
Informativeness of teleconnections in local and regional frequency
analysis of rainfall extremes
Andrea Magnini1, Valentina Pavan2, and Attilio Castellarin1

1Department of civil, environmental, chemical and materials engineering (DICAM), University of Bologna, Italy
2ARPAE-SIMC Emilia Romagna, Bologna, Italy

Correspondence: Andrea Magnini (andrea.magnini@unibo.it)

Abstract. We propose an effective and reproducible framework to assess the informative content of teleconnections for repre-

senting and modeling the frequency regime of rainfall extremes at regional scale. Our dataset consists of 680 annual maximum

series of rainfall depth, with 1 and 24 hours durations, located in northern Italy. We compute at-site time series of L-moments

through sliding time windows; then we discretize the study region into tiles, where L-moments time series are averaged. We

observe that the Western Mediterranean Oscillation index (WeMOI) shows strong spatial correlation patterns with gridded5

L-moments. Finally, in a preliminary application of climate-informed regional frequency analysis, the L-moments are mod-

elled as functions of WeMOI. We observe high variability of WeMOI-driven rainfall percentiles predictions, and an increase

in overall goodness-of-fit of the regional model relative to the stationary framework. Overall, our research suggests promising

pathways for climate-informed local and regional frequency analysis of rainfall extremes, and describes general methods, that

can be adapted to different environmental variables.10

1 Introduction

There is strong evidence that large-scale climate oscillations, also called teleconnections, have a significant influence on a

region’s climate (e.g., Bardossy and Plate, 1992; Bonsal and Shabbar, 2008; Rasouli et al., 2020). Several authors have in-

vestigated the link between teleconnections and the seasonal regime of precipitation, and found strong influence for monthly15

(e.g., Das et al., 2020; Romano et al., 2022) or 3-month (i.e., seasonal, e.g., Belkhiri and Krakauer, 2023; González-Pérez et

al., 2022) cumulate rainfall and number of wet days (e.g., Ouachani et al., 2013; Ríos-Cornejo et al., 2015). Other authors

focused on rainfall extremes, and showed how to exploit teleconnections to model the non-stationarity of the frequency regime

of annual maxima (Cheng and AghaKouchak, 2014; Fauer and Rust, 2023; Ouarda et al., 2019; Ragno et al., 2018). Not only

the parameters of the frequency distribution can be represented as a function of teleconnections (e.g., El Adlouni and Ouarda,20

2009), but also the distribution itself may change (Ouarda et al., 2019). Investigations on the balance between increased com-

plexity and better reliability from non-stationary frequency analysis of rainfall extremes point out that the improvement is
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worth the effort (Ouarda et al., 2020). Overall, the last findings appear to suggest the need for non-stationary frequency anal-

ysis of rainfall extremes, depending on teleconnections (see Nerantzaki and Papalexiou, 2022). Most of the studies about this

topic show applications with a limited number of stations, where observations are abundant enough for fitting non-stationary25

local frequency analysis models. However, the dependence of the extreme rainfall regime on teleconnections may have regional

patterns, instead of being specific for some isolated sites. In case this dependence could be described as a function of space,

this would lead to non-stationary models for regional frequency analysis, similarly as in the case of local frequency analysis.

The presence of regional structures in the dependence between teleconnections and rainfall has been investigated by several

authors, focusing on monthly/seasonal or annual totals (Caroletti et al., 2021; Das et al., 2020; Ríos-Cornejo et al., 2015) or30

droughts (Romano et al., 2022). Differently, this field remains highly unexplored for rainfall extremes. This is a complex prob-

lem, as rainfall extremes have higher statistical and spatial complexity than seasonal/monthly rainfall totals or number of wet

days. Thus, the correlation between teleconnections and extreme rainfall can vary significantly in sign, strength and signifi-

cance within space (see e.g., Jayaweera et al., 2023). In fact, climate may have strong local variations due to orography (Marra

et al., 2021), which makes it difficult to understand which teleconnections are more relevant to a specific region. Moreover,35

the length and quality of the observed timeseries play an important role in the reliability of the obtained results (Martins and

Stedinger, 2000; Nerantzaki and Papalexiou, 2022; Ouarda et al., 2020).

In this study, we propose a framework for assessing the informativeness of teleconnections in frequency analysis of hourly and

daily rainfall extremes. In particular, we want to investigate (1) whether it is possible to delineate robust regional zonation of

the correlation with teleconnections, and (2) what is the effect and suitability of non-stationary frequency analysis in signifi-40

cantly correlated areas. Accordingly, the study and proposed framework are structured in two parts, a correlation analysis and

a regional frequency analysis, respectively. Our study area is northern-central Italy, where 680 timeseries with at least 30 years

of records are available. We focus on annual maxima of precipitation with duration of 1 and 24 hours. In the first part of the

research, we consider six teleconnection patterns with proven influence on the rainfall regime in the study area (Caroletti et al.,

2021; Criado-Aldeanueva and Soto-Navarro, 2020; Krichak et al., 2014): North Atlantic Oscillation (NAO), Pacific Decadal45

Oscillation (PDO), East Atlantic – West Russia pattern (EA-WR), El Niño Southern Oscillation (ENSO), Mediterranean Os-

cillation Index (MOI), and Western Mediterranean Oscillation Index (WeMOI).

