

1	Marine carbon dynamics in a coral reef ecosystem of Southern
2	Taiwan
3	Pei-Jie Meng ¹⁻³ , Chia-Ming Chang ¹ , Wen-Chen Chou ⁴⁻⁵ , Hung-Yen Hsieh ¹ , Anderson
4	B. Mayfield ⁶⁻⁷ , Chung-Chi Chen ^{8,1,2} *
5	
6 7	¹ Graduate Institute of Marine Biology, National Dong Hwa University, Checheng, Pingtung 944, Taiwan
8	
9 10	² Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung 852, Taiwan
11	
12	³ Department of Oceanography, National Sun Yat-Sen University
13	Kaohsiung 804, Taiwan
14	
15	⁴ Institute of Marine Environment and Ecology
16	National Taiwan Ocean University, Keelung 20224, Taiwan
1/	⁵ Contar of Excellence for the Oceans
10	National Taiwan Ocean University Keelung 20224 Taiwan
19 20	National Talwan Ocean Oniversity, Reelung 20224, Talwan
20	⁶ Coral Reef Diagnostics Miami EL 33129 USA
21	Corar Reel Diagnostics, Whann, TE 55129, OBA
22	⁷ Coral Research and Development Accelerator Platform. Thuwal. Makkah 23955.
24	Saudi Arabia
25	
26	⁸ Department of Life Science, National Taiwan Normal University
27	88, Sec. 4, Ting-Chou Rd., Taipei 11677, Taiwan
28	Running title: pCO_2 in a coral reef ecosystem
29	* Corresponding authors: Chung-Chi Chen
30	Email: ccchen@ntnu.edu.tw
31	Phone: 886-2-7749-6328; Fax #: 886-2-2931-2904
32	

33	ABSTRACT
34	The ocean is the planet's largest carbon reservoir and plays a crucial role in regulating
35	atmospheric CO ₂ levels, especially in the face of climate change. In coral reef
36	ecosystems, understanding the carbonate system is critical for predicting and
37	mitigating the impact of ocean acidification on these vulnerable marine ecosystems,
38	especially as atmospheric CO ₂ concentrations continue to rise. This study measured
39	pCO_2 over space and time in Nanwan Bay, a coral reef ecosystem in southern Taiwan,
40	to identify factors that influence its variation. The results showed that mean surface
41	water pCO_2 values varied seasonally, with values of 393.7 (±10.8), 406.3 (±16.1),
42	399.2 (±18.6), and 366.9 (±14.5) μ atm in spring, summer, fall, and winter,
43	respectively. These seasonal mean differences ($\Delta p CO_2$) relative to atmospheric $p CO_2$
44	were 7.7 (±10.8), 29.3 (±16.1), 21.2 (±18.6), and -16.1 (±14.5) μ atm, respectively.
45	These findings suggest that the Nanwan Bay is a highly dynamic coral reef
46	ecosystem, exhibiting both spatial and seasonal variability in carbon exchange. The
47	carbonate system parameters of the surface water in this high-biodiversity, sub-
48	tropical marine ecosystem was influenced not only by seasonal temperature variation
49	but also by vertical mixing, intermittent upwelling, and biological effects.
50	

51 Keywords: carbon sink, carbon source, coral reef, *p*CO₂, total alkalinity, upwelling

52	1. Introduction
53	Understanding whether the ocean acts as a carbon dioxide (CO ₂) sink or source is
54	crucial in the context of climate change, as it directly affects climate regulation,
55	ecosystem health, and the effectiveness of mitigation efforts. Oceans absorb about
56	30% of human-produced CO ₂ (Ipcc, 2021). If the ocean's ability to absorb CO ₂
57	decreases, more CO2 will remain in the atmosphere, exacerbating global warming.
58	CO ₂ concentration in marine systems varies between region and over time (Fay et al.,
59	2021; Sitch et al., 2015; Schimel et al., 2001). For example, high-latitude temperate
60	regions and coastal seas act as sinks for atmospheric CO2, while subtropical and
61	tropical coastal seas, estuaries, and coral reefs are generally sources (Borges et al.,
62	2005; Cai et al., 2003; Frankignoulle et al., 1998; Frankignoulle et al., 1996; Gattuso
63	et al., 1997; Gattuso et al., 1993; Ito et al., 2005; Ohde and Van Woesik, 1999; Wang
64	and Cai, 2004; Yan et al., 2011; Bates et al., 2001). The hydrological characteristics of
65	coastal waters, such as temperature, salinity, upwelling, and mixing, also exhibit
66	substantial variation, leading to differences in surface water pCO_2 even within the
67	same continental shelf. Furthermore, upwelling areas along the coasts of California
68	and Oman act as CO_2 sinks, whereas those along the coasts of Galicia and Oregon
69	serve as CO ₂ sources (Borges and Frankignoulle, 2002; Friederich et al., 2002; Goyet
70	et al., 1998; Hales et al., 2005). Borges (2005) notes that when estuaries are included

71	in the gas exchange process, coastal seas worldwide are sources of CO ₂ , but they
72	become sinks when estuaries are excluded.
73	Various factors, such as temperature, tides, currents, river discharge, upwelling,
74	vertical mixing, and biological metabolism, influence CO ₂ levels in coastal areas (e.g.,
75	Dai et al., 2009; Chen et al., 2024; Ibanhez et al., 2015). For instance, temperature
76	changes can directly affect the solubility of CO_2 in seawater, with higher temperatures
77	generally reduce CO ₂ solubility (Dai et al., 2009). Tides and currents can enhance
78	vertical mixing, bringing CO_2 -rich deep waters to the surface and increasing pCO_2
79	levels (Ibanhez et al., 2015; Dai et al., 2009). River discharge introduces fresh water
80	and organic matter, which can stimulate biological metabolism and further influence
81	CO ₂ levels through respiration and decomposition processes (Chen et al., 2024;
82	Ibanhez et al., 2015). These factors interact and help explain why seasonal variation in
83	CO ₂ levels can differ greatly across regions. For example, measurements taken at the
84	Bermuda Atlantic Time-series station in the Northwest Atlantic from 1996 to 1998
85	showed that CO ₂ levels were lowest in winter and highest in summer (Takahashi et
86	al., 2002). Conversely, data collected from the Kyodo Western North Pacific Ocean
87	Time-Series station between 1998 and 2000 indicated that CO_2 levels were lower in
88	summer compared to winter (Takahashi et al., 2002).
89	Coral reef ecosystems are known for their high productivity, biomass, and

90	efficient carbonate deposition rates. However, due to their structural complexity and
91	high biodiversity, the carbon dynamics of coral reefs differ substantially from those of
92	the open ocean. Whether coral reef ecosystems function as net carbon sources (Ware
93	et al., 1992; Gattuso et al., 1993; Gattuso et al., 1999; Fagan and Mackenzie, 2007;
94	Lønborg et al., 2019; Yan et al., 2018; Watanabe and Nakamura, 2019; Frankignoulle
95	et al., 1998) or sinks (Kayanne et al., 1995; Mayer et al., 2018; Suzuki, 1998; Suzuki
96	and Kawahata, 2004) remain uncertain due to factors like the high spatial and
97	temporal variability within these ecosystems. Sedimentation rates and anthropogenic
98	influences further complicate the coral reef carbon balance. Moreover, ocean
99	acidification could reduce coral calcification rates, diminish their ability to produce
100	CO_2 , thereby buffering and reducing the pCO_2 levels in seawater (Ries, 2011; Fabry et
101	al., 2008; Albright et al., 2016). Consequently, predicting changes in seawater carbon
102	levels in response to oceanographic anomalies remains a challenge.
103	Nanwan Bay, located at the southernmost tip of Taiwan (Fig. 1), is a semi-
104	enclosed area between Cape Moubitou and Cape Oluanpi, characterized by high-
105	biodiversity and abundant fringing coral reefs (Yang and Dai, 1980). Previous studies
106	of Nanwan Bay have noted that periodic upwelling causes the mixing of upper and
107	lower seawater layers, facilitating the transfer of nutrients from the deeper waters to
108	shallower areas (Chen et al., 2005). In most coastal upwelling regions, the ocean

5

- 109 absorbs CO₂ from the atmosphere (Hales et al., 2005), a process closely tied to the
- 110 increased primary production of phytoplankton in the nutrient-rich waters following
- 111 upwelling. Primary productivity in marine ecosystems plays a crucial role in carbon
- 112 cycling by driving the fixation of CO₂ (Dugdale and Wilkerson, 1989; Murray et al.,
- 113 1995). During periods of heightened primary productivity, the increased demand for
- 114 carbon can lead to greater uptake of CO₂ from seawater, potentially reducing its
- 115 concentration (Chen et al., 2004). Interestingly, this phenomenon has yet to be

116 explored within the coral reef ecosystem of Nanwan Bay.

