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Abstract.

We used the CAMS model to investigateexamine how the-mpaet-ef-different particle-bound Polycyclic
Aromatic Hydrocarbon (PAH) degradation approaches esn—affect the spatial distribution of
benzo(a)pyrene (BaP). Three degradation-approaches;-each-reflectingvarying-effects-of organic-aerosol
(OA)coatings-onBaP-degradation-are-included-in-thisstudy were evaluated: NOA (witheutno effect of
OA coatings state on BaPs), Shielded (where-viscous viseous—OA coatings shield PAHs-BaP from
oxidation_under cool and dry conditions), and ROI-T (where-viscous OA coatings influencePAHs
through—reactive—oxygen—intermediatesslow BaP oxidation in response related-to temperature and
humidity). Ourfindings-Results show that BaP concentrations vary seasonally, reveal-that-the-seasonal
variation-of BaP-is-highly-dependent-on—changes—ininfluenced by emissions, deposition, transport, and
the—chesen—degradation approach, all of which are influenced by meteorological conditions. All
simulations eensistenthy—predict higher population-weighted global average (PWGA) fresh BaP
concentrations during December-January-February (DJF) compared to June-July-August (JJA).—Fhis
pattern-is-attributed due to increased emissions from household activities, redueed-and reduced removal
processes during colder monthsefficieney—ef—vet—removalprocesses;,—and—unfaverable—diffusion

eonditions-during-winter. The Shielded and ROI-T approaches, which account for, OA coatings, resulting ‘

in , two to six times higher BaP concentrations jn DJF compared to, NOA. Amengthe-th

o+

simulation predicts the hlghest PWGA fresh BaP concentration (1.3 ng m 3—1-H—DJ-F), with 90% of tetal
BaP protected from oxldatlonﬂndereeehmdrdweeim In contrast, the ROI-T simuation;-approach

forecasts lower whieh-ass ¢
showslowerfresh-BaP-concentrations in mid-to-low latltudes—eemﬁa-red—te—t-he—s-me}ded—&ppfeaeh as it
assumes less effective OA coatings under warmer, more humid conditions.— Medel-eEvaluations against
observed BaP concentrations show against-ebserved-global BaP-concentrations-indieatethatthe Shielded
approach performs best, with a normalized mean bias (NMB) eensistently-within £20%. Comparinefresh

both fresh and oxidized PAHs are—is similar across simulations, underseering—emphasizing the

importance of ineluding-considering both forms in health risk assessments. This study highlights the

critical role of accurate degradation approaches in PAH modelling.
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1 Introduction

Polycyclic aromatic hydrocarbons (PAHs), emitted from incomplete combustion of biofuels and fossil
fuels, are persistent organic pollutants composed of multiple aromatic rings. Some of them are
contaminants of global concern due to their well-known carcinogenic and mutagenic properties, which
increase the risk to human health [Boffetta et al., 1997; Perera, 1997; Chen and Liao, 2006; IARC, 2010;
Kim et al., 2013; Muir et al., 2019]. For instance, in 1976, the United States Environmental Protection
Agency (US EPA) listed 16 PAHs as priority pollutants [Keith 2015]. Among these, particle-bound
PAHs are more carcinogenic than gas-phase PAHs [Y Liu et al., 2017]. Therefore, benzo(a)pyrene, one
of the most carcinogenic PAHs and predominantly existing in the particle phase, is often used as an
indicator of cancer risk resulting from exposure to PAH mixtures [-EPA 2004; EPCEU 2004; MEPPRC
2009; CPCB, 2020; IARC, 2021]. Considering that lifetime exposure to 0.1 ng m~ of BaP would increase
the additional lung cancer risk by one in 100,000 exposed persons, the World Health Organization (WHO)
recommends limiting BaP concentrations to 0.1 ng m [WHO, 2000; Bostrom et al., 2002].

High levels of BaP in ambient air have been measured globally over the past two decades, ranging from
0.1 to 2.5 ng m* in Europe and North America, with even higher concentrations observed in rural areas
of China and India, exceeding 10 ng m* [Lee et al., 2011; W Wang et al., 2011; Kim et al., 2012; Brown
et al., 2013; Hu et al., 2017; 2018; Radoni¢ et al., 2017; Hu-et-al52618:-Ma et al., 2018; J Han et al.,
2019; Lhotka et al., 2019; Munyeza et al., 2019; Ahad et al., 2020; Kumar et al., 2020]. However,
compared to measurements, previous regional or global models suffer from large uncertainties, with
biases spanning several orders of magnitude, largely due to an incomplete understanding of the complex
gas-particle partitioning [Friedman et al., 2014; Galarneau et al., 2014; Lammel et al., 2015; Shrivastava
et al.,, 2017; Mu et al., 2018; F E-Han et al., 2022]. For example, Iakovides et al. (2021) reported that
using an octanol-air partition coefficient absorption model, such as the Junge-Pankow model, the gas-
particle fractions of simulated PAHs are more suitable for remote or rural areas but not for urban areas.
To differentiate between aerosols in European urban or rural areas, Arp et al. (2008) developed
polyparameter linear free energy relationships (ppLFER) equations. Shahpoury et al. (2016) reported
that the ppLFER model can distinguish a variety of organics, including liquid water-soluble/organic
soluble organics, and solid/semisolid organic polymers, as well as the inorganic phases of aerosols.
Therefore, by adopting the ppLFER scheme, the gas-particle partitioning of simulated PAHs in
anthropogenically impacted areas is improved, and the simulated PAHs show good agreement with
observations [Tomaz et al., 2016; Kelly et al., 2021].

The lack of clarity regarding the chemical loss of PAHs is a significant factor contributing to large
deviations in model-simulated BaP concentrations compared to measured values. As a semi-volatile
compound, BaP in the gas-phase undergoes degradation through various pathways, primarily involving
reactions with hydroxyl radicals (OH) and nitrate radicals (NOs-)radieals, along with photolytic processes
driven by light. In a particle-bound state, while BaP can also be degraded by OH and NO3, this occurs at
a much slower rate compared to degradation by ozone, which serves as the primary mechanism in this
phase [Keyte et al., 2013]. Laboratory studies have shown that particle-bound BaP can undergo rapid
oxidation within hours through heterogeneous chemical degradation of BaP on the surface of black
carbon (BC), organic carbon (OC), and sulfate aerosols [Poschl et al., 2001; Kwamena et al., 2004; Kahan
et al., 2006; Zhou et al., 2012]. Despite laboratory findings, field measurements have revealed that BaP

persists in the atmosphere for extended periods and can be transported over long distances, reaching even
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the Arctic [Halsall et al., 1997; Masclet et al., 2000; Schauer et al., 2003; Lohmann and Lammel, 2004;
Van Overmeiren et al., 2024]. A recent laboratory study demonstrated that the presence of secondary
organic aerosol (SOA) coatings could shield BaP from ozone oxidation [Zelenyuk et al., 2012]. Based
on this, Friedman et al. (2014) used an exponential decay function, assuming that 80% of SOA-bound
PAHs were still present after 24 hours. However, the shielding effectiveness of PAHs depends on the
phase state of SOA, which should be temperature- and relative humidity-dependent [Koop et al., 2011;
Zhou et al., 2013; Berkemeier et al., 2016; Shiraiwa et al., 2017; Shrivastava et al., 2017; Mu et al., 2018].
Shrivastava et al. (2017) developed a new PAH modeling approach in the global Community Atmosphere
Model, assuming that viscous SOA can completely inhibit particle-bound PAHs (i.e., BaP) oxidation
reactions under cool or dry conditions. Implementing this approach significantly improved the agreement
between simulated and measured BaP concentrations at hundreds of locations worldwide compared to
models that ignored the shielding effects of SOA coatings. Meanwhile, Mu et al. (2018) suggested that
shutting off particle-bound BaP degradation based on the simple thresholds of temperature and relative
humidity used in Shrivastava et al. (2017) cannot represent the complex multiphase reactions of BaP.
They proposed a new ROI-T approach, accounting for the effects of temperature and humidity on SOA
phase state and BaP degradation chemical reaction rate. The BaP concentrations simulated using the
ROI-T approach exhibited the best agreement with measurements at Xianghe (China) and Gosan (South
Korea) sites [Mu et al., 2018]. However, their simulations still showed a significant underestimation of
BaP concentrations for European and Arctic background sites.

