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Abstract

Clouds are a crucial regulator in the Earth's energy budget through their radiative properties, both at the top-of-the-atmosphere
and at the surface, hence determining key factors like their vertical extent is of essential interest. While the cloud top height is
commonly retrieved by satellites, the cloud base height is difficult to estimate from satellite remote sensing data. Here we present
a novel method leveraging spatially resolved cloud properties from the MODIS instrument to retrieve the cloud base height over
marine areas.  A machine learning model is built with two components to facilitate the cloud base height retrieval:  the first
component  is  an  autoencoder  designed  to  learn  a  representation  of  the  data  cubes  of  cloud  properties  and  reduce  their
dimensionality. The second component is developed for predicting the cloud base using ground-based ceilometer observations
from the lower dimensional encodings generated by the aforementioned autoencoder. The method is then evaluated based on a
collection of co-located surface ceilometer observations and retrievals from the CALIOP satellite lidar. The statistical model
performs well on both datasets, exhibiting accurate predictions in particular for lower cloud bases and a narrow distribution of
the  absolute  error,  namely  379 m and 328 m for  the  mean absolute  error  and  the  standard  deviation of  the  absolute  error
respectively for cloud bases in the test set. Furthermore, cloud base height predictions are generated for an entire year over
ocean, and global mean aggregates are also presented, providing insights about global cloud base height distribution and offering
a valuable dataset for extensive studies requiring global cloud base height retrievals. The global cloud base height dataset and the
presented models are available from Zenodo (Lenhardt et al., 2024).
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1 Introduction

Clouds play a key role in the Earth’s energy budget through their interactions with incoming shortwave and outgoing longwave
radiation fluxes.  It  is  thus critical  to adequately  quantify cloud radiative  properties  and their  changes  under global climate
change. However, cloud radiative properties remain a large uncertainty in estimating anthropogenic climate change and possible
impacts in the future (Boucher et al., 2013; Forster et al. 2021). Radiative properties of clouds are related to numerous quantities
that can be used to characterise them. For instance, the cloud base height (CBH) is a crucial radiative property through its impact
on the surface longwave radiation. Furthermore, the cloud geometrical thickness (CGT), defined as the difference between the
cloud top height (CTH) and the CBH, links to the adiabatic  cloud water  content allowing the quantification of the cloud’s
subadiabaticity. Additionally, deriving the CBH is of practical use for pilots, providing crucial information during flights.
However,  while  the  CTH can  be  rather  easily  obtained  through passive  satellite  observations,  the  CBH retrieval  remains
problematic due to the fact that it is only indirectly accessible to satellites, and due to retrieval errors related to satellite remote
sensing such as instrument shortcomings or noisy measurements. Since the difference between the CTH and the CBH quantifies
the vertical extent of a cloud, one way to retrieve the CBH from passive satellites is by making heavy assumptions on the vertical
distribution of the cloud water path inside the cloud profile. It is thus a challenging retrieval with passive satellites data that
provide information about the cloud top (e.g. cloud top temperature (CTT), pressure (CTP) or height (CTH)) or about the entire
column (e.g.  cloud optical  thickness  (COT))  assuming the  cloud’s  adiabaticity.  For  example,  Noh et  al.  (2017)  rely  on  a
semiempirical approach to link the CGT to the CTH and the cloud water path (CWP, includes both ice and liquid water paths). In
a different approach, Böhm et al. (2019) retrieve the CBH from triangulation of a multi-angle spectroradiometer. However, in
this case, assumptions were required on the distribution of convective clouds. On the other hand, active satellite remote sensing
retrieves  information with vertical  resolution which greatly helps resolving the clouds vertical  distribution. However,  active
satellite measurements can display attenuated signals close to the surface (Tanelli et al., 2008; Marchand et al., 2008) particularly
in the presence of thick clouds or precipitation, rendering the retrieval of the CBH difficult even for radar and lidar. Among
others, Mülmenstädt et al. (2018) and Lu et al. (2021) present methods focusing on low clouds which use the CBH from active
satellite  retrievals  of  neighbouring  thin  clouds  as  representative  of  the  surrounding  cloud  field.  Active  remote  sensing
additionally suffers from the sparse sampling that is confined to a narrow swath below the satellite. Finally, Goren et al. (2018)
combine information from both passive and active satellite remote sensing and rely upon an adiabatic cloud model to derive the
CBH. More generally, remote sensing retrievals of the CBH rely on the assumed homogeneity of the cloud field in the vicinity of
its base.
The retrieval of the CBH using satellite remote sensing data relies on a number of simplifying assumptions and is, consequently,
prone to errors.  Subsequent uncertainties  in the estimation of the CBH can then relate to uncertainties  in the overall  cloud
radiative effect (CRE) (Kato et al., 2011; Trenberth et al., 2009).
The  method  presented  here  leverages  passive  satellite  retrievals  of  cloud  properties  in  combination  with  marine  surface
observations to derive the CBH of a cloud scene using an innovative machine learning (ML) model. Our developed ML model
aims to draw on the spatial information present in a cloud scene in combination with relevant cloud properties to inform the CBH
prediction. As the CBH is typically derived from the surface, we focus on lower clouds in particular as the retrieval quality is
generally higher for those clouds, and as it is the lowest cloud that often matters most (e.g. for the surface radiation budget). The
combination  of  satellite  remote  sensing  and surface-based  CBH retrievals  has  the  potential  to  provide  robust  global  CBH
estimates. 
Section 2 firstly introduces the datasets and the co-location between ground-based observations and satellite retrievals. Secondly,
the ML method is described. In section 3 we evaluate our predictions against other methods including Noh et al. (2017) and other
products from active satellite measurements like the 2B-CLDCLASS-LIDAR product (Sassen et al., 2008). Section 4 presents
the global dataset of the CBH which is derived from the ML approach. We discuss the benefits and remaining challenges of our
method in section 5. Further details about the spatial distribution of the observations and the ML method are included in the
appendices A-E. Additional links to available data outputs and codes are listed in the corresponding sections.

