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Abstract. We propose an effective and reproducible framework to assess the informative content of teleconnections (or climate

indices) for representing and modeling the frequency regime of rainfall extremes at regional scale. Our dataset consists of 680

annual maximum series of rainfall depth, with 1 and 24 hours durations, located in Northern Italy. We compute at-site time

series of L-moments (i.e., the mean and the L-coefficient of variation) through sliding time windows; then we discretize the

study region into tiles, where L-moments time series are averaged. We compute the 30-years sliding mean for six teleconnec-5

tions: North Atlantic Oscillation, Pacific Decadal Oscillation, East Atlantic – West Russia pattern (EA-WR), El Niño Southern

Oscillation, Mediterranean Oscillation Index, and Western Mediterranean Oscillation Index (WeMOI). Then, we calculate L-

moments-teleconnection Spearman correlations for single sites and for tiles with several resolutions, and retain correlations

with p-values≤0.05. We observe spatial patterns of strong correlation between several teleconnections and gridded L-moments.

These spatial patterns are clearly visible at various tiles’ resolutions, and may be used for setting up regional prediction models.10

The strongest influence is detected for the sliding mean on the WeMOI and EA-WR. Finally, we show a preliminary applica-

tion of climate-informed regional frequency analysis, through a hierarchical framework, where the L-moments are modelled

as functions of teleconnections. We observe high variability of teleconnection-driven predictions of rainfall percentiles, and an

increase in overall goodness-of-fit of the climate-informed regional models relative to stationary models. Overall, our research

suggests promising pathways for climate-informed local and regional frequency analysis of rainfall extremes, and describes a15

general method, that can be adapted to different geographical and climatic contexts, as well as environmental variables.

Copyright statement. TEXT

1 Introduction

There is strong evidence that large-scale climate oscillations, also called climate indices or teleconnections, have a signifi-

cant influence on a region’s climate (e.g., Bardossy and Plate, 1992; Bonsal and Shabbar, 2008; Rasouli et al., 2020). Several20

authors have investigated the link between teleconnections and the seasonal regime of precipitation, and found strong influ-

ence for monthly (e.g., Das et al., 2020; Romano et al., 2022) or 3-month (i.e., seasonal, e.g., Belkhiri and Krakauer, 2023;
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González-Pérez et al., 2022) cumulate rainfall and number of wet days (e.g., Ouachani et al., 2013; Ríos-Cornejo et al., 2015).

Other authors focused on rainfall extremes, and showed how to exploit teleconnections to model the non-stationarity of the

frequency regime of annual maxima (e.g., Cheng and AghaKouchak, 2014; Fauer and Rust, 2023; Ouarda et al., 2019; Ragno25

et al., 2018). Not only the parameters of the frequency distribution can be represented as a function of teleconnections (e.g.,

Johnson et al., 2025; El Adlouni and Ouarda, 2009), but also the distribution itself may change (Ouarda et al., 2019). Investi-

gations on the balance between increased complexity and better reliability from non-stationary frequency analysis of rainfall

extremes point out that the improvement can be worth the effort (Ouarda et al., 2020). Overall, the last findings appear to sug-

gest the need for non-stationary frequency analysis of rainfall extremes, depending on teleconnections (e.g., Volpi et al., 2024;30

Nerantzaki and Papalexiou, 2022). Most of the studies on this topic show applications with a limited number of stations, where

observations are abundant enough for fitting non-stationary local frequency analysis models. However, the dependence of the

extreme rainfall regime on teleconnections may have regional patterns, instead of being specific for some isolated sites. In case

this dependence could be described as a function of space, this would lead to non-stationary models for regional frequency

analysis, similarly to the case of local frequency analysis.35

The presence of regional structures in the dependence between teleconnections and rainfall has been investigated by several

authors, focusing on monthly/seasonal or annual totals (Caroletti et al., 2021; Das et al., 2020; Ríos-Cornejo et al., 2015)

or droughts (Romano et al., 2022). Differently, this field remains highly unexplored for rainfall extremes. This is a complex

problem, as rainfall extremes have higher statistical and spatial complexity than seasonal/monthly rainfall totals or number

of wet days. Thus, the correlation between teleconnections and extreme rainfall can vary significantly in sign, strength and40

significance across a region (see e.g., Jayaweera et al., 2023). In fact, climate may have strong local variations due to orogra-

phy (Marra et al., 2021), which makes it difficult to understand which teleconnections are more relevant to a specific region.