Although simulations of PAHs have significantly improved over the past decade [Sehili et al., 2007;
Friedman & Selin, 2012; Shen et al., 2014; Shrivastava et al., 2017; Mu et al., 2018; Wu et al., 2024]

particularly in terms of lifetime estimation, understanding of Fherefore;the oxidation chemistry remains

a key area of development. The oxidation of particle-bound BaP—_is highly dependent on the

concentrations of oxidants (primarily ozone) and the effectiveness of shielding by viscous organic
aerosol (OA) coatings, which are influenced by temperature and relative humidity (RH). This
dependence results in notable seasonal variations in both fresh BaP concentrations and oxidized BaP.
Considering—thatSince assessments of PAH-induced lung cancer risks often rely on modeled BaP
concentrations [Shen et al., 2014; Shrivastava et al., 2017; F E-Han et al., 2020; 2022; Famiyeh et al.,
2021; E-Hanetal;2022:Liet al., 2022; Wu et al., 2024], uncertainties in these medeled-simulations can
haveBaP-concentrations—earry significant implications for estimates of PAH exposure and associated
human health risks. This study systematically investigates-evaluates the uncertainty in simulated BaP

concentrations due to varying chemical mechanisms of BaP oxidation, considering aeress—different

seasonals_variations-and-evaluates-the-appropriateness-of PAH-medeling. This paper also assesses the

strengths and limitations of current PAH modelling approaches, offering insights into future simulation

improvements. The structure of the paper is organized as follows: Section 2 introduces the model,

particle-bound BaP degradation approaches, emissions, and observation data used in this study. Section
3 first presents the simulated fresh and oxidized BaP concentrations in winter and summer, followed by

a detailed comparison between simulated BaP and measurements-—, as well as an assessment of PAH-

related lung cancer risk. Section 4 gives the conclusions and implications for discussions.
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2 Methods
2.1 Measurements

We collected observed fresh BaP concentrations at 66 background/remote sites and 208 non-
background sites worldwide (Table S1, S2). The observation data of fresh BaP were obtained from the
Integrated Atmospheric Deposition Network (IADN, available from https://www.epa.gov/great-lakes-
monitoring/great-lakes-integrated-atmospheric-deposition-network), the European Monitoring and
Evaluation Programme (EMEP, available from https://www.emep.int [Terseth et al., 2012]), the Global
Environmental Assessment Information System (GENASIS, available from https://www.genasis.cz
[Boruvkova et al., 2015]), the Arctic Monitoring and Assessment Programme (AMAP [Hung et al.,
2010]), and previous studies [Shen et al., 2014; Shrivastava et al., 2017]. For oxidized BaP,
measurements were available from only two locations: Grenoble—an urban site situated at 5.73°E,
45.16°N—in 2013, and SIRTA—a background site located at 2.15°E, 48.71°N (http://sirtaa.ipsl.fr/)—in

the years 2014-2015. However, due to the measurement limitations, data on oxidized BaP (primarily

nitro-BaP) were only available from two sites in France. Therefore, this study only includes
concentrations of oxidized BaP from Grenoble (an urban site located at 5.73E, 45.16°N) in 2013 [Tomaz
et al., 2016] and from the ACTRIS SIRTA atmospheric supersite (Site Instrumental de Recherche par
Télédétection Atmosphérique, whichi is representative of the suburban background eenditions-site in the
Paris region, located at 2.15°E, 48.71°N; http://sirtaa.ipsl.fr/) in 2014-2015 [Lanzafame et al., 2021]. The

Grenoble site is centrally located and represents a location with significant urban influence, while the

SIRTA site is located 25 km southwest of central Paris and is considered representative of regional

background air quality.
2.2 Overview of the model

We employed the global Community Atmosphere Model version 5.2 (CAMS) to simulate the global
distribution of BaP concentrations. Tracer concentrations obtained from CAMS simulations were
performed at a horizontal resolution of 1.9 °© latitude by 2.5 ° longitude, and a vertical resolution of 30
layers between the surface and 3.6 hPa. The Model for Ozone and Related Chemical Tracers (MOZART-
4) represented the gas-phase chemical mechanism [Emmons et al., 2010], while the properties and
processes of aerosol species were included in the Modal Aerosol Model (MAM3) [X Liu et al., 2012].
The model encompassed six aerosol species, including inorganic aerosols (e.g. mineral dust, black carbon,
sulfate, and sea salt) and organic aerosols (primary organic aerosol and secondary organic aerosol). In
addition, this study utilized an update of the volatility basis-set (VBS) approach developed by
Shrivastava et al. (2015). The VBS approach tracked SOA formation based on SOA precursor gas
sources, addressing both functionalization and fragmentation reactions during multi-generational aging
of SOA precursor gases, as well as oligomerization reactions of SOA. The ppLFER (polyparameter linear
free energy relationships) model was applied to the gas-particle partitioning of BaP, encompassing both
BaP absorption into organic aerosols and adsorption onto the surface of black carbon aerosol [Shahpoury
etal., 2016]. Following Shrivastava et al. (2017), we divided erganic-aerosels{OA} into the liquid water-
soluble/organic soluble phase and the solid/semi-solid organic polymer phase. More than 90% of

particle-bound BaP is absorbed within organic aerosols after applying the ppLFER model. The transport,
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dry deposition, and wet removal of particle-bound BaP (including oxidized PAH) are treated similarly
to other aerosol species in CAMS [X Liu et al., 2012].

The viscosity of OA affects the atmospheric lifecycle of BaP in two ways: (1) through the gas-particle

partitioning of SOA, which also impacts the gas-particle partitioning of BaP (as d escribed by the pp-

LFER approach), and (2) by altering the heterogeneous degradation kinetics of BaP with ozone. In the

following section, we describe the application of three different model sensitivity formulations that

account for the role of OA viscosity on the lifecycle of BaP.

2.3 BaP degradation

The model incorporates the gas-phase reaction of BaP with_—hydrexylradicals-(OH). Consistent with
previous studies, the second-order rate coefficient for the reaction of gaseous BaP with OH is set at 5x 10
" ¢cm® molecules™ s [Keyte et al., 2013; Shrivastava et al., 2017]. Heterogeneous reactions of
particulate-phase BaP with OH and ozone are also included in the model [Cazaunau et al., 2010; Zhou
etal.,2012; 2013; Keyte et al., 2013:Zheu-etal;2043]. The second-order rate coefficient for the reaction
of particle-bound BaP with OH is determined to be 2.9x10°"* ¢cm?® molecules™ s! [Esteve et al., 2006],
which is two orders of magnitude slower than the gas-phase reaction rate of BaP with OH. Conversely,
particle-bound BaP reacts rapidly with ozone within a few hours, representing the primary oxidation
pathway for BaP. Note that the photolysis of BaP is not included in this study, partly because its
photolysis rate constant is much lower compared to that of low molecular wight PAHs [Niu et al., 2007],
and the current model already underestimates BaP concentrations.
In this study, three approaches are implemented to estimate particle-bound BaP degradation, providing
insights into the uncertainty associated with this process.
(1) In the default NOA approach, the —characteristics of the organic coating - such as its thickness and
viscosity - does not affect the heterogeneous loss of particle-bound BaP-heterogeneoustoss-proeess.
In this approach, tFhe heterogeneeus—oxidation of partiele-beund-BaP follows the Langmuir-

