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 Abstract 

 Clouds  are  a  crucial  regulator  in  the  Earth's  energy  budget  through  their  radiative  properties,  both  at  the  top-of-the-atmosphere 
 and  at  the  surface,  hence  determining  key  factors  like  their  vertical  extent  is  of  essential  interest.  While  the  cloud  top  height  is 
 commonly  retrieved  by  satellites,  the  cloud  base  height  is  difficult  to  estimate  from  satellite  remote  sensing  data.  Here  we  present 
 a  novel  method  called  ORABase  (Ordinal  Regression  Autoencoding  of  cloud  Base)  leveraging  spatially  resolved  cloud 
 properties  from  the  MODIS  instrument  to  retrieve  the  cloud  base  height  over  marine  areas.  A  machine  learning  model  is  built 
 with  two  components  to  facilitate  the  cloud  base  height  retrieval:  the  first  component  is  an  autoencoder  designed  to  learn  a 
 representation  of  the  data  cubes  of  cloud  properties  and  reduce  their  dimensionality.  The  second  component  is  developed  for 
 predicting  the  cloud  base  using  ground-based  ceilometer  observations  from  the  lower  dimensional  encodings  generated  by  the 
 aforementioned  autoencoder.  The  method  is  then  evaluated  based  on  a  collection  of  co-located  surface  ceilometer  observations 
 and  retrievals  from  the  CALIOP  satellite  lidar.  The  statistical  model  performs  similarly  on  both  datasets,  and  notably  on  the  test 
 set  of  ceilometer  cloud  bases  where  it  exhibits  accurate  predictions  in  particular  for  lower  cloud  bases  and  a  narrow  distribution 
 of  the  absolute  error,  namely  379 m  and  328 m  for  the  mean  absolute  error  and  the  standard  deviation  of  the  absolute  error 
 respectively.  Furthermore,  cloud  base  height  predictions  are  generated  for  an  entire  year  over  ocean,  and  global  mean  aggregates 
 are  also  presented,  providing  insights  about  global  cloud  base  height  distribution  and  offering  a  valuable  dataset  for  extensive 
 studies  requiring  global  cloud  base  height  retrievals.  The  global  cloud  base  height  dataset  and  the  presented  models  constituting 
 ORABase are available from Zenodo (Lenhardt et al., 2024). 
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 1 Introduction 

 Clouds  play  a  key  role  in  the  Earth’s  energy  budget  through  their  interactions  with  incoming  shortwave  and  outgoing  longwave 
 radiation  fluxes.  It  is  thus  critical  to  adequately  quantify  cloud  radiative  properties  and  their  changes  under  global  climate 
 change.  However,  cloud  radiative  properties  remain  a  large  uncertainty  in  estimating  anthropogenic  climate  change  and  possible 
 impacts  in  the  future  (Boucher  et  al.,  2013;  Forster  et  al.  2021).  Radiative  properties  of  clouds  are  related  to  numerous  quantities 
 that  can  be  used  to  characterise  them.  For  instance,  the  cloud  base  height  (CBH)  is  a  crucial  radiative  property  through  its  impact 
 on  the  surface  longwave  radiation.  Furthermore,  the  cloud  geometrical  thickness  (CGT),  defined  as  the  difference  between  the 
 cloud  top  height  (CTH)  and  the  CBH,  links  to  the  adiabatic  cloud  water  content  allowing  the  quantification  of  the  cloud’s 
 subadiabaticity. Additionally, deriving the CBH is of practical use for pilots, providing crucial information during flights. 
 However,  while  the  CTH  can  be  rather  easily  obtained  through  passive  satellite  observations,  the  CBH  retrieval  remains 
 problematic  due  to  the  fact  that  it  is  only  indirectly  accessible  to  satellites,  and  due  to  retrieval  errors  related  to  satellite  remote 
 sensing  such  as  instrument  shortcomings  or  noisy  measurements.  Since  the  difference  between  the  CTH  and  the  CBH  quantifies 
 the  vertical  extent  of  a  cloud,  one  way  to  retrieve  the  CBH  from  passive  satellites  is  by  making  heavy  assumptions  on  the  vertical 
 distribution  of  the  cloud  water  path  inside  the  cloud  profile.  It  is  thus  a  challenging  retrieval  with  passive  satellites  data  that 
 provide  information  about  the  cloud  top  (e.g.  cloud  top  temperature  (CTT),  pressure  (CTP)  or  height  (CTH))  or  about  the  entire 
 column  (e.g.  cloud  optical  thickness  (COT))  assuming  the  cloud’s  adiabaticity.  For  example,  Noh  et  al.  (2017)  rely  on  a 
 semiempirical  approach  to  link  the  CGT  to  the  CTH  and  the  cloud  water  path  (CWP,  includes  both  ice  and  liquid  water  paths).  In 
 a  different  approach,  Böhm  et  al.  (2019)  retrieve  the  CBH  from  triangulation  of  a  multi-angle  spectroradiometer.  However,  in 
 this  case,  assumptions  were  required  on  the  distribution  of  convective  clouds.  On  the  other  hand,  active  satellite  remote  sensing 
 retrieves  information  with  vertical  resolution  which  greatly  helps  resolving  the  clouds  vertical  distribution.  However,  active 
 satellite  measurements  can  display  attenuated  signals  close  to  the  surface  (Tanelli  et  al.,  2008;  Marchand  et  al.,  2008)  particularly 
 in  the  presence  of  thick  clouds  or  precipitation,  rendering  the  retrieval  of  the  CBH  difficult  even  for  radar  and  lidar.  Among 
 others,  Mülmenstädt  et  al.  (2018)  and  Lu  et  al.  (2021)  present  methods  focusing  on  low  clouds  which  use  the  CBH  from  active 
 satellite  retrievals  of  neighbouring  thin  clouds  as  representative  of  the  surrounding  cloud  field.  Active  remote  sensing 
 additionally  suffers  from  the  sparse  sampling  that  is  confined  to  a  narrow  swath  below  the  satellite.  Finally,  Goren  et  al.  (2018) 
 combine  information  from  both  passive  and  active  satellite  remote  sensing  and  rely  upon  an  adiabatic  cloud  model  to  derive  the 
 CBH.  The  retrieval  of  the  CBH  using  satellite  remote  sensing  data  relies  on  a  number  of  simplifying  assumptions  and  is, 
 consequently,  prone  to  errors.  Subsequently,  uncertainties  in  the  estimation  of  the  CBH  propagate  into  uncertainties  in  the  overall 
 cloud radiative effect (CRE) (Kato et al., 2011; Trenberth et al., 2009). 
 The  method  presented  here  called  ORABase  (Ordinal  Regression  Autoencoding  of  cloud  Base)  leverages  passive  satellite 
 retrievals  of  cloud  properties  in  combination  with  marine  surface  observations  to  derive  the  CBH  of  a  cloud  scene  using  a 
 machine  learning  (ML)  model.  The  CBH  retrieval  method  relies  on  level  2  satellite  data,  namely  three  different  cloud  properties 
 which  are  CTH,  COT  and  CWP.  A  convolutional  neural  network  (CNN,  LeCun  et  al.,  1989;  LeCun  et  al.,  1995)  model  following 
 the  autoencoder  (AE;  Kramer,  1991;  Hinton  et  al.,  2006)  framework  is  trained  in  a  self  supervised  way  to  reconstruct  the 
 previously  mentioned  cloud  properties.  This  type  of  artificial  neural  network  has  been  widely  used  in  computer  vision 
 (Krizhevsky  et  al.,  2012;  LeCun  et  al.,  2010)  but  also  more  recently  in  various  applications  in  climate  science  (Reichstein  et  al., 
 2019;  Watson-Parris  et  al.,  2022).  Thereafter,  an  ordinal  regression  (OR;  Winship  et  al.,  1984)  model  is  fitted  to  predict  the  CBH 
 corresponding  to  the  cloud  properties,  learning  from  ground-based  marine  CBH  retrievals.  These  different  steps  constituting  the 
 method  are  summarised  in  Figure  1  and  detailed  in  section  2.  The  objective  of  the  developed  method  is  primarily  to  produce 
 CBH  retrievals  with  reduced  uncertainty,  and  additionally  to  provide  extended  spatial  and  temporal  coverage  compared  to 
 surface  observations.  Indeed,  we  hypothesise  that  the  spatial  pattern  of  the  cloud  field  carries  information  about  the  CBH  and  that 
 the  CNN  can  exploit  the  potential  non-linear  relationship  between  the  CBH  and  the  satellite  observations.  Furthermore,  as  more 
 accurate  CBH  retrievals  are  obtained  from  ground-based  remote  sensing  observations  which  are  only  available  at  isolated 
 locations,  we  capitalise  on  these  retrievals  to  develop  a  satellite-based  retrieval  algorithm  capable  of  generalising  to  global 
 distributions.  We  sensibly  reduce  the  scope  of  the  study  by  focusing  on  lower  clouds,  in  particular  as  ground-based  CBH 
 observations  display  higher  accuracy  compared  to  satellite-based  retrievals  in  those  cases,  and  as  it  is  the  lowest  cloud  which 
 often  matters  most  for  e.g.  the  surface  radiation  budget.  We  also  restrict  the  retrievals  to  marine  regions  to  remove  the  impact  of 
 orography on surface observations especially for these same low level clouds. 
 Section  2  firstly  introduces  the  datasets  and  the  co-location  between  ground-based  observations  and  satellite  retrievals.  Secondly, 
 the  ML  method  constituting  ORABase  is  described.  In  section  3  we  evaluate  our  predictions  against  other  methods  including 
 Noh  et  al.  (2017)  and  other  products  from  active  satellite  measurements  like  the  2B-CLDCLASS-LIDAR  product  (Sassen  et  al., 

 4 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 

 77 

 78 

 79 

 80 

 81 

 82 

 83 

 84 

 85 

 86 



 2008).  Section  4  presents  the  global  dataset  of  the  CBH  which  is  derived  from  the  ML  approach.  We  discuss  the  benefits  and 
 remaining  challenges  of  our  method  in  section  5.  Further  details  about  the  spatial  distribution  of  the  observations  and  the  ML 
 method  are  included  in  the  appendices  A-E.  Additional  links  to  available  data  outputs  and  codes  are  listed  in  the  corresponding 
 sections. 