Differently from other studies, we do not perform our correlation analysis on the raw timeseries of the teleconnections and

annual maxima. Here, two strategies are simultaneously adopted, to conveniently aggregate the data temporally and spatially.

First, we consider sliding time windows, which allows us to (a) account only for long-term variability components, and (b)50

consider the variation of the timeseries’ statistics during the recorded period. In particular, we consider two linear moments (or

L-moments, see Hosking and Wallis, 1997): the mean and L-coefficient of variation (L-CV) for each station. Second, we divide

the study region into tiles: within each tile, we average the at-site estimation of the L-moments, in order to obtain timeseries of

robust regional L-moments estimates. Finally, we compute tile-wise the correlation between the timeseries of the L-moments

and the rolling mean of the teleconnections and we define raster maps of the correlation with the mean and L-CV.55

In the second part, we focus on areas (tiles) where significant correlations are present, and we fit a tile-wise polynomial rela-

tionship between the L-moments and the most influent teleconnection. By using a hierarchical approach (see e.g. Gabriele and
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Figure 1. General methodological framework of the present study: first phase (white background, panels (a), (b) and (c)) and second phase

(coloured background, panel (d)). Vectors are highlighted with bold, italic font, substeps are numbered and underlined.

Arnell, 1991; Castellarin et al., 2001), we define regional Generalized Extreme Value distributions (GEV, see Jenkinson, 1955)

in a stationary and non-stationary framework. Finally, the research is enriched by a critical discussion on the generality and

reproducibility of the proposed methodology. It is showed that beside the choice of the study area, our methods are innovative60

and universally applicable.

2 Methodological framework

We propose an innovative and structured methodological framework for assessing the effectiveness of teleconnections-informed

frequency analysis of rainfall extremes. The general methodology is structured into two phases. Some elements of the proce-

dure, which include numerical parameters and specific functions, need to be adjusted according to the specific study case; for65

the sake of brevity, all these elements will be referred to as “parameters”. The general methodology is represented in Figure 1

and described in this Section, while the parametrization adopted for this study is detailed in Section 4.1.
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2.1 Phase 1: correlation analysis

The first part aims at (1) evaluating the relation between teleconnection indexes and the local climate indexes (i.e., the statistics

of the rainfall regime), (2) investigating the spatial structure of the correlation, and (3) producing maps of the correlation70

structure over the study area. These objectives are obtained through three fundamental steps which we describe below. The first

step is the definition of two sliding time windows (STWs). One STW is used for the teleconnections, with width wtel years.

Over this STW, the mean of the teleconnection µtel is computed.

Another STW is used for the Annual Maximum Series (AMS), with width of wAMS years. Over this STW, the at-site mean (µ)

and L-coefficient of variation (L-CV, see Hosking and Wallis, 1997) of the AMS of rainfall depths are computed (see Figure75

1.a). Thus, for each gauging station (st) the time series of the mean (µst) and L-CV (L-CVst) are obtained; these have length

n−wAMS + 1, where n is the number of years of observations for the considered site:

µst = {µ1,st,µ2,st, ...,µn−wAMS+1,st} (1)

L-CVst = {L−CV1,st,L−CV2,st, ...L−CVn−wAMS+1,st} (2)

where µ1,st, µ2,st and µn−wAMS+1,st represent the mean computed over the first, second and last time-steps defined by the80

STW at site st; the same notation is used for the L-CV. Notably, at each time-step of the STW, the computed value (i.e., mean

or L-CV) is attributed to the last year included in that interval. Thus, each year is represented by a statistical moment (or

L-moment) that describes the wAMS previous years, including itself.

The second step is the discretization of the spatial domain into single tiles (or cells, or pixels) that do not overlap with each

other. The spatial resolution is wt. For each single tile (t), the timeseries µst and L-CVst of the gauged sites within the tile are85

averaged yearly (see Figure 1.b). Thus, regional timeseries (µt and L-CVt) for each tile are obtained:

µt =
{∑n1

i=1 µ1,i

n1
,

∑n2
i=1 µ2,i

n2
, ...,

∑nn−wAMS+1

i=1 µn−wAMS+1,i

nn−wAMS+1

}
(3)

L-CVt =
{∑n1

i=1 L−CV1,i

n1
,

∑n2
i=1 L−CV2,i

n2
, ...,

∑nn−wAMS+1

i=1 L−CVn−wAMS+1,i

nn−wAMS+1

}
(4)

where n1, n2, ...n−wAMS + 1, are the numbers of stations with available rainfall statistics at steps 1,2, ..., n−wAMS + 1

of the STW.90

The third step is the correlation analysis (see Figure 1.c). The correlation coefficient (cc) is computed for each tile between

the averaged timeseries (µt and L-CVt) and the rolling mean of the considered teleconnection (µtel), and the significance of

the resulting correlation is tested (with significance 5%). We propose to adopt the Spearman coefficient, as it accounts also
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for non-linear correlations, yet preliminary experiments showed very similar results with the Pearson correlation coefficient.