117

118 Fig. 1 Map of sampling stations (marked with "X" with the station number

119 underneath) in Nanwan Bay, Taiwan, along with contours of depth (m).

120 The difference between seawater pCO_2 ($pCO_2^{seawater}$) and atmospheric pCO_2

121	(pCO_2^{aur}) not only serves as a metric but also determines whether a marine system
122	functions as a source or sink of carbon. In this context, a positive difference, where
123	$pCO_2^{\text{seawater}} - pCO_2^{\text{air}} > 0$, indicates a carbon source, while a negative difference
124	signifies a carbon sink. To determine whether Nanwan Bay behaves as a net carbon
125	source or sink, this study evaluates the role of hydrological conditions and their
126	potential influence on the carbonate system and CO ₂ fluxes. To achieve this, we
127	conducted a comprehensive analysis of the marine carbonate system across various
128	spatial and temporal gradients.
129	2. Methods
130	2.1 Study site Nanwan Bay (Fig. 1) is flanked by the Pacific Ocean to the east.
131	the Taiwan Strait to the west, the Luzon Strait to the south, and the South China Sea
132	
	(SCS) to the southwest (Lee, 1999) and covers an area of \sim 30 km ² (estimated via
133	(SCS) to the southwest (Lee, 1999) and covers an area of ~30 km ² (estimated via Google Earth Pro). Nanwan Bay is among the most diverse marine regions in Taiwan,
133 134	(SCS) to the southwest (Lee, 1999) and covers an area of ~30 km ² (estimated via Google Earth Pro). Nanwan Bay is among the most diverse marine regions in Taiwan, which led to its inclusion within Kenting National Park (Meng et al., 2008). The
133 134 135	(SCS) to the southwest (Lee, 1999) and covers an area of ~30 km ² (estimated via Google Earth Pro). Nanwan Bay is among the most diverse marine regions in Taiwan, which led to its inclusion within Kenting National Park (Meng et al., 2008). The complex seabed in Nanwan Bay encompasses diverse habitats, including: sandy
133 134 135 136	(SCS) to the southwest (Lee, 1999) and covers an area of ~30 km ² (estimated via Google Earth Pro). Nanwan Bay is among the most diverse marine regions in Taiwan, which led to its inclusion within Kenting National Park (Meng et al., 2008). The complex seabed in Nanwan Bay encompasses diverse habitats, including: sandy beaches, rocky shores, and coral reefs. This area represents the initial point of
133 134 135 136 137	(SCS) to the southwest (Lee, 1999) and covers an area of ~30 km ² (estimated via Google Earth Pro). Nanwan Bay is among the most diverse marine regions in Taiwan, which led to its inclusion within Kenting National Park (Meng et al., 2008). The complex seabed in Nanwan Bay encompasses diverse habitats, including: sandy beaches, rocky shores, and coral reefs. This area represents the initial point of interaction between the SCS waters and the warm, highly saline Kuroshio Current.

139 periodic upwelling events occurring;(Chen et al., 2005). In the course of the

140	upwelling event, the surface water of Nanwan Bay can drop by >3°C, coupled with a
141	rise in nitrate concentration exceeding 2 μ M, as documented by (Chen et al., 2005).
142	The bay hosts over 1,200 fish species and more than 200 species of reef-building
143	coral, making it a significant research focus area for both the reefs and the
144	anthropogenic stressor regime (Meng et al., 2007). Studies have shown that high
145	levels of nutrients and suspended solids may have contributed to the decline in coral
146	cover between 2001 and 2022 (Meng et al., 2008; Chen et al., 2022).
147	2.2 Sampling and analysis The study was conducted across four seasons: spring
148	(31 March 2011), summer (5 July 2011), autumn (20 October 2011), and winter (22
149	January 2013), in the area between Nanwan Bay's two capes, Moubitou and Oluanpi.
150	A total of 17 seawater sampling stations were established, including two (Sts. 31 and
151	33) located near the outlet of a nuclear power plant (Fig. 1). Temperature and salinity
152	data were collected using an Idronaut Ocean Seven 304 CTD calibrated against an
153	International Association for the Physical Sciences of the Ocean seawater standard.
154	Water samples were collected using Niskin bottles with Teflon-coated inner walls.
155	Seawater at each station was taken at two to five depths at intervals of 3 to 25 m in
156	areas shallower than 50 m; extra samples at 65, 80 and/or 100 m were taken for
157	stations with depths of 65-100 m. Please refer to Table S1 for details on the sampling
158	times and sampling depths at each station. Notably, all samples were collected

- 159 exclusively during daytime. Water samples were immediately analyzed for dissolved
- 160 oxygen (DO) content using YSI 52 and YSI 5905 BOD electrodes (factory
- accuracy=99.9%). Other water samples were divided into different sample bottles for
- additional analyses, including chlorophyll *a* (Chl *a*), pH, and total alkalinity (TA).
- 163 One 300-mL amber bottle was pre-inoculated with 0.2 mL of mercuric chloride to
- 164 suppress biological activity that could affect TA and other carbonate system
- 165 parameters.
- 166 For Chl *a* analysis, 1 L of seawater were was immediately filtered through GF/F
- 167 filter paper (Whatman, 47 mm) and stored in liquid nitrogen. The Chl a retained on
- the GF/F filters was determined fluorometrically (Turner Design 10-AU-005; Parsons
- 169 et al., 1984).
- 170 Seawater pH and total TA were measured using an automated titration system
- 171 consisting of a Mettler-Toledo DL53 with a DG-111 electrode. Prior to measurements,
- the electrode was calibrated using Merck standard buffer solution (NIST) at 25°C.
- 173 The calibration ranges for pH 4, 7, and 10 were set to fall within the range of 176±30
- 174 mV, 0±30 mV, and -176±30 mV, respectively (calibration slope of -56 to -59).
- 175 Measured pH values were expressed on the NBS scale.
- 176 For TA measurements, 40 g of seawater were titrated with 0.1 N HCl at 25°C.
- 177 Titration continued until the pH exceeded the end point (~pH 4.4) and then continued

178	until ~pH 3.0, with the potential change and titration volume recorded. The consumed
179	volume of HCl was calculated using the Gran (1952) function based on the linear
180	relationship between titration volume and pH, and TA was obtained by plotting the
181	consumed volume of HCl. The reference material for experimental quality control
182	was obtained from Professor Andrew Dickson (Scripps Institute of Oceanography,
183	USA), and the pH of the reference material was calculated by entering dissolved
184	inorganic carbon (DIC) and TA data into CO2SYS software ver. 1.02 (Lewis and
185	Wallace, 1998).
186	The pH measurement accuracy in this study was ± 0.01 units and the TA accuracy
187	was $\pm 2.7 \mu$ mol kg ⁻¹ (precision=0.12%). <i>p</i> CO ₂ and DIC were also calculated with
188	CO2SYS from measured pH and TA. The dissociation constants of carbonic acid used
189	were the revised K1 and K2 values from Dickson and Millero (1987) refit from the
190	values of Mehrbach et al. (1973). Notably, the surface water pCO_2 was estimated
191	using the average values of samples collected at depths of 1 and 3 m at each station
192	(Table S1).
193	2.3 Calculation of the exchange flux of CO ₂ between the ocean and the
194	atmosphere. The formula for calculating the exchange flux of CO_2 between the ocean
195	and the atmosphere (F_{GAS}) was as follows:
196	$F_{GAS} = k \times K_H \times (pCO_2^{seawater} - pCO_2^{air})$