2 Data and methods

In this study we approach the retrieval of the CBH of a cloud scene by combining marine surface-based observations of the CBH
and passive satellite retrievals of relevant cloud properties. The cloud scenes are defined within a tile of size 128 km x 128 km,
which incorporates different satellite-retrieved cloud properties at a 1 km horizontal resolution from the MODerate Resolution
Imaging Spectroradiometer (MODIS, Platnick et al. (2017)).  The satellite retrievals concern the CTH, the COT and the CWP,
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which are related to the ground-based CBH observations  (cf.  Table 1).  We focus on marine regions to remove the impact of
orography on surface observations especially for low level clouds.  The approach is based on the assumption that the  CBH is
homogeneous in the considered cloud scenes (similar to e.g., Böhm et al., 2019). To leverage the spatial extent of the cloud scene
and derive relevant features from the input channels, we rely on convolutional neural networks (CNNs, LeCun et al., 1989;
LeCun et al., 1995). This type of artificial neural network has been widely used in computer vision (Krizhevsky et al. ,  2012;
LeCun et al., 2010) but also more recently in various applications in climate science (Reichstein et al., 2019; Watson-Parris et al.,
2022). CNNs typically require a large number of labelled training samples due to their high number of parameters.  However, the
co-location step between surface-based observations and satellite retrievals limits the number of available data samples to train
the prediction model. We overcome this hurdle by introducing an unsupervised step using unlabeled satellite data.
Hence, the novel method we present here can be summarised in four main steps (Fig. 1) and are further elaborated on in the
following sections: Firstly, we co-locate ground-based CBH observations and corresponding satellite-retrieved cloud properties
from MODIS (cf. sections 2.1, 2.2, 2.3 for more information on ground-based observations, satellite retrievals and co-location,
respectively). Secondly, we train an autoencoder (AE) with a CNN backbone solely on MODIS data in order to extract relevant
features from the cloud scenes (section 2.4). Thirdly, we project the cloud properties tiles from the co-located dataset to the latent
feature space constructed by the encoder. Ultimately, we predict the CBH from the encodings using an ordinal regression model
(section 2.5). 

Figure 1: Schematic of the cloud base height retrieval method. 1) Co-location of surface-based cloud base height
observations and satellite retrievals. 2) Autoencoder training on satellite cloud properties. 3) Encoding of co-located

samples using the trained encoder. 4) Prediction of the cloud field base height.

2.1 Surface observations

The CBH labels used in this study are part of a global marine meteorological observation dataset maintained by the UK Met
Office  (Met  Office,  2006),  which  provides  observational  data  ongoing  from  1854.  The  observations  are  conducted  from
measuring stations that were located on ships, buoys or platforms. As a consequence, this study largely relies on observational
data representing the areas along the corresponding ship routes (Fig. 2a). At the beginning of meteorological and weather reports,
surface-based cloud observations were retrieved manually or visually by human observers, but they have been gradually replaced
by automated systems.
The CBH is derived using a ceilometer, an instrument based on a laser pointing upright and measuring the backscatter from the
cloud base, and is then reported following the current standards from the World Meteorological Organisation (WMO; WMO,
2019). The CBH observations are sorted into bins of increasing width (from 50 m to 500 m bin width) corresponding to the
altitude (Fig. 2b). As a result, the binning process can lead to an underestimation of the actual CBH, especially for a higher CBH
for which the bin size is larger. In addition, the surface-based observations specify quantities like temperature, humidity and
wind speed at a given time and location.
Despite their coarse resolution, the reported cloud base observations provide valuable information of clouds in remote marine
areas. The distribution of CBH observations and corresponding bins are shown in Figure 2.
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Data product Description Variables Resolution Usage

Global marine 
meteorological 
observations (Met 
Office, 2006)

Surface observations Cloud base height (m) Latitude/longitude 
coordinates 0.1°
Hourly/daily 
observations

Labels

MODIS Atmosphere 
L2 Cloud Product 
(MYD06) (Platnick et 
al., 2017)

Cloud-top properties, 
cloud optical and 
microphysical 
properties

Cloud top height, CTH 
(m)
Cloud optical thickness, 
COT (a.u.)
Cloud water path, CWP 
(g.m-2)

1 km pixel resolution
Daily overpass

Input features

MODIS Atmosphere 
L2 Cloud Mask 
Product (MYD35) 
(Ackerman et al., 
2017)

Cloud pixel flag Cloud mask 1 km pixel resolution
Daily overpass

Used for cloud 
scene filtering

Table 1 : Dataset description. The MODIS data are derived from the collection 6.1 of the datasets (Platnick et al., 2017;
Ackerman et al., 2017; cf. section 2.1). The surface observations are provided by a worldwide station network available

from the UK MetOffice (Met Office, 2006; cf. section 2.2).

Figure 2: (a) Spatial distribution of cloud base retrievals count (1 ° grid) and (b) distribution of the retrieved cloud base
height before and after the co-location and filtering process, for observations from the years 2008 and 2016.