Only stations with p-value≤0.05 are considered as significantly correlated. Only the teleconnections showing high numbers of95

significantly correlated pixels are considered for the further steps.

Finally, an additional analysis of the correlation coefficients is needed to delineate eventual spatial structures. Since the def-

inition of the parameters described above (i.e., wtel, wAMS , wt) is necessarily affected by subjectivity and uncertainty, the

robustness, or reliability, of the detected correlation should be assessed: the method adopted for this assessment is detailed in

Section 4.1. Then, a map of the correlation field over the study area can be created.100

2.2 Phase 2: regional frequency analysis

The second part of the present study aims at assessing (1) the effect of teleconnections on frequency analysis of extreme

rainfall, and (2) the benefit of considering teleconnections as covariates for non-stationary frequency analysis.

For the sake of generality, the Generalized Extreme Value distribution (GEV, see Jenkinson, 1955) is considered, given its

flexibility and representativeness of the frequency regime of hydrological extremes (e.g., Papalexiou and Koutsoyiannis, 2013;105

Salinas et al., 2014). Nevertheless, the proposed framework is not limited to the selection of a given frequency distribution;

on the contrary, it could be easily extended and adapted to the case in which alternative theoretical frequency distributions are

tested against each other. The cumulate probability distribution of the GEV, FGEV (x), depending on the location, scale and

shape parameters (ξ,α,k), is defined as follows:

FGEV (x) = e−e−y

, where y =




−k−1loge[1− k(x− ξ)/α], k ̸= 0

(x− ξ)/α, k = 0
(5)110

The hierarchical method for regional frequency analysis is adopted (see Gabriele and Arnell, 1991). Accordingly, for a given

gauged site, the mean is computed from the at-site records, the L-CV exploits all the time series within a tile with resolution

wL−CV where the target site is included, and the L-CS exploits all the time series within a tile with resolution wL−CS (where

wL−CV ≤ wL−CS). The values adopted in the present study for wL−CV and wL−CS are detailed in Section 4.1.

First, a stationary GEV is fit (GEV0), where the mean over the whole time series is computed at-site, and the regional L-CV115

and L-CS are obtained as described in Hosking and Wallis (1997) as a weighted average over their respective tiles by referring

to the complete sequences of annual maxima.

Second, three types of non-stationary GEV are set up. The first type, GEV1, adopts the same L-CV and L-CS as the GEV0,

whereas the mean varies as a function of the best teleconnection index (selected in phase 1). This function is fitted at-site,

according to the hierarchical regionalization framework. The choice for its shape, f(x), is detailed in Section 4.1. The second120

type GEV, GEV2, adopts the same mean and L-CS as the GEV0, while the L-CV varies as a function f(x) of the best index.

This is fitted on the wL−CV -averaged timeseries (L-CVt), according to the hierarchical regionalization framework. The third

type GEV, GEV3, adopts the same L-CS as the GEV0, while the mean and L-CV are obtained with the same methods as for the

GEV0 and GEV2, respectively. Finally, the four models are compared by means of three commonly used metrics: the ratio of
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maximized likelihood (RML), the Anderson-Darling statistic (AD), and the modified Shapiro-Wilk statistic (TN.SW). These125

three metrics, or discrimination statistics, as they are frequently defined, are selected based on the results of other authors.

Ashkar and Aucoin (2012) and Ashkar and Ba (2017) found that the discrimination power of these three metrics is higher than

other metrics after multiple and extensive testing. In particular, Laio et al. (2009) found that the Anderson-Darling statistic had

better discrimination power than other considered metrics when the parent distribution is a GEV. The RML is defined as in

Ashkar and Ba (2017):130

RML = loge

(LHnon−stationary

LHGEV0

)
(6)

The AD statistic is defined as in Laio et al. (2009) and Laio (2004). For an ordered series of annual maxima, x= {x1 < x2 <

... < xi < ... < xn}, the AD depends on the originally version proposed by Anderson and Darling (1952):

AD1952 =−n− 1
n

n∑

i=1

[(2i− 1) · loge(F (xi)) + (2(n− i) + 1) · loge(1−F (xi))] (7)

AD =





0.0403 +0.116
(

AD1952−ξ
β

η/0.861
)
, 1.2ξ ≤AD1952

[
0.0403 +0.116

(
0.2ξ

β

η/0.861
)]
· AD1952−0.2ξ

β , 1.2ξ > AD1952

(8)135

where F (x) is the cumulative density function of the probability distribution under exam, AD1952 is the orginal Anderson-

Darling statistic (see also Das, 2022), and ξ, β and η are distribution-dependent coefficients that are tabled by Laio (2004)

(Tables 3 and 5).

The TN.SW statistic, generated by the modified Shapiro-Wilk test (see the original test by Shapiro and Wilk (1965)), is

performed as in Ashkar and Ba (2017). First, the series of annual maxima is transformed into a standard normal sample by140

applying the cumulative density function of the distribution under exam, F (x), and the percentile function of the standard

normal distribution, Φ−1(x):

zi = Φ−1(F (xi)) (9)

Then, the TN.SW is computed:

TN.SW =
( n∑

i=1

vizi

)2/ n∑

i=1

(zi−µz)2 (10)145

where the coefficients vi are computed as in the approximation described by Royston (1992), and µz is the mean of the

standardized vector z.