Hinselwood mechanism, meaningindieating that the reaction rate (k) is first-order with reactionrate O&ET#&ﬁ: FAR: 10 1
{e)-isrespect to BaP and, variable-dependents, on ozone concentrations;-. Since the reference state of O&ET#&ﬁ: TR 10 B
the prganic coating in this approach js thin and liquid-like, witheut-diffusion limitations frem-thin O&ETﬁﬁ: FAR: 10 B
Liguid-like-SOA-—eeatingsare not considered significant -[Zhou et al., 2012; Zheu-et-al--2013], In ) Oﬁﬁ?ﬁﬁ: AR 10 B
addition, this approach does not consider the effects of OA viscosity on the gas-particle partitioning ‘ ‘ GﬁET*&ﬁ: TR 10 B
of SOA, as it uses the FragSVSOA treatment described in Shrivastava et al. (2015), which assumes JO&ET#&ﬁ: TR 10 B
SOA as semi-volatile liquid-like well-mixed solution throughout its atmospheric lifetime,, ‘ ;EOﬁETﬁﬁ: TR 10 B
(2) Following Shrivastava et al. (2017), the SOA Shielded approach is implemented, accounting for the ‘O&ET#&ﬁ: T 10 B
shielding of BaP by viscous SOA coatings. The kinetics of the heterogeneous oxidation of BaP with (ﬁETﬁﬁ: TR 10 B

ozone become much slower after absorption by organic aerosols, as thick OA coatings reduce the
kinetics of mass transfer of BaP from the interior of the particle to the particle surface. The
effectiveness of SOA shielding is related to its thickness and viscosity, influenced by temperature
and relative humidity [Zhou et al., 2012; Zhou-et-al;-2013]. In this approach, when SOA coatings
are less than 20 nm, we assume that SOA cannot effectively shield particle-bound BaP, and thus,
the heterogeneous oxidation kinetics remain the same as in the default NOA approach. Thick SOA
coatings (> 20 nm) can completely turn off the particle-bound BaP heterogeneous loss kinetics under
dry or cool conditions (relative-humidityRH < 50% or temperature < 296 K). Different oxidation
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kinetics with ozone are applied under humid_(RH > 50%) and warm_(temperature > 296 K)

conditions with thick SOA coatings, where the second-order rate coefficient for the reaction of

particle-bound BaP with ozone is 14 and 6.2x10;"* cm? molecules;' s;' under moderate humidity

(50%<RH<70%) and high humidity conditions (RH>=70%), respectively [Zhou et al., 2013;
Shrivastava et al., 2017].

(3) Following Mu et al. (2018), the ROI-T approach is implemented, accounting for the temperature
and humidity dependence of the phase state, diffusivity, and reactivity of particulate-phase BaP.
First-order reaction rate coefficients for BaP ozonolysis are sensitive to both temperature and RH
below room temperature (296 K), but are only temperature sensitive above room temperature [Mu
et al., 2018] (Table S1). Under cool and dry conditions, the first-order reaction rate coefficients are
four-3-4 orders of magnitude lower than those under warm conditions (Table S1). Notably, the ROI-
T approach yields a much slower oxidation reaction of particle-bound BaP than the default NOA
approach under cool and dry conditions but a faster oxidation reaction rate under warm conditions.

Note that both the Shielded and ROI-T approaches described above consider the impact of aged semi-

solid SOA on the gas-particle partitioning of fresh SOA precursors, using the FragNVSOA treatment

described in Shrivastava et al. (2015). This treatment assumes that, once SOA is formed, it is transformed

into a highly viscous, non-volatile semi-solid within the same global model timestep (30 min) due to

particle-phase oligomerization reactions within the SOA [Shrivastava et al., 2015]. The FragNVSOA

treatment also assumes that any further gas-phase organic oxidation products that condense do not form

a solution with pre-existing OA. This assumption is supported by recent experimental studies, which

show a short aging timescale of ~20 min, during which oligomer and organosulfate formation within

isoprene SOA, leading to non-equilibrium partitioning behaviour and phase transition to semi-solid SOA

Chen et al. 2023].

2.4 Model Sensitivity Simulations

We conduct simulations using CAMS5 to explore the uncertainty of seasonal variations in BaP
concentrations with different PAH oxidation approaches. Three effects of OA coatings on particle-bound
PAH oxidation, as detailed in section 2.3, are considered. Hence, sensitivity simulations are performed
as follows:

(1) NOA-LOA-costimes-do-notaticet RA-ovdution

(2) Shielded ¢
[Shrivastava et al., 2017];

(3) ROI-T s

g [Mu et al., 2018].
All simulations are conducted over two years (2007-2008), with the first year allocated for spin-up. Since
most observations occurred around 2004-2009, winds and temperature are nudged toward ERA-Interim
data from January 2007 to December 2008 in this study.

2.5 Emissions

This study utilizes the Global Emission Modeling System (GEMS) 0.1° x 0.1° global BaP emission
inventory with temporal and spatial variations, which is available from gems.sustech.edu.cn. The

inventory was derived from the PKU-PAH Global Emission Inventory [Shen et al., 2013], which
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incorporates inekides-data from all major fuel consumption sources and industrial processes{Shen-et-al:
20431, The spatiotemporal changes in global BaP emissions are detailed in our previous work
[Shrivastava et al., 2017; Lou et al., 2023]. Anthropogenic emissions, including BC, OC, and precursor
gases for both secondary aerosols and ozone, are sourced from the HTAP v2.2 2008 emission inventory
[Janssens-Maenhout et al., 2015]. Additionally, emissions from agricultural waste burning and open
biomass burning emissions are obtained from the Emissions Database for Global Atmospheric Research
(EDGAR v4.3) and Global Fire Emissions Database (GFED3.0), respectively [van der Werf et al., 2010;
Crippa et al., 2018]. To maintain consistency with the modeling timeframe and facilitate comparison

with observations, all emissions are set at 2008 levels.
2.6 Global model downscaling formulation

To enhance the comparison between simulated BaP concentrations and measurementsobservational data,
particularly in anthropogenically influenced sites—arcas such as these—near—eitiesurban regions, we
implemented a downscaling_approach based on a Gaussian diffusion algorithm.- This method refined
invelvedredueing-the model-ealeulated-derived near-surface BaP concentrations from the coarse-grid
resolution of 2.5°%1.9° to a higherfiner resolution of ¢0.1°x0.1°, aligning with the original resolution of

emission inventory). Following the methodology outlined by Shen et al. (2014), we assigned a weighting
factor (W;) fer—to each 0.1°x0.1° receiving grid cell. This factor was determined by summing the
contributions of emissions from all 0.1°x0.1° emission grid cells within a defined neighbourhood. Thes
within—a—nine-grid—neighberheedneighbourhood consists of— (enethe 2.5°x1.9° model grid_cell
containing eevering-the 8-4°<01°receiving grid cell and the-ether eight adjacent model grid cells,
encompassing approximately 4275 0.1°x0.1° emission grid cellssurroundingit). The formulation for W;

is as follows:

—ratsi
n 203Q;fje 4t

Wi =¥j=1

O

uja'zjxﬁ
Here, Q; (ng/s) represents the emissions density of the jth emission grid cell. f; (dimensionless) and
u; (m/s) are wind frequency (0-1) and wind speed in directions 1 to 16 (N. NNE. NE. NEE, E, SEE, SE

SSE. S, SSW, SW. NWW, NW, and NNW) in the jth-emission grid_cell, respectively, taken from the

ERA-interim reanalysis wind field. The degradation rate r; (/s) involves the gas-phase reaction with OH

and the particle-phase heterogeneous reaction with ozone in the receiving grid cell derived from based

enr-the chemical transport modelsimutation-eutput. n represents the number of emission grid cells within

the nine model grid cells and is approximately 4275, though the actual value depends on the alignment

of the grid resolutions. Additionally, ¢;; (s) and x;; (m) denote the distance and transport time from the

jth emission grid_cell to the ith receiving grid_cell, and o (m) is the vertical standard deviation of the

concentrations. Finally, the calculated W; is used as a proxy to disaggregate the model-calculated
concentration of each 2.5°x1.9° model grid cell to a 0.1°x0.1° grid cell. Previous studies have reported
substantial improvements in the distribution and magnitude of observed BaP concentrations through this

downscaling process in similar simulations [Shen et al., 2014; Shrivastava et al., 2017; Lou et al., 2023].