 2 Data and methods 

 Figure 1: Schematic of the cloud base height retrieval method. 1) Co-location of surface-based cloud base height 
 observations and satellite retrievals. 2) Autoencoder training on satellite cloud properties. 3) Encoding of co-located 

 samples using the trained encoder. 4) Prediction of the cloud field base height. 

 2.1 Surface observations 

 The  CBH  labels  used  in  this  study  are  part  of  a  global  marine  meteorological  observation  dataset  maintained  by  the  UK  Met 
 Office  (Met  Office,  2006;  Table  1),  which  provides  observational  data  ongoing  from  1854.  The  observations  are  conducted  from 
 measuring  stations  that  were  located  on  ships,  buoys  or  platforms.  As  a  consequence,  this  study  largely  relies  on  observational 
 data  representing  the  areas  along  the  corresponding  ship  routes  (Fig.  2a).  Despite  their  coarse  resolution,  the  reported  cloud  base 
 observations  provide  valuable  information  about  clouds  in  remote  marine  areas.  The  distribution  of  CBH  observations  and 
 corresponding bins are shown in Figure 2. 
 At  the  beginning  of  meteorological  and  weather  reports,  surface-based  cloud  observations  were  retrieved  manually  or  visually  by 
 human  observers,  but  they  have  been  gradually  replaced  by  automated  systems.  In  the  surface  observation  dataset  used  in  the 
 study,  the  CBH  is  derived  using  a  ceilometer,  an  instrument  based  on  a  laser  pointing  upright  and  measuring  the  backscatter  from 
 the  cloud  base,  and  is  then  reported  following  the  current  standards  from  the  World  Meteorological  Organisation  (WMO;  WMO, 
 2019).  The  CBH  observations  are  sorted  into  bins  of  increasing  width  (from  50 m  to  500 m  bin  width)  corresponding  to  the 
 altitude  (Fig.  2b)  as  the  data  transfer  through  radio  limits  the  amount  of  transferable  information  and  precision  close  to  the 
 surface  is  of  importance  notably  for  aircrafts.  Since  the  actual  measured  CBH  values  are  not  available  in  the  dataset,  it  is 
 impossible  to  directly  quantify  a  possible  bias  stemming  from  this  binning  process.  In  general  here,  we  can  suspect  that  the 
 available  CBH  retrievals  represent  an  accurate  or  underestimated  assessment  of  the  effective  CBH,  as  for  example  a  ceilometer 
 measuring  a  CBH  of  2490 m  will  be  reported  in  the  2000 m  bin  in  the  available  dataset.  Using  for  example  the  central  value  of 
 each  bin  could  be  another  way  to  compute  averages  to  potentially  alleviate  this  unknown  bias  but  it  is  not  presented  here. 
 However,  the  method  presented  in  the  following  sections  predicts  the  CBH  in  corresponding  bins,  so  it  is  left  to  the  user  to  use 
 these as they see fit for further analysis. 
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 Data product  Description  Variables  Resolution  Usage 

 Global marine 
 meteorological 
 observations (Met 
 Office, 2006) 

 Surface observations  Cloud base height (m)  Latitude/longitude 
 coordinates 0.1° 
 Hourly/daily 
 observations 

 Labels 

 MODIS Atmosphere 
 L2 Cloud Product 
 (MYD06) (Platnick et 
 al., 2017) 

 Cloud-top properties, 
 cloud optical and 
 microphysical 
 properties 

 Cloud top height, CTH 
 (m) 
 Cloud optical thickness, 
 COT (a.u.) 
 Cloud water path, CWP 
 (g.m  -2  ) 

 1 km pixel resolution 
 Daily overpass 

 Input features 

 MODIS Atmosphere 
 L2 Cloud Mask 
 Product (MYD35) 
 (Ackerman et al., 
 2017) 

 Cloud pixel flag  Cloud mask  1 km pixel resolution 
 Daily overpass 

 Used for cloud 
 scene filtering 

 Table 1 : Dataset description.  The surface observations are provided by a worldwide station network available from the 
 UK MetOffice (Met Office, 2006; cf. section 2.1). The MODIS data are derived from the collection 6.1 of the datasets 

 (Platnick et al., 2017; Ackerman et al., 2017; cf. section 2.2). 

 Figure 2: (a) Spatial distribution of cloud base retrievals count (1     ° grid) and (b) distribution of the retrieved  cloud base 
 height before and after the co-location and filtering process, for observations from the years 2008 and 2016. 

 2.2 Satellite data 

 In  this  study  we  use  products  from  the  MODerate  Resolution  Imaging  Spectroradiometer  (MODIS,  Platnick  et  al.,  2017)  from 
 the  AQUA  satellite  as  input  data  that  is  later  combined  with  the  CBH  labels  derived  from  the  surface-based  observations  to  train 
 the  prediction  model.  We  choose  MODIS  satellite  retrievals  as  they  provide  a  large  amount  of  data  with  kilometre-scale 
 resolution  and  daily  overpasses,  the  spatial  coverage  of  one  granule  representing  an  area  of  2330 km  x  2000 km.  We  make  use  of 
 the  CUMULO  dataset  (Zantedeschi  et  al.,  2019)  since  it  provides  already  preprocessed  satellite  data  from  the  A-train  with  daily 
 full  coverage  of  the  Earth  for  the  years  2008  and  2016.  In  particular  out  of  the  available  variables  we  use  two  aligned  products 
 (cf.  Table  1),  namely  the  MODIS06  level  2  cloud  product  (hereafter  MYD06;  Platnick  et  al.,  2017)  which  provides  relevant 
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 cloud  properties  and  the  MODIS35  level  2  cloud  flag  mask  (hereafter  MYD35;  Ackerman  et  al.,  2017)  which  allows  us  to  filter 
 scenes and screen for clouds. 
 The  MYD06  product  contains  various  cloud  top  properties  (temperature,  pressure,  height)  and  cloud  optical  and  microphysical 
 properties  (optical  thickness,  effective  radius,  water  path).  Level  2  data  are  derived  from  calibrated  radiances  through  various 
 algorithms  and  physical  relations  detailed  in  Platnick  et  al.  (2017).  The  cloud  top  quantities  are  derived  from  radiance  data  of 
 several  channels.  Wavelengths  in  the  CO  2  absorption  range  are  particularly  used  to  identify  the  cloud  top  pressure  (CTP)  and  thus 
 the  CTH  of  high  clouds  because  of  the  opacity  of  CO  2  .  For  thicker  or  low  boundary  layer  clouds,  since  the  CO2  slicing  technique 
 fails,the  CTH  is  retrieved  using  the  11  µm  brightness  temperature  band  and  combined  with  simulated  brightness  temperatures 
 based  on  vertical  profiles  from  GDAS  using  surface  temperature  together  with  monthly  averaged  lapse  rate  data  (Baum  et  al., 
 2012).  The  use  of  monthly  averaged  lapse  rate  data  separately  for  different  regions  greatly  helped  reduce  the  bias  in  retrieved 
 CTHs  for  low  clouds  in  the  Collection  6  of  MYD06  from  Collection  5,  but  some  spatial  and  regional  biases  remain.  These  biases 
 directly  impact  the  spatial  and  temporal  distribution  of  CTH  in  the  data  and  thus  what  the  model  could  learn  from.  The  cloud 
 optical  thickness  (COT)  and  cloud  effective  radius  (CER)  are  simultaneously  derived  from  multispectral  reflectances,  cloud 
 masks,  CTP  data  and  surface  type  characteristics.  The  cloud  water  path  (CWP)  is  additionally  retrieved  as  part  of  the  cloud 
 optical  properties  algorithm  described  in  Platnick  et  al.  (2017).  The  retrieval  of  these  cloud  properties  additionally  requires  inputs 
 such  as  temperature,  water  vapour  and  ozone  profiles  from  NCEP  GDAS  (Platnick  et  al.,  2003;  Baum  et  al.,  2012)  which  can 
 lead  to  potential  uncertainties  in  particular  in  remote  marine  regions  where  only  sparse  observations  are  available  for 
 assimilation. 
 In  general,  the  MYD06  level  2  product  offers  the  advantage  that  the  statistical  model  can  be  built  relying  on  cloud  properties  and 
 it  can  thus  allow  the  study  of  relationships  between  the  CBH  and  other  cloud  properties.  Calibrated  radiances,  one  step  ahead  in 
 the  data  processing  pipeline,  would  also  provide  insightful  information  but  would  require  inputs  of  larger  dimensionality  since 
 key  information  about  clouds  would  be  scarcer.  Furthermore,  using  MYD06  level  2  data  allows  us  to  compare  our  method  to 
 others  which  in  most  cases  use  cloud  properties  to  retrieve  the  CBH.  From  the  entirety  of  available  MYD06  retrievals,  we  select 
 three  cloud  properties  in  particular,  namely  the  CTH,  COT,  and  CWP.  The  CTH  is  used  as  it  provides  key  information  about  the 
 CBH  in  the  cloud  field,  as  seen  in  Böhm  et  al.  (2019).  Vertically  integrated  cloud  quantities  like  the  COT  and  CWP  further  help 
 the  statistical  model  by  providing  key  information  about  the  cloud’s  vertical  extent,  lacking  in  cloud  top  only  properties,  making 
 them  commonly  used  for  retrieving  the  CBH  (e.g.  Noh  et  al.,  2017).  The  CWP  as  computed  from  COT  and  CER,  and,  in 
 consequence,  also  the  CBH  are  built  on  adiabatic  assumptions  (Grosvenor  et  al.,  2018)  and  therefore  cannot  be  used  to  constrain 
 subadiabaticity as also highlighted in Mülmenstädt et al. (2018). 