2.2 Satellite data

In this study we use MODIS products from the AQUA satellites as input data that is later combined with the CBH labels derived
from the surface-based observations to train the prediction model. We choose MODIS satellite retrievals as they provide a large
amount of data with kilometre-scale resolution and daily overpasses. The spatial coverage of one swath is around 2330 km x
2000 km. We make use of the CUMULO dataset (Zantedeschi et al., 2019) since it provides already preprocessed satellite data
from the A-train with daily full coverage of the Earth for the years 2008 and 2016. In particular out of the available variables we
use  two aligned products (cf. Table 1), namely the  MODIS06 level 2 cloud product (hereafter MYD06; Platnick et al., 2017)
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which provides relevant cloud properties and the MODIS35 level 2 cloud flag mask (hereafter MYD35; Ackerman et al., 2017)
which allows us to filter scenes and screen for clouds.
The MYD06 product contains various cloud top properties (temperature, pressure, height) and cloud optical and microphysical
properties (optical thickness, effective radius, water path). Level 2 data are derived from calibrated radiances through various
algorithms and physical relations detailed in Platnick et al. (2017). The cloud top quantities are derived from radiance data of
several channels. Wavelengths in the CO2 absorption range are particularly used to identify the cloud top pressure (CTP) of high
clouds because of the opacity of CO2. For thicker or low boundary layer clouds, infrared bands are additionally required.  The
cloud optical thickness (COT) and cloud effective radius (CER) are simultaneously derived from multispectral reflectances,
cloud masks, CTP data and surface type characteristics. The cloud water path (CWP) is additionally retrieved as part of the cloud
optical properties algorithm described in Platnick et al. (2017).
In general, the MYD06 level 2 product offers the advantage that the statistical model can be built relying on cloud properties and
it can thus allow the study of relationships between the CBH and other cloud properties. Calibrated radiances, one step ahead in
the data processing pipeline, would also provide insightful information but would require inputs of larger dimensionality since
key information about clouds would be scarcer. Furthermore, using MYD06 level 2 data allows us to compare our method to
others which in most cases use cloud properties to retrieve the CBH. It is to be noted that the level 2 product provides pre-
processed data on top of the calibrated radiances and reflectances of level 1 data, which might introduce biases in the statistical
model. From the entirety of available MYD06 retrievals, we select three cloud properties in particular, namely the CTH, COT,
and CWP. The CTH is used as it provides key information about the CBH in the cloud field, as seen in Böhm et al. (2019).
Vertically integrated cloud quantities like the COT and CWP further help the statistical model by providing key information
about the cloud’s vertical extent, lacking in cloud top only properties, making them commonly used for retrieving the CBH (e.g.
Noh et  al.,  2017).  The CWP as computed from COT and CER, and,  in consequence,  also the CBH are built  on  adiabatic
assumptions  (Grosvenor  et  al.,  2018)  and  therefore  cannot  be  used  to  constrain  subadiabaticity  as  also  highlighted  in
Mülmenstädt et al. (2018).

2.3 Datasets co-location

We proceed to match our two data sources over the two years of data available. To obtain the cloud properties of the cloud scene
corresponding to the surface retrieval of CBH we select a square tile of 128 km from the closest MODIS swath available around
the observation location. Here  closest means that the MODIS swath contains the (latitude, longitude) coordinate of the CBH
observation and the satellite retrieval was made during a one hour time-window before/after the CBH observation time.  The
spatial scale of the extracted satellite retrieval was chosen in order to give enough spatial information to the AE while ensuring
the measured CBH is representative of the observed satellite retrieval. This spatial scale corresponds to using information from
clouds in approximately a 60 km radius around the observation location. Such a threshold is an adequate compromise between
considering all the relevant information while not discarding too many samples which might fall outside of the distance limit.
These spatial and temporal thresholds for the co-location are in line with other similar studies (Mülmenstädt et al. (2018) 100 km
and 1 hour; Lu et al. (2021) 150 km and 30 minutes; Böhm et al. (2019) 20 km and 15 minutes; Noh et al. (2017) 0.1 degree and
5 minutes) even though the data products are partially different here. We furthermore add a condition that the corresponding tile
is fully located inside of the swath to avoid any missing data in the cloud scene. The extracted tile is then filtered using the
MOD35 product to only keep the cloud scenes with at least a 30% cloud cover.  The latter condition is primarily aimed at
retrievals of poor quality leading to missing pixels which is predominantly the case for the COT and CWP channels for which
the retrieval fails more frequently. However it leads to a higher rate of removal for higher CBH observations (Fig. 2). Lowering
the cloud cover filter led to a higher number of usable samples but ultimately did not improve the model's performance.
The overall filtering and co-location process yields around 21 000 samples. This only represents around 1% of the initial CBH
observations mainly due to the co-location process both in time and space with the MODIS overpasses. Missing values and cloud
cover filters are an additional factor in the reduced number of co-located samples. The presented co-located dataset is the basis to
build our cloud scene CBH prediction.
Classical semi-supervised pipelines, like the one presented here, characterised by a small labelled dataset and a vast unlabelled
dataset, necessitate this kind of co-location or matching process. However, future avenues of research could consider directly
modelling unmatched datasets, as in e.g. Lun Chau et al. (2021), which could additionally make use of other variables present in
the surface observations.
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2.4 Autoencoder

