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Abstract. Earthquake-triggered landslides can be mapped using optical satellite images, but assessing how they evolve through

time during sequences of earthquakes is difficult with such data due to cloud cover. Here we use Sentinel-1 techniques to char-

acterise the evolution of rapid landslides during the 2018 Lombok, Indonesia earthquake sequence. While the majority of new

landslides were triggered during the largest earthquake in the sequence on 05/08, we are also able to identify landslide activ-

ity associated with other, lower magnitude earthquakes on 28/07, 09/08 and 19/08, with many landslides active in more than5

one earthquake. In particular, many landslides triggered by the 05/08 earthquake were then reactivated later in the sequence.

These reactivations were triggered by accelerations as weak as 0.1g, while new failures generally did not occur below 0.15g,

suggesting a post-seismic weakening effect driven by the landslides themselves rather than general landscape weakening. We

also identified at least one example where precursory motion during the first earthquake in the sequence was later followed by

larger scale failure. Overall, we demonstrate that Sentinel-1 amplitude and coherence are valuable tools to study how landslide10

hazard and mass wasting evolve during sequences of triggers.

1 Introduction

Earthquakes can trigger widespread landsliding, which represents a major secondary hazard and can have a significant mass

wasting effect. As these landslides are often triggered across a large area, remote sensing has emerged as a vital tool to quantify

earthquake-triggered landslides (Novellino et al., 2024). In particular, landslide inventories are often compiled through manual15

mapping by the comparison of pre- and post-seismic multi-spectral satellite images (e.g. Ferrario, 2019; Ferrario et al., 2024;

Tanyaş et al., 2022; Tiwari et al., 2017) or through automated methods that use these data (Milledge et al., 2022; Scheip and

Wegmann, 2021). These inventories can then be used to assess the impacts on the landscape and the potential for further

hazards (Parker et al., 2011; Croissant et al., 2019), to further our understanding of the triggering process, and to build and

calibrate physical and empirical models that can then be applied to future earthquakes (e.g. Godt et al., 2008; Nowicki Jessee20

et al., 2018).
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In many cases, landslide-triggering earthquakes are accompanied by foreshocks and aftershocks that are also large enough

to trigger landslides and remobilise co-seismic landslide deposits (e.g. Fan et al., 2021; Ferrario, 2019; Ferrario et al., 2024;

Martino et al., 2019; Tanyaş et al., 2022; Tiwari et al., 2017). The cumulative effect of such earthquake sequences on rapid,

shallow landsliding is difficult to study as it requires satellite images to be acquired between each earthquake, but aftershock-25

triggered landslides can represent a considerable part of the total landslides for some events (Ferrario, 2019; Tanyaş et al.,

2022). Unfortunately, in many areas of the world, multi-spectral satellite images are frequently obscured by clouds, preventing

their use in landslide mapping for days or weeks at a time (Robinson et al., 2019). This can prevent differentiation between

mainshock- and aftershock-triggered landslides and has been identified as a problem in many recent studies, for example on

the 2015 Mw Gorkha, Nepal; the 2018 Mw 6.9 Lombok, Indonesia; the 2018 Mw 7.5 Papua New Guinea; the Mw 6.8 Cotabato-30

Davao del Sur, Philippines earthquake sequences (Tiwari et al., 2017; Ferrario, 2019; Tanyaş et al., 2022; Ferrario et al., 2024).

In addition, the reactivation or remobilisation late in the earthquake sequence of a landslide that failed early in the sequence

may not be visible in medium resolution imagery such as Sentinel-2 or Landsat unless the shape of the scar noticeably changes.

Satellite synthetic aperture radar (SAR) data may offer a solution to this problem as these data can be acquired through

cloud cover and are sensitive to landslides. The Sentinel-1 SAR satellite constellation has acquired data every 6-12 days on35

two tracks globally since 2015. Recently several methods have been proposed to use these data to constrain the timings of

shallow landslides (Burrows et al., 2022; Deijns et al., 2022; Fu et al., 2024; Wang et al., 2024). Here we apply SAR-based

landslide timing methods to a sequence of six earthquakes that occurred over a one-month period in Lombok, Indonesia in

2018 in order to better characterise landsliding triggered during that event. We also demonstrate that for some landslides, an

InSAR coherence matrix approach can be used not only to constrain the timing of new landslides, but also to detect multi-stage40

failure such as reactivations (i.e. complete failure on one date followed by further failure within or connected to the landslide

at a later date) and precursory motion (i.e. displacement on one date followed by complete failure of the same area at a later

date). With this new information, we are able to draw conclusions on how landslide activity evolved during the 2018 Lombok

earthquake sequence and discuss the implications this has for hazard and mass-wasting during earthquake sequences.

2 Data and Methods45

2.1 Landslides triggered by the 2018 Lombok, Indonesia earthquake sequence

The 2018 Lombok, Indonesia earthquake sequence comprised 6 earthquakes of Mw 5.8-6.9 between 28/07/2018 and 19/08/2018

(Fig. 1). These earthquakes occurred along the Flores Thrust Zone to the north of the island and triggered widespread shallow

landslides across this area, particularly on the steep slopes of Mount Rinjani (Ferrario, 2019; Salman et al., 2020). The majority

of the study area is covered by tropical forest, with grassland areas at high elevations (>2000 m) and the uppermost part of the50

volcano covered by unvegetated volcanic deposits (Dossa et al., 2013). The majority of the population live along the coast.

Two landslide inventories have been published for the event, both identifying approximately 10,000 rapid and predominantly

shallow landslides by the end of the sequence (Ferrario, 2019; Zhao et al., 2021). Ferrario (2019) also provide an inventory

halfway through the sequence using imagery acquired on 08/08/2018, which allows the effects of the two largest earthquakes
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Figure 1. Landslides triggered in the first (green) and second (yellow) halves of the 2018 Lombok, Indonesia earthquake sequence as mapped

by Ferrario (2019) overlain on Sentinel-2 imagery. Epicentral locations from USGS (2018). b) Earthquake dates and Sentinel-1 acquisitions

throughout the earthquake sequence in July and August 2018.

(both Mw 6.9), which occurred on the 05/08 and 19/08 to be separated. Zhao et al. (2021) provide a full inventory at the end55

of the sequence but were only able to generate a partial landslide inventory following the earthquake on the 05/08 due to cloud

cover in the imagery used in that study. We therefore use the inventory of Ferrario (2019) in this study, which was generated

manually through comparison of pre- and post-event PlanetScope satellite images.