(RETHR: T 10 65, FHFIE: HERE, W) )




312

313
314

315

316
B17
B18
B19
B20
B21
B22
B23
324
B25
B26
B27
B28
B29
330
331
332
333
334

335

336

337
338
339
340
341
342
343
344
345
346
347
348
349

2.7 Incremental Lifetime Cancer Risk

The Incremental Lifetime Cancer Risk (ILCR) induced by exposure to PAHs in ambient air is calculated

using the following formula [Shen et al., 2014]:

CxIny

ILCR = CSF X LADD x SUS = CSF X2

x SUS (2)

where CSF, LADD, and SUS represent the cancer slope factor, lifetime average dally dose, and a factor

describing individual susceptibility, respectivelys

region. Following Shen et al. (2014), CSF of 26.6 kg (body weight): day/ms, for BaP was adopted as the

maximum likelihood estimate based on epidemiological data from studies on coke oven workers, using

a multistage type model [U.S. EPA, 1982]. SUS accounts for individual variations in susceptibility and

is defined as the product of genetic susceptibility (GeneSus), ethnicity-adjusted factor (EAF), and age-

sensitivity factor (ASF), respectively. GeneSus represents the impact of genetic variations on an

individual’s susceptibility to BaP-induced cancer risk. Different genotypes may lead to variations in

metabolic activation or detoxification of PAHs, affecting carcinogenic risk. EAF was calculated based

on the lung cancer incidences for individual ethnicities reported by the United States Cancer Statistics

(available from https://www.cdc.gov/united-states-cancer-statistics/index.html), excluding the effects of

smoking. ASF accounts for age-related differences in susceptibility to BaP exposure. Weighting cancer

risk by a factor of 10, 2, and 1 were used for the age groups of <2, 2-16, and > 16 years, respectively
CA EPA, 2009].

LADD is calculated from BaP exposure concentration (C, mg m™), which is downscaled from model-

predicted BaP concentrations in this study, inhalation rate (IR, m*/day), exposure duration (y, year), body
weight (BW), and average life expectancy of the global population (LE, 70 years). ILCR in this study is
a population-weighted average and represents the maximum likelihood estimate; the unit for ILCR is

one death per 100,000 persons.

3 Results
3.1 Simulation of seasonal variations in global fresh BaP

Given that lifetime exposure to 0.1 ng m of BaP theoretically results in an additional lung cancer death
per 100,000 exposed persons, the WHO recommends a limit of 0.1 ng m ™ [Bostrom et al., 2002]. BaP
degradation approaches can significantly impact BaP concentrations, further influencing the assessment
of PAH exposure risks in various regions. Here, in this study, we investigated three different particle-
bound BaP degradation approaches related to the OA coating hypothesis to examine their effects on the
spatial distribution of BaP. Considering that the effectiveness of OA coatings is strongly dependent on
temperature and humidity variations, we analyzed the distribution of BaP concentrations under different
seasons.

In DJF (December-January-February), population-weighted global average (PWGA) BaP concentrations
with different particle-bound BaP degradation approaches are predicted to be 0.24-1.38 ng m>,
consistently exceeding the WHO recommendation. High levels of BaP concentrations are simulated to
appear in East Asia, South Asia, North Africa, and Europe, with the peak BaP exposure in eastern China

exceeding 1.0 ng m™ (Fig. 1). In contrast, BaP concentrations are much lower in JJA (June-July-August),

(RETHR: Tk 10 65, FHFE: HHRE, HHROLE) )

(CRET Heshe F6: 10 B, FRBIE: F3)RE, JERGHE) )




|350 with pepulation-weighted global-averagePWGA values of 0.04-0.17 ng m>. These results indicate that

351 the simulated BaP exhibits strong seasonality, primarily influenced by changes in emissions, deposition,

52 and BaP degradation chemistry. Our simulated seasonal BaP concentrations, particularly for the ROI-T

53 approach, align with a previous study using the same emissions and particulate-BaP degradation

54 approach [Wu et al., 2024].

355 In 2008, residential biomass use contributed more than 60% of total atmospheric BaP emissions for
b56 households cooking, heating, and lighting [Shen et al., 2013]. Since the demand for heating and lightring
357 s higher in winter than in summer, more residential biomass burning is required in winter, inevitably
358 producing BaP. In addition, less precipitation in the Northern Hemisphere in winter compared to summer
359 (Fig. S1), linked to less efficient wet removal, contributes to the seasonal variations of BaP. Thus, without

360  the impacts of OA coatings on BaP degradation, the seasonal variations of BaP concentrations in

361 simulations using the NOA approach primarily represent the changes in emissions and deposition.
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364 Figure 1. The spatial distribution of simulated BaP concentrations in (a-c) DJF and (d-f) JJA. Fresh BaP

365 concentrations with different heterogeneous reaction approaches for particle-bound BaP are shown in the

366 left column (NOA), the middle column (Shieled), and the right column (ROI-T), respectively.
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Figure 2. The spatial distribution of surface-layer average temperature (left-col top panel, unit: K)-and,

relative humidity (righteelumnmiddle panel, unit: %), and spatial distribution of BaP emissions (bottom
panel, unit kg/grid cell) in DJF (December-January-February) and JJA (June-July-August), respectively.

Compared with simulations using the NOA approach, those incorporating OA coatings can effectively
impede the BaP loss process, leading to a significant increase in BaP concentrations during winter (Fig.
1). Upon absorption by organic aerosols, the presence of viscous OA coatings substantially hinders the
mass transfer kinetics of BaP from the particle core to the surface. The denser the organic aerosol, the

slower the diffusion of BaP, consequently slowing down the heterogeneous reactions of particle-bound
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BaP with ozone and OH on the aerosol surface. This effect is more pronounced in winter than in summer,
attributed to cooler conditions that likely increase the viscosity of SOA [Shrivastava et al., 2017].

For example, the PWGA BaP from the simulation using the Shielded approach is six times higher than
that in the simulation using the NOA approach in DJF. With the Shielded approach, the OA coating is
assumed to be sufficiently tacky to prevent BaP from undergoing heterogeneous reactions with ozone
completely under dry or cool conditions, thereby extending the lifetime of BaP. During Northern
Hemisphere winters, effective OA shielding occurs in areas characterized by cool temperatures (<296 K)
or dry conditions (RH<50%), covering most of the regions with high BaP emission densities (Fig. 2a-b)
[Shiraiwa et al., 2011; Saukko et al., 2012; Zhou et al., 2012; Bateman et al., 2015]. Furthermore, BaP
with OA coatings can be transported over long distances to remote areas, including the Arctic. Treating
OA coating effectiveness as the ROI-T approach, the BaP concentrations also increase, with PWGA BaP
estimated to be twice as high as in the simulation with the NOA approach during winter. Compared with
the Shielded simulation, BaP concentrations in the ROI-T simulation exhibit similar spatial patterns in
high latitudes such as Europe, northern China, and the Arctic, but lower concentrations in southern China,
South Asia, and North Africa. The ROI-T approach assumes that the diffusion coefficients of BaP and
ozone within OA coatings decrease with reducing temperature and relative humidity, thus reducing the
degradation rate of BaP. That is, under cold (<273 K) or dry (<50%) conditions, such as mid-to-high
latitudes in winter (Fig. 2a, b), the degradation rates of BaP in the ROI-T approach are two to four orders
of magnitude smaller than those without the OA coating effect. In contrast, the OA coating in southern
China, South Asia and Africa is not as effective as those in Europe, northern China, and the Arctic,
resulting in BaP concentrations similar to NOA simulation.