 2.3 Datasets co-location 

 We  proceed  to  colocate  our  two  data  sources  over  the  two  years  of  MODIS  MYD06  data  available.  To  obtain  the  cloud  properties 
 of  the  cloud  scene  corresponding  to  the  surface  retrieval  of  CBH,  we  select  a  square  tile  of  128 km  x  128 km  from  the  closest 
 MODIS  granule  available  centred  around  the  observation  location.  Here  closest  means  that  the  MODIS  granule  contains  the 
 (latitude,  longitude)  coordinate  of  the  CBH  observation  and  the  full  extent  of  the  tile  centred  around,  and  that  the  satellite 
 retrieval  was  made  during  a  one  hour  time-window  before/after  the  CBH  observation  time.  The  spatial  and  temporal  thresholds 
 used  to  colocate  the  surface  observations  and  the  satellite  retrievals  are  chosen  for  several  reasons.  Mainly,  we  want  the  satellite 
 cloud  properties  to  be  representative  of  the  cloud  scene  for  which  the  CBH  observation  was  made.  Additionally,  we  want  to 
 recover  a  satisfying  number  of  samples  during  the  colocation  process.  Further  arguments  regarding  the  sensitivity  of  the  retrieval 
 method to the tile size are described in the following method section 2.5. 
 The  extracted  tile  corresponding  to  the  surface  observation  is  then  filtered.  A  first  filter  is  applied  to  missing  values  in  the 
 different  cloud  properties  fields  to  primarily  avoid  retrievals  of  poor  quality.  This  is  predominantly  the  case  for  the  COT  and 
 CWP  fields  for  which  the  retrieval  fails  more  frequently,  sometimes  entirely.  Another  filtering  is  concordantly  done  using  the 
 MYD35  product  for  cloud  cover  (minimum  of  30%  of  cloudy  pixels)  to  ensure  the  cloud  field  was  substantial  enough  for  the 
 colocated  surface  observation  to  be  representative.  Additional  comments  on  the  sensitivity  of  the  CBH  retrieval  to  this  threshold 
 are  presented  in  the  following  section  on  the  downstream  task  of  CBH  prediction.  Throughout  the  quality  filtering  process,  the 
 missing  data  is  one  of  the  major  factors  impacting  the  amount  of  retained  samples.  On  Figure  2,  we  can  see  that  it  seems  to 
 impact the clouds with higher CBHs. 
 The  overall  filtering  and  co-location  process  yields  around  21 000  samples.  This  only  represents  around  1%  of  the  initial  CBH 
 observations  mainly  due  to  the  co-location  process  both  in  time  and  space  with  the  MODIS  overpasses.  Missing  values  and  cloud 
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 cover  filters  are  an  additional  factor  in  the  reduced  number  of  co-located  samples.  The  presented  co-located  dataset  is  the  basis  to 
 build our cloud scene CBH retrieval. 

 2.4 Autoencoder 

 To  circumvent  the  lack  of  labelled  samples  from  which  the  relevant  features  are  extracted,  and  to  learn  useful  lower-dimensional 
 representations  of  the  data,  we  add  a  dimensionality  reduction  step  to  our  method  through  an  unsupervised  learning  model.  AEs 
 offer  a  wide  application  spectrum,  ranging  from  preprocessing  to  the  generation  of  new  outputs.  AEs  are  commonly  used  in 
 unsupervised  learning  settings  for  reducing  the  dimension  of  the  input  data  to  leverage  the  latent  representations  learned  by  the 
 model  to  perform  clustering,  classification  or  regression  in  a  lower  dimensional  space  (Baldi  et  al.,  2012).  We  use  classical  AEs 
 for  their  simplicity  and  versatility,  but  other  approaches  to  unsupervised  latent  representation  learning,  such  as  variational  AEs 
 and  its  many  variants,  can  be  used  in  a  similar  fashion.In  general,  AEs  learn  to  encode  the  given  input  data  to  produce  a  latent 
 representation  of  lower  dimension.  From  the  latent  representation,  the  input  data  is  then  reconstructed.  The  learning  process  is 
 driven by what is called the reconstruction loss that minimises the difference between the input and the reconstructed output. 
 Here  we  use  a  convolutional  AE  architecture  which  is  based  on  a  CNN  backbone  in  order  to  leverage  the  spatial  structure  of  our 
 input  data  (Pu  et  al.,  2016).  We  rely  on  the  widely  employed  CNN  architectures  U-Net  (Ronneberger  et  al.,  2015)  and  VGG 
 (Simonyan  and  Zisserman,  2015),  where  the  convolution  layers  are  based  on  3x3  filters,  stacked  in  blocks  followed  by  maximum 
 pooling  layers,  and  mirrored  for  the  decoder  part  of  the  model  using  transposed  convolution  layers  (Zeiler  et  al.,  2010).  We  adapt 
 the  size  of  the  input  to  fit  our  chosen  tile  size  (128),  the  latent  space  size  to  256,  and  use  the  improved  Leaky  Rectified  Linear 
 Units  (LeakyReLu;  Maas  et  al.,  2013)  over  the  original  ReLU  (Nair  and  Hinton,  2010)  as  activation  functions.  The  detailed 
 parameterization  of  the  model  is  described  in  Appendix  C.  The  model  code  was  developed  following  implementations  from  the 
 packages  PyTorch  (Paszke  et  al.,  2019)  and  TorchVision  (TorchVision,  2016)  and  is  included  in  the  related  Zenodo  archive 
 (Lenhardt  et  al.,  2024).  The  main  goal  of  the  AE  training  is  then  to  minimise  the  loss  function  during  the  optimization  or  learning 
 process,  and  to  reproduce  the  input  data  with  the  highest  fidelity.  For  the  loss  function  which  in  this  case  is  only  the 
 reconstruction error, we use the common mean-squared error (MSE), which can be written for a batch of samples as : 

 (1)  ℒ 
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 where,  with  the  tiles  used  for  training  the  AE  noted  as  ,  represents  a  batch  of  samples  of  size  𝐵    =    { 𝑏 
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 and  the  combined  parameters  of  the  encoder  E  and  decoder  D  models.  The  MSE  considered  here  between  the  inputs  and  𝑁 
 𝑖 

θ

 outputs  of  the  AE  is  unitless,  as  the  inputs  are  standardised  before  processing  to  ensure  each  channel  is  on  similar  scales  and  a 
 more stable model training. 
 However,  this  self  supervised  step  requires  a  large  amount  of  data  that  the  AE  can  learn  from.  Therefore,  we  select  one  full  year 
 of  data  of  MODIS  granules  from  the  CUMULO  dataset  (from  the  year  2008,  cf.  section  2.2)  and  randomly  sample  tiles  following 
 the  same  criteria  as  during  the  co-location  process  (cf.  section  2.3).  We  sample  a  maximum  of  20  tiles  from  a  single  granule  and 
 this  for  only  a  single  year  of  data  in  order  to  avoid  possible  spatial  and  temporal  auto-correlation  in  the  data  used  for  training  and 
 testing  leading  to  a  non-representative  performance  of  the  mode  (Kattenborn  et  al.,  2022).  Further  details  on  the  study  of  the 
 generalisation  performance  of  the  model  for  new  observations  in  space  and  time  are  given  in  appendix  B.  The  overall  built 
 dataset  consists  of  around  500  000  samples  which  are  then  splitted  for  training,  validation  and  testing  based  on  their  retrieval 
 date.  For  further  testing,  we  additionally  create  a  test  dataset  based  solely  on  data  from  the  year  2016  which  includes  tiles  not 
 only  over  ocean  but  also  over  land,  indicating  potential  generalisation  skill  for  unseen  data  including  orography  influence.  The 
 reconstruction  error  during  training  and  validation  is  shown  in  Figure  3  along  with  examples  of  reconstructed  samples.  The 
 spatially  averaged  reconstruction  errors  per  cloud  property  channel  are  displayed  in  Figure  4  for  each  of  the  training,  validation 
 and  testing  datasets  previously  mentioned.  The  trained  model  reaches  an  MSE  of  0.19  on  the  test  set  of  2008  and  of  0.24  on  the 
 global  test  set  of  2016.  The  presented  model  is  trained  on  tiles  of  size  128x128,  but  some  arguments  regarding  the  choice  of  the 
 tile size are made in the following section in the context of the downstream task of CBH prediction. 
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 Figure 3: (left) Training and validation losses during model optimization. (right) Examples of tiles (first and third rows) 
 with the corresponding reconstructions (second and fourth rows) for the different cloud property channels. 