In both studies, cloud cover prevented landslide mapping following the first earthquake in the sequence (Mw 6.4 on 28/07),

but Ferrario (2019), Zhao et al. (2021) and a preliminary report by Ganas et al. (2018) all agree that few landslides were60

triggered by this earthquake. The Mw 5.9 earthquake on 09/08, which resulted in relatively weak shaking and would not

ordinarily be expected to trigger many landslides (USGS, 2018c) was not included in these studies, but we include it here

since similarly low magnitude earthquakes have been shown to increase landslide activity (e.g. Alfaro et al., 2012; Hallal et al.,

2024; Martino et al., 2019, 2022). Furthermore, although this event was small in magnitude, it occurred at only 15 km depth and

preliminary analysis with SAR appeared to show some landslide activity at this time. Overall, it is expected that the majority65

of landslides failed during one of the two Mw 6.9 earthquakes in the sequence on the 05/08 and 19/08, particularly the 05/08

event, which resulted in by far the strongest shaking (USGS, 2018b).
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Ferrario (2019) mapped 4823 landslides (with a total area of 4.88 km2) following the 05/08 earthquake and 9319 (10.25 km2)

at the end of the sequence (Fig. 1a). The high resolution (3 m) of the PlanetScope imagery used for the mapping means that

the inventory includes landslides with areas as small as 50 m2. Such small events are unlikely to be resolved by the Sentinel-170

images used here, which have a resolution of 20 x 22 m and 60 x 66 m for backscatter and coherence images respectively (see

Section 2.2 for details). For this reason, we limit the amplitude analysis in this study to 991 landslides > 2000 m2 (following

Burrows et al., 2022) and the coherence analysis to 371 landslides > 3600 m2 (the size of the coherence window in Sect. 2.3).

2.2 SAR techniques for rapid landslide detection

Shallow earthquake-triggered landslides fail too quickly to be measured using differential InSAR techniques such as persistent75

scatterer interferometry, which require landslides to move less than a couple of cm between image acquisitions (Manconi,

2021). However, rapid landslides change the scattering properties and 3D shape of the Earth’s surface, altering the amplitude

and coherence of InSAR data. A large number of studies have explored the potential of these for detection of landslides in

space (e.g. Burrows et al., 2019, 2020; Ge et al., 2019; Goorabi, 2020; Handwerger et al., 2022; Jung and Yun, 2020; Mondini,

2017; Mondini et al., 2021; Yun et al., 2015). Recently, several methods have been proposed to use coherence or amplitude80

to constrain landslide timings (Burrows et al., 2022; Deijns et al., 2022; Fu et al., 2024; Wang et al., 2024), taking advantage

of the regular image acquisition strategy of Sentinel-1. Here we use both amplitude and coherence time series to constrain the

timings of individual landslides triggered during the 2018 Lombok, Indonesia earthquake sequence and explore the potential

of coherence to detect multi-stage failure.

2.2.1 SAR Amplitude85

SAR images are acquired by active illumination of the Earth’s surface by the satellite using microwave wavelength electro-

magnetic energy. The amplitude of the signal returned to the satellite depends on the scattering properties of the material that

this energy interacts with at the Earth’s surface. The removal of vegetation and movement of material downslope alters these

scattering properties as well as the 3D shape of the Earth’s surface, giving landslides a signal in SAR amplitude maps (Mondini,

2017).90

Two methods have been published that use amplitude data to constrain the timings of shallow landslides. Burrows et al.

(2022) used step changes in time series of several amplitude metrics to indicate rainfall-triggered landslide timings. Fu et al.

(2024) combined SAR and optical image time series to constrain the timings of 60 landslides, obtaining an average accuracy of

around 23 days. Due to prevalent cloud cover in our study area and the fact that the landslides are already somewhat constrained

in time since the earthquake timings are known a-priori, we did not expect using optical imagery to offer an advantage here,95

so we used the method presented in Burrows et al. (2022). This method uses time series of four metrics: 1) the difference in

average SAR amplitude for pixels within the landslide polygon compared to nearby similar “background” pixels; 2) variability

between pixels within the landslide polygon; 3) geometric shadows cast by trees at the edge of the landslide polygon; and 4)

geometric bright spots caused by dihedral scattering at the edge of the landslide polygon. Burrows et al. (2022) then identified
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step changes in these metrics and used these to indicate landslide timings. These metrics, particularly those relating to geometric100

shadows and bright spots, work best in forested areas and can be applied to medium-large landslides (> 2000 m2).

The method was designed to be applied to rainfall-triggered landslides in monsoon climates where very little prior knowledge

on landslide timing would be available. The case of earthquake-triggered landslides is somewhat simpler since we can assume

that all landslides are concurrent with one of the earthquakes. Therefore, we slightly modify the method to make use of this

information. For each of the four metrics m, we calculate the mean sum of the squares of the residuals R if each earthquake is105

used to divide the time series into two sections Y and Z according to Eq. 1, where m̂ represents the median value of m.

R =
∑nY

i=1(m
Y
i − m̂Y )2 +

∑nZ

i=1(m
Z
i − m̂Z)2

nY + nZ
(1)

The earthquake that minimises R is selected as the most likely to have triggered the landslide. This is analogous to the approach

used in clustering algorithms, where the data is divided in order to minimise within-cluster variance (Duda et al., 1973). This

modification resulted in a small improvement in terms of accuracy and the number of landslides whose timing could be110

constrained compared to the original method (Fig. A1). As in Burrows et al. (2022), the more times an earthquake is selected

(out of a maximum of 8: 4 methods x 2 tracks), the more confident we can be of the timing. Here, we require the same

earthquake to be selected by a minimum of 3 metrics before it is accepted.

2.2.2 InSAR Coherence

InSAR coherence, which is derived from SAR amplitude and phase, can also be used to detect rapid landslides (Burrows115

et al., 2019, 2020; Goorabi, 2020; Yun et al., 2015). Coherence γ is a measure of InSAR signal quality that is estimated for

every pixel in an interferogram from its similarity to the pixels within a neighbouring window. This is described by Eq. 2 for

an interferogram formed from two images A and B and a coherence window containing n pixels. Ai and Bi are complex

representations of the phase and amplitude of each pixel i used in the estimation, with the overline representing the complex

conjugate.120

γ =
1
n

∑n
i=1 Ai ·Bi√

1
n (

∑n
i=1 Ai ·Ai

∑n
i=1 Bi ·Bi)

(2)

In general, coherence is high when and where the acquisition conditions for the two images used to form the interferogram are

similar. Changes in satellite position or Earth surface properties result in decorrelation. Landslides, along with soil moisture

changes, movement of vegetation and other processes that alter the scattering properties of the Earth’s surface result in low

coherence. Previous works have observed InSAR coherence to (i) decrease for image pairs spanning the occurrence of shallow125

landslides (Burrows et al., 2019, 2020; Goorabi, 2020; Jung and Yun, 2020; Yun et al., 2015) and other forms of erosion and

deposition (Bertone et al., 2019; Cabré et al., 2020, 2023; Liu et al., 1999) (ii) decrease for image pairs that capture precursory

motion prior to catastrophic failures (Dini et al., 2022; Jacquemart and Tiampo, 2021) and (iii) increase for interferograms

formed from post-event compared to pre-event image pairs due to the denudation of the hillslope by the landslide (Burrows

et al., 2020; Deijns et al., 2022). This last effect reflects the strong influence of landcover type on coherence, with vegetated130

areas generally having a lower coherence than bare rock and soil in Sentinel-1 interferograms (Jacob et al., 2020).
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Several studies have attempted to use coherence maps from consecutive pairs of SAR images to constrain landslide timings.

