Chem. Phys., 146, 184308, https://doi.org/10.1063/1.4982929, 2017. Zhang, H., Wang, W., Pi, S., Liu, L., Li, H., Chen, Y., Zhang, Y., Zhang, X., and Li, Z.: Gas phase transformation from organic acid to organic sulfuric anhydride: Possibility and atmospheric fate in the initial new particle formation, Chemosphere, 212, 504-512,
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345-8348, https://doi.org/10.1063/1.465608, 1993. Zhang, H., Kupiainen-Määttä, O., Zhang, X., Molinero, V., Zhang, Y., and Li, Z.: The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters, J. Chem. Phys., 146, 184308, https://doi.org/10.1063/1.4982929, 2017. Zhang, H., Wang, W., Pi, S., Liu, L., Li, H., Chen, Y., Zhang, Y., Zhang, X., and Li, Z.: Gas phase transformation from organic acid to organic sulfuric anhydride: Possibility and atmospheric fate in the initial new particle formation, Chemosphere, 212, 504-512, https://doi.org/10.1016/j.chemosphere.2018.08.074, 2018.
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345-8348, https://doi.org/10.1063/1.465608, 1993. Zhang, H., Kupiainen-Määttä, O., Zhang, X., Molinero, V., Zhang, Y., and Li, Z.: The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters, J. Chem. Phys., 146, 184308, https://doi.org/10.1063/1.4982929, 2017. Zhang, H., Wang, W., Pi, S., Liu, L., Li, H., Chen, Y., Zhang, Y., Zhang, X., and Li, Z.: Gas phase transformation from organic acid to organic sulfuric anhydride: Possibility and atmospheric fate in the initial new particle formation, Chemosphere, 212, 504-512, https://doi.org/10.1016/j.chemosphere.2018.08.074, 2018. Zhang, H., Wang, W., Fan, L., Li, J., Ren, Y., Li, H., Gao, R., and Xu, Y.: The role of sulfur cycle in
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639	 Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale mechanism of sequential reaction of oxalic acid with SO₃: Potential participator in atmospheric aerosol nucleation, J. Phys. Chem. A, 125, 4200-4208, https://doi.org/10.1021/acs.jpca.1c02113, 2021. Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, FH., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L. J. S.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, https://doi.org/10.1126/science.aao4839, 2018. York, D. M., Darden, T. A., and Pedersen, L. G.: The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345-8348, https://doi.org/10.1063/1.465608, 1993. Zhang, H., Kupiainen-Määttä, O., Zhang, X., Molinero, V., Zhang, Y., and Li, Z.: The enhancement mechanism of glycolic acid on the formation of atmospheric aufuric acid-ammonia molecular clusters, J. Chem. Phys., 146, 184308, https://doi.org/10.1063/1.4982929, 2017. Zhang, H., Wang, W., Pi, S., Liu, L., Li, H., Chen, Y., Zhang, Y., Zhang, X., and Li, Z.: Gas phase transformation from organic acid to organic sulfuric anhydride: Possibility and atmospheric fate in the initial new particle formation, Chemosphere, 212, 504-512, https://doi.org/10.1016/j.chemosphere.2018.08.074, 2018. Zhang, H., Wang, W., Fan, L., Li, J., Ren, Y., Li, H., Gao, R., and Xu, Y:: The role of sulfur cycle in new particle formation: Cycloaddition reaction of SO₃ to H₂S, J. Environ. Sci., 148, 489-501,

19

641	Zhang, J., and Dolg, M.: ABCluster: the artificial bee colony algorithm for cluster global
642	optimization, Phys. Chem. Chem. Phys., 17, 24173-24181,
643	https://doi.org/10.1039/C5CP04060D, 2015.
644	Zhang, Z., Yin, H., Shang, Y., and Luo, SN.: Accurate rate constants for barrierless dissociation of
645	ethanol: VRC-VTST and SS-QRRK calculations with the cheaper DFT method, Chem. Phys.
646	Lett., 823, 140522, https://doi.org/10.1016/j.cplett.2023.140522, 2023.
647	Zhang, Z. P., Wang, S. H., Shang, Y. L., Liu, J. H., and Luo, S. N.: Theoretical study on ethylamine
648	dissociation reactions using VRC-VTST and SS-QRRK methods, J. Phys. Chem. A, 128, 2191-
649	2199, https://doi.org/10.1021/acs.jpca.3c08373, 2024.
650	Zhao, Z., Kong, K., Wang, S., Zhou, Y., Cheng, D., Wang, W., Zeng, X. C., and Li, H. J. T. J. o. P.
651	C. L.: Understanding hygroscopic nucleation of sulfate aerosols: combination of molecular
652	dynamics simulation with classical nucleation theory, J. Phys. Chem. Lett., 10, 1126-1132,
653	https://doi.org/10.1021/acs.jpclett.9b00152, 2019.
654	Zhong, J., Zhu, C., Li, L., Richmond, G. L., Francisco, J. S., and Zeng, X. C.: Interaction of SO ₂
655	with the surface of a water nanodroplet, J. Am. Chem. Soc., 139, 17168-17174,
656	https://doi.org/10.1021/jacs.7b09900, 2017.
657	Zhong, J., Li, H., Kumar, M., Liu, J., Liu, L., Zhang, X., Zeng, X. C., and Francisco, J. S.:
658	Mechanistic insight into the reaction of organic acids with SO3 at the air-water interface, 58,
659	8351-8355, https://doi.org/10.1002/anie.201900534, 2019.