To circumvent the lack of labelled samples from which the relevant features are extracted, and to work in a lower dimensional
space, we add a dimensionality reduction step to our method through an unsupervised learning model.  AEs (Kramer,  1991;
Hinton et al., 2006) offer a wide application spectrum, ranging from preprocessing to the generation of new outputs. AEs are
commonly  used  in  unsupervised  learning  settings  for  reducing  the  dimension  of  the  input  data to  leverage the  latent
representations learned by the model to perform clustering, classification or regression in a lower dimensional space  (Baldi et al.,
2012). We use classical AEs for their simplicity and versatility, but it should be noted that other approaches to unsupervised
latent representation learning, such as variational AEs and its many variants, can be used in a similar fashion.
In general, AEs learn to encode the given input data to produce a latent representation of lower dimension.  From  the latent
representation, the input data is then reconstructed. The learning process is driven by what is called the reconstruction loss that
minimises the difference between the input and the reconstructed output.
Here we use a convolutional AE architecture which is based on a CNN (LeCun et al., 1989; LeCun et al., 1995) backbone in
order to leverage the spatial structure of our input data (Pu et al., 2016). However, this unsupervised step requires a large amount
of data that the AE can learn from. Therefore, we select one full year of data  of MODIS swaths  from the CUMULO dataset
(from the year 2008, cf. section 2.2) and randomly sample tiles following the same criteria as during the co-location process (cf.
section 2.3). We thus create around 500 000 tiles to train our model. We sample a maximum of 20 tiles from a single swath and
this for only a single year of data in order to avoid possible spatial and temporal auto-correlation in the data used for training and
testing leading to a non-representative performance of the mode (Kattenborn et al., 2022). Further details on the study of the
generalisation performance of the model for new observations in space and time are given in appendix B.
Using the relevant MYD06 retrievals as input data (cf. section 2.2), we define several convolution layers grouped into a total of
five blocks for both the encoder and the decoder. The architecture of the decoder is thereby being mirrored to the encoder. Each
block consists of three convolutional layers with a kernel-size of 3 and Leaky Rectified Linear Units (LeakyReLu; Maas et al.,
2013) as activation functions. At the end of each block, a maximum pooling layer is added with a kernel-size and a stride of 2.
The model code was developed following implementations from the packages  PyTorch (Paszke et al., 2019) and TorchVision
(TorchVision, 2016).
The main goal of the AE is to minimise the loss function during the optimization or learning process, and to reproduce the input

data with the highest fidelity. We denote the sampled tiles used for training the AE by B={bi ∈ℝ3 ×128 ×128
}i ∈[1 , N ] , with

N ∼500 000. A common choice for the reconstruction metric is the ℓ2- norm: ℒreconstruction=∑
b∈ Bi

❑

||b−Dθ(Eθ(b))||2
2
 where

Bi represents a batch of samples and θ the parameters of the encoder E and decoder D models. Details of the AE architecture,

training and performance are provided in appendix C.

2.5 Cloud base height ordinal regression

Once the AE’s optimization process is completed (cf. appendix C),  the next step is to predict the corresponding CBH for the
observed scene.  As seen  in Figure 2,  the retrieved CBH observations are binned into different  categories  following WMO
standards (WMO, 2019). This leads to a prediction problem at the intersection of regression (i.e. predicting numerical values)
and classification (i.e. predicting the object class) called ordinal regression (OR; Winship et al., 1984). The labels from the target
variable are defined by classes following a certain order, in this case the increasing CBH. A wide array of methods stems from
this field with diverse applications for example in computer vision (e.g. Niu et al., 2016; Shi et al., 2023). Different methods
exist to tackle such problem setups either via modification of the target variable,  ordinal binary decomposition or threshold
modelisation (Gutiérrez et al., 2016; Pedregosa et al., 2017). Threshold models were shown to be able to perform better than the
ones designed for regression or multi-class classification on  OR tasks  (Rennie et al., 2005). Further details on threshold OR
models are added in appendix D. We use the OR implementation of threshold models from the mord Python package (based on
Pedregosa, 2015). A ℓ-2 regularisation term is also added during the optimization process. We adopt the macro-averaged mean
absolute error (MA-MAE) as our reference metric during hyperparameter tuning. This metric is in particular useful  for OR
problems when faced  with imbalanced  datasets  (Bacianella  et  al.,  2009).  Using a macro-averaged  metric  prevents  us from
choosing a trivial model which might always predict the dominating class. We additionally reported the macro-averaged root
mean square error (MA-RMSE) during training and validation of the models as it puts a larger penalty than the MAE on higher
errors and is also a useful performance indicator.
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3 Results, evaluation, and comparison to previous retrieval approaches