The post-event coherence increase caused by hillslope denudation has previously been used to obtain the timings of seven very

large (> 100,000 m2) landslides (Wang et al., 2024) and to identify the timings of landslide inventories, in the case where it

can be reasonably assumed that all the landslides were simultaneous (Deijns et al., 2022). However, Wang et al. (2024) found135

that the method returned multiple possible failure timings for some landslides. Furthermore, when testing on individual, more

moderately sized (> 2000 m2) landslides, Burrows et al. (2022) found that pairwise coherence time series were too noisy to

provide accurate landslide timings.

In order to improve the signal strength, here we increased the number of coherence maps used in the analysis by calculating

the coherence of every possible image pair in our time series. By taking the average coherence within a landslide polygon140

from every coherence map, we could then produce a full coherence matrix for each landslide (e.g. Fig. 2a). A previous study

by Jung and Yun (2020) found this approach to perform poorly in forested areas, but their aim was emergency response, so

they only used a single post-event SAR image. Furthermore, the method has been successfully applied to landcover mapping

(Giffard-Roisin et al., 2022; Jacob et al., 2020), which suggests it should be able to detect at a minimum the denudation of the

hillslope caused by landslides. Finally, since previous studies have shown that coherence is sensitive not only to the denudation145

of the hillslope that can be captured by the amplitude method described in Sect. 2.2.1, but also to precursory movements and to

movement of material in unvegetated areas (Bertone et al., 2019; Cabré et al., 2020; Dini et al., 2022; Jacquemart and Tiampo,

2021), the full matrix approach might be able to reveal multiple failure stages.

Figure 2a shows an example of a coherence matrix for a landslide in the Lombok study area that failed during the 05/08

earthquake. This is a square matrix of dimensions defined by the number of SAR images in the times series (e.g. 15 in Fig. 2).150

Diagonal elements are the coherence of each image with itself (i.e. maximum coherence = 1.0). Lower off-diagonal elements

(x,y) record the coherence between the xth and yth image. Thus element (12,3) in Fig. 2a shows coherence between the 12th

SAR image (acquired after all earthquakes) and 3rd (acquired prior to all earthquakes). Since the landslide occurred between

these two SAR images, coherence is low. Element (13,12) shows coherence between the 12th and 13th SAR images. Since both

were acquired after the earthquake sequence had ended, and thus after the landslide had occurred, coherence is high. In Fig.155

2a, coherence is generally highest whenever both images were acquired after 05/08 (matrix entries above row 9) and lowest for

image pairs that span 05/08, with one image before and another after the earthquake (entries right of column 9 and below row

9). Pairs where both images were acquired before 05/08 (left of column 9) typically have intermediate coherence higher than

those spanning the earthquake but lower than those after it. Upper off-diagonal elements are left blank because the coherence

map for image pair (x,y) and image pair (y,x) will be identical, so these elements would duplicate those already plotted.160

Similarly to Sect. 2.2.1, we can automatically detect when the landslide failed by using each earthquake to divide the matrix

into pre-event, co-event, and post-event sections, and identify which division minimises the residuals according to Eq. 1. We

found several cases like Fig. 2b where the coherence matrix indicates that a landslide location has failed more than once.

In this example, coherence is reduced for image pairs spanning 05/08, but is not consistently high after this event. Instead,

coherence is high for image pairs acquired after the 19/08 earthquake and is briefly high at element (11,10), where both images165

were acquired between the 09/08 and 19/08 earthquakes. This perhaps indicates three failures in this location: first on 05/08,
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Figure 2. Coherence matrices for (a) a landslide in a vegetated area that failed during the 2nd earthquake (05/08/2018) (b) a landslide in an

unvegetated area that initially failed during the 2nd earthquake (05/08) and then reactivated during the 3rd and 4th earthquakes (09/08 and

19/08). Black lines show the four earthquake dates in the sequence.

evidenced by reduced coherence for co-event relative to pre-event pairs; then on 09/08, evidenced by lower than expected

post-05/08 coherence but high coherence post-09/08 and pre-19/08; and finally on 19/08, evidenced by low co-event and

high-post-event coherence.

To make best use of this information, we carried out our analysis in two separate stages: first with the pre-event and co-170

event image pairs to identify the first failure and then with the co-event and post-event image pairs to identify the final failure.

In order to estimate the quality of the selected division, we calculated the standard deviation of pixels in the co-event area

and then calculated how many standard deviations apart the co-event and pre-event or post-event sections were. In the case

where the ascending and descending tracks select different timings, we choose the one with the largest separation between the

sections. We chose a minimum threshold of 1.5 standard deviations in order to maximise the accuracy of the method. Raising175

this threshold beyond 1.5 reduced the number of timed landslides without improving the accuracy (Fig. A2).

2.3 SAR data and processing

Sentinel-1 collected images every six days on two tracks throughout the earthquake sequence (Fig. 1b). At least one ascending

and one descending track image was acquired between each earthquake (with the exception of the three earthquakes all on

19/08). In both the amplitude and coherence analysis, we used images acquired over a 3-month period from 05/06/2018 –180

05/09/2018. This amounted to 15 SAR images on the descending SAR orbit and 13 on the ascending orbit.

The amplitude analysis described in Sect. 2.2.1 uses ground range detected (GRD) images, which were accessed through

Google Earth Engine following the method described by Burrows et al. (2022). These data have a resolution of 20 x 22 m and

were used to calculate the four metrics listed in Sect. 2.2.1 for every landslide > 2000 m2 in the inventory (991 events). For the
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coherence analysis, Sentinel-1 single-look complex (SLC) images were processed using the GAMMA-based LiCSAR software185

package Li et al. (2016). SLC images were multi-looked by a factor of five in range, resulting in a resolution of 20 x 22 m

(the same as the GRD product). Coherence was then estimated using a 3 x 3 pixel moving window, giving a resolution of 60

x 66 m. No atmospheric correction was applied, since interferogram atmospheric effects are larger than the scale at which we

processed our data Ding et al. (2008); Webb et al. (2020), and thus do not cause phase variations within the coherence window.