 Figure 4: Spatial distribution of channel reconstruction errors aggregated on a 5     ° grid for the 2008 training,  validation, 
 test and the 2016 test datasets. 
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 2.5 Cloud base height ordinal regression 

 Once  the  AE’s  optimization  process  is  completed,  the  next  step  is  to  predict  the  corresponding  CBH  for  the  observed  scene.  As 
 seen  in  Figure  2,  the  retrieved  CBH  observations  are  binned  into  different  categories  following  WMO  standards  (WMO,  2019). 
 This  leads  to  a  prediction  problem  at  the  intersection  of  regression  (i.e.  predicting  numerical  values)  and  classification  (i.e. 
 predicting  the  object  class)  called  ordinal  regression  (OR).  The  labels  from  the  target  variable  are  defined  by  classes  following  a 
 certain  order,  in  this  case  the  increasing  CBH.  A  wide  array  of  methods  stems  from  this  field  with  diverse  applications  for 
 example  in  computer  vision  using  neural  networks  (e.g.  Niu  et  al.,  2016;  Shi  et  al.,  2023;  Lazaro  and  Figueiras-Vidal,  2023). 
 Different  methods  exist  to  tackle  such  problem  setups  either  via  modification  of  the  target  variable,  ordinal  binary  decomposition 
 or  threshold  modelisation  (Gutiérrez  et  al.,  2016;  Pedregosa  et  al.,  2017).  Threshold  models  were  shown  to  be  able  to  perform 
 better  than  the  ones  designed  for  regression  or  multi-class  classification  on  OR  tasks  (Rennie  et  al.,  2005).  We  consider  here  two 
 alternative  frameworks  in  the  case  of  threshold  models  which  differ  in  how  they  penalise  threshold  violations: 
 immediate-threshold  (IT;  Eq  D.1)  and  all-threshold  (AT;  Eq  D.2).  The  overall  training  process  of  the  model  aims  at  optimising  a 
 set  of  weights  to  project  the  input  data  to  a  one  dimensional  plane,  subsequently  dividing  the  constructed  representation  using 
 learnable  thresholds.  These  two  implementations  of  threshold  models  are  available  from  the  mord  Python  package  (based  on 
 Pedregosa, 2015) and further details on threshold OR models are added in appendix D. 
 To  help  evaluate  the  prediction  model,  we  rely  on  a  set  of  different  metrics  pertaining  either  to  the  regression  aspect  of  the 
 problem  or  to  its  classification/ordinal  nature.  First,  the  macro-averaged  mean  absolute  error  (MA-MAE)  is  used  as  it  weights 
 each  class  separately  before  averaging  the  subset  MAEs,  making  it  useful  in  the  case  of  OR  problems  with  imbalanced  datasets 
 (Baccianella  et  al.,  2009).  Using  a  macro-averaged  metric  prevents  us  from  choosing  a  trivial  model  which  might  always  predict 
 the  dominating  class.  Additionally,  the  macro-averaged  root  mean  square  error  (MA-RMSE)  is  also  used  to  investigate  the  skill 
 of  the  prediction  models.  To  assess  the  ordering  of  the  predicted  retrievals  with  respect  to  the  labels,  the  ordinal  classification 
 index  (OC;  Cardoso  and  Sousa,  2011)  and  its  updated  version  the  uniform  ordinal  classification  index  (UOC;  Silva  et  al.,  2018) 
 are  computed.  A  version  of  the  latter  not  requiring  an  extra  hyperparameter,  the  area  under  the  UOC  (AUOC;  Silva  et  al.,  2018), 
 is  also  reported.  These  different  metrics  are  able  to  capture  the  proper  ranking  order  of  the  predictions  compared  to  the  labels 
 using  the  confusion  matrix  and  also  the  overall  accuracy  of  the  prediction  model.  Nevertheless,  one  caveat  is  that  these  indexes 
 developed  for  ordinal  classification  assume  each  class  to  be  equally  distant  from  another  which  is  not  the  case  here  since  the 
 CBH  retrievals  are  reported  in  bins  of  variable  width.  However,  a  purely  ordinal  classification  index  will  drop  all  information  on 
 the  scale  of  the  response  (1500  m  misclassified  as  600  m  treated  the  same  as  200  m  misclassified  as  50  m,  since  only  the  order 
 matters)  which  might  be  not  entirely  appropriate  for  this  problem.  In  an  effort  to  address  this  limitation,  the  indexes  are  adapted 
 to  mimic  the  spacing  between  the  different  CBH  bin  classes  by  incorporating  classes  that  are  all  spaced  by  50  m,  ranging  from  50 
 m up to 2500 m. In this manner, the CBH class difference is more suited to the actual nature of the retrieval. 
 However,  several  aspects  of  the  ordinal  regression  model  need  to  be  investigated  first.  To  this  extent,  we  first  divide  our  global 
 colocated  dataset  (section  2.3)  in  training,  validation  and  testing  datasets  but  while  ensuring  each  class  is  relatively  equally 
 represented  in  each  split.  The  following  aspects  and  sensitivities  of  the  model  to  the  input  data  parameters  are  assessed  using  the 
 training  and  validation  datasets:  the  potential  benefit  of  using  the  spatial  context  through  the  AE,  the  input  tile  size  and  the  cloud 
 cover  threshold.  Moreover,  the  spatial  generalisation  skill  of  the  model  is  studied  by  splitting  the  colocated  dataset  between  the 
 Northern  and  Southern  hemispheres.  For  each  of  these,  the  performance  for  the  AT  variant  of  the  OR  model  is  reported  as  it 
 performs significantly better than the IT variant across experiments and evaluation metrics. 

 2.5.1 Spatial context 
 In  order  to  evaluate  the  actual  effect  of  the  spatial  context  with  respect  to  the  input  cloud  properties,  the  prediction  skill  of  the 
 model  trained  based  on  the  AE  encodings  is  compared  to  a  collection  of  three  baseline  methods:  two  trivial  methods  (predicting 
 the  majority  bin  and  predicting  the  bin  minimising  the  MAE  across  the  training  dataset)  and  an  OR  method  relying  on  the 
 flattened  cloud  properties  of  a  9x9  tile  centred  around  the  observation.  Both  of  the  trivial  methods  result  in  always  predicting  the 
 CBH  bin  of  600  m.  The  third  method  yields  a  similar  dimensionality  as  the  AE  encodings  (3  channels  x  9  x  9  =  243)  and  thus 
 helps  to  show  how  the  AE  potentially  leverages  some  spatial  information  about  the  cloud  scene.  Across  all  metrics,  the  method 
 using  the  9x9  tile  input  is  outperformed  by  the  OR  method  based  on  the  AE  encodings  and  even  by  the  trivial  choice  of  the 
 majority  bin.It  is  in  particular  noticeable  with  an  increase  of  the  MA-RMSE  by  400  m  and  of  the  MA-MAE  by  140  m  compared 
 to  the  OR  predictions  made  with  the  AE.  On  the  other  hand,  considering  the  predictions  made  with  the  trivial  method  leads  to  an 
 increase  of  the  MA-MAE  of  50  m,  but  a  decrease  in  MA-RMSE  as  most  of  the  labels  are  actually  concentrated  around  the  600  m 
 bin.  The  mean  bias  of  the  trivial  method  is  lowered  closer  to  0  m  as  it  leads  to  a  more  substantial  underestimation  of  the  high 
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 CBHs  and  overestimation  of  the  low  CBHs.  To  conclude  the  comparison  with  these  two  other  baselines,  the  information  spatially 
 encoded  by  the  AE  over  the  whole  tile  size  area  is  useful  in  producing  CBH  retrievals  of  better  quality  compared  to  a  baseline 
 OR model with a reduced spatial context or a trivial method predicting a singular bin. 

 2.5.2 Tile size 
 A  prediction  model  is  fitted  to  the  input  data  using  encodings  produced  with  tailored  AE  models  trained  as  detailed  in  the 
 previous  section  but  with  varying  square  input  tile  sizes  of  16,  64  and  128.  With  the  subsequent  prediction  models,  the  retrievals 
 made  with  a  tile  size  of  128  showcase  the  lowest  MA-MAE  (0.8%  and  2.7%  decreases  compared  to  tile  sizes  of  16  and  64 
 respectively)  and  MA-RMSE  (around  a  5%  decrease  compared  to  both  other  tile  sizes),  while  no  clear  sensitivity  arises  from  the 
 OC,  UOC  or  AUOC.  Examining  performance  for  each  class  separately  indicates  reduced  errors  (MAE  and  RMSE)  for  higher 
 CBHs  (above  1000  m)  using  the  larger  tile  size  of  128  and  on  par  performance  across  tile  sizes  for  lower  CBHs.  In  the  context  of 
 the  presented  CBH  retrieval,  the  larger  spatial  information  provided  through  the  input  tile  seems  to  be  useful  for  the  subsequent 
 CBH prediction task, leveraged with the help of the AE as shown previously. 

 2.5.3 Cloud cover 
 The  colocated  dataset  is  first  filtered  again  with  cloud  cover  thresholds  of  10%,  20%  and  30%.  Each  threshold  respectively  leads 
 to  datasets  of  25  042,  23  034  and  21  065  samples  which  are  then  further  splitted  in  training,  validation  and  testing.  On  the 
 validation  set,  while  the  decreases  in  MA-MAE  (4.5%)  and  MA-RMSE  (10%)  with  the  10%  compared  to  the  30%  cloud  cover 
 threshold  are  indicating  a  potential  benefit  of  lowering  the  threshold,  investigating  the  MAE  and  class-wise  MAEs  sheds  a 
 different  picture:  the  benefit  seems  to  marginally  concern  the  higher  CBH  classes  while  hindering  performances  on  low  CBHs 
 which  overall  explains  the  trend  in  RMSE  notably.  Considering  the  confusion  matrices  generated  for  each  cloud  cover  threshold 
 additionally  shows  that  a  lower  cloud  cover  threshold  results  in  a  slightly  increasing  distribution  shift  of  the  predicted  CBH 
 classes  towards  higher  CBHs,  displaying  a  prediction  cluster  around  1000m.  Overall,  the  benefit  of  additional  available  samples 
 when  lowering  the  cloud  cover  threshold  does  not  seem  to  directly  lead  to  convincing  improved  performance.  The  main  axis  of 
 improvement  here  is  probably  lying  in  the  widening  of  the  colocation  process  to  ensure  broader  spatial  and  temporal  coverage  of 
 the training dataset. 