3.1 Cloud base height retrieval, evaluation and comparison to previous retrievals
 
In this section, we present the results of the retrieval, evaluate it using the ground-based observations, and investigate how our
method fares by comparing it to a method assuming an adiabatic cloud model (adapted from Goren et al. (2018), cf. appendix E
for implementation) and to the method from Noh et al. (2017). It is to be mentioned that, for the former the sources of the CTH
retrievals differ, and for the latter a different method was used for retrieving the CTH from the available MODIS CTP. For these
two methods we first compute a CBH value for each cloudy pixel of the scene that is then averaged. The analysis is performed
for the co-located scenes where ground-based observations are available. To be able to compare the relevant metrics for the
different methods we proceed to a binning of the data following the WMO standard presented in section 2.1. In Table 2 we report
several metrics including the MAE, the mean error (bias), the RMSE and the standard deviation of the absolute error. The latter
helps us characterise the spread and uncertainty in the overall predictions with respect to the surface observations. Furthermore,
we do not report quantities such as the correlation coefficient or the regression line on the 2-dimensional histograms of Figure 3
and Figure 4, as the stratified and categorical aspects of the data would make reporting these not clearly informative. It is to be
noted that later on we refer to the overall conceived method including the AE (cf. section 2.4) and the OR prediction model (cf.
section 2.5), listed in Table 2 as OR + AE, interchangeably as OR or as the prediction model.
We first note that the OR method with an immediate-threshold setup fails at predicting with good accuracy the cloud scene base
height, producing large errors (double-fold in comparison to the all-threshold setup). On the other hand the OR method with an
all-threshold setup performs well with satisfying error measures and uncertainty in the predictions. Compared to the method from
Noh et al. (2017), our method succeeds in decreasing on average the error, displaying a reduction of 100 m for the MAE. The
method also effectively diminishes the uncertainty in the CBH retrievals, bringing down the absolute error standard deviation
200 m lower. Our method thus provides accurate retrievals with comparatively low general uncertainty levels. Even though on
average  the  predictions  exhibit  a  slight  positive  bias,  we  find  that  the  CBH  values  above  2000 m  are  systematically
underestimated (Fig. 3). In consideration of the low representation of such observations in the dataset, due to data filtering and
surface observations being less reliable for higher clouds, the method still struggles to properly quantify the cloud scene base
height of these samples. These samples also make up for most of the measurement uncertainty in the labels considering that
ceilometers face challenges for retrieving cloud signals higher up in the boundary layer. Focusing on lower cloud scene base
height retrievals, the predictions demonstrate even lower errors: the MAE is lowered to 379 m while the absolute error standard
deviation is narrowed down to 328 m. Achieved accuracy levels and uncertainty measures attest to a certain trustworthiness of
the cloud scene base height estimates, in particular in the context of product requirements for example the ones outlined by the
Joint Polar Satellite System (JPSS; Goldberg et al. (2013); 2 km accuracy threshold). However,  the cloud scene base height
retrieval method presented here does not aim at constituting a product on its own as it is not operational with the processing of
daily new data available from the MODIS instrument, but rather at providing robust estimates of CBH for lower level clouds.
Therefore, it is expected and reasonable that the accuracies and uncertainties presented here are below such thresholds. However,
the available method code (Lenhardt et al., 2024) easily allows the processing of new data for users, in addition to the available
dataset for the year 2016.
We performed further sensitivity studies on our retrieval method trying to improve the quality of the predictions. An attempt to
balance the dataset by oversampling the higher CBH values (cloud base retrievals falling into the 2500 m bin), however, did not
yield  better  results  overall  but  also  posed  a  higher  risk  of  overfitting  to  these  specific  samples.  Furthermore,  any  spatial
information about the location of the satellite retrieval was not included as to prevent possible overfitting to the latitude and
longitude coordinates of the observations present in the training data. Since the observations are sparsely distributed especially in
the southern hemisphere (cf. figures from appendix A), the goal is to avoid any kind of induced spatial bias and sensitivity in the
model’s predictions. Accordingly we can then ensure proper generalisation skill to new spatial areas, but not only based on
known  retrieval  distributions  at  similar  locations.  Correspondingly,  the  generalisation  skill  of  the  model  requires  further
assessment to guarantee meaningful and representative predictions. Spatial generalisation is rather challenging as the co-located
samples are so sparsely distributed (Fig. A.3, Fig. A.4). Limiting the training dataset to a selected area would greatly hinder the
representativeness notably because the different labels display diverse spatial patterns. As a consequence, the choice was made to
evaluate the potential generalisation skill of the prediction model by establishing a geographic distribution of the mean predicted
cloud scene base height for a whole year’s worth of MODIS overpasses. This is discussed in more detail in section 4. On the
other hand, the temporal aspect of the model’s generalisation skill was intrinsically ensured by building a test set temporally
distinct from the training set, including co-located samples only from the last months of 2016.
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Method MAE (m) Bias (m) RMSE (m) Absolute error
standard deviation

(m)

Goren et al. (2018) 457 - 262 689 515

Noh et al. (2017) 578 - 35 860 638

OR (IT) + AE 991 + 595 1296 836

OR (AT) + AE 447 + 58 614 420

Table 2: Performance on the test set of different CBH retrieval methods. OR models are either built with the immediate
threshold (IT) or all threshold (AT) variant. The method on which the rest of the study is based has been highlighted in

bold.

3.2 Comparison to spaceborne radar-lidar retrievals of the CBH

The combined datasets  which are  part  of  CUMULO (Zantedeschi  et  al.,  2019),  in  particular  the radar  and lidar  retrievals,
facilitate the joint evaluation of our method with both ceilometer surface observations and active satellite retrievals. Specifically
we leverage the 2B-CLDCLASS-LIDAR product (Sassen et al., 2008) which is derived from the combination of CloudSat’s
Cloud  Profiling  Radar  (CPR;  Stephens  et  al.,  2008)  and  CALIPSO’s  Cloud‐Aerosol  Lidar  with  Orthogonal  Polarisation
(CALIOP; Hunt et al., 2009). The base height of the lowest cloud layer retrieved by the instruments in each scene is considered
the scene CBH and then averaged over the available pixels along the track, preserving the same spatial extent as the associated
cloud properties from the MODIS instrument. For the co-located samples of the year 2008, we thus jointly retrieve the obtained
CBH from the 2B-CLDCLASS-LIDAR product, only considering cases where a surface observation was in the vicinity of the
satellite track (inside a disc with a ~60 km radius around the surface observation, cf. section 2.3). For the samples fulfilling these
conditions, we then compare how the different retrievals fare. In Figure 4, the joint histograms for the surface observations, the
2B-CLDCLASS-LIDAR retrieval and the method’s corresponding predictions are documented, representing a total of around
800 samples.
Investigating the joint histogram between the surface observations and the 2B-CLDCLASS-LIDAR retrievals (Fig. 4a) allows to
identify shortcomings of the active satellite retrievals in particular close to the surface (Tanelli et al., 2008; Marchand et al.,
2008). Indeed, the 2B-CLDCLASS-LIDAR retrievals closer to the surface are not well captured as partially expected, due to
thick clouds attenuating the lidar signal, and due to ground clutter and lack of sensitivity to small droplets near cloud base for the
radar signal. A similar explanation can eventually be articulated as a whole for the co-located retrievals, considering that the
mean bias between the two retrievals is greater than + 600 m. Concurrently, it is fruitful to compare the 2B-CLDCLASS-LIDAR
retrievals with the predictions from the developed method (Fig. 4b). As seen previously, the OR method struggles at higher
CBHs, but agrees here reasonably well with the active satellite retrievals, especially for retrievals between 500 m and 1500 m.
Focusing on retrievals under 1.5 km, the prediction model achieves similar performance as presented in Table 2, even though the
subset here is much smaller.
Furthermore, we created a more extensive dataset using only 2B-CLDCLASS-LIDAR retrievals and the cloud scene predictions
with the aim of obtaining a more complete view of the relationship between these two retrievals. To this extent, we collated
around 160 000 samples of aligned cloud scene base height predictions and the 2B-CLDCLASS-LIDAR retrievals over the year
2016. For this dataset, the performance metrics exhibit similar values as on the previously presented subset, displaying even
lower values for the MAE and the absolute error standard deviation (around a 50 m decrease for both). Similarly to the previous
co-located subset, limiting the evaluation to lower cloud base retrievals yields performance metrics close to a 450 m MAE and a
270 m absolute error standard deviation, both of these being mainly impacted by agreeing retrievals in the 500 m to 1500 m
range.
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Figure 3: Joint histogram over the test set of the surface observations and the predicted cloud scene base height with the
ordinal regression all-threshold model. The 1:1 boxes are highlighted in orange in the figure.