In JJA, BaP concentrations tend to concentrate near the source areas. While BaP concentrations in the
simulation using the Shielded approach are estimated to be higher than those in the NOA simulation, the
concentrations found in the simulation using the ROI-T approach are even lower. The ROI-T approach
assumes that the diffusion coefficients of BaP and ozone increase with temperature, leading to an
estimated faster degradation rate of BaP than in NOA and Shielded approach simulations at conditions
above room temperature. Our results are consistent with previous studies [Shrivastava et al., 2017; Mu
etal., 2018].

3.2 Simulation of seasonal variations in global oxidized BaP

Previous modeling studies assumed that fresh PAHs are completely degraded after oxidation [Sehili and
Lammel, 2007; Matthias et al., 2009; Friedman et al., 2014]. However, laboratory experiments suggested
that several oxidized PAHs may remain particle-bound and even increase in molecular weight [Ringuet
et al., 2012; Zelenyuk et al., 2012; Jariyasopit et al., 2014]. Furthermore, not only fresh BaP but also
certain oxidized BaP species and derivatives exhibit toxicity [EHC 2003; Clergé et al., 2019; Hrdina et
al., 2022; Peng et al., 2023]. Therefore, it is essential to understand the impact of different BaP
degradation approaches on oxidized BaP.

In this study, we tracked oxidized particle-bound BaP, which is formed through the heterogeneous
reactions of particulate-phase BaP with OH and ozone. Figure 3 shows the spatial distribution of
simulated oxidized BaP concentrations in DJF. In the absence of an OA coating, particle-bound BaP is
always available to react with Os. Therefore, most particle-bound BaP is rapidly oxidized near source

areas, with a PWGA oxidized BaP concentration of 1.3 ng m™, or 82% of the total (sum of fresh and
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oxidized) BaP (Fig. 3a, d). If oxidized BaP is as toxic as fresh BaP, the oxidized BaP concentration in
NOA globally exceeds the WHO recommendation of 0.1 ng m™ by a wide margin. In comparison, the
Shielded simulation predicts that high levels of oxidized BaP only appear in the tropics in winter (Fig.
3b), because OA coatings are less effective at protecting BaP from ozone attack under high temperature
and high RH conditions (Fig. 2a, b). Since the viscous OA coatings completely shut down the particle-
bound BaP oxidation reaction under cool or dry conditions, most fresh BaP can stay in the atmosphere
for several days, with only 10% of the total BaP being oxidized. Surprisingly, although the OA coating
slowed the diffusion of particle-bound BaP from inside the interior of the OA to the particle surface in
the ROI-T simulation, 71% of the total BaP was still oxidized on a global basis.

NOA Shielded ROI-T
(a) PWGA oxidized BaP=1.30 ng m* (c) PWGA oxidized BaP=1.11 ng m
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Figure 3. The spatial distribution of simulated (a-c) oxidized BaP concentrations and (d-f) the ratio of oxidized
BaP to the total (fresh+oxidized) BaP in DJF. Simulations with the different heterogeneous reactions of
particle-bound BaP approaches are shown in the left (NOA simulation), middle (Shieled), and right (ROI-T)

columns, respectively.
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Figure 4. Same as Figure 3 but for JJA.

Due to the less effectiveness of OA coatings under warm and moist conditions, all simulations with

different BaP degradation approaches predict that oxidized BaP contributes to more than 90% of the total
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BaP concentrations in JJA in the tropics (30°S-30°N). At mid-to-high latitudes, the oxidized BaP varies
greatly with the effect of OA coatings on the BaP oxidation reactions. More than 80% of total BaP is
oxidized in mid-to-high latitudes applying the NOA or ROI-T approaches, with peaks exceeding WHO
recommendations in most of East Asia, West Europe, and North America. Meanwhile, the Shielded
approach assumes that OA coatings largely limit the particle-bound BaP oxidation reaction, whereas the
oxidized BaP contributes no more than 40% to the total BaP. Our results indicate that current model
estimates of human exposure to fresh or oxidized PAHs are highly sensitive to assumptions about PAH

degradation processing, especially during North Hemisphere winter.

3.3. Model Evaluation
3.3.1 Fresh BaP

To assess simulated BaP concentrations, we select surface BaP measurements from 66
background/remote sites and 208 urban-affected sites worldwide (Table S2+, S32), covering the period
1997 to 2014, with a focus on the years between 2004 and 2011. Median BaP observations at each site
are compared with simulated BaP in DJF and JJA, respectively. Given the global model’s horizontal grid
spacing of approximately 200 km, we specifically compare simulated BaP concentrations with
measurements from background sites. To address the limitations of the coarse global model, we
downscale the simulated BaP grid to a higher resolution of 10 km based on factors such as wind speed,
wind direction and frequency, emission density, and gas/particle BaP degradation rates to account for
strong gradients and high BaP concentrations near urban areas. This downscaled approach aims to
account for strong gradients and high BaP concentrations near source areas. Our previous studies, using

the same simulations, reported that while the coarse-grid model significantly underestimates

concentrations in urban-affected regions, the downscaled BaP vastly improves the comparison between
the model and observations [Shrivastava et al., 2017; Lou et al., 2023].

Figure 5a compares measured and model-predicted concentrations at 66 background sites around the
world in DJF. The model-estimated BaP for the Shielded approach during the same time and locations
of the measurements agrees best with observations of global BaP concentrations, with a normalized mean
bias (NMB) of -18%. In contrast, without the effect of OA coating on the degradation of particle-bound
BaP, NOA predictions are 78% lower than observed BaP globally (Fig. 5b). Comparisons between
measured and downscaled simulated BaP at urban-affected sites show similar results, as the OA shielding
approach significantly improves the model’s ability to predict fresh BaP concentrations.

It’s worth noting that the effectiveness of OA coatings depends largely on temperature and humidity,
which are related to the meteorological characteristics of different regions. We, therefore, compare
measured and model-simulated BaP concentrations at different latitudes, namely relatively high latitudes
(measured locations north of 40°N) and low latitudes (measured locations between 40°S and 40°N),
respectively. Figures 6a and 6b demonstrate that the OA shielding particle-bound BaP approach increases
the simulated BaP concentrations in much better agreement with the measured values than without the
OA coating effect. This improvement is not sensitive to latitude. For the ROI-T treatment, although
predicted fresh BaP concentrations at locations above 40°N were two or three times higher than the
treatment without OA coating effects, the simulation still substantially underestimates the BaP

concentrations in these regions by 50% (Fig. 6¢). Moreover, model-estimated BaP concentrations in
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ROI-T perform even worse at low latitudes compared to high latitudes. On a global average, the ROI-T
approach, accounting for the temperature and humidity dependence of the phase state, diffusivity, and

reactivity of particulate-bound BaP, underestimates BaP by ~60% in DJF (Fig. 5a, c).
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Figure 5. Comparison between simulated surface BaP concentrations from NOA, Shielded, and ROI-T
simulations and ground-based measurements (a-b) for 66 background sites, (c-d) for 208 urban impacted sites.
The circle area is proportional to the number of days sampled at each site. Annual variation of measured and
simulated BaP concentrations at (e) 18 sites (6 background and 12 urban impacted sites) in China, and (f) 18
background sites in Europe. Black lines represent measured values (median and 15th and 85th percentiles of
site monthly means), while blue (NOA), red (Shielded), and green (ROI-T) lines represent the median of the

monthly model-simulated means for these sites.

In JJA, both NOA and ROI-T simulations struggle to capture BaP concentrations, underestimating
observations by more than 70% (Fig. 5b and 5d). However, similar to DJF, the model-predicted
concentrations in simulation using the Shielded approach exhibit the best agreement with ground
measurements in JJA, showing a nermalized-mean-biasNMB of -25% and +9% at the background and
urban-affected sites, respectively. Interestingly, the ROI-T approach deviates more from the actual
observed values, especially at measurement locations between 40°N and 40°S (Fig. 6d and 6f).