 2.5.4 Spatial generalisation 
 Furthermore,  in  a  similar  way  as  for  investigating  the  spatial  generalisation  ability  of  the  AE,  we  split  our  colocated  dataset 
 between  the  Northern  and  Southern  hemispheres.  This  way,  we  ensure  a  minimal  amount  of  samples  in  each  spatial  split  (17  615 
 and  3  450  for  the  Northern  and  Southern  hemispheres  respectively)  even  though  the  spatial  distribution  patterns  of  the  retrievals 
 greatly  differ.  As  a  result,  the  lower  amount  of  samples  in  the  Southern  hemisphere  leads  to  some  overtfitting  with  metrics 
 systematically  worsening  when  testing  on  the  Northern  hemisphere.  However,  the  Northern  hemisphere  training  displays  fair 
 generalisation  skill  with  equal  or  improved  metrics  when  testing  on  the  Southern  hemisphere,  for  example  an  8%  decrease  in 
 MA-RMSE,  1%  decrease  in  OC  and  stable  MA-MAE,  UOC  and  AUOC.  The  class-wise  performances  for  the  two  splits  reveal 
 the  overall  generalisation  difficulty  for  higher  CBHs  (above  600  m)  when  training  on  the  Southern  hemisphere,  as  the  labels 
 relative  to  these  classes  are  mostly  present  in  the  Northern  hemisphere  (Figure  A.3).  The  ability  of  the  model  to  generalise  from 
 the Northern hemisphere labels reassures the overall skill of the model once trained on all the labels available. 

 In  the  following  section,  we  present  the  results  of  the  developed  method  alongside  comparisons  to  previous  retrieval  approaches. 
 In  particular,  we  compare  our  retrieval  to  a  method  assuming  an  adiabatic  cloud  model  (adapted  from  Goren  et  al.  (2018),  cf. 
 appendix  E  for  implementation)  and  to  the  method  from  Noh  et  al.  (2017).  The  former  relies  on  the  CTH  retrieved  from 
 CALIPSO’s  Cloud  Aerosol  Lidar  with  Orthogonal  Polarization  (CALIOP;  Hunt  et  al.,  2009)  and  CloudSat  (Stephens  et  al., 
 2008),  but  CWP  and  CTT  retrievals  from  MODIS  MYD06.  However,  in  our  own  comparison  study  we  used  all  necessary 
 variables,  including  the  CTH,  from  MODIS  MYD06.  The  latter  method  relies  on  piecewise  linear  relationships  between  MODIS 
 CWP  and  the  geometric  thickness  of  the  uppermost  layer  from  CALIPSO/CloudSat  stratified  by  MODIS  CTH.  The  application 
 of  the  method  presented  in  Noh  et  al.  (2017)  is  however  done  with  CTH  retrievals  from  the  Suomi–National  Polar-Orbiting 
 Partnership  (SNPP)  VIIRS.  The  comparison  to  our  method  presented  here  is  done  by  using  the 
 MODIS/CALIPSO/CloudSat-derived  parameters  from  Noh  et  al.  (2017),  but  using  the  MODIS  derived  CTH  to  produce  the  final 
 CBH  estimate.  In  both  cases,  since  these  methods  can  be  applied  pixel-wise  when  a  MODIS  retrieval  is  available,  we  computed 
 the retrieved CBH values and averaged them over the cloud scene. 
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 3 Results, evaluation, and comparison to previous retrieval approaches 

 3.1 Cloud base height retrieval, evaluation and comparison to previous retrievals 

 In  this  section,  we  present  the  results  of  the  retrieval,  evaluate  it  using  the  ground-based  observations,  and  investigate  how  our 
 method  fares  by  comparing  it  to  a  method  assuming  an  adiabatic  cloud  model  (adapted  from  Goren  et  al.  (2018),  cf.  appendix  E 
 for  implementation)  and  to  the  method  from  Noh  et  al.  (2017).  The  analysis  is  performed  for  the  co-located  scenes  where 
 ground-based  observations  are  available.  To  be  able  to  compare  the  relevant  metrics  for  the  different  methods  we  proceed  to  a 
 binning  of  the  data  following  the  WMO  standard  presented  in  section  2.1.  In  Table  2  we  report  several  metrics  including  the 
 MAE,  the  mean  error  (bias),  the  RMSE  and  the  standard  deviation  of  the  absolute  error.  The  latter  helps  us  characterise  the 
 spread  and  uncertainty  in  the  overall  predictions  with  respect  to  the  surface  observations.  We  additionally  report  the  adapted 
 version  of  the  AUOC  mentioned  in  section  2.5.  Furthermore,  we  do  not  report  quantities  such  as  the  correlation  coefficient  or  the 
 regression  line  on  the  2-dimensional  histograms  of  Figure  5  and  Figure  6,  as  the  stratified  and  categorical  aspects  of  the  data 
 would  make  reporting  these  not  clearly  informative.  We  refer  to  the  overall  conceived  method  including  the  AE  (cf.  section  2.4) 
 and the OR prediction model in the AT variant (cf. section 2.5), listed in Table 2 as ORABase. 
 We  first  note  that  the  OR  method  with  an  immediate-threshold  setup  fails  at  predicting  adequately  the  cloud  scene  base  height 
 compared  to  all  the  other  retrieval  products,  producing  large  errors  (double-fold  in  comparison  to  the  all-threshold  setup).  On  the 
 other  hand,  ORABase  performs  well  with  satisfying  error  measures  and  uncertainty  in  the  predictions  on  par  if  not  better  than  the 
 two  retrievals  from  Goren  et  al.  (2018)  and  Noh  et  al.  (2017).  Compared  to  the  method  from  Noh  et  al.  (2017),  our  method 
 succeeds  in  decreasing  on  average  the  error,  displaying  a  reduction  of  100 m  for  the  MAE.  The  method  also  effectively 
 diminishes  the  uncertainty  in  the  CBH  retrievals,  bringing  down  the  absolute  error  standard  deviation  200 m  lower.  Our  method 
 thus  provides  accurate  retrievals  with  comparatively  low  general  uncertainty  levels.  Even  though  on  average  the  predictions 
 exhibit  a  slight  positive  bias,  we  find  that  the  CBH  values  above  2000 m  are  systematically  underestimated  (Fig.  5).  In 
 consideration  of  the  low  representation  of  such  observations  in  the  dataset,  due  to  data  filtering  and  surface  observations  being 
 less  reliable  for  higher  clouds,  the  method  still  struggles  to  properly  quantify  the  cloud  scene  base  height  of  these  samples.  These 
 samples  also  make  up  for  most  of  the  measurement  uncertainty  in  the  labels  considering  that  ceilometers  face  challenges  for 
 retrieving  cloud  signals  higher  up  in  the  boundary  layer.  Focusing  on  lower  cloud  scene  base  height  retrievals,  the  predictions 
 demonstrate  even  lower  errors:  the  MAE  is  lowered  to  379 m  while  the  absolute  error  standard  deviation  is  narrowed  down  to 
 328 m.  Achieved  accuracy  levels  and  uncertainty  measures  attest  to  a  certain  trustworthiness  of  the  cloud  scene  base  height 
 estimates,  in  particular  in  the  context  of  product  requirements  for  example  the  ones  outlined  by  the  Joint  Polar  Satellite  System 
 (JPSS;  Goldberg  et  al.  (2013);  2 km  accuracy  threshold).  However,  the  cloud  scene  base  height  retrieval  method  presented  here 
 does  not  aim  at  constituting  a  product  on  its  own  as  it  is  not  operational  with  the  processing  of  daily  new  data  available  from  the 
 MODIS  instrument,  but  rather  at  providing  robust  estimates  of  CBH  for  lower  level  clouds.  Therefore,  it  is  expected  and 
 reasonable  that  the  accuracies  and  uncertainties  presented  here  are  below  such  thresholds.  However,  the  available  method  code 
 (Lenhardt et al., 2024) easily allows the processing of new data for users, in addition to the available dataset for the year 2016. 
 We  performed  further  sensitivity  studies  on  our  retrieval  method  trying  to  improve  the  quality  of  the  predictions.  An  attempt  to 
 balance  the  dataset  by  oversampling  the  higher  CBH  values  (cloud  base  retrievals  falling  into  the  2500 m  bin),  however,  did  not 
 yield  better  results  overall  but  also  posed  a  higher  risk  of  overfitting  to  these  specific  samples.  Furthermore,  any  spatial 
 information  about  the  location  of  the  satellite  retrieval  was  not  included  as  to  prevent  possible  overfitting  to  the  latitude  and 
 longitude  coordinates  of  the  observations  present  in  the  training  data.  Since  the  observations  are  sparsely  distributed  especially  in 
 the  southern  hemisphere  (cf.  figures  from  appendix  A),  the  goal  is  to  avoid  any  kind  of  induced  spatial  bias  and  sensitivity  in  the 
 model’s  predictions.  Accordingly  we  can  then  ensure  proper  generalisation  skill  to  new  spatial  areas,  but  not  only  based  on 
 known  retrieval  distributions  at  similar  locations.  As  a  consequence,  the  choice  was  made  to  evaluate  the  potential  generalisation 
 skill  of  the  prediction  model  by  establishing  a  geographic  distribution  of  the  mean  predicted  cloud  scene  base  height  for  a  whole 
 year’s  worth  of  MODIS  overpasses.  This  is  discussed  in  more  detail  in  section  4.  On  the  other  hand,  the  temporal  aspect  of  the 
 model’s  generalisation  skill  was  intrinsically  ensured  by  building  a  test  set  temporally  distinct  from  the  training  set,  including 
 co-located samples only from the last months of 2016. 
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 Method  MAE (m)  Bias (m)  RMSE (m)  Absolute error 
 standard 

 deviation (m) 