Moreover, the length and quality of the observed timeseries play an important role in the reliability of the obtained results

(Martins and Stedinger, 2000; Nerantzaki and Papalexiou, 2022; Ouarda et al., 2020).

In this study, we propose a framework for assessing the informativeness of teleconnections in frequency analysis of hourly and45

daily rainfall extremes. In particular, we want to investigate (1) whether it is possible to delineate robust regional zonation of the

dependence on teleconnections, and (2) what is the effect and suitability of teleconnection-informed regional frequency anal-

ysis. Accordingly, the study and proposed framework are structured in two parts: correlation analysis and regional frequency

analysis. Our study area is North-Central Italy, where 680 timeseries with at least 30 years of records are available. We focus

on annual maxima of precipitation with duration of 1 and 24 hours. In the first part of the research, we consider six telecon-50

nection patterns with proven influence on the rainfall regime in the study area (Caroletti et al., 2021; Criado-Aldeanueva and

Soto-Navarro, 2020; Krichak et al., 2014): North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), East Atlantic

– West Russia pattern (EA-WR), El Niño Southern Oscillation (ENSO), Mediterranean Oscillation Index (MOI), and Western

Mediterranean Oscillation Index (WeMOI).

Differently from other studies, we do not perform our correlation analysis on the raw timeseries of the teleconnections and55

annual maxima. Here, two strategies are simultaneously adopted, that is to aggregate the data temporally and spatially. First,

we consider sliding time windows, which allows us to (a) account only for long-term variability components, and (b) con-
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sider the variation of the timeseries’ statistics during the recorded period. In particular, we consider two linear moments (or

L-moments, see Hosking and Wallis, 1997): the mean and L-coefficient of variation (L-CV) for each station. Second, we divide

the study region into tiles: within each tile, we average the at-site sample L-moments, in order to obtain timeseries of regional60

L-moments. Finally, we compute tile-wise the correlation between the timeseries of the L-moments and the rolling mean of the

teleconnections and we define raster maps of the dependence of the mean and L-CV. Significance testing specifically addresses

autocorrelation issues due to the use of sliding windows (Lun et al., 2023).

In the second part, we fit polynomial relationships between the L-moments and the most influent teleconnections. By using a

hierarchical approach (see e.g. Gabriele and Arnell, 1991; Castellarin et al., 2001), we define regional Generalized Extreme65

Value distributions (GEV, see Jenkinson, 1955) in a stationary and “doubly-stochastic” framework. The authors use the termi-

nology “doubly-stochastic” for frequency models where the parameters depend on stochastic variables, as teleconnections (see

Serinaldi and Kilsby, 2018). We test hypothesis that the GEV parameters of rainfall extremes depend on teleconnections (i.e.,

doubly-stochastic model) through ad-hoc Monte Carlo experiments that take spatial correlation into account (see e.g., Castel-

larin et al., 2024). Finally, the research is enriched by a critical discussion on the generality and reproducibility of the proposed70

methodology. It is shown that beside the choice of the study area, our methods are innovative and universally applicable.

2 Methodological framework

We propose an innovative and structured methodological framework for assessing the effectiveness of teleconnections-informed

frequency analysis of rainfall extremes. The general methodology is structured into two phases. Some elements of the proce-

dure, which include numerical parameters and specific functions, need to be adjusted according to the specific study case; for75

the sake of brevity, all of these elements will be referred to as “parameters”. The general methodology is represented in Figure

1 and described in this Section, while the parametrization adopted for this study is detailed in Section 3.2.