4 Global distribution

To further evaluate the method, we also apply the prediction model on global MODIS data for the whole year of 2016. The
sampling process yields approximately 700 000 CBH retrievals for the corresponding cloud properties tiles. The final prediction
model was beforehand re-trained on the whole co-located dataset including the test set of section 3.1. We then spatially aggregate
the predictions over the year and consider the spatial mean and median absolute deviation (MAD). The MAD constitutes a useful
metric to quantify the variability while removing the effects of outliers. For more robust evaluation and statistics, only grid cells
with more than 100 CBH retrievals over the year are displayed thus impacting mostly coastal and polar regions. The spatial
distribution of the mean cloud base (Fig. 5, top) is similar to the outlined global distributions from other studies using different
instruments and methods (Böhm et al., 2019; Lu et al., 2021; Mülmenstädt et al., 2018). It is to be noted that the illustrated global
quantities were established using MODIS overpasses which happen at a practically constant local time (13:30 h , early afternoon
for AQUA). The MAD pattern exhibits similar characteristics (Fig. 5, bottom), even though variability slightly increases in the
vicinity of land masses. These interpretations still remain valid when looking at relative deviations. Typical features are lower
cloud bases towards polar regions and the mid-latitudes, and higher ones in the tropical regions. One can further observe regions
like  the  pacific  coast  of  South  America  or  the  Namibian  coast  which  display  lower  cloud bases  concurrently  with  lower
variability (also highlighted in Lu et al. (2021)). It is however impossible to follow up the study for nighttime retrievals, as some
MODIS cloud properties are not retrieved then.
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Figure 4: Joint histogram of (a) surface observations and 2B-CLDCLASS-LIDAR retrievals, and (b) ML-model
predictions and 2B-CLDCLASS-LIDAR retrievals, for the co-located cloud scenes during the year 2008. The 1:1 boxes

are highlighted in the figure in orange. 

5 Conclusion

We have presented here a novel method which retrieves the cloud scene base height over marine areas from MODIS cloud
properties, specifically CTH, COT and CWP. This method can produce robust CBH estimates for cloud scenes in particular for
lower cloud bases (MAE of 379 m and absolute error standard deviation of 328 m for up to 2 km cloud bases), based on the
assumption  of  a  homogeneous  cloud  base  across  the  considered  cloud  field.  The  statistical  model  was  built  on  surface
observations of cloud bases with ceilometers (section 2.1), and then evaluated in comparison to other methods using passive
satellite instruments (section 3.1) and active satellite retrievals (section 3.2). Analysis of the yearly averaged CBH (section 4)
helped to further make sense of the predicted cloud bases and variability. The global dataset for the year 2016 is available from
Zenodo (Lenhardt et al., 2024).
Using the spatially-resolved information of cloud fields with passive satellites allows to properly quantify lower cloud bases,
more specifically avoiding the noisy retrievals of active satellites closer to the surface. A CNN proves to be valuable to leverage
spatial information without making any assumption with respect to how the cloud quantities are related to the CBH. The OR
modelisation  helps  bridging  the  gap  between  regression  and  classification,  facilitating  the  use  of  the  binned  cloud  base
observations provided by the surface observation dataset. Overall, our prediction model achieves low error in the retrievals,
around 400 m,  and concurrently  a  narrow absolute  error  distribution,  more  precisely  around 400 m absolute error  standard
deviation. Both  of  these  performance  metrics  are  additionally  reduced  when  focusing  on  cloud  bases  lower  than  2 km.
Application to data over land areas has not been processed yet but would certainly require adding surface observations from land
during the training process (e.g. Böhm et al., 2019; Lu et al., 2021; Mülmenstädt et al., 2018).
The main benefit  of  producing better  cloud base estimates  is  to  gain accuracy  in  the  overall  retrieval  of  cloud geometry,
impacting in particular radiation estimates (Kato et al., 2011) like the surface downwelling longwave radiation (Mülmenstädt et
al., 2018). Our method can thus prove to be useful by helping to produce CBH with enhanced confidence at a global scale.
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Figure 5: Spatial distribution of (top) mean and (bottom) median absolute deviation of predicted cloud base height for the
MODIS data of the year 2016 aggregated on a 5 ° grid.
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Appendix

Appendix A: Cloud base height retrievals distribution

Figure A.1: Spatial distribution of cloud base height retrievals (Met Office, 2006) for the years 2008 and 2016 on a 5 °
grid. Overall percentage of each label in the total observations is indicated in brackets. Only grid cells with more than 50

retrievals are displayed.