10

197

198	solubility of CO_2 gas in seawater. The air-sea gas transfer rate, k , was obtained from
199	an empirical formula based on wind speed proposed by Wanninkhof (1992): $k=0.31 \times 10^{-10}$
200	$u^2 \times (Sc/660)^{-0.5}$, where u is wind speed 10 m above sea level (in m/s; data from the
201	Central Weather Bureau's Oceanic Center-Oluanpi buoy); and Sc (Schmidt number) is
202	a function of temperature (Wanninkhof, 1992), which can be obtained from the in situ
203	sea surface temperature (T) as follows:
204	$Sc = 2073.1 - 125.62 \times T + 3.6276 \times T^2 - 0.043219 \times T^3$
205	The solubility of CO ₂ gas in seawater (K_H), expressed in mol L ⁻¹ ·atm ⁻¹ , was calculated
206	using the formula developed by Weiss (1974):
207	$\ln K_{\rm H} = -58.0931 + 90.5069 \left(\frac{100}{\rm T}\right) + 22.2940 \ln \left(\frac{\rm T}{100}\right) + S \left[0.027766 - 0.025888 + \left(\frac{\rm T}{100}\right) + 0.0050578 \left(\frac{\rm T}{100}\right)^2\right]$
208	Since we did not directly measure pCO_2^{air} , we used xCO_2 data provided by the United
209	States National Oceanic and Atmospheric Administration (NOAA) from Dongsha
210	Island
211	(https://gml.noaa.gov/aftp/data/trace_gases/co2/flask/surface/txt/co2_dsi_surface-
212	flask_1_ccgg_event.txt). Dongsha Island, located at approximately 20.70°N, is a coral
213	atoll with a latitude similar to that of Nanwan Bay, and importantly, it shares the
214	characteristic of being part of a coral reef ecosystem. The dry air xCO ₂ values were

where k is the gas exchange rate of CO_2 (air-sea gas transfer rate) and K_H is the

215 corrected to 100% humidity, assuming atmospheric pressure of 1 atm, using the

- 216 temperature and salinity data recorded at the time of sampling. The resulting pCO_2^{air}
- 217 was 386, 377, 378, and 383 µatm on March 31, July 5, and October 18, 2011, and
- 218 January 22, 2013, respectively.
- 219 The seasonal fluxes across the bay were calculated by multiplying the mean CO₂
- exchange flux at all stations for each season by the bay's area of $\sim 30 \text{ km}^2$.

224 Waters.

221 222

223

225 **3.** Results and discussion

226 **3.1 Variation in hydrological parameters.** Both temperature and salinity varied

- 227 over time in Nanwan Bay (Fig. 2), with the seasonal variation likely driven by both
- 228 the monsoon and SCS circulation patterns as follows. The Kuroshio Current flows

247

229	northwards along Taiwan's east coast, with a portion of the Western Philippine Sea
230	(WPS) water following the Kuroshio and then flowing westward along the northern
231	SCS shelf (Yuan et al., 2006). Nan et al. (2015) suggested that surface salinity of 34 or
232	higher is characteristic of the Kuroshio, indicating potential inundation of the
233	Kuroshio Current into Nanwan Bay during the high-salinity spring period. During
234	summer, the southwest monsoon dominates, leading to a decrease in the Kuroshio's
235	influence; the main circulation of the Kuroshio shifts westward to the Luzon Strait,
236	limiting its intrusion into the northwestern SCS region (Liang et al., 2008). In the
237	northern SCS region, the southwest-to-northeast circulation pattern prevails during the
238	monsoon, with most seawater flowing out of the SCS through the Luzon Strait and
239	converging with the Kuroshio axis, resulting in Nanwan Bay being dominated by the
240	SCS water mass during the summer. An analysis of temperature and salinity data from
241	Nanwan Bay, the SCS, and the Kuroshio Current indicates that Nanwan Bay mainly
242	consists of the SCS water mass during summer and autumn, while during spring and
243	winter, the water masses are intermediate between the two (Fig. 2). As such, Nanwan
244	Bay is classified as a mixed water mass area, comprising both SCS and Kuroshio
245	Current water masses.
246	During the survey period, there was a clear positive correlation between pH and

13

temperature. Additionally, pH and TA exhibited significant correlations with salinity

248	Table 1.	Correlation	matrix	of seawater	quality	variables	with	correlation	coefficients
-----	----------	-------------	--------	-------------	---------	-----------	------	-------------	--------------

- 249 (*r*) for spring, summer, autumn, and winter. Variables include temperature,
- 250 salinity, dissolved oxygen (DO), DO saturation (DO%), total alkalinity (TA),

25	l d	lissolved	inorganic	carbon (DIC)	, and p	эH.
			6				

Spring	Temperature	Salinity	DO	DO (%)	TA	DIC	pН
Salinity	0.35**			·			
DO	-0.23	-0.40**					
DO (%)	0.02	-0.32**	0.89**				
TA	0.04	0.03	0.19	0.11			
DIC	-0.17	-0.04	0.25*	0.11	0.92**		
pН	0.43**	0.13	-0.02	0.05	0.61**	0.27*	
pCO ₂	-0.28*	-0.07	0.03	-0.02	-0.45**	-0.09	-0.96**
Summer	Temperature	Salinity	DO	DO (%)	TA	DIC	pН
Salinity	-0.96**	-					_
DO	0.65**	-0.53**					
DO (%)	0.90**	-0.81**	0.90**				
TA	-0.82**	0.81**	-0.52**	-0.72**			
DIC	-0.91**	0.84**	-0.68**	-0.87**	0.91**		
pН	0.89**	-0.79**	0.72**	0.89**	-0.72**	-0.94**	
pCO ₂	-0.22*	0.07	-0.45**	-0.38**	0.23*	0.51**	-0.64**
Autumn	Temperature	Salinity	DO	DO (%)	ТА	DIC	pН
Salinity	-0.95**						
DO	0.88**	-0.85**					
DO (%)	0.95**	-0.93**	0.98**				
TA	-0.57**	0.56**	-0.51**	-0.55**			
DIC	-0.76**	0.75**	-0.66**	-0.72**	0.88**		
pН	0.79**	-0.77**	0.66**	0.73**	-0.43**	-0.80**	
pCO ₂	-0.32**	0.33**	-0.22	-0.27*	0.27*	0.63**	-0.83**
Winter	Temperature	Salinity	DO	DO (%)	ТА	DIC	pН
Salinity	-0.32**						-
DO	0.43**	-0.26*					
DO (%)	0.78**	-0.34**	0.70**				
TA	-0.15	0.06	-0.19	-0.17			
DIC	-0.39**	0.02	-0.34**	-0.41**	0.89**		
pН	0.59**	0.06	0.39**	0.61**	-0.12	-0.56**	
*							

255 *: $p \le 0.05$ and **: $p \le 0.01$.

256 during summer and autumn, but such correlations were not evident in spring and

- 257 winter (Table 1). It is expected that TA and salinity will covary because the charge
- 258 differences between cations and anions in seawater change with salinity. Salinity
- 259 generally increases with depth and is influenced by various factors such as rainfall,
- 260 evaporation, and freshwater input, which can lead to changes in TA. It is worth noting
- that the absence of a major river nearby the study sites, as well as the absence of any

262

Fig. 3. Vertical profiles of temperature and salinity at station S10 in spring (a & e,
respectively), summer (b & f, respectively), autumn (c & g, respectively), and
winter (d & h, respectively) at three sampling times (see Table S1 for details.)
as indicated in each panel.