These three metrics are computed for the four types of GEV at all the locations where the correlation is significant (i.e., p-

value≤5%) and strong (i.e., Spearman coefficient≤-0.5 or ≥0.5). While the RML represents the comparison between the LH

of two distribution probabilities, the AD and TN.SW measure the goodness-of-fit of a single distribution to the data (i.e., larger150

values represent better fit). In order to compare the stationary with the non-stationary distributions, we consider the differences
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Figure 2. Elevation (a, in grey color scale) and location (b) of the study area. Length of the timeseries of sub-daily annual maximum rainfall

depths (a, red color scale). In black: Italian administrative regions.

∆AD = ADnon−stationary −ADGEV0 and ∆TN.SW = TN.SWnon−stationary −TN.SWGEV0 (Ashkar and Ba, 2017; Das,

2022). Thus, either for RML, ∆DA and ∆TN.SW , positive values indicate that the considered non-stationary model provides a

higher goodness-of-fit to the observed annual maxima relative to the stationary model.

3 Dataset155

The study area includes most of northern and part of central Italy, a region characterized by great climate variability (see

Figure 2.a). Two main mountain ranges are present: the Alps in the north, with a maximum elevation of 4000 m a.s.l., and

the Apennines, crossing all along continental Italy, with a maximum elevation of ∼2100 m a.s.l. in the study area. The largest

Italian plain, the Po plain, is located at the southern border of the Alps, following the course of the Po River from the northwest

to the northeast, where low coasts are located.160

We select 680 gauged stations (Figure 2.a) from the I2-RED dataset (Mazzoglio et al., 2020), filtering by a minimum of 30

years of data. Thus, all the selected timeseries should be long enough to show variations of the statistical regime during time, if

these are present (see also Renard et al., 2008; Ouarda et al., 2019). For each station, we consider time series annual maximum

cumulative rainfall over 1 and 24 consecutive hours, which represent distinct events: mainly convective and mainly synoptic,

respectively. Data have been recorded between 1928 and 2020.165
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In the study, six teleconnections are considered; a detailed description of their nature is not reported here, since an interested

reader can refer to the extensive literature cited in the text. Namely, these are the North Atlantic Oscillation (NAO, see Jones et

al., 1997), the East Atlantic-West Russia (EA-WR) pattern (see Barnston and Livezey, 1987), the Pacific Decadal Oscillation

(PDO, see Zhang et al., 1997), El Nino Southern Oscillation (ENSO, see Chen et al., 2019), Mediterranean Oscillation Index

(MOI, see Conte et al., 1991), and Western Mediterranean Oscillation Index (WeMOI, see Martin-Vide and Lopez-Bustins,170

2006). All these climate indexes have significant influences on several locations in Europe and the Mediterranean (e.g., Caroletti

et al., 2021; Krichak et al., 2014, 2002; Krichak and Alpert, 2005). The NAO, EA-WR, PDO and ENSO are freely accessible

from the NOAA Physical Sciences Laboratory data base available at https://psl.noaa.gov/data/climateindices/list/. The MOI

and WeMOI can be retrieved from the University of East Anglia’s Climate Research Unit (CRU; https://crudata.uea.ac.uk/cru/

data/moi/).175

4 Results

4.1 Parametrization of the procedure for the study area

Based on several preliminary experiments conducted, the parametrization of the general methodology to the study area is the

following.

The first part of the study requires the definition of wtel, wAMS , wt, and the methodology for the robustness analysis. First,180

wtel is assumed as 30 years. Preliminary experiments with smaller wtel provided similar results, yet not exactly the same. The

final choice accounts to 30 years in order to smooth short interannual oscillations, considering instead a pluridecadal climate

window. Shorter oscillations (i.e., <30 years) would not be of interest for the design of hydraulic structures, while longer ones

(i.e., >30 years) would be highly uncertain to detect, due to limited length of the timeseries.

Second, the wAMS parameter is assumed as 10yrs. This choice is also due to a balance between a minimum width for the185

computation of the L-CV and a minimum length of the timeseries of the rainfall statistics (i.e., µst and L-CVst). In fact, on

the one hand wAMS <10 would lead to unacceptable inaccuracy for the definition of the L-CV. On the other hand, the µst

and L-CVst timeseries originated from an n-long annual maxima timeseries have length of n− (wAMS − 1). This means that

the longer wAMS would lead to shorter µst and L-CVst, which in turn would lead to a smaller number of stations where

the correlation between teleconnections and rainfall statistics can be reliable. Indeed, to the aim of defining a zonation of the190

teleconnection-statistics correlation field, as in the present study, the number of sufficiently long timeseries needs to be as high

as possible.