2.1 Phase 1: correlation analysis

The first part aims at (1) evaluating the possible relation between teleconnection indices and the local climate indices (i.e.,

extreme rainfall statistics), (2) investigating the spatial structure of the correlation, and (3) producing maps of the correlation80

structure over the study area. These objectives are obtained through three fundamental steps which we describe below. The

first step is the definition of two sliding time windows (STWs). One STW is used for the teleconnections, with width wtel

years. Over this STW, the mean of the teleconnection µtel is computed. Another STW is used for the Annual Maximum Series

(AMS), with width wAMS years. Over this STW, the at-site mean (µ) and L-coefficient of variation (L-CV, see Hosking and

Wallis, 1997) of the AMS of rainfall depths are computed (see Figure 1.a). Thus, for each gauging station (st) time series of the85

mean (µst) and L-CV (L-CVst) are obtained; these have length n−wAMS+1, where n is the number of years of observations

for the considered site:

µst = {µ1,st,µ2,st, ...,µn−wAMS+1,st} (1)
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Figure 1. Methodological framework: first phase (white background, panels a, b and c) and second phase (coloured background, panel d).

Vectors (i.e., time series) are highlighted with bold, italic font, substeps are numbered and underlined.

L-CVst = {L−CV1,st,L−CV2,st, ...L−CVn−wAMS+1,st} (2)

where µ1,st, µ2,st and µn−wAMS+1,st represent the mean computed over the first, second and last time-steps defined by the90

STW at site st; the same notation is used for the L-CV. The value (i.e., mean or L-CV) computed at each time-step of the STW

is conventionally assigned to the last year of the interval.

The second step is the discretization of the spatial domain into single tiles (or cells, or pixels) that do not overlap with each

other. The spatial resolution is wg . For each single tile (g), the timeseries µst and L-CVst of the gauged sites within the tile are

averaged yearly (see Figure 1.b). Thus, regional timeseries (µg and L-CVg) for each tile are obtained:95

µg =
{∑n1

i=1µ1,i

n1
,

∑n2

i=1µ2,i

n2
, ...,

∑nn−wAMS+1

i=1 µn−wAMS+1,i

nn−wAMS+1

}
(3)

L-CVg =
{∑n1

i=1L−CV1,i

n1
,

∑n2

i=1L−CV2,i

n2
, ...,

∑nn−wAMS+1

i=1 L−CVn−wAMS+1,i

nn−wAMS+1

}
(4)
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where n1, n2, ...n−wAMS +1, are the numbers of stations with available rainfall statistics at steps 1,2, ..., n−wAMS +1

of the STW.

The third step is the correlation analysis (see Figure 1.c). The correlation coefficient (cc) is computed for each tile between100

the averaged timeseries (µg and L-CVg) and the rolling mean of the considered teleconnection (µtel). We adopt the Spearman

coefficient as it accounts also for non-linear correlations, yet preliminary experiments showed very similar results with the

Pearson correlation coefficient. The significance of cc is tested according to the methodology described in Lun et al. (2023),

which takes into account the possible presence of spurious correlations, resulting from the use of sliding time windows. Only

stations with p-value≤0.05 are considered as significantly correlated (i.e., significance at 5%).105

Finally, we estimate the robustness, or reliability, of the detected correlation signals with an ad-hoc approach. This is an impor-

tant step, since the definition of the parameters described above (i.e., wtel, wAMS , wg) is necessarily affected by subjectivity

and uncertainty. Then, the possible presence of spatial patterns of the correlation fields is investigated through the definition of

correlation maps. The methodology adopted for correlation reliability assessment and correlation maps production is detailed

in Section 3.2.110

2.2 Phase 2: regional frequency analysis

The second part of the present study aims at assessing (1) the possible effect of teleconnections on the frequency of extreme

rainfall events, and (2) the potential of considering teleconnections as covariates in doubly-stochastic frequency models.