 AUOC 

 Goren et al. 
 (2018) 

 457  - 262  689  515  0.92 

 Noh et al. (2017)  578  - 35  860  638  0.92 

 OR (IT) + AE  991  + 595  1296  836  0.93 

 ORABase  447  + 58  614  420  0.89 

 ORABase 
 training 

 456  + 80  620  420  0.89 

 Table 2: Performance on the test set of different CBH retrieval methods. OR models are either built with the 
 immediate-threshold (IT) or all-threshold (AT) variant. The method on which the rest of the study is based has been 

 highlighted in bold and its corresponding performance on the training set is added in the last row. 

 3.2 Comparison to spaceborne radar-lidar retrievals of the CBH 

 The  combined  datasets  which  are  part  of  CUMULO  (Zantedeschi  et  al.,  2019),  in  particular  the  radar  and  lidar  retrievals, 
 facilitate  the  joint  evaluation  of  our  method  with  both  ceilometer  surface  observations  and  active  satellite  retrievals.  Specifically 
 we  leverage  the  2B-CLDCLASS-LIDAR  product  (Sassen  et  al.,  2008)  which  is  derived  from  the  combination  of  CloudSat’s 
 Cloud  Profiling  Radar  (CPR;  Stephens  et  al.,  2008)  and  CALIPSO’s  Cloud‐Aerosol  Lidar  with  Orthogonal  Polarisation 
 (CALIOP;  Hunt  et  al.,  2009).  The  base  height  of  the  lowest  cloud  layer  retrieved  by  the  instruments  in  each  scene  is  considered 
 the  scene  CBH  and  then  averaged  over  the  available  pixels  along  the  track,  preserving  the  same  spatial  extent  as  the  associated 
 cloud  properties  from  the  MODIS  instrument.  For  the  co-located  samples  of  the  year  2008,  we  thus  jointly  retrieve  the  obtained 
 CBH  from  the  2B-CLDCLASS-LIDAR  product,  only  considering  cases  where  a  surface  observation  was  in  the  vicinity  of  the 
 satellite  track  (inside  a  disc  with  a  ~60 km  radius  around  the  surface  observation,  cf.  section  2.3).  For  the  samples  fulfilling  these 
 conditions,  we  then  compare  how  the  different  retrievals  fare.  In  Figure  6,  the  joint  histograms  for  the  surface  observations,  the 
 2B-CLDCLASS-LIDAR  retrieval  and  the  method’s  corresponding  predictions  are  documented,  representing  a  total  of  around 
 800 samples. 
 Investigating  the  joint  histogram  between  the  surface  observations  and  the  2B-CLDCLASS-LIDAR  retrievals  (Fig.  6a)  allows  to 
 identify  shortcomings  of  the  active  satellite  retrievals  in  particular  close  to  the  surface  (Tanelli  et  al.,  2008;  Marchand  et  al., 
 2008).  Indeed,  the  CBHs  closer  to  the  surface  are  not  well  captured  by  the  2B-CLDCLASS-LIDAR  retrievals  as  partially 
 expected,  due  to  thick  clouds  attenuating  the  lidar  signal,  and  due  to  ground  clutter  and  lack  of  sensitivity  to  small  droplets  near 
 cloud  base  for  the  radar  signal.  A  similar  explanation  can  eventually  be  articulated  as  a  whole  for  the  co-located  retrievals, 
 considering  that  the  mean  bias  between  the  two  retrievals  is  greater  than  +  600 m.  Concurrently,  it  is  fruitful  to  compare  the 
 2B-CLDCLASS-LIDAR  retrievals  with  the  predictions  from  the  developed  method  (Fig.  6b).  As  seen  previously,  ORABase 
 struggles  at  higher  CBHs,  but  agrees  here  reasonably  well  with  the  active  satellite  retrievals,  especially  for  retrievals  between 
 500 m  and  1500 m.  Focusing  on  retrievals  under  1.5 km,  the  prediction  model  achieves  similar  performance  as  presented  in  Table 
 2 with a MAE of 488 m and a RMSE of 576 m, even though the subset here is much smaller. 
 Furthermore,  we  created  a  more  extensive  dataset  using  only  2B-CLDCLASS-LIDAR  retrievals  and  the  cloud  scene  predictions 
 with  the  aim  of  obtaining  a  more  complete  view  of  the  relationship  between  these  two  retrievals.  To  this  extent,  we  collated 
 around  160  000  samples  of  aligned  cloud  scene  base  height  predictions  and  the  2B-CLDCLASS-LIDAR  retrievals  over  the  year 
 2016.  For  this  dataset,  the  performance  metrics  exhibit  similar  values  as  on  the  previously  presented  subset,  displaying  even 
 lower  values  for  the  MAE  and  the  absolute  error  standard  deviation  (around  a  50 m  decrease  for  both).  Similarly  to  the  previous 
 co-located  subset,  limiting  the  evaluation  to  lower  cloud  base  retrievals  yields  performance  metrics  close  to  a  450 m  MAE  and  a 
 270 m  absolute  error  standard  deviation,  both  of  these  being  mainly  impacted  by  agreeing  retrievals  in  the  500 m  to  1500 m 
 range. 
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 Figure 5: Joint histogram over the test set of the surface observations and the predicted cloud scene base height from 
 ORABAse with the ordinal regression all-threshold model. The 1:1 boxes are highlighted in orange in the figure. 

 4 Global distribution 

 To  further  evaluate  the  method,  we  also  apply  the  prediction  model  on  global  MODIS  data  for  the  whole  year  of  2016.  The 
 sampling  process  yields  approximately  700  000  CBH  retrievals  for  the  corresponding  cloud  properties  tiles.  We  then  spatially 
 aggregate  the  predictions  to  a  regular  grid  of  5 °  and  compute  the  annual  mean  per  grid  cell  along  the  annual  median  absolute 
 deviation  (MAD).  The  MAD  constitutes  a  useful  metric  to  quantify  the  variability  while  removing  the  effects  of  outliers.  For 
 more  robust  evaluation  and  statistics,  only  ocean  grid  cells  with  more  than  100  CBH  retrievals  over  the  year  are  displayed  thus 
 impacting  mostly  coastal  and  polar  regions  where  filtering  for  ocean-only  scenes  or  the  original  amount  of  satellite  retrievals 
 leads  to  a  higher  rate  of  displaying  removal.  The  spatial  distribution  of  the  mean  cloud  base  (Fig.  7,  top)  is  similar  to  the  outlined 
 global  distributions  from  other  studies  using  different  instruments  and  methods  (Böhm  et  al.,  2019;  Lu  et  al.,  2021;  Mülmenstädt 
 et  al.,  2018).  The  illustrated  global  quantities  were  established  using  MODIS  overpasses  which  happen  at  a  practically  constant 
 local  time  (13:30 h ,  early  afternoon  for  AQUA).  The  MAD  pattern  exhibits  similar  characteristics  (Fig.  7,  bottom),  even  though 
 variability  slightly  increases  in  the  vicinity  of  land  masses.  These  interpretations  still  remain  valid  when  looking  at  relative 
 deviations.  Typical  features  are  lower  cloud  bases  towards  polar  regions  and  the  mid-latitudes,  and  higher  ones  in  the  tropical 
 regions.  One  can  further  observe  regions  like  the  Pacific  coast  of  South  America  or  the  Namibian  coast  which  display  lower 
 cloud  bases  concurrently  with  lower  variability  (also  highlighted  in  Lu  et  al.  (2021)).  It  is  however  impossible  to  follow  up  the 
 study for nighttime retrievals, as some MODIS cloud properties are not retrieved then. 
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 Figure 6: Joint histogram of (a) surface observations and 2B-CLDCLASS-LIDAR retrievals, and (b) ORABase 
 predictions and 2B-CLDCLASS-LIDAR retrievals, for the co-located cloud scenes during the year 2008. The 1:1 boxes 

 are highlighted in the figure in orange. 