According to the adopted parametrization, equations 1 to 4 become the following:

µst = {µ1,st,µ2,st, ...,µn−10+1,st} (11)

L-CVst = {L−CV1,st,L−CV2,st, ...,L−CVn−10+1,st} (12)195
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µt =
{∑n1

i=1 µ1,i

n1
,

∑n2
i=1 µ2,i

n2
, ...,

∑nn−10+1
i=1 µn−10+1,i

nn−10+1

}
(13)

L-CVt =
{∑n1

i=1 L−CV1,i

n1
,

∑n2
i=1 L−CV2,i

n2
, ...,

∑nn−10+1
i=1 L−CVn−10+1,i

nn−10+1

}
(14)

For the spatial resolution of the tile size, wt, we adopt four values: 0km (i.e., considering the single gauged stations, with no

spatial discretization), 15km, 30km and 50km. This multiple choice comes from a balance. On the one hand, L-CV computed

over a 10yrs STW may have low robustness, which can be addressed by averaging L-CVs from several stations within large200

tiles. On the other hand, larger tiles may be less statistically homogeneous. Moreover, averaging L-statistics over large tiles

may smooth the variability of the rainfall regime, hiding local patterns where the morphology is complex. Since there is no

universal rule for solving this balance, we decide to consider four different values for wt. The suitability of these values is

tested by means of the heterogeneity test described by Hosking and Wallis (1997) for the L-CV. The results show that most of

the tiles are homogenous for all the resolutions. These analyses are not reported here for the sake of brevity.205

Regarding the robustness of the correlation signal is defined through a reliability index. At each station st, it is defined as rist:

rist = sign(cc0km,st) + sign(cc15km,st) + sign(cc30km,st) + sign(cc50km,st) (15)

Where cc0km,st is the correlation computed at station st, while cc15km,st, cc30km,st and cc50km,st are the correlation coef-

ficients relative to the tiles (with wt 15km, 30km and 50km) where st is inserted. Non-significant correlations are considered

as 0.210

This is considered to be a measure of the spatial coherence of the correlation signal, which varies between -4 and 4. The

absolute value is the coherence of the correlations at different tiles. The sign represents the sign of the prevailing correlation.

For instance, considering a gauged station where the absolute value of ri is 4, the correlation is significant and with the same

sign both when calculated at-site, and when it derives from a 15km aggregation, and at 30km, and at 50km. On the opposite,

0 represents areas with no significant correlation or where positive and negative correlations compensate with each other (e.g.215

positive correlation at-site and at a 15km tile, and negative correlation at 30km and 50km). In general, the ri can be rescaled

between -1 and 1, in order be more similar to a correlation coefficient. In this study, the original scale is kept, as it is more

easily interpretable.

Finally, the reliability index is interpolated by ordinary kriging (Hengl, 2007) to produce a robust map of the correlation field.

Regarding the second part of the study, three parameters need to be adjusted: wL−CV , wL−CS and f(x). The selected reso-220

lution wL−CV is 30km, as it is a good balance between robustness (i.e., aggregating at least two L-CV at-site timeseries) and

representing regional patterns and local variability. The selected resolution wL−CS is 100km, based on low spatial variability

of the skewness parameter (e.g., Gabriele and Arnell, Claps et al 2022) and improved robustness (see above).

The functionf(x) between teleconnections and L-statistics is shaped as a second-order polynomial function. This form has
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been selected because of its simplicity (i.e., only two parameters are needed) and yet adaptability to the data, while the de-225

pendence observed of extreme rainfall statistics on teleconnections is clearly non-linear. Other choices are clearly possible.

However, it should be underlined that the aims of the present study are mainly demonstrative of the potential of the proposed

approach. Thus, the nature and selection of the best function is not discussed in detail.

4.2 Results of phase 1: correlation analysis

First, it is observed that the WeMOI shows a remarkably higher number of significant correlations in the study area than any230

other teleconnection considered in the study. When considering single stations, we found 387 significant correlations for hourly

rainfall for WeMOI, while for the other indexes they range from 0 (ENSO) to 78 (PDO). Due to this huge difference, only the

results obtained for WeMOI are presented below.

Figure 2 reports significant Spearman correlation coefficients with WeMOI at different resolutions for spatial aggregation for

the mean (panels (a)-(h)) and L-CV (panels (i)-(p)), respectively. Several stations present statistically significant correlation235

values with this index, with signs and amplitude changing depending on the site considered (panels (a) and (e) for mean, (i) and

(m) for L-CV, Figure 3). Aggregating stations into tiles reduces spatial heterogeneity, and allows to describe the geographical

pattern of the correlation field (see other panels).

Both for the mean and L-CV, the correlation fields of extreme rainfall with 1h duration present complex spatial patterns, with

small areas characterized by homogeneous values.240

The reliability index (ri, see Equation 15) is showed for the mean and L-CV in Figure 4. As observed above, stable geo-

graphical structures in the correlation are larger (1) for the 24h duration than for the 1h (compare panels (a) and (b) with panels

(c) and (d) in Figure 4), and (b) for the mean than for L-CV (compare panels (a) and (c) with panels (b) and (d) in Figure 4).