For the sake of generality, the Generalized Extreme Value distribution (GEV, see Jenkinson, 1955) is considered, given its

flexibility and representativeness of the frequency regime of hydrological extremes (e.g., Papalexiou and Koutsoyiannis, 2013;115

Salinas et al., 2014). Nevertheless, the proposed framework is not limited to the case of the GEV distribution; on the contrary,

it could be easily extended and adapted to the case in which alternative theoretical frequency distributions are considered and

tested against each other. The cumulative distribution function of the GEV, FGEV (x), depending on the location, scale and

shape parameters (ξ,α,k), is defined as follows:

FGEV (x) = e−e−y

, where y =

−k−1loge[1− k(x− ξ)/α], k ̸= 0

(x− ξ)/α, k = 0
(5)120

The hierarchical method for regional frequency analysis is adopted (see e.g. Gabriele and Arnell, 1991). Accordingly, for

a given gauged site, the mean is computed from the at-site records, the L-CV exploits all the time series within a tile with

resolution wL−CV where the target site is included, and the L-CS exploits all the time series within a tile with resolution

wL−CS (where wL−CV ≤ wL−CS). The values adopted in the present study for wL−CV and wL−CS are detailed in Section

3.2.125

First, a stationary GEV is fit (GEV0), where the mean over the whole time series is computed at-site, and the regional L-CV

and L-CS are obtained as described in Hosking and Wallis (1997) as a weighted average over their respective tiles by referring

to the complete sequences of annual maxima (see Figure 1).
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Second, GEV distributions whose parameters depend on teleconnections are set up. Following the suggestion by Serinaldi and

Kilsby (2018), we term these distributions as doubly-stochastic (DS) models, even if we acknowledge that the most common130

definition in the literature is “non-stationary” models (e.g., Volpi et al., 2024, and references therein). We consider three types

of doubly-stochastic models. The first type, GEV1, adopts the same L-CV and L-CS as the GEV0, whereas the mean varies

as a function of the best teleconnection index (selected in phase 1). This function is fitted at-site, according to the hierarchical

regionalization framework. The choice for its shape, f(x), is detailed in Section 3.2. The second type, GEV2, adopts the same

mean and L-CS as the GEV0, while the L-CV varies as a function f(x) of the best index. This is fitted on the wL−CV -averaged135

timeseries (L-CVg), according to the hierarchical regionalization framework. The third type, GEV3, adopts the same L-CS as

the GEV0, while the mean and L-CV are obtained with the same methods as for the GEV1 and GEV2, respectively. Finally, the

models are compared by means of the ratio of models’ likelihood (RML). This metric is usually defined as “ratio of maximum

likelihood”, and is very commonly used for this purpose (e.g., Ashkar and Aucoin, 2012; Ashkar and Ba, 2017). It is defined

as in Ashkar and Ba (2017):140

RML= loge

(LHGEVDS

LHGEV0

)
(6)

Where LHGEV0 and LHGEVDS
are the likelihood of the observed timeseries computed with the stationary and doubly-

stochastic models, respectively.

Since RML is asymptotically distributed as half of a Chi-squared variable with degrees of freedom equal to the difference

of the number of parameters of the two models (e.g., see Bhattacharya and Burman, 2016; Coles, 2001), a lower threshold145

thRML should be considered to conclude that GEVDS is a better fit to the data. Given that significance is tested at 5%, the

theoretical significance threshold equals half of the 95th percentile of the corrispondent Chi-squared distribution. In the present

study, thRML values are evaluated with reference to the total number of parameters of the models, consisting of those of the

frequency distribution and those of f(x). Furthermore, since in our opinion these two sets of parameters do not have the same

weight (see also what observed by Laio et al., 2009), we have also determined thRML values experimentally, through a set of150

Monte Carlo (MC) experiments that are described in Supporting Material A. The thresholds obtained with the two methods,

which depend on the choice of f(x) are shown in Section 3.2.

Finally, we test field significance of possible doubly-stochastic spatial signals in presence of cross-correlation. In fact, the

number of sites with doubly-stochastic rainfall regime could be inflated by the presence of intersite dependence (see also

Castellarin, 2007; Vogel et al., 2001). For this reason, we define a significance test ad-hoc, based on the comparison of nDS ,155

the global number of sites where a given doubly-stochastic model outperforms the stationary model, with lower thresholds

thnDS . These thresholds are estimated through MC experiments that are described in Supporting Material B.
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Figure 2. Elevation (a, in grey color scale) and location (b) of the study area. Length of the timeseries of sub-daily annual maximum rainfall

depths (a, red color scale). Black lines: Italian administrative regions.