267	observed rainfall events one week prior to each survey period, strongly suggests that
268	freshwater input did not play a significant role in altering TA within this study area.
269	Moreover, the absence of significant correlations among salinity, TA, and pH in spring
270	and winter implies that these relationships might be influenced by factors such as
271	intense vertical mixing or upwelling, which could disrupt the salinity, TA, and pH
272	vertical profiles. This supposition is further supported by the well-mixed profiles of
273	salinity and temperature found throughout the water column at station S10 during
274	spring and winter (Fig. 3a, d, e, & h). Additionally, seawater characterized by low
275	temperature, low pH, and high salinity observed at station S10 during the spring
276	suggests that this well-mixed pattern throughout the water column may be primarily
277	associated with upwelling during this period (Figs. 3 and S1; further details can be
278	found in the next section).

279

280 Fig. 4. Seasonal variation in sea surface pCO₂ (µatm) in Nanwan Bay, Taiwan in

281 spring (a), summer (b), autumn (c), and winter (d).

282	3.2 Changes in surface water pCO₂. Surface p CO ₂ levels in Nanwan Bay
283	ranged from 364-422, 362-448, 350-480, and 345-427 µatm in spring, summer,
284	autumn, and winter, respectively (Fig. 4). The means values (\pm SD) across all stations
285	(N = 17) for each season were 393.2 (±11.6), 411.4 (±19.0), 401.7 (±18.3), and 370
286	(± 17.3) µatm, respectively. The mean surface seawater temperatures during these
287	seasons were 23.4 (±0.4), 28.8 (±0.8), 27.0 (±1.0), and 26.0 (±0.6) $^\circ \! C$, respectively. In
288	the open ocean, pCO_2 levels are primarily influenced by temperature, horizontal
289	transport and vertical mixing, biological processes, and gas exchange (e.g., Dai et al.,
290	2009). Due to the mixing of different water masses by monsoons, tides, eddies,
291	upwelling, and other ocean currents, significant variation in temperature and salinity
292	of the water column was observed at different times at station S10 (Fig. 3) and in the
293	carbonate parameter data (Fig. 5d & S1-S4). Similarly, significant diurnal variation in
294	seawater pCO_2 has been reported in another coral reef ecosystem (Yan et al., 2018),
295	suggesting that more extensive temporal and spatial sampling is needed to accurately
296	capture the true dynamics of the carbonate system in coral reef environments. During
297	spring and winter, pronounced mixing was evident, as demonstrated by the straight
298	vertical profiles in temperature and salinity in Fig. 3a, d, e, and h. Conversely, in
299	summer and autumn, mixing was less apparent.
300	According to Lee et al. (1997; 1999a; 1999b), cold-water upwelling occurs with

- 301 tidal changes in Nanwan Bay, which increases vertical mixing. The temperature-
- 302 salinity-pH-DO diagram of station S1 illustrates that throughout the entire upwelling

303

304 Fig. 5. Vertical profiles of mean $(\pm SD)$ dissolved oxygen (DO; a), pH (b), total

305 alkalinity (TA; c), and pCO_2 (d) at station S10 in different seasons.

306

307 Fig. 6 Relationships amongst temperature and salinity or pH, as well as dissolved

308 oxygen (DO) vs. pH, during multiple upwelling events at Station S1 (data from

309 Tew et al., 2014).

310	event, there is an intrusion of cold, low-DO, low-pH, and high-salinity deep-sea water
311	into the nearshore regions of Nanwan Bay (Fig. 6). Seawater property profiles of S10
312	provide additional evidence of upwelling, as indicated by the presence of low
313	temperatures (23.3 \pm 0.6°C), low pH (8.16 \pm 0.01), high salinity (34.32 \pm 0.03), and
314	relatively low pCO_2 (385.4±5.4 µatm) across the well-mixed water column in spring
315	(Figs. 3 & 5).
316	As temperature increases, CO_2 solubility decreases, causing an increase in pCO_2 .
317	To accurately isolate and understand the specific impact of temperature variations on
318	pCO ₂ , it is crucial to normalize these factors. This approach allows for a clearer
319	distinction between temperature-induced changes and those driven by other
320	influences. Takahashi et al. (2002) proposed to evaluate the relative effects of
321	temperature and non-temperature effects on pCO_2 changes as follows:
322	pCO_2 at $T_{obs} = (pCO_2)_{Mean annual} \times exp[0.0423(T_{obs} - T_{mean})]$
323	pCO ₂ at T _{mean} = (p CO ₂) _{obs} × exp[0.0423(T _{mean} - T _{obs})]
324	pCO_2 at T _{obs} is calculated using the average pCO_2 to determine the pCO_2 value at a
325	given temperature; pCO_2 at T_{mean} is the standardized pCO_2 value at the average
326	temperature; and T_{mean} and T_{obs} are the annual average temperature and the measured
327	temperature on-site, respectively. To assess the impact of temperature (T) and non-
328	temperature (nT) effects on p CO ₂ , the following equations were employed:

19

- 329 T effect = pCO_2 at T_{obs} pCO_2 at T_{mean}
- 330 nT effect = $pCO_2 pCO_2$ at T_{obs}
- 331 The fluctuations in the mean pCO_2 at each monitoring station over time suggest that
- 332 temperature and non-temperature effects had distinct influences on the average pCO₂
- 333 at each station (Fig. 7). This means that seasonal changes in pCO_2 are influenced by
- both temperature and non-temperature effects (e.g., gas exchange, tides, currents,
- 335 river discharge, upwelling, vertical mixing, and biological processes), with some
- 336 stations showing larger changes than others. It is believed that the stations with larger
- 337 pCO₂ variations are likely dominated by either temperature or non-temperature

338

Fig. 7. Mean values and impact levels of surface water pCO_2 at each station in

Nanwan Bay are presented. The "Mean" represents the average value for each station across the four seasons and is plotted on the left y-axis. The terms "nT" and "T" refer to the non-temperature and temperature effects on surface water pCO_2 , respectively, and are displayed on the right y-axis for clarity.

353

- 344 effects, while the smaller changes reflect the mutual offsetting of the two effects (Dai
- et al., 2009). For example, the variability in *p*CO₂ observed at S31 and S33, which are
- 346 located near the Nuclear Power Plant outlet, is likely driven by temperature change, as
- 347 the water temperature in this area was consistently higher and exhibited greater
- 348 variability compared to the surrounding area throughout the year. In fact, we expected
- 349 that temperature effects on pCO_2 would be more pronounced at these sites.
- 350 During the entire study duration, variation in surface water pCO_2 in Nanwan
- 351 Bay was influenced by a combination of temperature and non-temperature factors
- throughout all seasons, albeit with varying degrees of influence in different seasons.

Fig. 8. Mean values and impact levels of surface water pCO₂ in Nanwan Bay during
different seasons. "Mean" represents the average value across sampling stations
for each season. "nT" denotes non-temperature effects on surface water pCO₂,
while "T" signifies temperature effects on surface water pCO₂. Error bars
represent standard deviation.

- 359 Notably, the effect of temperature was more prominent in the spring and summer (Fig.
- 360 8). The relationship between surface water pCO_2 , surface water temperature, and Chl
- 361 *a* concentration revealed a significant correlation with pCO_2 and temperature in the
- 362 summer (p < 0.01; Fig. 9a), and a positive correlation between $p CO_2$ and Chl a in
- autumn (p < 0.05; Fig. 9b). This suggests that temperature and Chl *a* may be the factors
- affecting surface water pCO_2 in summer and autumn, respectively. In general, Chl *a*
- affects pCO_2 by driving photosynthesis, which removes CO_2 from seawater via

367 Fig. 9. Relationships between surface water pCO_2 and (a) temperature, and (b) Chl a,

368 (c) the temperature (T) effect on surface water pCO_2 and temperature, and (d)

- 369 the non-temperature (nT) effect on surface water pCO_2 and Chl *a* across
- 370 different seasons in Nanwan Bay. The linear relationships, along with the
- 371 corresponding r and p values, are provided for reference.