Concerning the mean of the AMS series, two major patterns of robust negative correlation are present in the Western coast of

the Tyrrhenian Sea (Gulf of Genoa) and in the north-eastern Alps. Less intense but significant positive correlation values are245

present along the northern flank of the northern Apennines. For the L-CV, the pattern in the Gulf of Genoa is still present, but

less evident and less extended, while some positively correlated hotspots are present, mostly located in the Southern portion of

the study area.

4.3 Results of phase 2: Frequency analysis

Following the adopted framework (see Section 3.2), regional frequency analysis is applied to all the locations where significant250

correlation is observed (i.e., p-value≤5%). Figure 4 illustrates the results obtained for a station (see panel (a) for its location)

where the three non-stationary GEV can be fitted (i.e., GEV1 in panel (c), GEV2 in panel (d), and GEV3, in panel (e)).

It is evident from the example provided in Figure 5 that the variation of the expected percentiles due to the dependence of

the GEV parameters on the teleconnections may be very significant. The prediction of the 100-year 24-hour rainfall depth in

the selected location is equal to 370mm according to the stationary model (GEV0), but may vary between 340 and 375 if the255

empirical relationship between WeMOI and L-CV is explicitly modelled (GEV2), between 300 and 460 if the mean 24-hour

annual maximum rainfall depth becomes a function of WeMOI (GEV1), and may be as low as 275 and as high as 470 if both
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Figure 3. Correlation coefficient for the mean [L-CV] for AMS of rainfall depths with duration of 1h and 24h: at-site ((a)/(i) and (e)/(m))

and for tiles of size 15km ((b)/(j) and (f)/(n)), 30km ((c)/(k) and (g)/(o)), and 50km ((d)/(l) and (h)/(p)). Only statistically significant (at 5%)

correlation coefficients are illustrated using a purple-green-yellow color scale. Black outlines highlight tiles where only one station is present

mean and L-CV are expressed as functions of WeMOI (GEV3).

Figure 6 represents the RML, ∆AD, and ∆TN.SW (panels (a), (b) and (c), in this order). These measure the increase in
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Figure 4. Raster maps of reliability index (ri) of the correlation between WeMOI and mean/L-CV of AMS of rainfall depths with duration

of 1h (a/b) and 24h (c/d)

goodness-of-fit due to the non-stationary regional GEV models with respect to the stationary ones. They are computed for all260

locations in which statistically significant correlation between AMS statistics and WeMOI was detected (see Sections 2.1 and

2.2).

Values of RML (Figure 6.a) and ∆AD are mainly positive for GEV1 and GEV3 (i.e., non-stationary models show a better

representation relative to the stationary one), where negative values are present in less than 25% of the cases. For GEV2, in

nearly half of the stations examined the precipitation regime is better represented by a stationary framework. Differently, values265

of ∆TN.SW are almost equally divided into positive and negative for both the 1h and 24h durations and all the non-stationary

models.

12

https://doi.org/10.5194/egusphere-2024-3261
Preprint. Discussion started: 28 October 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 5. Example of location where regional frequency analysis for 24h duration is performed. Upper panels: location of example station

(a), polynomial function of mean (µ) and L-CV depending on WeMOI (b). Lower panels: expected percentiles with given return periods in

stationary (black line) and non-stationary framework (colored scale lines) when only the mean depends on the WeMOI (c), only the L-CV

depends on the WeMOI (d), or both mean and L-CV depend on the WeMOI (e).

Overall, the GEV2 model shows the lowest number number of cases (which is still above 50%) where it should be preferred

to the stationary regime. For all the three metrics, light differences are observed between the results for 1h and 24h.

5 Discussion270

5.1 Zonation of the correlation

The stronger influence of the WeMOI compared to the other teleconnections was expected. In fact, the WeMOI consists of the

normalized difference between Cadiz, in the South of Spain, and Padua, in northern Italy, and thus, it describes the formation

of precipitation systems over the Tyrrhenian Sea (Lopez-Bustins et al., 2020; Redolat et al., 2019). Strong significant correla-

tions with the WeMOI were also found in other studies, as for Central Italy by Romano et al., 2021 and for Southern Italy by275

Caroletti et al., 2021. In particular, the presence of significant intense negative correlation values in the Gulf of Genoa and the
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Figure 6. Evaluation metrics for stationary and non-stationary RFA framework for locations where at-site strong and significant correla-

tion µWeMOI-µst is present (GEV1), 30km strong and significant correlation µWeMOI-L-CVt is present (GEV2), and both correlations

µWeMOI-µst and µWeMOI-L-CVt are strong and significant (GEV3). In particular, RML (a), ∆AD (b), and ∆TN.SW (c). For all the met-

rics, results larger than zero represent better performances of non-stationary over stationary framework.

North-East for the mean-WeMOI correlation (Figure 4.a and 4.c) is consistent with the known patterns of precipitation regimes

over north-central Italy. In fact, intense daily precipitation values are expected over the Tyrrhenian Coast and north-eastern Alps

in the presence of intense southwesterly flows from the Mediterranean, typical during the autumn season and favored by large

scale circulation anomalies associated with negative value of the WeMOI. On the other hand, in the presence of positive values280

of the index, precipitation is expected to be linked to cut-off flows mostly affecting the Adriatic section of the Apennines. In

the remaining portion of the study area, precipitation systems are more complex, as influenced by the passage of cut-of flow

favoring precipitation over the southern and eastern portion of the Apennines area. In this case, correlation patterns with the

WeMOI are expected to be more fragmented (Figure 4.c).