The coherence maps were then reprojected from the range-azimuth coordinate system in which SAR data are acquired to a190

geographic coordinate system. The average coherence within each landslide polygon > 3600 m2 (371 events) was then obtained

from every coherence map (estimated for every possible combination of SAR images) to generate the full coherence matrix for

each landslide.

2.4 Validation of SAR methods against optical satellite images

In Sect. 3, we present the landslide timing results obtained from the SAR amplitude and coherence methods described in195

Sect. 2.2. In order to validate these results, we compare with the timing information that can be obtained from optical and

multi-spectral images acquired during the earthquake sequence. This process is complicated by two factors.

First, while our SAR methods have sufficient temporal resolution to assign a failure to a specific earthquake, this is not

possible using optical images in all cases due to cloud cover. The inventories of Ferrario (2019) were generated using imagery

acquired after the earthquakes on 05/08 and 19/08, meaning that every landslide can be assigned to either the first or second200

half of the sequence. In some cases, we were then able to further constrain the timing using cloud-free areas of multi-spectral

Sentinel-2 and Planet images and high-resolution optical images in Google Earth Explorer, but for around a third of the

landslides, this was not possible.

Second many landslides fail more than once during the sequence. To identify multi-stage landslides in the optical satellite

imagery, we initially compared the areas of polygons from the 05/08 and 19/08 inventories that overlapped and classed those205

which had increased in size between the two earthquakes as “multi-stage”. Where this was possible, we then used the Sentinel-

2 and Google Earth images to further constrain these changes in time. Landslides showing only small increases in area (< 100

m2) and cases where landslides were mapped as multiple polygons in one inventory but a single polygon in the other, were not

classed as “multi-stage” as these differences could have arisen from differences in the images rather than landslide reactivation.

We also observed a small number of cases where the failed area after 28/07 or 05/08 in Sentinel-2 or Google Earth was better210

fitted by the 19/08 polygon than the 05/08 polygon in the inventories of Ferrario (2019). These cases were also not classed

as multi-stage, since the discrepancy between the two inventories seems more likely to have arisen from mapping uncertainty

(e.g. due to shadow in the Planet imagery) than from reactivation. Finally, we identified some cases of landslides initiating on

28/07 and growing in size on 05/08, which were not initially classed as “multi-stage” because Ferrario (2019) did not map

landslides between these two earthquakes.215

Since both optical and SAR data can therefore yield multiple failure stages for a given landslide, a comparison between

these two might agree, disagree or partially agree. Most statistical measures of performance, such as confusion matrices do

not allow for partial agreement. Therefore, for landslides showing more than one failure in the optical data, we compare the
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SAR timings against the optical result that seems the most relevant in each case. SAR timings derived from amplitude (Sect.

2.2.1), which primarily detect denudation of the hillslope were assessed against the timing of the largest failure by area in the220

optical images. First and final failure timings derived from InSAR coherence (Sect. 2.2.2) were compared against the first and

last visible failures in the optical satellite imagery.

3 Results

3.1 Detection of landslide timings from SAR amplitude

After applying the SAR amplitude methods described in Sect. 2.2.1, we were able to constrain the timings of 307 of the 991225

landslides larger than 2000 m2. As the amplitude methods primarily detect denudation of the hillslope, for landslides that

undergo multi-stage failure, we expect the amplitude-derived timing to represent the main failure. Of these 307 landslides, 10

were assigned to the 28/07 earthquake, 269 to 05/08, 16 to the 09/08 and 12 to the 19/08. The timings that these 307 landslides

were expected to have based on optical imagery (Sect. 2.4) are shown in Table 1. Cells for which the two datasets agree are

in bold. Altogether, the optical and SAR timings agree for 269 (88%) of the landslides. Single failures had a higher rate of230

agreement (91%) than multi-stage (81%). In Sect. 2.2.1, we required a minimum of 3 SAR amplitude metrics to select the

same timing before it was accepted. Burrows et al. (2022) found a similar accuracy (>90%) when imposing this requirement

and testing on three landslide inventories of known timing. However, the proportion of landslides timed in this study (30%) is

much higher than Burrows et al. (2022) were able to time at this level of accuracy (5-10%). Some of this improvement may

be due to the modification made to the method (Sect. 2.2.1, Supplementary information), but it is also likely to be due to the235

tropical rainforest that covers most of our study area, since Burrows et al. (2022) found their method performed best in heavily

vegetated areas.

3.2 Detection of first and last failure timings from InSAR coherence

We were able to detect the first failure for 61 of the 371 landslides larger than 3600 m2 using the coherence matrix approach

described in Sect. 2.2.2. Of these, 19 initiated during the earthquake on 28/07, 40 on 05/08, none on 09/08 and 2 on 19/08.240

The SAR and optical timings agree for 49 out of 61 landslides (80%, Table 1). For the 12 cases for which the optical and SAR

disagree, the coherence matrix assigns an earlier first failure than the optical.

We were able to detect the last earthquake a landslide failed in for 213 of the 371 events. This was the 28/07 earthquake in

4 cases (2%), 05/08 in 97 cases (46%), 09/08 in 30 cases (14%) and 19/08 in 82 cases (38%). This last failure timing refers to

the point after which there was no further failure by the end of our study on 5th September, so may correspond to a reactivation.245

Overall, the two timings agree for 153 of the 213 landslides (72%, Table 1). Of the 60 cases where the two timings do not

agree, 32 are landslides that were mapped as failing only on 05/08 by the optical imagery, but have been assigned a later

final failure by the InSAR coherence. Thus, the coherence method has detected reactivations that are not visible in the optical

imagery. There is no way to further validate whether or not these were real events. Another 20 of these 60 are landslides that
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Table 1. A comparison between timings derived from optical and SAR amplitude satellite data with each cell containing the number of

landslides associated with a particular trigger. Cells where the two methods agree are given in bold font. Where possible optically mapped

landslides were assigned to a causative earthquake (date columns) otherwise they are assigned to either 1st or 2nd half of the earthquake

sequence (final two columns). The multi-stage failure timing derived from optical satellite imagery refers to the largest failure when compared

to timings derived from SAR amplitude and to the first and last visible change when compared to first and last failure timings derived from

InSAR coherence respectively

Timing from Optical imagery

Single Failure Multi-stage failure

28/07 05/07 09/08 19/08 1st half 2nd half 28/07 05/07 09/08 19/08 1st half 2nd half