372	phytoplankton activity (Chen et al., 2019). Higher chlorophyll levels suggest
373	increased primary productivity, leading to greater CO2 drawdowns during the day.
374	To further assess the influence of T and nT effects on surface water pCO_2 across
375	different seasons, we compared T-driven surface water pCO_2 with temperature and
376	nT-driven surface water pCO_2 with Chl <i>a</i> (one of the nT factors; Fig. 9c, d).
377	Significant correlations were observed between T-driven surface water pCO_2 and
378	temperature in all seasons (Fig. 9c), and between nT-driven surface water pCO_2 and
379	Chl a during summer (Fig. 9d). Overall, the results (Figs. 8 and 9) indicate that
380	temperature is the primary driver of seasonal p CO ₂ variation, with non-temperature
381	factors, particularly Chl a , also contributing. However, the lower r values suggest that
382	additional, unmeasured factors may be influencing the temporal variation in pCO_2
383	(Fig. 9d).
384	As mentioned above, seawater pCO_2 levels can be influenced by phytoplankton
385	via photosynthesis. Therefore, nutrient availability in seawater primarily affects pCO_2
386	levels by either promoting or limiting phytoplankton growth and consequently
387	primary production. In the case of Nanwan Bay, like many coral reef ecosystems, its
388	benthic environment supports nutrient regeneration through processes such as organic
389	carbon decomposition and other processes. However, due to the high shallow water
390	temperature and frequent stratification, regenerative nutrients cannot easily be

391	transported to the shallows. This results in the shallow areas rarely becoming
392	eutrophic (Leichter et al., 1996; Torréton, 1999; Wolanski and Pickard, 1983).
393	Another reason for Nanwan Bay's oligotrophy is that when nutrients flow into reef
394	areas, resident organisms may quickly utilize them (Wilkerson and Trench, 1986).
395	Although nutrient input from outside the bay is greater than the outward flux, rapid
396	circulation of water in Nanwan Bay leads to unused nutrients being swiftly exported
397	out of the bay (Su, 2009). This causes oligotrophy and high benthic productivity in the
398	area. Su (2009) reported that during spring tides, the water can be replaced in just 1.6
399	tidal cycles. Therefore, nutrient levels and Chl a may have only small influences on
400	pCO ₂ in Nanwan Bay, with temperature changes and seawater movement having a
401	more significant impact.
402	3.3 Spatial and temporal variations of Δp CO ₂ and CO ₂ air-sea flux. The
403	partial pressure difference between CO2 in surface seawater and the atmosphere,
404	denoted as $\triangle pCO_2$, indicates the direction of air-sea CO ₂ exchange. When $\triangle pCO_2 > 0$,
405	CO ₂ in seawater is released into the atmosphere, contributing to an increase in
406	atmospheric CO ₂ concentration (i.e., a source). On the other hand, when $\triangle p$ CO ₂ <0,
407	CO_2 from the atmosphere enters the seawater, acting as a sink for atmospheric CO_2 . In
408	spring, the $\triangle p CO_2$ range was between -14.3 and 27.7 µatm, with an average of 7.7
409	(± 10.8) µatm (Fig. 10a). The highest value was observed near the Nuclear Power

410	Plant outlet station, i.e., St. 2. In summer, it ranged between -5.1 and 54.5 $\mu atm,$ with
411	an average of 29.3 (± 16.1) µatm. The highest value was measured near station S7. In
412	autumn, the range was between -14.6 and 51.2 $\mu atm,$ with an average of 21.2 (±18.6)
413	$\mu atm.$ The highest value was observed near stations S10-S12. In winter, the range was
414	between -33.2 and 31.3 $\mu atm,$ with an average of -16.1 (±14.5) $\mu atm.$ The highest
415	value occurred near stations S2. It is important to note that pCO_2 measurements in this
416	study were limited to daytime, when photosynthesis is actively occurring, typically
417	resulting in lower pCO_2 levels. As reported in this study and other coral reef
418	ecosystems (Yan et al., 2018) , significant diurnal variations in seawater p CO ₂ have
419	been observed. Therefore, it is likely that the $\triangle p CO_2$ values presented here may be
420	underestimates due to this limitation.
421	Based on data from the Central Weather Bureau's Oluanpi buoy, the average
422	sampling date wind speed during the southwest monsoon season (summer) was 1.4
423	(± 1.0) m s ⁻¹ , while during the northeast monsoon seasons (spring, autumn, & winter),
424	it was 10.6 (±0.8), 9.2 (±2.5), and 3.3 (±0.7) m s ⁻¹ , respectively. In other words, high
425	wind speeds are consistently observed during the northeast monsoon, in contrast to
426	the relatively lower wind speeds experienced during the summer season along the
427	coast of Taiwan (Ren et al., 2022). Utilizing these wind speed values, the CO ₂ air-sea
428	exchange flux in Nanwan Bay was calculated (Figure 10b). During spring, the CO ₂

- 429 flux ranged from -19.9 to 32.6 mmol $m^{-2} day^{-1}$ (average=8.2±12.7 mmol $m^{-2} day^{-1}$). In
- 430 summer, the CO₂ flux ranged from 0.0 to 4.2 mmol m^{-2} day⁻¹ (average=0.9±1.2 mmol
- 431 m⁻² day⁻¹). During autumn, the CO₂ flux ranged from -17.1 to 59.5 mmol m⁻² day⁻¹,
- 432 with an average of 16.0 ± 18.4 mmol m⁻² day⁻¹. Finally, in winter, the CO₂ flux ranged
- 433 from -5.9 to 5.6 mmol m⁻² day⁻¹, with an average of -1.8 ± 2.4 mmol m⁻² day⁻¹. These
- 434 findings highlight that wind speed plays a crucial factor in regulating CO₂ air-sea
- 435 exchange flux. Moreover, any factors that impact wind speed can significantly affect
- 436 gas exchange estimates. For instance, when using daily wind speed data for the

437

438 Fig. 10. Seasonal variation in (a) surface water $\triangle pCO_2$ and (b) air-sea CO₂ exchange

439 flux (F_{GAS}) at each station. Values are presented relative to the annual mean

440 (scaled to 0).

441	sampling month, the CO ₂ flux increase from 0.9 (±1.2) to 12.4 (±9.9) mmol m ⁻² day ⁻¹
442	in summer, and 16.0 (\pm 18.4) to 29.5 (\pm 11.9) mmol m ⁻² day ⁻¹ in fall (Table S2).
443	The area between Cape Moubitou and Cape Oluanpi, covering approximately 30
444	km ² (Fig. 1), shows CO ₂ fluxes of 6.2 tC, 0.7 tC, 11.9 tC, and -1.3 tC in spring,
445	summer, fall, and winter, respectively, based on wind speeds recorded on the sampling
446	date (Table S2). However, when using daily wind speed data for the sampling month,
447	significant changes in CO_2 flux are observed, such as an increase from 0.7 to 9.4 tC in
448	summer and from 11.9 to 21.9 tC in fall (Table S2). This indicates that CO_2 flux
449	estimates are highly sensitive to wind speed variability, introducing uncertainty in
450	determining whether Nanwan Bay's coral reef ecosystem functions as a carbon sink or
451	source based on this limited dataset. Most coral reef areas act as atmospheric CO_2
452	sources, such as Bermuda (14.4 gC m ⁻² year ⁻¹ ; Bates et al., 2001), Okinawa (21.6 gC
453	m^{-2} year $^{-1};$ Ohde and Van Woesik, 1999), the Great Barrier Reef (18 gC m^{-2} year $^{-1};$
454	Frankignoulle et al., 1996), French Polynesia (1.2 gC m ⁻² year ⁻¹ ; Frankignoulle et al.,
455	1996; Gattuso et al., 1997; Gattuso et al., 1993), and Hawaii (17.4 gC m ^{-2} year ^{-1} ;
456	Fagan and Mackenzie, 2007). In addition to wind speed, the primary factor
457	influencing the atmospheric carbon sink/source nature of this coral reef ecosystem is
458	the substantial vertical mixing and upwelling observed during the spring and winter.
459	These periods are characterized by a well-mixed water column, lower seawater