For the 1h rainfall maxima, mostly linked to convective phenomena, which are often characterized by a very limited spatial285

scale, the correlation with WeMOI presents more complex geographical patterns, even if still present (Figure 4.a).

A physical interpretation of the L-CV-WeMOI dependence is more complex. It is evident that some hotspots of correlation are

present (Figure 3.k-l for and 3.o-p): negative correlations are mostly located in the North-West, which partially confirms the

results for the mean (compare Figure 3.f-g with 3.n-o). Elsewhere, small and fragmented, mainly positive patterns are visible.

Considering the ri, the robustness of patterns to spatial aggregation is lower than for the mean, which may be due to higher290

uncertainty in at-site computation of L-CV within a 10-year time window. For this reason, we believe that for L-CV, a spatial

aggregation at 30km should be preferred for RFA.

Based on the results described in Section 4, the methods adopted generally allowed a reliable zonation of the teleconnection-

extreme rainfall correlation. This is due to two elements: the temporal and spatial aggregation of the data. First, the temporal

aggregation through sliding time windows allow to consider the statistics of the extreme rainfall during time, instead of the295

rainfall depth themselves. In this way, it is possible to filter out inter-annual variability of the seasonality and magnitude of the

annual maxima and focus on the decadal precipitation statistics. Second, the spatial aggregation into tiles allows to obtain more

reliable values of the rainfall statistics. This produces a smoothing local effect, that could be due to data fragmentation and
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noise and enhance geographical pattern recognition (see Figure 3). The choice of wt for spatial aggregation should be carefully

conducted, as it mainly depends on the morphology of the study area, and the density and location of the rain gauges. Generally,300

considering a number of different values for wt is useful to analyze the reliability of the detected correlation patterns.

A different approach for spatial aggregation could be the one described in Castellarin et al. (2024), where overlapping tiles are

used. However, including each gauged site in multiple tiles could result in eccessive smoothing effect of the orographic effect

over the correlation field. Thus, this solution should be preferred only in case of scarce density of gauges network.

A key aspect of the proposed approach is its high adaptability. In fact, the same methodology with an appropriate parametriza-305

tion could be used to study the influcence of teleconnections on several environmental variables, such as AMS of floods or

temperature or wind. Moreover, raster maps of the correlation field (as the ones in Figure 4) could be used as descriptors of

the drivers of an environmental variable, and adopted as input of predictive raster-based models (e.g., for prediction of flood

susceptibility, as in Magnini et al., 2023).

5.2 Non-stationary regional frequency analysis310

Looking at the results of the second phase of our study (Figure 5), two main points are of general interest. First, the range of

variability of the expected percentiles with non-stationary models depending on teleconnections is very significant, confirming

what observed locally by other authors. Second, the regional dependency of rainfall statistics on teleconnections can be suc-

cessfully exploited locally for frequency analysis. This is a useful improvement over present literature, as it allows to obtain

the µst and L−CVst even where observations are not locally available. Moreover, the observed variability of the expected315

maximum rainfall with given return periods could be used as teleconnection-informed uncertainty range for the design of hy-

draulic structures.

The results in Figure 6 show that an incontrovertible evaluation of which model is the most accurate is impossible. In fact,

each metric, or test, evaluates differently the goodness-of-fit and may provide wrong indication of the best model (e.g., see

Laio et al., 2009; Ashkar and Aucoin, 2012; Ashkar and Ba, 2017). In general, it is positive that two metrics out of three (i.e.,320

RML and ∆AD) indicate that the non-stationary framework fits the data better for most of the stations analyzed. Nevertheless,

it is not surprising that one of the metrics (∆TN.SW ) suggests to select the stationary approach in half of the cases. In fact,

the framework we adopted for non-stationary RFA is based on the strong assumption that the same type of function (i.e., a

polynomial function) can represent the teleconnection-statistic relationships within all the study area. Indeed, this approxima-

tion is sufficiently accurate in some stations, while being not adatp in others. This is probably also the reason why the GEV1325

models perform generally better than the GEV2 ones. In fact, the polynomial approximation may fit the data better when these

are collected locally (as for the µtel-µst case) than when they result from tile-wise averaging (as for the µtel-L-CVst case).