Figure A.2: Mean cloud base height from retrievals (Met Office, 2006) for the years 2008 and 2016 on a 5 ° grid. Only
grid cells with more than 50 retrievals are displayed.
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Figure A.3: Spatial distribution of the co-located cloud base height retrievals (Met Office, 2006) and the satellite cloud
properties used for training the prediction model for the years 2008 and 2016 on a 5 ° grid. Overall percentage of each

label in the total dataset is indicated in brackets.

Figure A.4: Mean cloud base height from the co-located retrievals (Met Office, 2006) and the satellite cloud properties
used for training the prediction model for the years 2008 and 2016 on a 5 ° grid.
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Appendix B: Spatio-temporal correlation study

We create five different datasets to evaluate how the chosen AE architecture is capable of generalising to new data while trying
to remove some possible autocorrelation biases which might inflate the performance scores. We also use this study to analyse
how the AE model behaves when trained with our input data. We define two splits for space and time in order to build the
training and testing datasets, namely the South-western (SW) quadrant and the period from March to October, respectively. The
swaths used to build the datasets span across the whole year of 2016. The random data split is the basis for the training of the
model and consists of tiles sampled in the aforementioned quadrant and time period. These tiles are then split randomly between
training, validation and testing datasets. This split represents the common way of splitting data when building a ML model. In
contrast,  we  build  3  other  datasets  which  vary  through  their  respective  spatial  and  time  spans.  The  spatial split  is  built
considering  tiles  spanning  across  a  distinct  time period,  here  between  November  and  February,  regardless  of  their  spatial
location. The temporal split is built considering tiles located anywhere but in the South-western quadrant regardless of the time
at which the retrieval occurred. Finally the spatio-temporal split combines the previous two conditions in order to build a dataset
in which the tiles come from an independent location and time as the ones used for training. Additionally, we create a global data
split using data from a different year, here 2008, without any spatial restriction for the tiles. Furthermore, only a limited number
of tiles was extracted from each swath file while only swaths from non-consecutive days were used in order to limit possible
correlation between the extracted scenes.

Data split Time period Spatial extent 𝒏

Random 03-10.2016 SW quadrant Train: 14 691
Validation: 4 198
Test: 2 099

Spatial 03-10.2016 Global except SW quadrant 107 736

Temporal 01-02 and 11-12.2016 SW quadrant 12 420

Spatio-temporal 01-02 and 11-12.2016 Global except SW quadrant 30 659

Global 12.2008 Global 7 111

Table B.1 : Name, time period, spatial extent and number of samples for each of the five described data splits.

We then train an AE model using the training data from the first data split (random). Each test data split is then used to evaluate
the trained model through the reconstruction error (Fig. B.1). Spatial distribution of the mean reconstruction errors is shown in
Figure B.2.
We first  notice  that  the  reconstruction  power  of  the  model  is  consistent  regardless  of  the  test  split  considered  with mean
reconstruction error  ratios ranging from 0.63 to 1.0, dividing the split’s reconstruction error by the random data split  mean
reconstruction error. Ratios around 1 or below indicate that the model's performance is not inflated when considering a random
data split, highlighting that the model did not only learn from possible spatial and/or temporal correlations between samples
present in the training set. The distribution of the error is also very similar throughout the test splits with most of the samples
located below an error ratio of 0.5. However, one of the main aspects regarding the performance of the model across test splits is
the presence of a heavy tail in the distribution showcasing that for some samples the reconstruction error can be greater than 3
times the mean error. Looking at the spatial patterns of the reconstruction error, we note that overall the error comes from the
COT and CWP predictions, the average reconstruction errors across test sets being 0.15, 0.32 and 0.25 for CTH, COT and CWP
respectively (Table B.2). For the CTH, the error is concentrated in the zones with frequent convection around the equator and
could be explained by local convection cells exhibiting a larger spread in CTH values. Another source of error could be that
higher CTH values are also less represented in the training data. On the contrary, the error for COT and CWP is prevailing in
high-latitude regions. Overall, the performance skill of the AE model seems to hold through the different test data splits. One
could argue that  the training dataset  already retains enough variability in the data which could explain why the model still
performs well regardless of the test set split. However, this consistent skill also shows that the performance reported in appendix
C on the test set can be trusted to hold for other datasets and supports the data generation process to train the AE (cf. section 2.4).
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Figure B.1: Reconstruction error ratios of an AE on different test datasets. The quartiles are indicated with the barplot
inside each violin plot while the mean is indicated with an orange circle. Extreme values were removed before plotting.

Each sample’s reconstruction error is divided by the mean reconstruction error of the random data split.
 

Data split Channel Average

CTH COT CWP

Random 0.117 0.369 0.333 0.273

Spatial 0.171 0.344 0.276 0.263

Temporal 0.114 0.253 0.150 0.172

Spatio-temporal 0.202 0.332 0.286 0.274

Global 0.154 0.318 0.221 0.231

Average 0.152 0.323 0.253 0.243

Table B.2 : Average channel reconstruction relative error for each of the five described data splits.
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Figure B.2: Distribution of mean channel reconstruction errors aggregated on a 5 ° grid.
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Appendix C: Autoencoder architecture, training and performance

The two components of the AE model, namely the encoder and the decoder, consist of five convolution blocks. Each block is
then made of  three  convolution operators  followed by LeakyReLU activation functions (Maas  et  al.,  2013).  After  the last
convolution of each block, batch normalisation is added to help convergence (Ioffe et al., 2015) followed by a maximum pooling
layer. We then add linear layers to enforce the desired dimension of the latent space. The decoder architecture follows the same
principles with transposed convolution layers (Zeiler et al., 2010) replacing the pooling layers of the encoder. This is summarised
in  Table C.1. Details about the training of the AE are included in  Table C.2 and the loss history during training is shown in
Figure C.1.