3 Study region and parameterization of the procedure

3.1 Study region and data

The study area includes most of Northern and part of Central Italy, a region characterized by great climate variability (see160

Figure 2.a). Two main mountain ranges are present: the Alps in the North, with a maximum elevation of about 4000 m a.s.l.,

and the Apennines, crossing all along continental Italy, with a maximum elevation of ∼2100 m a.s.l. in the study area. The

largest Italian plain, the Po plain, is located at the southern border of the Alps, following the course of the Po River from the

Northwest to the Northeast, where low coasts are located.

We select 680 gauged stations (Figure 2.a) from the I2-RED dataset (Mazzoglio et al., 2020) with a minimum of 30 years165

of data. Thus, all the selected timeseries should be sufficiently long to show variations of the frequency regime of rainfall

extremes, if these are present (see also Renard et al., 2008; Ouarda et al., 2019). For each station, we consider time series of

annual maximum cumulative rainfall over 1 and 24 consecutive hours, which represent distinct events: mainly convective the

former, and mainly synoptic the latter. Data have been recorded between 1921 and 2020.

In the study, six teleconnections are considered; a detailed description of their nature is not reported here, since an interested170

reader can refer to the extensive literature cited in the text. Namely, these are the North Atlantic Oscillation (NAO, see Jones et

al., 1997), the East Atlantic-West Russia (EA-WR) pattern (see Barnston and Livezey, 1987), the Pacific Decadal Oscillation
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(PDO, see Zhang et al., 1997), El Niño Southern Oscillation (ENSO, see Chen et al., 2019), Mediterranean Oscillation Index

(MOI, see Conte et al., 1991), and Western Mediterranean Oscillation Index (WeMOI, see Martin-Vide and Lopez-Bustins,

2006). All of these indices have demonstrated significant influences on local climate in various parts of Southern Europe175

and the Mediterranean region (e.g., Caroletti et al., 2021; Krichak et al., 2002; Krichak and Alpert, 2005; Krichak et al.,

2014; Criado-Aldeanueva and Soto-Navarro, 2020). In particular, they show a strong relationship with seasonal and annual

precipitation in the study area (e.g., Luppichini and Bini, 2025). However, their connection to extreme rainfall events in Italy

has not been systematically investigated, unlike in other parts of Southern Europe (e.g., see Gonzalez-Hidalgo et al., 2025, and

references therein). Alpert et al. (2002) suggest a potential link between extreme rainfall in Italy and ENSO, while Caroletti180

et al. (2021) examine a specific area in Southern Italy (Calabria) and find a strong influence from WeMOI and EA–WR.

Other studies focusing on droughts have identified significant roles of NAO and MOI in Calabria (Coscarelli et al., 2023),

and NAO and WeMOI in Central Italy (Romano et al., 2022). Although PDO is recognized as a major global climate driver

affecting temperature and precipitation, studies specifically addressing its direct influence on rainfall in Europe are relatively

scarce. Nonetheless, some authors have reported significant correlations between PDO and winter precipitation in Europe185

(e.g., Zanchettin et al., 2008), as well as with extreme rainfall events in Southern Italy (e.g., Naples; (Diodato and Bellocchi,

2018)). Time series of NAO, EA-WR, PDO and ENSO are freely accessible from the NOAA Physical Sciences Laboratory

data base available at https://psl.noaa.gov/data/climateindices/list/. MOI and WeMOI can be retrieved from the University of

East Anglia’s Climate Research Unit (CRU; https://crudata.uea.ac.uk/cru/data/moi/).

3.2 Parameterization of the procedure for the study area190

The parameterization of the methodology for the study area presented below results from several preliminary experiments.

The implementation of the first part of the study requires the definition of wtel, wAMS , wg , and the approach for the robustness

analysis (i.e., the evaluation of the reliability of the correlation coefficients computed with wtel, wAMS and wg; see Section

2.1). First, wtel is set to 30 years. Preliminary experiments with smaller wtel provided similar results, yet 30 years generally

smooth out short interannual oscillations, while preserving the pluridecadal climate variability. Also, shorter oscillations (i.e.,195

<30 years) would not be of interest for the design of hydraulic structures, while longer ones (i.e., >30 years) would be highly

uncertain to detect, due to limited length of the timeseries.