Accordingly, the GEV3 models derive their goodness or badness from the sum of the GEV1 and GEV2 contributes. This leads

them to be the best models for some stations, and the worst for others (see the extension of the GEV3 boxplots in Figure 6.a

and 6.c), depending on the goodness of the polynomial approximation for µ and L-CV.330

To summarize, the metrics showed in Figure 6 can be considered as encouraging, as they detect better goodness-of-fit of

non-stationary RFA models than the stationary ones, despite the low-complexity of the function adopted for modelling the
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dependence on teleconnections. It is important to underline that the aim of the present research is to investigate the potential

of teleconnections as independent variables in RFA models, and not to propose a specific method for RFA. Indeed, the RFA

results depend on a number of parameters, that are the widths of STWs for temporal aggregation of the teleconnection indexes335

(wtel) and AMS (wAMS), and the resolution for spatial aggregation (wt). The choice of these parameters can be done by a

careful sensitivity analysis for defining the spatial field of the teleconnection-statistic correlation (see Sections 2 and 4.2). The

case of setting a framework for RFA is very different and much more complex, as it requires the formalization of a function

of extreme rainfall statistics depending on teleconnection indexes. In this case, one should decide not only the shape of this

function, but also the way its parameters vary in space and should be estimated. In our study, we adopted a simple framework,340

as this function has a limited number of parameters and the same shape (i.e., polynomial) in all the spatial domain. We showed

a hierarchical RFA approach where the parameters of the polynomial functions are fitted at-site for the µ and at 30km-tiles

for the L-CV. Our analyses overall suggest that even with a simple RFA framework, the use of teleconnections as dependent

variables to describe the extreme rainfall regime may increase the accuracy in frequency modelling.

However, different approaches are indeed possible. First, the best resolution for spatial aggregation and the shape of the345

teleconnection-statistic function should be carefully evaluated for each specific case. Second, a more complex teleconnection-

statistics function could be defined. A possible approach is the one proposed by Magnini et al. (2024), which leverages neural

networks’ capabilities to obtain functions whose parameters depend on the location of the considered site and other morphocli-

matic descriptors. Indeed, the implementation and discussion of more sophisticated RFA methods to exploit teleconnections’

informative content is complex, and should be addressed by future studies.350

6 Conclusions

A growing number of recent studies show how large scale climatic indexes (or teleconnections) can be used as covariates to in-

crease reliability of local frequency analysis of rainfall extremes across diverse geographical regions worldwide (e.g., Fauer and

Rust, 2023; Ouarda et al., 2020; Ragno et al., 2018). It is theoretically possible to extend these methods to regional frequency355

analysis (RFA), but the teleconnection-extreme rainfall dependency at a regional scale should be first investigated. Beside its

usefulness for correct estimation of the design rainfall for engineering applications, this topic is still not well addressed in the

literature.

In the present study, we propose a framework to assess the link between teleconnections and the frequency regime of rainfall

extremes at a regional scale, in order to perform climate-informed regional frequency analysis.360

The approach is tested for a large and climatically diverse region in northern Italy. Our dataset consists of 680 annual maximum

series (AMS) of hourly and daily (i.e., 1 and 24 hours durations) rainfall depth, recorded between 1921 and 2022. We select

six global climate indexes, known to have significant correlation with local climate variability over the study area (Caroletti et

al., 2021; Criado-Aldeanueva and Soto-Navarro, 2020; Romano et al., 2022): the North Atlantic Oscillation, Pacific Decadal

Oscillation (PDO), East Atlantic – West Russia pattern, El Niño Southern Oscillation, Mediterranean Oscillation Index (MOI),365
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and Western Mediterranean Oscillation Index.

The main steps of the proposed framework can be summarized as follows. First, we define sliding time windows in order

to obtain time series of teleconnections and statistics of annual maxima (i.e. L-moments of AMS, which in our case were

used characterized the distribution of sub-daily rainfall extremes). Second, we discretize the study area into tiles where the

L-moments are averaged into regional predictions. Then, we evaluate the correlation of teleconnections with time series of370

spatially gridded L-moments. Finally, we show a preliminary application of climate-informed regional frequency analysis of

rainfall extremes, where the L-moments are modelled as functions of WeMOI. We selected WeMOI as it shows a notably

higher number of significant correlations with the statistics of sub-daily rainfall maxima than the other teleconnection indexes.

Application to different regions and hydroclimatic contexts may result in a higher relevance of other teleconnections. More-

over, the relationship between WeMOI and L-moments of extreme rainfall shows clear spatial patterns across the study area,375

whose robustness is confirmed by their limited sensitivity to the chosen grid resolution and the partial agreement with previous

studies (Caroletti et al., 2021; Romano et al., 2022). As well, this is coherent with the known spatial variability of precipitation

regimes over the region.

The proposed approach is simple and easily reproducible, yet it is new with respect to the existing literature. In fact, while

most authors investigated the correlation between the teleconnections and the raw AMS, we consider the L-moments. This, in380

combination with spatial discretization of the domain, allows us to focus on the relationship between the teleconnections and

the extreme rainfall regime, instead of the extreme values themselves, whose seasonality and interannual variability can affect

the correlation analysis. Beside the preliminary nature of the RFA application, three commonly used metrics (e.g., Ashkar

and Ba, 2017) detect overall an increase in goodness-of-fit with respect to a stationary approach, in line with previous studies

(Nerantzaki and Papalexiou, 2022), shows that teleconnections may be useful covariates in a regional a framework.385

Overall, our research suggests promising pathways for climate-informed local and regional frequency analysis of rainfall ex-

tremes, and our methodology is highly adaptable to different environmental variables, such as floods and temperature.
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