Figure Se indicates that both the Shielded simulation (red line) and ROI-T simulation (green line) capture
the magnitude and seasonal variations of BaP concentrations compared with monthly observations at 18

sites in China (black lines). The regions of China and Europe were chosen for this analysis because they

meet two criteria: (1) each has more than 10 measurement sites, and (2) the data from these sites span

over one year, allowing for a reliable representation of seasonal variations. In both simulations and
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observations,~ Fhesimulated-and-observed BaP concentrations peak in winter but are lowest in summer.
As mentioned in section 3.1, the predicted monthly variations in BaP concentrations are due to the
seasonality of BaP emissions and BaP oxidation rates. For instance, residential emissions in China are
four times higher in winter than in summer, contributing 78% of BaP emissions in winter and 56% in
summer [Shen et al., 2013]. Furthermore, lower wintertime temperatures favor more viscous OA coatings
to reduce BaP diffusion and decrease oxidation rates, while more liquid-like OA coatings in summer
have a minor effect on BaP oxidation reactions. In contrast, although the models show a similar seasonal
cycle to observations, fresh BaP concentrations are largely underestimated throughout the year in the
absence of the OA coating status effect (NOA),
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Figure 6. Comparison between simulated surface BaP concentrations at relatively high latitude regions
(marked as olive, measured locations north of 40°N) and low latitude regions (marked as magenta, measured
locations between 40°N and 40°S) in (a-c) DJF and (d-f) JJA, respectively. The circle area is proportional to

the number of days sampled at each site. Both background and urban sites are included.
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In Europe, although the simulated BaP for the Shielded approach also exhibits the best agreement with
observations at 18 sites throughout the year, with a nermalized-mean-biasNMB of +16%, the simulated
BaP fails to capture the magnitude of the measured BaP concentrations during the warm season (Fig. 5f).
From April to October, model-predicted BaP concentrations in the Shielded simulation are overestimated
by 88%. In contrast, the simulated BaP concentrations for the ROI-T approach are consistent with the
monthly variation of the measured BaP concentrations, despite showing a 66% underestimated annual
mean, which is mainly due to the significant underestimation in cool season. Our results suggest that
while the Shielded simulation is likely closer to actual BaP magnitudes at mid- and low-latitudes, the
ROI-T approach may better represent seasonal variation at mid-and high-latitudes but overestimates the

coefficient of BaP multiphase degradation rates.
3.3.2 Oxidized BaP

Due to limited observations of oxidized BaP, specifically 1-, 3-, and 6-nitrobenzo(a)pyrene, we assess
monthly changes in BaP for three different particle-bound BaP degradation approaches performed at two
sites, Grenoble and SIRTA. In this study, we compare both simulated fresh BaP and oxidized BaP with
in situ measurements. For Grenoble, we use downscaled Nete-that-the-simulated fresh/oxidized BaP
concentrations_—tsed for comparison-in-Grenoble-are-vatues-after downsealing, while at the SIRTA site,

we site o

backgroundairquality-We;therefore-compare simule 5 idi coneentrations-with-coarse
herizontal—resolution te—measurements—at—the—SIRTA—sitesimulated BaP concentrations with

measurements.
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Figure 7. Monthly comparison between simulated surface fresh and oxidized BaP from NOA, Shielded, and

ROI-T simulations and ground-based ts at (a-c) Grenoble and (de-f) SIRTA sites. Black lines

represent measured values (median and 15th and 85th percentiles of each site), while blue (NOA), red
(Shielded), and green (ROI-T) lines represent the model-simulated median per month. The ratio of oxidized
BaP to fresh BaP are represent in (c) and (f). From April to September at SIRTA site, observed concentrations

of oxidized BaP were below LQ and therefore not presented on the graph.

A

The measurement site at the sampling station of “Les Frenes” in Grenoble (5.73°E, 45.16°N, France)
represents the most densely populated urban area in Europe. Although the simulated concentrations
applying the Shielded approach best match the observed fresh BaP concentrations in Grenoble among
the three approaches, the model largely underestimates winter BaP concentrations but overestimates
summer concentrations (Fig. 7a). Therefore, the assumption that viscous organic aerosol coatings

completely shut off the reaction of fresh particle-bound BaP with ozone under cool and dry conditions

(BT Hexh: HBCEH)
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is somewhat distorted and fails to capture seasonal variation in fresh BaP in Grenoble. The relatively low
ratio of oxidized to fresh BaP using the Shielded approach in Fig. 7c indicates that the chemical scheme
overly protects fresh PAHs from oxidation. Consequently, it underestimates oxidized BaP by one order
of magnitude. In contrast, despite the overall underestimation, the ROI-T simulation captures the
seasonal variations in fresh BaP concentrations in Grenoble (Fig. 7a). However, the magnitude of the
simulated oxidized BaP concentration is very similar to the observed values (Fig. 7b). As we mentioned
above, the ratio of oxidized to fresh BaP in Fig. 7c reveals that the oxidation rate of BaP from fresh to
oxidized is too fast under ROI-T treatment, especially during cold season.

In addition, the underestimation of both fresh and oxidized BaP concentrations may be partly due to the
coarse horizontal resolution of simulated BaP, and inaccurate urban PAH emissions. We use a
downscaling formulation to convert the 200 km grid resolution to a ~10 km grid resolution, but the spatial
distribution of BaP obtained in this way is highly dependent on accurate emissions and meteorological
fields. Previous studies have reported that traditional biomass combustion for residential heating is the
main source of PMas in France in winter and including in the Grenoble area [Favez et al., 2009; 2021;
Srivastava et al., 2018; Weber et al., 2019; Zhang et al., 2020a], thus inevitably emitting large amounts
of BaP. Considering the underestimation of both fresh and oxidized BaP concentrations at the Grenoble
site in winter, there is a large uncertainty in the emission and spatial distribution of PAHs in urban areas
(Fig. 7a, b).

For the SIRTA site, the simulated BaP from the Shielded simulation shows good performance compared
to the observed concentrations of fresh and oxidized BaP in winter (Fig. 7d, e). The performance of
Shielded approach in summer remains unclear due to the lack of observed concentrations of oxidized
BaP (Fig. 7e). However, the underestimation of fresh BaP concentrations and overestimation of oxidized
BaP concentrations in ROI-T and NOA suggest that the particle-bound PAH degradation rate is too fast
for these two approaches (Fig. 7c-d).

According to the ROI-T approach, once BaP is absorbed by organic aerosols, it can only be oxidized
when it comes to the surface through bulk diffusion or O3 absorption from the gas sorption layer to bulk
layers. The changes in the BaP degradation rate coefficient are highly dependent on variations in
temperature and relative humidity [Mu et al., 2018]. Considering that RH in the French winter is
generally higher than 70% (Fig. 2b), the BaP degradation rate coefficient decreases by only one order of
magnitude for every 20 K drop in temperature from around 293 K (Table S1). Therefore, the oxidation
rate of ROI-T for particle-bound PAHs is reduced by no more than 50% when the temperature is around
280 K in the French winter (Fig. 2a). Our results suggest that at higher humidity, the ROI-T approach
underestimates the impact of OA coatings on PAH degradation effectiveness. Thus, the model's ability
to simulate fresh BaP is not significantly enhanced over the default NOA when the ROI-T approach is
selected, as relative humidity is significantly higher than 70% in mid- and high-latitude winters (Figs. 5f,
6¢).