 5 Conclusion 

 We  have  presented  here  a  novel  method  named  ORABase  which  retrieves  the  cloud  scene  base  height  over  marine  areas  from 
 MODIS  cloud  properties,  specifically  CTH,  COT  and  CWP.  This  method  can  produce  robust  CBH  estimates  for  cloud  scenes  in 
 particular  for  lower  cloud  bases  (MAE  of  379 m  and  absolute  error  standard  deviation  of  328 m  for  up  to  2 km  cloud  bases), 
 based  on  the  assumption  of  a  homogeneous  cloud  base  across  the  considered  cloud  field.  The  statistical  model  was  built  on 
 surface  observations  of  cloud  bases  with  ceilometers  (section  2.1),  and  then  evaluated  in  comparison  to  other  methods  using 
 passive  satellite  instruments  (section  3.1)  and  active  satellite  retrievals  (section  3.2).  Analysis  of  the  yearly  averaged  CBH 
 (section  4)  helped  to  further  make  sense  of  the  predicted  cloud  bases  and  variability.  The  global  dataset  for  the  year  2016  is 
 available from Zenodo (Lenhardt et al., 2024). 
 Using  the  spatially-resolved  information  of  cloud  fields  of  CTH,  COT  and  CWP  through  the  described  CNN-AE  results  in  more 
 accurate  CBH  retrievals  compared  to  the  active  retrievals  of  the  2B-CLDCLASS-LIDAR  product,  producing  better  performance 
 metrics  compared  to  the  other  products  and  methods  considered  in  this  study.  The  combination  of  a  CNN  based  AE  to  reduce  the 
 dimensionality  of  the  spatial  patterns  of  cloud  properties  followed  by  a  simple  OR  model  leads  to  a  better  CBH  retrieval 
 compared  to  previous  presented  methods.  The  OR  modelisation  helps  bridging  the  gap  between  regression  and  classification, 
 facilitating  the  use  of  the  binned  cloud  base  observations  provided  by  the  surface  observation  dataset.  Overall,  ORABase 
 achieves  low  error  in  the  retrievals,  around  400 m,  and  concurrently  a  narrow  absolute  error  distribution,  more  precisely  around 
 400 m  absolute  error  standard  deviation.  Both  of  these  performance  metrics  are  additionally  reduced  when  focusing  on  cloud 
 bases  lower  than  2 km.  Application  to  data  over  land  areas  has  not  been  processed  yet  but  would  certainly  require  adding  surface 
 observations  from  land  during  the  training  process  (e.g.  Böhm  et  al.,  2019;  Lu  et  al.,  2021;  Mülmenstädt  et  al.,  2018). 
 Application  of  the  presented  retrieval  method  to  other  instruments  could  also  be  considered.  Incorporating  TERRA  MODIS  data 
 would  help  constrain  the  annual  mean  estimates  presented  in  Figure  7  by  partially  removing  the  potential  bias  of  the  single  daily 
 overpass  arising  from  using  only  AQUA  data  presented  in  this  study.  The  aspect  enabling  potential  application  of  the  retrieval 
 method  to  different  instruments  outside  of  the  two  MODIS  sensors  would  be  the  standardisation  process  for  the  input  cloud 
 properties  before  the  use  of  the  AE  which  is  done  based  on  means  and  standard  deviations  computed  from  AQUA-only  granules. 
 Carefully  investigating  the  characteristics  of  the  distribution  of  the  cloud  properties  from  another  instrument  to  ensure  proper 
 scaling  when  using  the  trained  AE  would  be  then  necessary.  Further  tests  could  be  additionally  done  using  coarser  resolution  for 
 the input cloud properties. 
 Furthermore,  classical  semi-supervised  pipelines  like  the  one  presented  here,  characterised  by  a  small  labelled  dataset  and  a  vast 
 unlabelled  dataset,  necessitate  a  kind  of  co-location  or  matching  process  which  often  proves  to  be  cumbersome  and  generates 
 only  a  limited  amount  of  labels.  However,  future  avenues  of  research  could  consider  directly  modelling  unmatched  datasets,  as  in 
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 e.g.  Lun  Chau  et  al.  (2021)  with  multiresolution  atmospheric  data,  by  making  use  of  other  quantities  present  in  the  observations 
 as mediating variables to model the link between observed and unobserved variables. 
 In  essence,  the  main  benefit  of  producing  better  cloud  base  estimates  is  to  gain  accuracy  in  the  overall  retrieval  of  cloud 
 geometry,  impacting  in  particular  radiation  estimates  (Kato  et  al.,  2011)  like  the  surface  downwelling  longwave  radiation 
 (Mülmenstädt  et  al.,  2018).  ORAbase  can  thus  prove  to  be  useful  by  helping  to  produce  CBH  with  enhanced  confidence  at  a 
 global scale. 

 Figure 7: Spatial distribution of (top) mean and (bottom) median absolute deviation of predicted cloud base height for the 
 MODIS data of the year 2016 aggregated on a 5     ° grid. 
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 Appendix 

 Appendix A: Cloud base height retrievals distribution 

 Figure A.1: Spatial distribution of cloud base height retrievals (Met Office, 2006) for the years 2008 and 2016 on a 5     ° 
 grid. Overall percentage of each label in the total observations is indicated in brackets. Only grid cells with more than 50 

 retrievals are displayed. 

 Figure A.2: Mean cloud base height from retrievals (Met Office, 2006) for the years 2008 and 2016 on a 5     ° grid. Only 
 grid cells with more than 50 retrievals are displayed. 
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 Figure A.3: Spatial distribution of the co-located cloud base height retrievals (Met Office, 2006) and the satellite cloud 
 properties used for training the prediction model for the years 2008 and 2016 on a 5     ° grid. Overall  percentage of each 

 label in the total dataset is indicated in brackets. 

 Figure A.4: Mean cloud base height from the co-located retrievals (Met Office, 2006) and the satellite cloud properties 
 used for training the prediction model for the years 2008 and 2016 on a 5     ° grid. 
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 Appendix B: Spatio-temporal correlation study 

 We  create  five  different  datasets  to  evaluate  how  the  chosen  AE  architecture  is  capable  of  generalising  to  new  data  while  trying 
 to  remove  some  possible  autocorrelation  biases  which  might  inflate  the  performance  scores.  We  also  use  this  study  to  analyse 
 how  the  AE  model  behaves  when  trained  with  our  input  data.  We  define  two  splits  for  space  and  time  in  order  to  build  the 
 training  and  testing  datasets,  namely  the  South-western  (SW)  quadrant  and  the  period  from  March  to  October,  respectively.  The 
 granules  used  to  build  the  datasets  span  across  the  whole  year  of  2016.  The  random  data  split  is  the  basis  for  the  training  of  the 
 model  and  consists  of  tiles  sampled  in  the  aforementioned  quadrant  and  time  period.  These  tiles  are  then  split  randomly  between 
 training,  validation  and  testing  datasets.  This  split  represents  the  common  way  of  splitting  data  when  building  a  ML  model.  In 
 contrast,  we  build  3  other  datasets  which  vary  through  their  respective  spatial  and  time  spans.  The  spatial  split  is  built 
 considering  tiles  spanning  across  a  distinct  time  period,  here  between  November  and  February,  regardless  of  their  spatial 
 location.  The  temporal  split  is  built  considering  tiles  located  anywhere  but  in  the  South-western  quadrant  regardless  of  the  time 
 at  which  the  retrieval  occurred.  Finally  the  spatio-temporal  split  combines  the  previous  two  conditions  in  order  to  build  a  dataset 
 in  which  the  tiles  come  from  an  independent  location  and  time  as  the  ones  used  for  training.  Additionally,  we  create  a  global  data 
 split  using  data  from  a  different  year,  here  2008,  without  any  spatial  restriction  for  the  tiles.  Furthermore,  only  a  limited  number 
 of  tiles  was  extracted  from  each  granule  while  only  granules  from  non-consecutive  days  were  used  in  order  to  limit  possible 
 correlation between the extracted scenes. 

 Table B.1 : Name, time period, spatial extent and number of samples for each of the five described data splits. 

 We  then  train  an  AE  model  using  the  training  data  from  the  first  data  split  (  random  ).  Each  test  data  split  is  then  used  to  evaluate 
 the  trained  model  through  the  reconstruction  errors  divided  by  the  reconstruction  error  mean  of  the  random  split  (noted  as 
 reconstruction  error  ratio;  Fig.  B.1).  Spatial  distribution  of  the  mean  reconstruction  errors  is  shown  in  Figure  B.2.  We  detail  in 
 Table B.2 the average channel reconstruction error for each of the splits. 
 We  first  notice  that  the  reconstruction  power  of  the  model  is  consistent  regardless  of  the  test  split  considered  with  mean 
 reconstruction  error  ratios  ranging  from  0.63  to  1.0,  dividing  the  split’s  reconstruction  error  by  the  random  data  split  mean 
 reconstruction  error.  Ratios  around  1  or  below  indicate  that  the  model's  performance  is  not  inflated  when  considering  a  random 
 data  split,  highlighting  that  the  model  did  not  only  learn  from  possible  spatial  and/or  temporal  correlations  between  samples 
 present  in  the  training  set.  The  distribution  of  the  error  is  also  very  similar  throughout  the  test  splits  with  most  of  the  samples 
 located  below  an  error  ratio  of  0.5.  However,  one  of  the  main  aspects  regarding  the  performance  of  the  model  across  test  splits  is 
 the  presence  of  a  heavy  tail  in  the  distribution  showcasing  that  for  some  samples  the  reconstruction  error  can  be  greater  than  3 
 times  the  mean  error.  Looking  at  the  spatial  patterns  of  the  reconstruction  error,  we  note  that  overall  the  error  comes  from  the 
 COT  and  CWP  predictions,  the  average  reconstruction  errors  across  test  sets  being  0.15,  0.32  and  0.25  for  CTH,  COT  and  CWP 
 respectively  (Table  B.2).  For  the  CTH,  the  error  is  concentrated  in  the  zones  with  frequent  convection  around  the  equator  and 
 could  be  explained  by  local  convection  cells  exhibiting  a  larger  spread  in  CTH  values.  Another  source  of  error  could  be  that 
 higher  CTH  values  are  also  less  represented  in  the  training  data.  On  the  contrary,  the  error  for  COT  and  CWP  is  prevailing  in 
 high-latitude  regions.  Overall,  the  performance  skill  of  the  AE  model  seems  to  hold  through  the  different  test  data  splits.  One 
 could  argue  that  the  training  dataset  already  retains  enough  variability  in  the  data  which  could  explain  why  the  model  still 
 performs  well  regardless  of  the  test  set  split.  However,  this  consistent  skill  also  shows  that  the  performance  reported  in  appendix 
 C on the test set can be trusted to hold for other datasets and supports the data generation process to train the AE (cf. section 2.4). 
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 Data split  Time period  Spatial extent  𝒏 

 Random  03-10.2016  SW quadrant  Train: 14 691 
 Validation: 4 198 
 Test: 2 099 

 Spatial  03-10.2016  Global except SW quadrant  107 736 

 Temporal  01-02 and 11-12.2016  SW quadrant  12 420 

 Spatio-temporal  01-02 and 11-12.2016  Global except SW quadrant  30 659 

 Global  12.2008  Global  7 111 
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 Figure B.1: Reconstruction error ratios of an AE on different test datasets. The quartiles are indicated with the barplot 
 inside each violin plot while the mean is indicated with an orange circle. Extreme values were removed before plotting. 