661

662

Figure Captions

Fig. 1. Energy diagrams for SO₃ hydrolysis with FSA at the CCSD(T)-F12/cc-pVDZ-F12//M06 2X/6-311++G(2*df*,2*pd*) level.

665 Fig. 2. BOMD simulations of HSO₄-•••FSA-•••H₃O+ ion pair formation from SO₃ hydrolysis with

666 FSA at the air-water interface. (Top: Snapshot structures from BOMD simulations, showing the ion

- pair formation. Bottom: Time evolution of key bond distances S-O1, O5-H3, and O1-H2 during theinduced mechanism.)
- 669 Fig. 3. ESP-mapped vdW surfaces of sulfuric acid (SA), ammonia (A) and formic sulfuric anhydride
- 670 (FSA). Blue, red, yellow, cyan, and white spheres represent N, O, S, C, and H atoms, respectively,
- 671 with ESP in kcal·mol⁻¹.

Fig. 4. (a) Bar graph of aggregation completion time at different atmospheric temperatures; (b)
snapshots of nucleation simulation at 258.15 K from FSA, SA and A using the VDW representation,
with N₂ and O₂ shown using the line drawing method.

Fig. 5. Histogram of (a) Gibbs free energy of formation (ΔG , kcal·mol⁻¹) and (b) evaporation rate coefficient (γ , s⁻¹) for key pure SA-A clusters and FSA-containing stable clusters at 258.15, 278.15 and 298.15 K.

Fig. 6. (a) Cluster formation rate $(J, \text{ cm}^{-3} \text{ s}^{-1})$ and (b) enhancement factor *R* with [SA] = 10⁶ molecules $\cdot \text{cm}^{-3}$, [A] = 10⁹ molecules $\cdot \text{cm}^{-3}$ at three temperatures (black: 258.15 K, red: 278.15 K, blue: 298.15 K).

Fig. 7. (a) The cluster formation rate $(J, \text{ cm}^3 \text{ s}^{-1})$ and (b) enhancement factor *R* as a function of [A]

with $[FSA] = 10^6$ molecules cm⁻³ at 278.15 K for five [SA] levels (black: 10^4 , red: 10^5 , blue: 10^6 , green: 10^7 , purple: 10^8 molecules cm⁻³).

Fig. 8. Primary growth pathways of clusters at T = 278.15 K, $[SA] = 10^6$ molecules cm⁻³, $[A] = 10^9$ molecules cm⁻³, and $[FSA] = 10^3 \cdot 10^7$ molecules cm⁻³. Blue and orange arrows represent the SA-Abased and SA-A-FSA-based pathways, respectively.

Fig. 9. Influence of (a) temperature, (b) [SA], (c) [A] and (d) [FSA] on the relative contribution of the pure SA-A pathway and the FSA-containing pathway to the flux out of the system.

691 2X/6-311++G(2df,2pd) level.

689

692

Fig. 2. BOMD simulations of HSO₄-•••FSA-•••H₃O⁺ ion pair formation from SO₃ hydrolysis with
 FSA at the air-water interface. (Top: Snapshot structures from BOMD simulations, showing the ion
 pair formation. Bottom: Time evolution of key bond distances S-O1, O5-H3, and O1-H2 during the

696 induced mechanism.)

699 Fig. 3. ESP-mapped vdW surfaces of sulfuric acid (SA), ammonia (A) and formic sulfuric anhydride

- 700 (FSA). Blue, red, yellow, cyan, and white spheres represent N, O, S, C, and H atoms, respectively,
- 701 with ESP in kcal·mol⁻¹.

702

Fig. 4. (a) Bar graph of aggregation completion time at different atmospheric temperatures; (b)
 snapshots of nucleation simulation at 258.15 K from FSA, SA and A using the VDW representation,

705 with N₂ and O₂ shown using the line drawing method.

706

Fig. 5. Histogram of (a) Gibbs free energy of formation (ΔG , kcal·mol⁻¹) and (b) evaporation rate

708coefficient (γ , s⁻¹) for key pure SA-A clusters and FSA-containing stable clusters at 258.15, 278.15709and 298.15 K.