473	4. Conclusions
472	exchange (Chou et al., 2011; Evans et al., 2012; De La Paz et al., 2011).
471	CO_2 flux calculations, given the nonlinear relationship between wind speed and gas
470	wind speed fluctuations, prevailing climate conditions, and specific events can affect
469	reflection of local conditions. It is important to note that short-term and long-term
468	calculations were collected from buoys within the ecosystem, providing an accurate
467	this coral reef ecosystem. Additionally, the wind speed data used for CO_2 flux
466	al., 2008; De Carlo et al., 2007), the impact here is minimal, as no large river is near
465	environments, leading to pCO_2 variations and influencing CO_2 sea-air flux (Meng et
464	carbon sink observed in winter. Although land-based inputs can affect nearshore
463	during the southwest monsoon, making the CO ₂ sea-air flux insufficient to offset the
462	despite high $\triangle p CO_2$ values in summer, wind speeds were relatively low, especially
461	when high winds significantly enhance the CO_2 sea-air gas exchange flux. In contrast
460	temperatures, and reduced pCO_2 levels, particularly during the northeast monsoon,

474 Nanwan Bay experiences notable seasonal variations in temperature and salinity, 475 largely influenced by the South China Sea and the Kuroshio Current. These changes 476 impact the seawater carbonate system (including pCO_2), with additional influences from vertical water movement and biological activity. Temperature emerged as the 477 478 primary driver of spatio-temporal variations in pCO_2 , particularly at the consistently

479	warmer outlet station. Non-temperature factors also played a role during the spring,
480	while the interaction between temperature and other factors became more prominent
481	in the autumn and winter. During the winter, the bay absorbs more CO_2 from the
482	atmosphere, whereas in the spring, summer, and autumn, it releases more CO ₂ than it
483	absorbs. The complex interplay of temperature, water mass origin, vertical water
484	movement, and biological activity in Nanwan Bay significantly affects its carbon
485	dioxide dynamics and its influence on atmospheric CO ₂ levels.
486	5. Acknowledgements
	8
487	This study was supported by grants from the Ministry of Science and Technology
488	of Taiwan (MOST) and National Science and Technology Council (NSTC) of Taiwan
489	through various grants, specifically: MOST 111-2611-M-259-002, MOST 110-2611-
490	M-259-002, MOST 109-2611-M-259-003, MOST 108-2611-M-291-005, MOST 107-
491	2611-M-291-001, and MOST 106-2611-M-291-006 awarded to PJM. CCC was also
492	supported by NSTC 112-2611-M-003-004. and NSTC 113-2611-M-003-002.
493	Data were submitted to Dryad for archiving (doi: 10.5061/dryad.63xsj3v7d).
494	6. Credit author statement
495	This manuscript was conceptualized by PJM and CCC; CMC and HYH conducted
496	investigations on all cruises and collected and analyzed the initial data; PJM, ABM,

- 497 and CCC wrote the initial draft; all authors provided comments and edits. The authors
- 498 declare that they have no competing interests.

499	References
500	Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K., Mason, B.
501	M., Nebuchina, Y., Ninokawa, A., Pongratz, J., Ricke, K. L., Rivlin, T.,
502	Schneider, K., Sesboüé, M., Shamberger, K., Silverman, J., Wolfe, K., Zhu, K.,
503	and Caldeira, K.: Reversal of ocean acidification enhances net coral reef
504	calcification, Nature, 531, 362-365, 10.1038/nature17155, 2016.
505	Bates, N. R., Samuels, L., and Merlivat, L.: Biogeochemical and physical factors
506	influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef,
507	Limnol. Oceanogr., 46, 833-846, 10.4319/lo.2001.46.4.0833, 2001.
508	Borges, A. V. and Frankignoulle, M.: Distribution of surface carbon dioxide and air-
509	sea exchange in the upwelling system off the Galician coast, Glob. Biogeochem.
510	Cycles, 16, 1020, 10.1029/2000GB001385, 2002.
511	Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and sources of CO ₂
512	in the coastal ocean: Diversity of ecosystems counts, Geophys. Res. Lett., 32,
513	n/a-n/a, 10.1029/2005gl023053, 2005.
514	Cai, W. J., Wang, Z. A., and Wang, Y.: The role of marsh-dominated heterotrophic
515	continental margins in transport of CO2 between the atmosphere, the land-sea
516	interface and the ocean., Geophys. Res. Lett., 30, 1849,
517	10.1029/2003GL017633, 2003.
518	Chen, CC., Chou, WC., Hung, CC., and Gong, GC.: Nutrient sources,
519	phytoplankton blooms, and hypoxia along the Chinese coast in the East China
520	Sea: Insight from summer 2014, Mar. Pollut. Bull., 205, 116692,
521	10.1016/j.marpolbul.2024.116692, 2024.
522	Chen, CC., Hsieh, HY., Mayfield, A. B., Chang, CM., Wang, JT., and Meng, P
523	J.: The Key impact on water quality of coral reefs in Kenting National Park, M.
524	Mar. Sci. Eng., 10, 207, 10.3390/jmse10020270, 2022.
525	Chen, CC., Shiah, F. K., Lee, H. J., Li, K. Y., Meng, P. J., Kao, S. J., Tseng, Y. F.,
526	and Chung, C. L.: Phytoplankton and bacterioplankton biomass, production and
527	turnover in a semi-enclosed embayment with spring tide induced upwelling,
528	Mar. Ecol. Prog. Ser., 304, 91-100, 10.3354/meps304091, 2005.
529	Chen, C. T. A., Hsing, L. Y., Liu, C. L., and Wang, S. L.: Degree of nutrient
530	consumption of upwelled water in the Taiwan Strait based on dissolved organic
531	phosphorus or nitrogen, Mar. Chem., 87, 73-86,
532	10.1016/j.marchem.2004.01.006, 2004.
533	Chen, S., Hu, C., Barnes, B. B., Wanninkhof, R., Cai, WJ., Barbero, L., and Pierrot,
534	D.: A machine learning approach to estimate surface ocean pCO_2 from satellite
535	measurements, Remote Sens Environ, 228, 203-226, 10.1016/j.rse.2019.04.019,

536	2019.
537	Chou, W. C., Gong, G. C., Tseng, C. M., Sheu, D. D., Hung, C. C., Chang, L. P., and
538	Wang, L. W.: The carbonate system in the East China Sea in winter, Mar.
539	Chem., 123, 44-55, 10.1016/j.marchem.2010.09.004, 2011.
540	Dai, M. H., Lu, Z. M., Zhai, W. D., Chen, B. S., Cao, Z. M., Zhou, K. B., Cai, W. J.,
541	and Chen, C. T. A.: Diurnal variations of surface seawater pCO_2 in contrasting
542	coastal environments, Limnol. Oceanogr., 54, 735-745,
543	10.4319/lo.2009.54.3.0735, 2009.
544	De Carlo, E. H., Hoover, D. J., Young, C. W., Scheinberg, R. D., and Mackenzie, F. T.:
545	Impact of storm runoff from tropical watersheds on coastal water quality and
546	productivity, Appl Geochem, 22, 1777-1797,
547	10.1016/j.apgeochem.2007.03.034, 2007.
548	de la Paz, M., Huertas, E. M., Padín, XA., Gónzalez-Dávila, M., Santana-Casiano,
549	M., Forja, J. M., Orbi, A., Pérez, F. F., and Ríos, A. F.: Reconstruction of the
550	seasonal cycle of air-sea CO2 fluxes in the Strait of Gibraltar, Mar. Chem., 126,
551	155-162, 10.1016/j.marchem.2011.05.004, 2011.
552	Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the
553	dissociation of carbonic acid in seawater media, Deep-Sea Res. I, 34, 1733-
554	1743, 10.1016/0198-0149(87)90021-5, 1987.
555	Dugdale, R. C. and Wilkerson, F. P.: New production in the upwelling central at Point
556	Conception, California: temporal and spatial patterns, Deep-Sea Res. I, 36, 985-
557	1007, 1989.
558	Evans, W., Hales, B., Strutton, P. G., and Ianson, D.: Sea-air CO ₂ fluxes in the western
559	Canadian coastal ocean, Progress in Oceanography 101, 78-91,
560	10.1016/j.pocean.2012.01.003, 2012.
561	Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.: Impacts of ocean acidification
562	on marine fauna and ecosystem processes, ICES Journal of Marine Science, 65,
563	414-432, 10.1093/icesjms/fsn048, 2008.
564	Fagan, K. E. and Mackenzie, F. T.: Air-sea CO2 exchange in a subtropical estuarine-
565	coral reef system, Kaneohe Bay, Oahu, Hawaii, Mar. Chem., 106, 174-191,
566	10.1016/j.marchem.2007.01.01, 2007.
567	Fay, A. R., Gregor, L., Landschützer, P., McKinley, G. A., Gruber, N., Gehlen, M.,
568	Iida, Y., Laruelle, G. G., Rödenbeck, C., Roobaert, A., and Zeng, J.: SeaFlux:
569	harmonization of air-sea CO_2 fluxes from surface pCO_2 data products using a
570	standardized approach, Earth Syst. Sci. Data,, 13, 4693-4710, 10.5194/essd-13-
571	4693-2021, 2021.
572	Frankignoulle, M., Copin-Montegut, G., Pichon, M., Gattuso, J. P., Biondo, R., and
573	Bourge, I.: Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon

574	dynamics and measurement of air-sea CO2 exchanges, Marine Ecology.
575	Progress Series, 145, 123-132, 10.3354/meps145123, 1996.
576	Frankignoulle, M., Abril, G., Borges, A., Bourge, I. I., Canon, C., Delille, B., Libert,
577	E., and Theate, J. M .: Carbon dioxide emission from european estuaries,
578	Science, 282, 434-436, 1998.
579	Friederich, G. E., Walz, P. M., Burczynski, M. G., and Chavez, F. P.: Inorganic carbon
580	in the central California upwelling system during the 1997–1999 El Niño–La
581	Niña event, Prog. Oceanogr., 54, 185-203, 10.1016/S0079-6611(02)00049-6,
582	2002.
583	Gattuso, JP., Frankignoulle, M., and Smith, S. V.: Measurement of community
584	metabolism and significance in the coral reef CO ₂ source-sink debate, Proc.
585	Natl. Acad. Sci. U. S. A., 96, 13017-13022, 10.1073/pnas.96.23.13017, 1999.
586	Gattuso, JP., Pichon, M., Delesalle, B., and Frankignoulle, M.: Community
587	metabolism and air-sea CO2 fluxes in a coral-reef ecosystem (Moorea, French-
588	Polynesia), Mar. Ecol. Prog. Ser., 96, 259-267, 10.3354/meps096259, 1993.
589	Gattuso, JP., Payri, C. E., Pichon, M., Delesalle, B., and Frankignoulle, M.: Primary
590	production, calcification, and air-sea CO2 fluxes of a macroalgal-dominated
591	coral reef community (Moorea, French Polynesia), J. Phycol., 33, 729-738,
592	10.1111/j.0022-3646.1997.00729.x 1997.
593	Goyet, C., Eischeid, G., McCue, S. J., Bellerby, R. G. J., Millero, F. J., and
594	O'Sullivan, D. W.: Temporal variations of pCO2 in surface seawater of the
595	Arabian Sea in 1995, Deep-Sea Research I, Oceanographic Research, 45, 609-
596	623, 10.1016/S0967-0637(97)00085-X 1998.
597	Gran, G.: Determination of the equivalence point in potentiometric titrations. Part II,
598	Analyst, 77, 661-671, 10.1039/an9527700661, 1952.
599	Hales, B., Takahashi, T., and Bandstra, L.: Atmospheric CO2 uptake by a coastal
600	upwelling system, Glob. Biogeochem. Cycles, 19, GB1009,
601	10.1029/2004GB002295,, 2005.
602	Ibanhez, J. S. P., Diverres, D., Araujo, M., and Lefevre, N.: Seasonal and interannual
603	variability of sea-air CO2 fluxes in the tropical Atlantic affected by the Amazon
604	River plume, Glob. Biogeochem. Cycles, 29, 1640-1655,
605	10.1002/2015gb005110, 2015.
606	IPCC: Summary for policymakers, Cambridge, United Kingdom and New York, NY,
607	USA, 3-32, 10.1017/9781009157896, 2021.
608	Ito, R. G., Schneider, B., and Thomas, H.: Distribution of surface fCO2 and air-sea
609	fluxes in the Southwestern subtropical Atlantic and adjacent continental shelf, J.
610	Mar. Syst., 56, 227-242, 10.1016/j.jmarsys.2005.02.005, 2005.
611	Kayanne, H., Suzuka, A., and Saito, H.: Diurnal changes in the partial pressure of

612	carbon dioxide in coral reef water, Science, 269, 214-216,
613	10.1126/science.269.5221.214, 1995.
614	Lee, HJ., Chao, SY., and Fan, KL.: Flood-Ebb disparity of tidally induced re-
615	circulation eddies in a semi-enclosed basin: Nan Wan Bay, Cont. Shelf Res., 19,
616	871-890, 10.1016/S0278-4343(99)00006-0, 1999a.
617	Lee, HJ., Chao, SY., Fan, KL., and Kuo, TY.: Tide-induced eddies and
618	upwelling in a semi-enclosed basin: Nan Wan, Estuar. Coast. Shelf Sci., 49,
619	775-787, 10.1006/ecss.1999.0524, 1999b.
620	Lee, HJ., Chao, SY., Fan, JL., Wnag, YH., and Liang, NJ.: Tidally induced
621	upwelling in a semi-enclosed basin: Nan Wan Bay, J. Oceanogr., 53, 467-480,
622	1997.
623	Lee, H. J.: Tidally induced eddies and cold water intrusion in Nan Wan Bay, PhD
624	dissertation, Institute of Oceanography, National Taiwan University, Taipei,
625	Taiwan, Taipei, Taiwan, 127 pp., 1999.
626	Leichter, J. J., Wing, S. R., Miller, S. L., and Denny, M. W.: Pulsed delivery of
627	subthermocline water to Conch Reef (Florida Keys) by internal tidal bores,
628	Limnol. Oceanogr., 41, 1490-1501, 10.4319/lo.1996.41.7.1490, 1996.
629	Lewis, E. and Wallace, D. W. R.: Program developed for CO2 system calculations,
630	Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory,
631	Oak Ridege, TN, USARep. ORNL/CDIAC-105, 10.2172/639712, 1998.
632	Liang, W. D., Yang, Y. J., Tang, T. Y., and Chuang, W. S.: Kuroshio in the Luzon
633	Strait, J. Geophys. Res. Oceans, 113, Artn C08048, 10.1029/2007jc004609,
634	2008.
635	Lønborg, C., Calleja, M. L., Fabricius, K. E., Smith, J. N., and c, E. P. A.: The Great
636	Barrier Reef: a source of CO ₂ to the atmosphere, Mar. Chem., 210, 24-33,
637	10.1016/j.marchem.2019.02.003, 2019.
638	Mayer, B., Rixen, T., and Pohlmann, T.: The spatial and temporal variability of air-sea
639	CO ₂ fluxes and the effect of net coral reef calcification in the Indonesian seas: A
640	numerical sensitivity study, Frontiers in Marine Science, 5, 116,
641	10.3389/fmars.2018.00116, 2018.
642	Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.: Measurement
643	of apparent dissociation constants of carbonic-acid in aeawater at atmospheric
644	pressure, Limnol. Oceanogr., 18, 897-907, 10.4319/lo.1973.18.6.0897, 1973.
645	Meng, P. J., Lee, H. J., Wang, J. T., Chen, C. C., Lin, H. J., Tew, K. S., and Hsieh, W.
646	J .: A long-term survey on anthropogenic impacts to the water quality of coral
647	reefs, southern Taiwan, Environmetnal Pollution, 156, 67-75,
648	10.1016/j.envpol.2007.12.039, 2008.
649	Meng, P. J., Chung, K. N., Chen, J. P., Chen, M. H., Liu, M. C., Chang, Y. C., Fan, T.