 Each sample’s reconstruction error is divided by the mean reconstruction error of the random data split and defines the 
 reconstruction error ratio presented here. 

 Table B.2 : Average channel reconstruction error for each of the five described data splits. 
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 Data split  Channel  Average 

 CTH  COT  CWP 

 Random  0.117  0.369  0.333  0.273 

 Spatial  0.171  0.344  0.276  0.263 

 Temporal  0.114  0.253  0.150  0.172 

 Spatio-temporal  0.202  0.332  0.286  0.274 

 Global  0.154  0.318  0.221  0.231 

 Average  0.152  0.323  0.253  0.243 
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 Figure B.2: Distribution of mean channel reconstruction errors aggregated on a 5     ° grid. 
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 Appendix C: Autoencoder architecture 

 Layer  Hyperparameters  Output shape 

 Input  (None, 3, 128, 128) 

 Encoder 

 Conv2d  (kernel = 3, stride = 2)  (None, 3, 64, 64) 

 ConvBlock x 5  Conv2d (kernel = 3, stride = 1) 
 LeakyReLU 

 Conv2d (kernel = 3, stride = 1) 
 LeakyReLU 

 Conv2d (kernel = 3, stride = 1) 
 BatchNorm2d 
 LeakyReLU 

 MaxPool2d (kernel = 2, stride = 2) 

 (None, 256, 2, 2) 

 Flatten + Linear  (None, 256) 

 Decoder 

 Linear + Unflatten  (None, 256, 2, 2) 

 ConvTranspose2d  (kernel = 2, stride = 2)  (None, 256, 4, 4) 

 ConvTransposeBlock x 5  Conv2d (kernel = 3, stride = 1) 
 LeakyReLU 

 Conv2d (kernel = 3, stride = 1) 
 LeakyReLU 

 Conv2d (kernel = 3, stride = 1) 
 BatchNorm2d 
 LeakyReLU 

 ConvTranspose2d (kernel = 2, stride = 
 2) 

 (None, 3, 128, 128) 

 Table C.1 : Autoencoder model specifications. 

 Hyperparameter  Value 

 Batch size  64 

 Epochs  80 

 Optimizer  Stochastic Gradient Descent (SGD), momentum = 0.9, 
 learning rate = 0.0001 

 Metric  MSE 

 Early stopping  patience = 20 

 Table C.2 : Autoencoder model training specifications. 
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 Appendix D: Ordinal regression 

 We  define  our  labels  which  can  take  values  in  classes  from  {50 m,  100 m,  …,  2500 m}.  We  introduce  𝑦  𝐾    =     9  𝐾 −  1 
 thresholds  to  define  the  separation  of  our  classes  which  actually  correspond  here  to  the  classes  too.  For  each  labelled α

 𝑦 
 𝐾 

 sample  the  output  of  our  model  is  .  The  correct  interval  for  this  sample  is  then  .  During  the  fitting ( 𝑠 ,     𝑦 )  𝑧    =     𝑧 ( 𝑠 ) (α
 𝑦 − 1 

,    α
 𝑦 
)

 process,  the  goal  is  to  find  the  set  of  parameters  of  our  model  and  the  corresponding  thresholds  which  minimises  a  certain  𝑧 α
 cost  function.  We  consider  a  generic  nonnegative  penalisation  function  (eg.  hinge  loss,  squared  error  loss,  Huber  loss).  𝑓 (·)
 There  are  then  different  ways  to  represent  threshold  violations  and  thus  to  penalise  the  predictor.  While  immediate-threshold 
 setup  only  considers  the  thresholds  of  the  correct  interval,  all-threshold  setup  takes  into  account  all  the  threshold  violations.  In 
 the case of an immediate-threshold setup the loss function would look like: 

 (D.1)  ℒ ( 𝑧 ,     𝑦 )   =     𝑓 ( 𝑧    −    α
 𝑦 − 1 

)   +     𝑓 (α
 𝑦 
   −     𝑧 )

 Here  we  can  see  that  the  loss  is  not  aware  of  how  many  thresholds  are  actually  violated.  In  the  case  of  an  all-threshold  setup  the 
 loss function is a sum of violations across all thresholds: 

 (D.2)  ℒ ( 𝑧 ,     𝑦 )   =    
 𝑖    =    1 

 𝐾 − 1 

∑     𝑓 ( 𝑡 ( 𝑖 ,     𝑦 )(α
 𝑖 
   −     𝑧 ))

 where  if  or  if  . Thus predictions are encouraged to violate the least amount of thresholds.  𝑡 ( 𝑖 ,     𝑦 ) =−  1     𝑖    <     𝑦 +  1  𝑖    ≥     𝑦 
 We  give  in  Figure  D.1  an  example  of  what  the  loss  function  would  look  like  in  the  case  of  labels  and  using  a  hinge  𝐾    =     6 
 penalisation. 

 Figure D.1: Threshold-based setups loss function representation for a hinge penalisation, K=6 labels and target label y=5. 
 (left) Immediate-threshold and (right) All-threshold setup loss function. (figure adapted from Rennie et al. (2005)) 
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 Appendix E: Cloud base height retrieval method assuming adiabatic cloud 

 Algorithm adapted from Goren et al. (2018). We use the retrieved CTH, CTT, CTP and CWP from MODIS MYD06 (Platnick et 
 al., 2017). 

 Algorithm:  Cloud base height retrieval 

 Data:  CTH, CTT, CTP, LWP, look-up tables 
 Result:  CBH 

 if  CTT < 263.13  then 
 return  NaN 

 T ←CTT - 273.13 
 LWP obs ← LWP 
 LWP adi ← 0. 

 ←0. δ 𝑧 
 Set corresponding cloud top indexes for temperature  and pressure  look-up tables.  𝑇 

 𝑖𝑛𝑑 
 𝑝 

 𝑖𝑛𝑑 
 Read-in the water mixing ratio w at the corresponding indexes. 
 if  out of look-up table  then  𝑤 

 return  NaN 
 while  LWP adi < LWP obs  then 

 ←density look-up table with  and ρ
 𝑡𝑚𝑝 

 𝑇 
 𝑖𝑛𝑑 

 𝑝 
 𝑖𝑛𝑑 

 ←layer depth look-up table with  and δ
 𝑡𝑚𝑝 

 𝑇 
 𝑖𝑛𝑑 

 𝑝 
 𝑖𝑛𝑑 

 ←  + δ 𝑧 δ 𝑧 δ
 𝑡𝑚𝑝 

 ← mixing ratio look-up table with  and  𝑤 
 𝑡𝑚𝑝 

 𝑇 
 𝑖𝑛𝑑 

 𝑝 
 𝑖𝑛𝑑 

 LWP adi ←LWP adi + ( 𝑤 
 𝑡𝑚𝑝 

−  𝑤 ) × δ 𝑧 
 𝑡𝑚𝑝 

× ρ
 𝑡𝑚𝑝 

 Adjust temperature T given the saturated lapse rate using look-up table with  and  𝑇 
 𝑖𝑛𝑑 

 𝑝 
 𝑖𝑛𝑑 

 Update indexes  and  𝑇 
 𝑖𝑛𝑑 

 𝑝 
 𝑖𝑛𝑑 

 return  CTH - δ 𝑧 

 Table E.1: Pseudo code for cloud base height retrieval algorithm assuming adiabatic cloud, adapted from Goren et al. 
 (2018). 
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 Code availability 

 The code used for the method and producing the plots is available on Zenodo (Lenhardt et al., 2024). 

 Data availability 

 The  global  dataset  of  the  cloud  base  height  predictions  for  the  year  2016  is  available  on  Zenodo  (Lenhardt  et  al.,  2024).  The 
 dataset  is  available  as  a  csv  file  with  corresponding  coordinates,  MODIS  granule,  time  of  retrieval  and  predicted  cloud  base 
 height  or  in  a  netCDF  file  as  daily  aggregates  on  a  regular  grid  with  a  resolution  of  1 °  or  5 °.  The  meteorological  observations 
 from  the  UK  MetOffice  (Met  Office,  2006)  are  available  through  the  CEDA  archive  at 
 https://catalogue.ceda.ac.uk/uuid/77910bcec71c820d4c92f40d3ed3f249.  The  files  from  the  CUMULO  dataset  (Zantedeschi  et 
 al., 2019) are available at https://www.dropbox.com/sh/i3s9q2v2jjyk2it/AACxXnXfMF5wuIqLXqH4NJOra?dl=0. 
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