3.4. Lung-cancer risk of PAH mixture

As an indicator of cancer risk from PAH mixtures, previous studies calculated PAH-associated health
risks based on exposure to BaP concentrations using a method grounded in epidemiological data
[Bostrom et al., 2002; Zhang et al., 2009; Shen et al., 2014; Shrivastava et al., 2017; T Wang et al., 2017,
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Kelly et al., 2021]. These studies primarily considered fresh PAHs when assessing PAH-associated
health risks. In this study, we follow the approach of previous studies to estimate ILCR [Shen et al., 2014;
Shrivastava et al., 2017; Lou et al., 2023].

Figure 8a illustrates that global and regional population-weighted ILCR varies significantly across
simulations when only considering exposure to fresh PAH. This variation is due to the substantial impact
of PAH degradation approaches on fresh BaP concentrations. On a global population-weighted basis, the
ILCR is predicted to be ~0.6x 10~ from the NOA and ROI-T simulations, falling within WHO-acceptable
risk levels for PAH exposure. However, based on the Shielded simulation, the global population-
weighted ILCR is predicted to be ~2x 1075, exceeding the acceptable limit of 1 death per 100,000 persons.
Moreover, without the heterogeneous oxidation of BaP, Shen et al. (2014) predicted an even higher
global population-weighted ILCR of 3% 1075. These results underscore the high sensitivity of global ILCR
estimates to the choice of PAH degradation approaches.

The variations in fresh BaP exposure and population-weighted ILCR are even more important for
regional estimation. Using the Shielded approach, the regional average population-weighted ILCR is
predicted to exceed 1Xx10™ over East Asia, South Asia, Southeast Asia, Russia, Africa, and South
America. In contrast, ILCR for NOA and ROI-T simulations suggests a 3-4 times lower lung cancer risk
in these regions, expected to be below 1x10~ except in East Asia (Fig. 8a). Due to the high emission
levels in 2008, the ROI-T simulation estimates a 50% higher ILCR than the NOA simulation, also
exceeding the WHO acceptable limit in the East Asia.

Furthermore, recent laboratory studies suggest that oxidized PAHs persist in the particle-phase and often
appear as higher molecular weight peaks in particle mass spectra [Ringuet et al., 2012; Zelenyuk et al.,
2012; Keyte et al., 2013; Jariyasopit et al., 2014]. Some PAH oxidation products may even be more toxic
than their parent compounds [EHC 2003; Clergé et al., 2019; Hrdina et al., 2022; Peng et al., 2023]. A
quantitative understanding of the toxicity of these products is lacking, as each parent PAH could be
oxidized into hundreds of products. In this study, we conduct a conservative first-order calculation of
lung cancer risk associated with oxidized PAHs, assuming that PAH oxidation products have the same
toxicity as their parents. On a global population-weighted basis, the ILCR is projected to 2.5 deaths per
100,000 persons when exposure to oxidized BaP is added to our previous calculations of fresh BaP
exposure for all three simulation approaches (Fig. 8b). While three-quarters of the global population-
weighted ILCR for the Shielded simulation is contributed to fresh PAH, oxidized PAHs contribute
approximately 40% the ILCR in warm and humid regions such as South Asia, Southeast Asia, and Africa.
In comparison, NOA and ROI-T simulations predict a dominant contribution of ILCR from PAH
oxidation products compared to fresh PAHs over most regions of the globe. For example, over East Asia
and South Asia, the NOA and ROI-T simulations predict that the regional population-weighted ILCR
will exceed 3 deaths per 100,000 persons resulting from the oxidized PAHs alone, compared to ~1 death
per 100,000 persons from oxidized PAHs in the Shielded simulation. The oxidized-fresh PAH ILCR split
is much greater in the NOA and ROI-T simulations compared to the Shielded simulation.

Despite differences in organic coating effectiveness and heterogeneous reactivity between the NOA,
Shielded, and ROI-T simulations, all schemes suggest that oxidized PAHs are crucial for lung cancer
risk and cannot be neglected. If the toxicity of oxidized PAHs is similar to fresh PAHs, the total ILCR
(fresh+oxidized) is comparable in the three approaches. However, oxidized PAHs could be much more

important in certain regions (such as Southeast Asia, South Asia, and Africa), depending on their



642
643
644
645
646

0647

0648
649
650
651

composition/toxicity and where the organic coatings are less effective in shielding them from
heterogeneous reactivity. Considering the high levels of oxidized PAHs in mid-to-low latitudes, the
measurements for oxidized PAHs, as well as human health exposure to oxidized PAHs, are necessary

for further studies [Kelly et al., 2021].
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Figure 8. Regional PAH-associated ILCR from NOA, Shielded, and ROI-T simulations. Note that solid bars
in (a, b) and shaded bars in (b) represent ILCR calculated from exposure to fresh and oxidized PAHs,

respectively.



4. Conclusion and Discussion

This study uses the CAMS model to investigate the impact of particle-bound PAH degradation
approaches on the spatial distribution of BaP, considering the presence or absence (or lack of effect) of
OA coatings. The three PAH degradation approaches are (1) no effect of OA coating state (e.g., thickness)
s do-not-affeeton particle-bound-BaP oxidation (NOA), (2) the-impaet-of-thick OA coatings (> 20 nm

thick) completely shielding en-particle-bound BaP oxidations-asstming-viseous-OA-coatings-completely
shield-thereaction-of BaP-with-ezene under cool-and-, dry conditions (Shielded), and (3) the-influence

of-OA coatings en-slowing down particle-bound BaP degradationoxidization in response to s-assuming
OA-ceatings-slow-down-the-oxidationreactionrate-as-afunetion-of temperature and humidity (ROI-T).

The results show significant seasonal variations in BaP concentrations

Tn-general-—the scasonalvariation-driven by is—hi i-emissions,

deposition, and the chosen BaP-degradation approach

0:24-ng-m>-without the viscouseensidering-_OA coatings, -the model severely underestimates the global

fresh BaP concentration (PWGA=0.24 ng m;*), netably-underestimating-measurements-worldwideIn

the-absence-of OA-coatings;-as 82% of the tetal-BaP is rapidly-oxidized near source areas-in-DJE. The
presenee-oflncluding viscous OA coatings substantially slows s-dewsn-the-oxidation-precess-offresh-BaP,
resulting in-a-substantial inereasleading to 2-6 times higher fresh BaP concentrationse-in-ceneentrations;

rangingfrom2-to-6-times. Notably-in-DJE, —tThe Shielded approach predicts the highest BaP PWGA
ﬁeeh%allconcentratlonﬂf—lé@ﬁgm’ﬁﬂ% Aeeefdmg%e%h%h{eleé@ﬁmﬂaﬂeﬂ—me@kﬁe&h%al’—eaﬂ

in-the-tropies—While the magni

highlatitades(e-g5Europe-and North-America) between-the-Shielded and-the ROI-T approaches predict
similar fresh BaP distributions at high latitudes, the ROI-T approach;-the ROI-T-approach;considering
deercasing- OA-coating-cffcetivenesswith-reduced-temperature-and-REHL Teadstosuggests lower-[aster

heterogeneous degradation kinetics of BaP with ozone at warm temperatures (>288K, see Table S1)

resulting in lower predlcted BaP fresh-BaP-concentrations in regions such as-# Africa, South Asia, and

In JJA, BaP concentrations are_-concentrated near the-source areas. While-tThe Shielded approach stitt

continues to predicts a-mueh-higher PWGA-fresh BaP concentrations than simulations without viscous
OA coatingsthat-witheut OA-ecoatingaffeet, while the ROI-T approach predicts the lowest PWGA-fresh
BaP-concentrations-o£0-04-ng-m~ due to even-faster first-order reactionrate-coefficientsoxidation under
warmer, more and-humidity eoneentrationsconditions. In-eomparison-all-simulationsprediet that-mere
thanOver 90% of-the-total BaP is oxidized in-JJA-in the tropics (30°S-30°N) in all simulations. At mid-
to-high latitudes, the-exidized-oxidation rates BaP-varies-y greatly with-depending on the-OA coating
assumpations.: In the Shielded simulation, only While-80-95%of-the-total BaP-is-oxidized-in NOA-or
ROFT-simulationsthe-oxidized-BalP-contributesno-more-than-40% to-ol the-total-BaP is oxidized
compared to 91% in the NOA and 94% in the ROI-T simulationsin-the-Shielded-simulation.
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Model performance is compared with observations -ourmedel-evaluation,we-compare-simulated-fresh
BaP-—coneentrations—with-ebservations-at 66 background/remote—sites and 208 non-background sites

globally.—On—a-glebal-basis; The beth-NOA and ROI-T simulations perform poorly, underestimating
fresh BaP concentrations by 60-80%. However,: tFhe Shielded approach prediets—theagrees best
agfeemeﬂ%with observations, with a nermalized-mean-biasNMB alrway&consistently within +20%. The