< 7 0	
650	Y., Lin, H. J., Liu, B. R., Chang, C. M., Fang, L. S., and Shao, K. I.: Long-term
651	ecological monitoring and studies of human activities on the marine ecosystem
652	of Kenting National Park. (in Chinese with English abstract), 17, 89–111, 2007.
653	Murray, J. W., Johnson, E., and Garside, C.: A U.S. JGOFS Process Study in the
654	equatorial Pacific (EqPac): Introduction, Deep-Sea Res. II Top. Stud. Oceanogr.,
655	42, 275-293, 10.1016/0967-0645(95)00044-Q, 1995.
656	Nan, F., Xue, H., and Yu, F.: Kuroshio intrusion into the South China Sea: A review,
657	Prog. Oceanogr., 137, 314-333, 10.1016/j.pocean.2014.05.012, 2015.
658	Ohde, S. and Van Woesik, R.: Carbon dioxide flux and metabolic processes of a coral
659	reef, Okinawa, Bull. Mar. Sci., 65, 559-576, 1999.
660	Parsons, T. R., Maita, Y., and Lalli, C. M.: A manual of chemical and biological
661	methods for seawater analysis, Pergamon Press, New York, 173 pp.,
662	10.1016/C2009-0-07774-5, 1984.
663	Ren, L., Ji, J., Wang, Y., Bu, S., Lu, Z., and Luo, X.: Investigation into spatiotemporal
664	characteristics of coastal windsaround the Taiwan Island, Energy Rep., 8, 419-
665	427, 10.1016/j.egyr.2022.03.108, 2022.
666	Ries, J. B.: A physicochemical framework for interpreting the biological calcification
667	response to CO2-induced ocean acidification, Geochim. Cosmochim. Acta, 75,
668	4053-4064, 10.1016/j.gca.2011.04.025, 2011.
669	Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P.,
670	Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell, J., Churkina, G.,
671	Cramer, W., Denning, A. S., Field, C. B., Friedlingstein, P., Goodale, C.,
672	Heimann, M., Houghton, R. A., Melillo, J. M., III, B. M., Murdiyarso, D.,
673	Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R., Rayner, P. J., Scholes,
674	R. J., Steffen, W. L., and Wirth, C.: Recent patterns and mechanisms of carbon
675	exchange by terrestrial ecosystems, Nature, 414, 169-172, 10.1038/35102500,
676	
	2001.
677	2001. Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström,
677 678	2001.Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E.,
677 678 679	 2001. Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G.,
677 678 679 680	 2001. Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P.,
677 678 679 680 681	 2001. Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and
677 678 679 680 681 682	 2001. Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12,
677 678 679 680 681 682 683	 2001. Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653-679, 10.5194/bg-12-653-2015, 2015.
 677 678 679 680 681 682 683 684 	 2001. Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653-679, 10.5194/bg-12-653-2015, 2015. Su, CH.: The study of the nutrient flux in Nan-Wan Bay, National Taiwan Ocean
 677 678 679 680 681 682 683 684 685 	 2001. Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653-679, 10.5194/bg-12-653-2015, 2015. Su, CH.: The study of the nutrient flux in Nan-Wan Bay, National Taiwan Ocean University, National Taiwan ocean university, 101 pp., 2009.
 677 678 679 680 681 682 683 684 685 686 	 2001. Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653-679, 10.5194/bg-12-653-2015, 2015. Su, CH.: The study of the nutrient flux in Nan-Wan Bay, National Taiwan Ocean University, National Taiwan ocean university, 101 pp., 2009. Suzuki, A.: Combined effects of photosynthesis and calcification on the partial

688	10.1007/BF02744376, 1998.
689	Suzuki, A. and Kawahata, H.: Reef water CO ₂ system and carbon production of coral
690	reefs: Topographic control of system-level performance, in: Global
691	environmental change in the ocean and on land, edited by: Shiyomi, M.,
692	Kawahata, H., Koizumi, H., Tsuda, A., and Awaya, Y., TERRAPUB, 229-248,
693	2004.
694	Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B.,
695	Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.:
696	Global sea-air CO_2 flux based on climatological surface ocean pCO_2 , and
697	seasonal biological and temperature effects, Deep-Sea Res. II Top. Stud.
698	Oceanogr., 49, 1601-1622, 10.1016/S0967-0645(02)00003-6, 2002.
699	Tew, K. S., Leu, M. Y., Wang, J. T., Chang, C. M., Chen, C. C., and Meng, P. J.: A
700	continuous, real-time water quality monitoring system for the coral reef
701	ecosystems of Nanwan Bay, Southern Taiwan, Mar. Pollut. Bull., 85, 641-647,
702	10.1016/j.marpolbul.2013.11.022, 2014.
703	Torréton, JP.: Biomass, production and heterotrophic activity of bacterioplankton in
704	the Great Astrolabe Reef lagoon (Fiji), Coral Reefs, 18, 43-53,
705	10.1007/s003380050152, 1999.
706	Wang, Z. A. and Cai, W. J.: Carbon dioxide degassing and inorganic carbon export
707	from a marsh-dominated estuary (the Duplin River): a marsh CO2 pump,
708	Limnol. Oceanogr., 49, 341-354, 10.4319/lo.2004.49.2.0341, 2004.
709	Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean,
710	J. Geophys. Res., 97, 7373-7382, 10.1029/92JC00188, 1992.
711	Ware, J. R., Smith, S. V., and Reaka-Kudla, M. L.: Coral reefs: sources or sinks of
712	atmospheric CO ₂ ?, Coral Reefs, 11, 127-130, 10.1007/BF00255465, 1992.
713	Watanabe, A. and Nakamura, T.: Carbon dynamics in coral reefs, in: Blue Carbon in
714	Shallow Coastal Ecosystems: carbon dynamic, policy, adn implementation,
715	edited by: Kuwae, T., and Hori, M., Springer, Singapore, 273-293, 10.1007/978-
716	981-13-1295-3, 2019.
717	Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas,
718	Mar. Chem., 2, 203-215, 10.1016/0304-4203(74)90015-2, 1974.
719	Wilkerson, F. P. and Trench, R. K.: Uptake of dissolved inorganic nitrogen by the
720	symbiotic clam Tridacna gigas and the coral Acropora sp., Mar. Biol., 93, 237-
721	246, 10.1007/BF00508261, 1986.
722	Wolanski, E. and Pickard, G. L.: Upwelling by internal tides and Kelvin waves at the
723	continental shelf break on the Great Barrier Reef, Australian Journal of Marine
724	and Freshwater Research, 34, 65-80, 10.1071/MF9830065, 1983.
725	Yan, H., Yu, K., Shi, Q., Lin, Z., Zhao, M., Tao, S., Liu, G., and Zhang, H.: Air-sea

726	CO ₂ fluxes and spatial distribution of seawater pCO ₂ in Yongle Atoll, northern-
727	central South China Sea, Cont. Shelf Res., 165, 71-77,
728	10.1016/j.csr.2018.06.008, 2018.
729	Yan, H. Q., Yu, K. F., Shi, Q., Tan, Y. H., Zhang, H. L., Zhao, M. X., Li, S., Chen, T.
730	R., Huang, Y., and Wang, P. X.: Coral reef ecosystems in the South China Sea as
731	a source of atmospheric CO ₂ in summer, Chin. Sci. Bull., 56, 676-684,
732	10.1007/s11434-011-4372-8, 2011.
733	Yang, R. T. and Dai, C. F.: Community structure and species diversity of reef corals at
734	Nanwan Bay, Taiwan, Acta Oceanogr. Taiwanica, 11, 238-251, 1980.
735	Yuan, D., Han, W., and Hu, D.: Surface Kuroshio path in the Luzon Strait area derived
736	from satellite remote sensing data, J. Geophys. Res., 111, C11007,
737	10.1029/2005JC003412, 2006.
738	

37