Fig. 6. (a) Cluster formation rate $(J, \text{ cm}^{-3} \text{ s}^{-1})$ and (b) enhancement factor *R* with [SA] = 10⁶ molecules $\cdot \text{cm}^{-3}$, [A] = 10⁹ molecules $\cdot \text{cm}^{-3}$ at three temperatures (black: 258.15 K, red: 278.15 K,

712 molecules ⋅ cm⁻³,
713 blue: 298.15 K).

710

- Fig. 7. (a) The cluster formation rate $(J, \text{ cm}^{-3} \text{ s}^{-1})$ and (b) enhancement factor *R* as a function of [A]
- 716 with [FSA] = 10^6 molecules cm⁻³ at 278.15 K for five [SA] levels (black: 10^4 , red: 10^5 , blue: 10^6 , 717 green: 10^7 , purple: 10^8 molecules cm⁻³).

718

- Fig. 8. Primary growth pathways of clusters at T = 278.15 K, [SA] = 10⁶ molecules cm⁻³, [A] = 10⁹
- 720 molecules cm⁻³, and $[FSA] = 10^3 10^7$ molecules cm⁻³. Blue and orange arrows represent the SA-A-
- 721 based and SA-A-FSA-based pathways, respectively.

722

Fig. 9. Influence of (a) temperature, (b) [SA], (c) [A] and (d) [FSA] on the relative contribution of

726 Table 1. Rate constants (cm^3 ·molecule ⁻¹ ·s ⁻¹) for SO ₃ hydrolysis with and without FSA, H ₂ O, and X
--	--

727	$(X = HNO_3, HCOOH, (COOH)_2 \text{ and } H_2SO_4)$ within the	he temperature range of 280-320 K
-----	--	-----------------------------------

<i>T</i> / k	ksa_fsa	ksa	ksa_wм	ksa_fa	ksa_na	ksa_oa	ksa_sa
280	7.94×10^{-11}	6.24×10^{-24}	$1.68\times10^{\text{-}12}$	$8.88\times10^{\text{-}11}$	1.26×10^{12}	8.02×10^{11}	5.60×10^{11}
290	7.84×10^{-11}	$8.12~\times~10^{-24}$	1.45×10^{12}	$8.17\times10^{\text{-}11}$	$1.05\times 10^{\text{-}12}$	$7.74\times10^{\text{-}11}$	5.08×10^{11}
298	7.71×10^{-11}	1.02×10^{-23}	1.28×10^{12}	$7.60 imes 10^{-11}$	9.11×10^{13}	7.48×10^{11}	$4.69\times 10^{\text{-}11}$
300	7.67×10^{-11}	$1.09~\times~10^{-23}$	1.24×10^{12}	$7.46\times10^{\text{-}11}$	8.80×10^{13}	7.42×10^{11}	4.59×10^{11}
310	7.46×10^{-11}	1.50×10^{-23}	$1.07\times 10^{\text{-}12}$	$6.78\times10^{\text{-}11}$	7.46×10^{13}	$7.06\times10^{\text{-}11}$	4.13×10^{11}
320	7.21×10^{-11}	2.12×10^{-23}	9.22×10^{13}	$6.12\times10^{\text{-}11}$	$6.46\times 10^{\text{-}13}$	$6.68\times10^{\text{-}11}$	3.70×10^{11}

728

	01 (,			
FSASA	FSA ⁻ -HNO ₃	H ₃ O ⁺ -A	H_3O^+ -SA	SA-A	
-21.2	-12.1	-51.7 (-49.2) ^a	-27.5 (-27.0) ^a	-8.9 (-8.9) ^a	
	HSO4 ⁻ -(COOH) ₂	HSO4 ⁻ -HNO3	CA A ECA-	SA-A-	
H3O4-3A			<i>ЗА-А-ГЗА</i>	HOOCCH ₂ COOH	
-41.6	-33.6	-27.8	-25.6	-13.1(13.6) ^b	
SA-A-	SA-A-	SA-A-			
HOCCOOSO ₃ H	CH ₃ OSO ₃ H	HOCH ₂ COOH	SA-A-HOOCCH ₂ CH(NH ₂)COOH		
-20.4 (-22.5) ^c	-18.8 (-20.7) ^d	-13.2 (-14.0) ^e	-12.8 (-13.5) ^f		

729 **Table 2.** Binding free energy (kcal·mol⁻¹) for the formation of various clusters at 298 K.

730 Energies are given in kcal·mol⁻¹ and calculated at the M06-2X/6-311++G(2df, 2pd) level of theory. References are as

731 follows: ^a Zhong et al. (2019), ^b Zhang et al. (2018), ^c Rong et al. (2020), ^d Gao et al. (2023), ^e J. Liu et al. (2021), ^f

732 Zhang et al. (2017).