%eﬂs—Fegleaﬁ—W@#Me—Fer—m&%&nee—bBoth the Shielded and ROI-T approaches improve e-BaP
concentrations and the-agnitude-and-seasonal variations ef BaP-coneentrations-in China. However;
wWhile the Shielded simulation—is—mereapproach —aligned—aligns more closely with the—aetual
coneentrations—of-BaP_concentrations in Europe, eur—results—indicate—that-the-Shielded-appreachisit
somewhat-distorted-and-fails to capture seasonal variation in fresh BaP.

Additionally, due—te—measurement-limitations;—concentrations—of-oxidized BaP concentrations from
Grenoble (in-2013) and frem-SIRTA (in-2014-2015) are also used for model evaluation. Our results
indicate that while the Shielded approach agrees-best-with-the-measured-magnituade-of BaP-concentrations;
this-appreach-underestimates BaP the-oxidation rates, espeeially-particularly during-in the warm season-,
while In—eentrast—altheugh-the ROI-T approach_—overstatepredictss the—oxidation rates—efBaP in
mraltiphase-multiple regionenvirenments_but better represents;+t-effers—abetterdepietion-of seasonal
variations in fresh BaP concentrations. ?herefefﬁ&m%v&g}eba%l—%mu}aﬂeﬂs—&mher—%d{e%

We-also-employ-a-methedelogy-based-en-eEpidemiological data are used to estimate the population-
weighted ILCR associated with PAH_exposure-asseciatedH-CR. When—ecaleulated-—solelybased—on

e*pesafe—&e—ffes-h—BaP—tF or the—pemd&&eﬂ—v\sketgh&ed—l-]:@&resh BaP varieslargely-amongthe-three PAH
isalone, the PWGA ILCR ranges

from ~0.6X 107 forthe NOA-and ROL-Tsimulationsto ~2X 107 among the three simulations, exceeding

the acceptable limit of 1 death per 100,000 persons when considering the effect of viscous OA coatings.
When bEurthermere, when-considering the-toxieity-of oxidized PAHsto-beoth fresh and oxidized PAHs
are assumed to equally contribute to cancer risk, similar—te—their—parent—PAHs—the total ILCR
{fresh+oxidized) remains comparable across allthe-three-approach simulations, amounting to 2.5 deaths
per 100,000 persons. This is because the combined concentration of fresh and oxidized BaP is similar

across the three simulations. Gaﬂdazed—PAHsaﬂay—&lse%&mpeﬂam—depeﬂdmg_ewﬁaete#s—hk%thew

fe&eﬂﬂ&y—Thls study—underseerehighlightss the_potential s1gn1ﬁcance of eeﬂs-xdeﬁﬁg—bet-h—ﬁ-esh—aﬂé

oxidized PAHs-in ing-eanecertisk, particularly in regions where theyexidized PAHs may play a

substantial role in health risks.

This study highlights the importance of understanding the effects of viscous OA coatings on BaP

degradation. However, the approaches used in this study have limitations that need to be addressed in

future research, to better improve global PAH simulations. The viscosity of OA affects BaP degradation
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in two ways: (1) through gas-particle partitioning of SOA, and (2) by altering BaP degradation kinetics

with ozone. In terms of gas-particle partitioning, viscosity is treated differently in each approach. In the

NOA simulation (section 2.3), the FragSVSOA treatment is used, which assumes SOA remains a semi-

volatile, liquid-like solution throughout its lifetime, without considering the effect of its viscosity on gas-

particle partitioning. In contrast, the Shielded and ROI-T approaches use the FragNVSOA treatment,

which assumes that SOA rapidly transitions to a highly viscous, non-volatile semi-solid within 30

minutes due to paricle-phase oligomerization reactions [Shrivastava et al., 2015]. Any further gas-phase

organic oxidation products do not form a solution with pre-existing OA. This assumption aligns with a

recent experimental study showing that isoprene SOA undergoes rapid aging (~20 minutes), leading to

oligomer and organosulfate formation and a phase transition to semi-solid SOA [Chen et al. 2023].

Regarding the second effect, both the Shielded and ROI-T approaches incorporate the effect of SOA

viscosity on BaP degradation kinetics with ozone. The Shielded approach, based on Shrivastava et al. .-

(2017), assumes that thick OA coatings completely shield particle-bound BaP oxidation under cool

(temperature < 296 K) and dry (RH < 50%) conditions, thus providing an upper bound of the impact of

viscous SOA on BaP degradation and underestimating the oxidation rate, partially in urban areas.The

ROI-T approach models the multiphase degradation of BaP with ozone, incorporates both mass transport

and chemical reactions of particle-bound species in the bulk phase and at the surface. The first-order

decay rates of BaP, as presented in Table S3 of Mu et al. (2018), are parameterized values that already

account for the impact of changing SOA viscosity as a function of temperature and RH on BaP

degradation, although this may overestimate the oxidation, rate in remote area (Fig. 7).

Both the Shielded and ROI-T approaches assume a globally constant 30-minute timescale for the

transformation of SOA to a semi-solid state, which aligns with a recent experimental study [Chen et al.

2023]. However, future studies are needed to measure the phase transition timescale of different SOA

types under varying temperature and relative humidity conditions. Previous modelling studies have

suggested that the phase state of OA varies significantly with environmental factors such as temperature

RH in different SOA systems [Pye et al., 2017; Shiraiwa et al., 2017; Zhang et al., 2019; Li et al., 2020;

Schmedding et al., 2020]. In addition, water associated with organics has been suggested to be the

primary predictor of OA viscosity [Rasool et al., 2021]. The effects of phase separation within SOA-

water mixtures and variability in the water uptake ability of SOA as a function of its aging and gas-

particle partitioning, and the resulting impacts on SOA viscosity and BaP reaction kinetics need to be

considered in future studies,

The pp-LFER approach used in our study considers the effects of BaP partitioning to a two-phase organic

system consisting of liquid water-soluble/organic soluble organics, and solid/semisolid organic polymers.

In this sense, this approach considers the impacts of water-soluble organics and organic polymers

(formed by accretion reactions) on BaP partitioning. Further experiments that measure the partitioning

of BaP on liquid-like SOA and polymeric SOA systems are needed to constrain pp-LFER model

predictions.
To improve global PAH simulations, future research should focus on understanding the impact of OA

coatings on PAH degradation effectiveness, particularly incorporating the variations in phase-state of

OA coatings in models. Expanding the observational dataset to include a wider range of ground-based

and satellite-derived measurements, such as water-soluble organic aerosols (Zhang et al., 2020b), will

also be crucial for validating and refining these models. Additionally, further exploration of the chemical
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composition and toxicity of both fresh and oxidized PAHs is necessary to assess their role in air quality

and human health risk more effectively.

A

Data availability

The ERA-Interim reanalysis data is available from

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim. The GEMS 0.1° x 0.1°
global BaP emission inventory is available from gems.sustech.edu.cn. The long-term observation data
are obtained from TADN (https://www.epa.gov/great-lakes-monitoring/great-lakes-integrated-
atmospheric-deposition-network), EMEP (https://www.emep.int), and GENASIS

(https://www.genasis.cz).
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