Timing from

SAR amplitude

28/07 0 3 0 0 3 0 3 1 0 0 0 0

05/08 0 123 0 0 43 10 0 59 0 1 18 15

09/08 0 2 3 0 3 3 0 2 0 1 0 5

19/08 0 0 0 1 0 9 0 0 0 1 0 1

First failure

timing from

InSAR

coherence

28/07 0 0 0 0 0 3 5 8 0 0 3 0

05/08 0 20 0 0 2 1 0 14 0 0 3 0

09/08 0 0 0 0 0 0 0 0 0 0 0 0

19/08 0 0 0 1 0 1 0 0 0 0 0 0

Last failure

timing from

InSAR

coherence

28/07 0 2 0 0 0 1 0 0 0 0 0 1

05/08 0 68 0 0 5 1 0 5 0 7 0 11

09/08 0 10 0 0 0 3 0 0 0 5 0 12

19/08 0 22 0 7 0 6 0 0 0 15 0 32

were considered “multi-stage” based on optical imagery, having failed for the first time on 28/07 or 05/08 and grown in size250

by the end of the sequence, but which were assigned a final failure timing of 28/07 or 05/08 based on the InSAR coherence

matrix. These are thus cases where the coherence has failed to detect reactivations that were expected based on the optical

data. Possible explanations of the disagreement between the optical and InSAR coherence results are discussed further in Sect.

4.4. Overall, the coherence matrix approach appears to perform well, although relatively few landslides can be timed using it

compared to the amplitude methods, in part due to the larger landslide size required for the coherence analysis.255

3.3 Combination of amplitude and coherence to detect multi-stage failures and reactivations

Altogether for the 371 landslides > 3600 m2, we derived the timing of first failure for 61 landslides and of the final failure for

214 landslides based on the coherence matrices. From the amplitude methods, we have timing information for 170 landslides,

which we interpret as the “main” failure (whenever the most substantial denudation of the hillslope took place, since this is

what the amplitude methods detect). How the timing datasets derived from coherence and amplitude overlap is shown in Fig.260

3f. Overall, 258 of the 371 landslides are timed by at least one method, and 158 of these are timed by more than one method.
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Figure 3. a) Landslides and reactivations timed with SAR following each earthquake in the sequence. Where first failure timing was available

from coherence, this was plotted in preference over main failure. Last failures are only plotted when neither first nor main failure timings

were available (since these would otherwise be reactivations). Reactivations are shown as highlights on the original failure. Modelled PGA

contours of 0.1g, 0.2g and 0.4g from USGS are plotted as white lines. e) the number of each failure type after each earthquake with coloured

arrows showing reactivations f) distribution of timing information available from SAR for the 371 landslides > 3600 m2

For 48 landslides, we obtained both the first and final failure timings from the InSAR coherence matrices. In 24 cases

(50%), the two timings were the same, indicating a single period of failure. For 6 cases (13%), the first and final failures were

associated with consecutive earthquakes. For 18 cases (38%), at least one additional earthquake occurred between the first

and final detected failures. In these cases, we were able to visually inspect the matrix and identify that all 18 landslides were265

reactivated more than once, with 6 landslides (13%) active in all 4 earthquakes.

Although our amplitude methods provide only a single failure timing, they allow us to identify more examples of reacti-

vations. When we have a main failure timing that is later than the coherence-based first failure, we can interpret the main

failure as a reactivation (4 cases). When we have a main failure timing that is earlier than a coherence-based final failure, we
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can interpret this final failure as a reactivation (45 cases). Reactivations are shown in Fig. 3 as coloured outlines around the270

original failure and by coloured arrows in Panel e. Landslide activity (derived from any method) was observed for a total of

259 landslides (Panel f) with activity at 24 sites (9%) on 28/07, 203 sites (78%) on 05/08, 44 sites (17%) on 09/08 and 86

sites (33%) on 19/08. These percentages total over 100% because some landslides are active in multiple earthquakes. In fact,

reactivations made up the majority of the detected activity for the 09/08 and 19/08 events, 75% and 59% respectively (Panel

e).275

4 Discussion

4.1 Triggering conditions for new landslides and reactivations

The landslide timing dataset we have generated allows us to make comparisons between the conditions required to trigger new

landslides and those required to reactivate existing landslides. The occurrence of earthquake-triggered landslides is primarily

controlled by topography and ground shaking (Nowicki Jessee et al., 2018). Figure 4 shows the peak ground velocity (PGV)280

and slope at which new failures (Panel a) and reactivations (Panel b) occurred during the earthquake sequence. Estimates of

PGV experienced during each earthquake were obtained from the USGS Shakemap webpage (USGS, 2018a, b, c, d). For

19/08, we took the maximum PGV experienced by each landslide during the Mw 5.8, 6.3 and 6.9 earthquakes. In the majority

of cases, this was the PGV of the Mw 6.9 earthquake. Slope was calculated from the 30 m Copernicus digital elevation model

in Google Earth Engine and the maximum value was taken within each landslide polygon.285

The landslide probability under these conditions can be estimated with the logistic regression model of Nowicki Jessee

et al. (2018) using regression coefficients derived in that study for a global database of landslides. For lithology, we used the

coefficient derived for intermediate volcanics, which comprise the majority of the study area according to the global lithological

map of Hartmann and Moosdorf (2012) and for landcover, closed deciduous forest, which is the landcover type shared by most

of the landslides (Dossa et al., 2013). Although lithology and landcover also affect landslide susceptibility, we do not attempt to290

control for these: lithology does not vary much across the study area, particularly since many new landslides and reactivations

occur on the same scars and so at the same locations. Differences in landcover between landslides is too difficult to account for

since the landslides themselves mean that it changes through time.

Reactivations occurred at lower PGV and slope than new failures and a large proportion of reactivations occurred in locations

where the model of Nowicki Jessee suggests less than 1% probability of landslides (Fig. 4b). While the initiation of new295

landslides at the beginning of the sequence (28/07) occurred at PGV as low as 2.5 cm/s (PGA as low as 0.15g, Fig. 3a),

this was mostly confined to slopes steeper than 35°(Fig. 4a). Later in the sequence, landslides on similarly steep slopes were

reactivated at PGV as low as 1.5 cm/s during the earthquake on 09/08, while PGV values around 2.5 cm/s were sufficient to

reactivate landslides on slopes shallower than 20◦ (Fig. 4b). New landslides initiating at such shallow slope angles were only

observed for the earthquake on 05/08, where the majority of landslides were triggered at PGV > 3 cm/s (PGA > 0.4g, Figs.300

4a,3b).
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Figure 4. PGV and slope steepness at which (a) new landslides and (b) reactivations were triggered during the 2018 Lombok earthquake

sequence. Dashed lines show the landslide probability under these conditions according to the empirical model of Nowicki Jessee et al.