Layer Hyperparameters Output shape
Input (None, 3, 128, 128)
Encoder
Conv2d (kernel = 3, stride = 2) (None, 3, 64, 64)
ConvBlock x 5 Conv2d (kernel = 3, stride = 1)

LeakyReLU
Conv2d (kernel = 3, stride = 1)

LeakyReLU
Conv2d (kernel = 3, stride = 1)

BatchNorm2d
LeakyReLU

MaxPool2d (kernel = 2, stride = 2)

(None, 256, 2, 2)

Flatten + Linear (None, 256)
Decoder
Linear + Unflatten (None, 256, 2, 2)
ConvTranspose2d (kernel = 2, stride = 2) (None, 256, 4, 4)
ConvTransposeBlock x 5 Conv2d (kernel = 3, stride = 1)

LeakyReLU
Conv2d (kernel = 3, stride = 1)

LeakyReLU
Conv2d (kernel = 3, stride = 1)

BatchNorm2d
LeakyReLU

ConvTranspose2d (kernel = 2, stride =
2)

(None, 3, 128, 128)

Table C.1 : Autoencoder model specifications.
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Hyperparameter Value
Batch size 64
Epochs 80
Optimizer Stochastic Gradient Descent (SGD), momentum = 0.9,

learning rate = 0.0001
Metric MSE
Early stopping patience = 20

Table C.2 : Autoencoder model training specifications.

Figure C.1 : Training and validation losses during model optimization.
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Appendix D: Ordinal regression

We define our labels y  which can take values in K=9 classes from {50 m, 100 m, …, 2500 m}. We introduce K−1 thresholds

α y to define the separation of our K  classes which actually correspond here to the classes too. For each labelled sample (s , y)

the output of our model is z=z (s). The correct interval for this this sample is then (α ¿¿ y−1 , α y)¿. We consider a generic

nonnegative penalisation function f (⋅) (eg. hinge loss, squared error loss, Huber loss). There are then different ways to represent

threshold violations and thus to penalise the predictor. While immediate-threshold setup only considers the thresholds of the
correct interval, all-threshold setup takes into account all the threshold violations. In the case of an immediate-threshold setup the
loss function would look like:

ℒ(z , y)=f ( z−α y−1)+ f (α y−z).

Here we can see that the loss is not aware of how many thresholds are actually violated. In the case of an all-threshold setup the
loss function is a sum of violations across all thresholds:

ℒ(z , y)=∑
i=1

K −1

f (t (i , y)(α y−z )),

where t (i , y )=−1 if i< y  or +1 if  i≥ y . Thus predictions are encouraged to violate the least amount of thresholds.

We give in  Figure D.1 an example of what the loss function would look like in the case of  K=6 labels and using a hinge

penalisation.

Figure D.1: Threshold-based setups loss function representation for a hinge penalisation, K=6 labels and target label y=5.
(left) Immediate-threshold and (right) All-threshold setup loss function. (figure adapted from Rennie et al. (2005))
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Appendix E: Cloud base height retrieval method assuming adiabatic cloud

Algorithm adapted from Goren et al. (2018). We use the retrieved CTH, CTT, CTP and CWP from MODIS MYD06 (Platnick et 
al., 2017).

Algorithm: Cloud base height retrieval 

    Data: CTH, CTT, CTP, LWP, look-up tables
    Result: CBH

    if CTT < 263.13 then
         return NaN
    T ←CTT - 273.13
    LWP obs ← LWP
    LWP adi ← 0.
    δ z  ←0.
    Set corresponding cloud top indexes for temperature T ind and pressure pind look-up tables.
    Read-in the water mixing ratio w at the corresponding indexes.
    if w  out of look-up table then
         return NaN
    while LWP adi < LWP obs then
         ρtmp ←density look-up table with T ind and pind

        δ tmp ←layer depth look-up table with T ind and pind

        δ z  ←δ z  + δ tmp

        w tmp ← mixing ratio look-up table with T ind and pind

        LWP adi ←LWP adi + (w¿¿ tmp−w)× δ ztmp × ρtmp¿

        Adjust temperature T given the saturated lapse rate using look-up table with T ind and pind

        Update indexes T ind and pind

    return CTH - δ z

Table E.1: Pseudo code for cloud base height retrieval algorithm assuming adiabatic cloud, adapted from Goren et al.
(2018).
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Code availability

The code used for the method and producing the plots is available on Zenodo (Lenhardt et al., 2024).

Data availability

The global dataset of the cloud base height predictions for the year 2016 is available on Zenodo (Lenhardt et al., 2024). The
dataset is available as a csv file with corresponding coordinates, MODIS swath file, time of retrieval and predicted cloud base
height or in a netCDF file as daily aggregates on a regular grid with a resolution of 1 ° or 5 °. The meteorological observations
from  the  UK  MetOffice  (Met  Office,  2006)  are  available  through  the  CEDA  archive  at
https://catalogue.ceda.ac.uk/uuid/77910bcec71c820d4c92f40d3ed3f249.  The files from the CUMULO dataset  (Zantedeschi et
al., 2019) are available at https://www.dropbox.com/sh/i3s9q2v2jjyk2it/AACxXnXfMF5wuIqLXqH4NJOra?dl=0.
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