(2018) (c) 2D histograms of Slope and PGV across the study area during each earthquake.

This increased susceptibility to failure for reactivations compared to new failures is consistent with the increased levels of

post-seismic rainfall-triggered landsliding that have been observed following many large earthquakes (Fan et al., 2021; Jones

et al., 2021b; Marc et al., 2015; Tanyaş et al., 2021; Yunus et al., 2020). The mechanisms suggested for elevated susceptibility

to reactivation by rainfall are equally applicable to the case of seismic triggering studied here. They include damage to the305

regolith during the earthquake (loss of cohesion or internal friction); the loss of vegetation whose roots were contributing to the

stability of the slope; steepening of the hillslope and increased presence of unconsolidated material in the form of co-seismic

landslide deposits, which is easily remobilised (Marc et al., 2015; Fan et al., 2021). In other cases, such as the 2015 Gorkha,

Nepal earthquake, increased post-seismic landslide susceptibility was driven by both the increased presence of (co-seismic)

landslide scars which were then able to be reactivated during the subsequence monsoon seasons (Dahlquist and West, 2019)310

and by more general, widespread damage to the landscape, which temporarily reduced the amount of rainfall required to trigger

new landslides (Burrows et al., 2023). On the contrary, after the 05/08 earthquake, we observe reactivations at low PGV-slope

combinations, but not new landslides (Fig. 4), indicating that here the primary driver of increased landslide activity is the

increased presence of landslide scars rather than more general weakening of the landscape.

4.2 Possible detection of precursory motion during the 28/07 earthquake315

18 of the 61 landslides for which we obtained the timing of first failure appear to have failed on 28/07. This proportion (30%)

is very high compared to the results from amplitude, where the main failure was attributed to this earthquake in only 3 of
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Figure 5. (a-d) Evolution through time of a landslide captured with high resolution google earth imagery acquired before (a), during (b,c)

and after (d) the earthquake sequence. The white arrow on Panel b indicates a location where preliminary activity may have taken place

following the earthquake on 28/07 prior to the main failure during the 05/08 earthquake (Panel c) (e) the coherence matrix for this event,

showing landslide activity during earthquakes on 28/07, 05/08 and possibly 19/08. Panels a-d © Google Earth with white polygons from

Ferrario (2019)

170 cases (2%). It also contradicts previous research based on optical satellite images, which found that in cloud-free areas,

very few of the landslides triggered during the earthquake sequence occurred before the earthquake on 05/08 (Ferrario, 2019;

Ganas et al., 2018; Zhao et al., 2021). One explanation for this discrepancy could be that some landslides exhibited precursory320

motion during the earthquake on 28/07 but did not fail completely until 05/08. Such motion would usually not be visible in

optical satellite images or detectable using amplitude methods as it would not result in denudation of the hillslope. The short

wavelength of Sentinel-1 (5.5 cm) means that coherence can be sensitive to relatively small movements and previous studies

have demonstrated that small precursory movements can result in coherence loss prior to catastrophic failures (Dini et al.,

2022; Jacquemart and Tiampo, 2021).325

Figure 5 shows a possible example of this, where the landslide appears active during both the 28/07 and 05/08 earthquakes

in the coherence matrix (Panel e), but large-scale failure is not visible in the optical satellite imagery until after 05/08 (Panel

c). A white arrow in Panel b indicates an area where activity triggered by the 28/07 earthquake may be visible. However, these

detectable changes are small, with trees and shrubs not perceptibly moved between 18/06 and 01/08 but clearly removed by

10/08. It is clear that no activity would be visible in lower resolution imagery until after 05/08 and so the landslide would330

not be mapped before this time. The SAR amplitude methods described in Sect. 2.2.1 assigned this landslide to the 05/08

earthquake, which is likely due to the fact that there is minimal change in landcover between panels (a) and (b) within the

landslide polygon.
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Interest in the potential to detect precursory movements prior to catastrophic failure with coherence or with displacements

derived from InSAR or optical image correlation, has grown in recent years as the acquisition frequency of satellite images335

has increased (Dong et al., 2018; Jacquemart and Tiampo, 2021; Lacroix et al., 2023). If coherence loss following the first

earthquake in a sequence could be used to indicate areas susceptible to catastrophic failure during later earthquakes, this would

be a useful risk management tool. However, we are only able to examine a very limited number of cases here. 14 of the 18

landslides that initiated on 28/07 were also active on 05/08 so could indicate precursory motion. Unfortunately, for the majority

of these, cloud free images were not available between the earthquakes on 28/07 and 05/08. Additionally, many took place in340

unvegetated areas where small movements would be challenging to see. This lack of vegetation also means that few (only 4)

were also timed with amplitude methods. Thus overall, it is difficult to investigate this effect further here.

4.3 Implications for hazard and mass wasting

Several studies have attempted to draw associations between the shaking experienced during an earthquake or its magnitude,

and the likely severity of associated landslides Godt et al. (2008); Marc et al. (2017); Malamud et al. (2004); Nowicki Jessee345

et al. (2018); Tanyaş and Lombardo (2019). The results of our study highlight the complexity of this problem, since our dataset

includes (i) landslides that did not fail until 19/08 despite experiencing stronger shaking on 05/08 (ii) landslides that did not

fail on 28/07, but that were reactivated by comparable shaking on 09/08 or 19/08 after failing on 05/08 and (iii) landslides from

05/08 that were reactivated by 09/08 or 19/08 but not both, despite similar levels of shaking.

Overall, we believe that the earthquakes on 09/08 and 19/08 resulted in more landslide activity than they would have done had350

they not been part of the sequence. Although other sequences of relatively low magnitude earthquakes have triggered landslides,

such as the 2011, Mw 5.1 Lorca, Spain and Mw 2020 Mila, Algeria events, both of which triggered over 250 landslides (Alfaro

et al., 2012; Hallal et al., 2024), there are also cases where larger earthquakes have not resulted in extensive landslide activity,

such as the Mw 6.2 foreshock to the Mw 7.0 Kumamoto earthquake (Xu et al., 2018). Our conclusion is further supported by the

fact that the earthquake at the beginning of the sequence (28/07) resulted in less activity than subsequent earthquakes on 09/08355

and 19/08 despite having similar shaking intensity (Fig. 4c). 24 landslides were observed to be active in this event, compared

to 44 and 86 respectively on 09/08 and 19/08. Thus, relatively weak shaking was required to trigger landslide activity later in

the sequence, an effect which was also observed for aftershock-triggered landslides during the 2015 Gorkha, Nepal earthquake

sequence (Tiwari et al., 2017). However, since this activity takes the form of reactivations rather than new failures, its spatial

extent is controlled by the shaking intensity experienced in the mainshock (Fig. 3c). This highlights the importance of rapid360

assessment of co-seismic landslides following a large earthquake as these can easily be reactivated by aftershocks.

It is difficult to determine the mass wasting effects of the multi-stage failure processes we have observed here with our

coherence analysis. First, we identified more landslide activity than expected during the earthquake on the 28/07 (Figs. 3a, 4a).

However, if these landslides would have failed anyway during the larger event on 05/08, the total mass wasting volume will be

unchanged. Equally if the earthquakes on 09/08 and 19/08 only resulted in downslope movement of unconsolidated co-seismic365

deposits left after 05/08, this material would likely have rapidly been remobilised by surface runoff or rainfall-triggered failure,

so the overall effect on mass wasting would be minimal. If instead these earthquakes further damaged the rock and/or regolith
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or caused landslide scarps to retreat, the mass wasting from the four earthquakes in sequence is likely to be greater than the sum

of the mass wasting that would have been caused by each earthquake in isolation. For example, on its own, the earthquake on

09/08 would not be expected to trigger many landslides, (USGS, 2018c). Ferrario (2019) mapped many polygons that increased370

in size between 08/08 and the end of the sequence, suggesting that this may be the case, but we cannot differentiate between

the two processes using SAR since both would result in coherence loss. Overall, while we are able to detect a mechanism that

may result in increased mass wasting, different methods such as repeat LiDAR surveys would be required to fully quantify this

process.

4.4 Disagreement between failure timings derived from optical and SAR datasets375

When carrying out the validation of the SAR methods, cases were observed where the timings derived from SAR did not match

the failures that were visible in the optical datasets (Table 1). While some of these may simply be due to inaccuracies in the

SAR methods or manual landslide mapping, there are patterns that suggest that some of them may be explained by differences

to what is and is not detectable in SAR and optical satellite imagery. For example, the 12 cases where the first failure timings

from InSAR coherence were early compared to the optical datasets could be explained if the InSAR coherence method has380

detected small, precursory motions that were not visible in Sentinel-2 or Planet imagery as in Sect. 4.2. This is particularly

likely for the 6 landslides that were not visible until 05/08 in the optical imagery, but were detecting as failing on both 28/07

and 05/08 by the coherence matrix; and for the 4 landslides that were mapped in the second half of the sequence by Ferrario

(2019), but were active in every earthquake according to the coherence matrix.

A similar explanation could be applied to the 32 cases where the landslide failed only on 05/08 according to the optical385

imagery, but whose last failure was detected on 09/08 or 19/08 by the coherence method. 29 of these 32 landslides were also

identified as failing on 05/08 based on either InSAR coherence or amplitude (the other 3 were not assigned a timing using

these methods). This suggests that these 29 last detected failures were reactivations rather than new failures. It is possible that

these landslides reactivated without visibly changing the size or shape of the scar in the optical satellite imagery. Since InSAR

coherence is sensitive to erosion of unvegetated surfaces (e.g. Cabré et al., 2020), it might still detect such failures.390

Finally, 24 landslide polygons were identified as increasing in size in the second half of the earthquake sequence based on the

optical satellite images and thus classed as “multi-stage” (Sect. 2.4), but were assigned last failures with the InSAR coherence

matrix that were too early. There are two possible explanations for this. First, it could be that the change in size or shape of

the landslide polygon was due to differences in the Planet imagery and how shadows are cast at the edges of the forest rather

than reactivations. Second, if only part of a large landslide scar reactivates, it may change in shape in the optical imagery while395

most of the SAR pixels remain unchanged and do not lose coherence.

Overall, there are several differences between what can be detected with SAR amplitude, InSAR coherence and optical

satellite images, which may be exacerbated by the different spatial resolutions of these data. The difficulty in detecting landslide

reactivations in optical datasets, which is a motivation for developing techniques based on SAR is also a limitation when

validating these techniques.400
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4.5 Wider applicability and limitations of the coherence method

The coherence matrix approach we have used here has some specific advantages. First, it works well in unvegetated areas, where

amplitude-based methods are less likely to return timing information (Burrows et al., 2022) and where landslide detection with

optical data is particularly challenging. Second, using the coherence matrix approach, we are able to detect not only a single

failure timing but also cases of precursory motion and reactivation. Reactivation of shallow landslides in earthquake sequences405

has been observed for other events, but studying this process requires either field photographs or high resolution multi-spectral

satellite images, which are often obscured by cloud (e.g. Sepúlveda et al., 2010; Petley, 2024). The coherence approach used

here could therefore provide a useful tool in studying this process. The ability to distinguish between active and inactive periods

on shallow landslide scars could also be useful both in monitoring landslides that move too rapidly or are poorly oriented for

differential InSAR techniques and in studying rainfall-induced reactivation of co-seismic landslides. The InSAR coherence410

approach we have used here could allow us to better study these processes using Sentinel-1 data or data from other SAR

satellites with a regular acquisition strategy such as the planned NiSAR and ROSE-L missions (Jones et al., 2021a; Davidson

and Furnell, 2021). However, there are other factors that can influence coherence that must be taken into account in future

works, particularly soil moisture and InSAR spatial decorrelation (Scott et al., 2017; Kellndorfer et al., 2022).

4.5.1 Effects of perpendicular baseline on InSAR coherence415

The overall coherence γtotal can be broken down into three components according to Eq. 3 (Zebker and Villasenor, 1992).

γtotal = γtemporal · γspatial · γthermal (3)

Landslides, along with other processes that alter the scattering properties of the Earth’s surface result in decorrelation of

γtemporal. Decorrelation of γspatial resulting from small variations in the satellite orbit between image acquisitions can also

result in coherence loss (decorrelation of γthermal is caused by noise within the satellite receiving antenna and can usually be420

ignored). γspatial is determined by the perpendicular baseline Bperp (the distance between the satellite locations at the time

the two SAR images were acquired), the difference between the SAR incidence angle θ and the local slope in the satellite line

of sight αLOS , lightspeed c, the SAR wavelength λ and chirp bandwidth Bw and the sensor-target distance r according to Eq.

4 (Lee and Liu, 1999).

γspatial = 1− cBperp

λrBw
|cotan(θ−αLOS)| (4)425

Decorrelation of γspatial is thus strongest for slopes that are close to the incidence angle of Sentinel-1 (32.9-43.1°) and face

towards the sensor, an effect recently observed by Kellndorfer et al. (2022) who found that, for example, a slope at 30°would

undergo decorrelation of 70% for an interferogram formed from two images with Bperp = 81m. Such values are not uncom-

mon: in this study, the mean Bperp was 53 m ± 40 m, while around 2/3 of the landslides occurred on slopes steeper than

30°(although not all of these were oriented towards the sensor). Decorrelation of interferograms formed with long Bperp val-430

ues was observed over many landslides in this study. Figure 6 shows one such example for a landslide in an unvegetated area
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Figure 6. The effect of perpendicular baseline on coherence for a landslide in an unvegetated part of the study area

that slopes towards the satellite at an angle of 35.1°, so that, since θ = 35.0°, cotan(θ−αLOS) is close to 1. It can be seen

that, while we are able to differentiate between co-event (unstable) and pre- and post-event (stable) periods for this landslide at

shorter Bperp, this becomes difficult for baselines > 75 m. This underlines the value of the coherence matrix approach, since

it allows us to more easily identify periods of low coherence caused by spatial decorrelation. Studies in arid environments435

have been able to normalise for this property (Liu et al., 1999), but it is more complicated here since the landslides result in

a change in landcover type. In forested areas, decorrelation of γspatial is compounded by volume decorrelation (Hoen and

Zebker, 2000), but in Sentinel-1 interferograms, γtotal is likely to be dominated by decorrelation of γtemporal in vegetated

areas due to the movement of leaves in the canopy between image acquisitions (Jacob et al., 2020).

Overall, decorrelation of γspatial, which can be ignored for many applications, can have a strong impact in landslide studies,440

and should be considered in future works, particularly those that use different SAR constellations which may have longer

Bperp and those that go on to use Sentinel-1A in the coming years as Bperp is likely to grow during this time (ESA, 2024). A

Google Earth Engine tool to calculate αLOS for an inventory of landslides and a given Sentinel-1 SAR scene, and so estimate

the likely impact of spatial decorrelation for a particular event is available at https://doi.org/10.5281/zenodo.12579939

4.5.2 Effects of soil moisture on InSAR coherence445

Changes in surface soil moisture alter the dielectric properties of the soil so can also decorrelate γtemporal. A strong decorre-

lation signal has been observed for areas of bare rock and soil for Sentinel-1 interferograms formed from one wet and one dry

image (Scott et al., 2017). Importantly, however, the decorrelation effect is not permanent. In the hyper-arid Atacama Desert,

Cabré et al. (2020) were able to distinguish between changes in soil moisture, which are only temporary, and erosion, which

represents a permanent physical change. We can see a similar effect in Fig. 7, which shows a coherence matrix including a450

short rainfall event for an unvegetated area where a landslide occurred during the earthquake sequence.
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Figure 7. a) InSAR coherence matrix for a landslide in an unvegetated area previously affected by rainfall b) the difference in 3-day

antecedent rainfall at the time of each image acquisition derived from GPM data (Huffman et al. 2015). The same rainfall event is visible in

both matrices at the time image 2 was acquired.

While in this case, we are able to see that the soil moisture change was not permanent, the coherence loss was of a similar

magnitude to that caused by landslide activity. This highlights the fact that there are some events for which coherence analysis

may be inherently unsuitable, such as the case of an earthquake immediately followed by a storm, in which the coherence

signal will be the same for a co-seismic landslide scar that becomes wet during the storm and one that is reactivated. In this455

case, any drying effect would be hidden by the co-seismic failure. Snowfall, such as was seen following the 2023 Türkiye

earthquake (Görüm et al., 2023), would also result in coherence loss and probably limit the applicability of the approach used

here.

5 Conclusions

We have applied SAR amplitude and coherence techniques to characterise shallow landslide activity during the 2018 Lombok,460

Indonesia earthquake sequence. We have demonstrated that when a coherence matrix approach is used, we can detect not

only single failures but also reactivations and thus build a more complete picture of landslide activity, although such methods

cannot be applied to all landslides. Of the 177 landslides for which such analysis was possible here, 98 were active in more

than one earthquake. In most cases these were reactivations, where failure in one earthquake was followed by further failure

in a later earthquake. However, in at least one case, our SAR techniques identified precursory activity prior to complete465

failure. This is consistent with theory and has been observed in a small number of previous studies but provides further

encouraging evidence that at least some landslides may experience detectable displacement prior to full failure. Examining the

drivers for slope instability, we found that new landslides generally followed pre-existing expectations of the shaking intensity

and slopes associated with earthquake-triggered landsliding, but that reactivations of pre-existing scars required much less
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Figure A1. A comparison of accuracy verses for the original “Step change” method used by (Burrows et al., 2022) to identify landslide

timings and the alternative “Best split” method used here (Sect. 2.2.1). The total number of landslides was 991 (all polygons > 2000 m2

mapped by Ferrario (2019)). Accuracy was calculated for landslides whose timing could be constrained to specific earthquake using Planet,

Sentinel-2 or Google Earth images. Points are labelled with the number of metrics required to select a time window for a landslide before it

is accepted (When this number = 2, the metrics must be drawn from the same SAR orbit, following Burrows et al. (2022)

energy, occurring at accelerations as low as 0.1g. This demonstrates the difficulty in establishing predictive relationships for470

earthquake-triggered landslides. It also highlights the importance of rapid mapping of co-seismic landslide scars since these can

easily be reactivated during aftershocks. Finally, the shift of reactivations but not new landslides to low PGV-slope combinations

suggests that here it was the landslides themselves rather than more general landscape weakening that amplified landslide

activity later in the earthquake sequence. This study represents one of the first combined applications of optical imagery and

Sentinel-1 amplitude and coherence to depict the multi-stage failure following a sequence of earthquakes. Application to other475

sequences of earthquakes or storms would require multi-temporal landslide inventories and good coverage with satellite images

and would allow further confirmation and refining of the SAR methods.

Code and data availability. Sentinel-1 data are available from the Copernicus Data Space Ecosystem (https://dataspace.copernicus.eu). The

original polygon landslide inventory is available in the supplementary materials of Ferrario (2019). Timing and reactivation information

derived from Sentinel-1 for this study will be published in an online repository following review. Computer codes for deriving landslide480

timings from SAR amplitude in Google Earth Engine are available at https://doi.org/10.5281/zenodo.6984291
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Figure A2. Accuracy of the InSAR coherence matrix technique when different thresholds are set for the number of standard deviations

between "pre-event" and "co-event" for the timing to be accepted. Accuracy values are calculated only for landslides whose first failure could

be constrained to a specific earthquake using Planet, Sentinel-2 or Google Earth imagery.
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