Second, wAMS is set to 10yrs. This choice is also a trade off between a minimum width for the computation of the L-CV and

a minimum length of the timeseries of the rainfall statistics (i.e., µst and L-CVst). In fact, on the one hand wAMS <10 years

would lead to large sampling variability of local L-CV values. On the other hand, the µst and L-CVst timeseries originated200

from an n-long annual maxima timeseries have length of n−(wAMS−1). This means that longer wAMS would lead to shorter

µst and L-CVst, which in turn would lead to a smaller number of stations where the correlation between teleconnections and

rainfall statistics can be reliable.

Concerning the spatial resolution of the tile size, wg , we consider four values: 0km (i.e., considering the single gauged stations,

with no spatial discretization), 15km, 30km and 50km. This multiple choice comes from a balance. On the one hand, L-205

CV computed over a 10yrs time window may have low accuracy, which can be addressed by averaging L-CVs from several
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stations within large tiles (i.e., regional prediction). On the other hand, larger tiles may be less statistically homogeneous.

Moreover, averaging L-statistics over large tiles may smooth the variability of the rainfall regime, hiding local patterns where

the morphology is complex. Since there is no universal guideline for finding the right trade off, we decide to consider four

different values for wg . The suitability of these values is tested by means of the Hosking and Wallis (1997) heterogeneity210

measure for L-CV. The results of the test (not reported here for the sake of brevity) detected “definitely heterogeneous” tiles in

a very limited number of cases for all the resolutions, confirming the viability of the homogeneity hypothesis.

We assess the robustness of the correlation signal at each station st through a reliability index, rist, defined as the sum of

multiple sign functions (sign):

rist = sign(cc0km,st)+ sign(cc15km,st)+ sign(cc30km,st)+ sign(cc50km,st) (7)215

Where cc0km,st is the correlation computed at station st, while cc15km,st, cc30km,st and cc50km,st are the correlation coef-

ficients relative to the tiles (with wg 15km, 30km and 50km) where st is inserted. Non-significant correlations are considered

as 0. This is considered to be a measure of the spatial coherence of the correlation signal, which varies between -4 and 4. The

absolute value is the coherence of the correlations at different tiles. The sign (i.e., + or -) represents the sign of the prevailing

correlation. For instance, a gauged station with ri 4 indicates a significant and positive correlation when calculated at-site, as220

well as for 15km, 30km, and 50km aggregation. On the opposite, 0 represents areas with no significant correlation or where

positive and negative correlations compensate with each other (e.g. positive correlation at-site and at 15km resolution, and

negative correlation at 30km and 50km resolutions). Finally, ri is interpolated by ordinary kriging (Hengl, 2007) to produce

reliable maps of the correlation field of the mean and L-CV for 1h and 24h.

Regarding the second part of the study, wL−CV , wL−CS and f(x) need to be set. The selected resolution wL−CV is 30km, as225

it is a good trade off between accuracy of the prediction (i.e., aggregating at least two at-site L-CV timeseries) and an adequate

representation of regional patterns and local variability. We set wL−CS to 100km, based on low spatial variability of the skew-

ness parameter (e.g., Gabriele and Arnell, 1991; Claps et al., 2022) and improved accuracy.

The function f(x) between teleconnections and L-statistics is shaped as a second-order polynomial function. This form has

been selected because of its simplicity (i.e., only three parameters are needed) and adaptability to the empirical data, given that230

the observed dependence of extreme rainfall statistics on teleconnections is often non-linear. Even though other choices are

possible, the aims of the present study are mainly demonstrative of the potential of the proposed approach. Thus, the nature

and selection of the best function is not part of the main focus of our analyses.

The lower thresholds thRML considered for RML significance test at 5% (see Section 2.2) are reported in Table 1. Interest-

ingly, our Monte Carlo experiments (see details in Supporting Material A) suggest that RML’s diagnostic power is not affected235

by the duration and teleconnection considered. Also, the resulting empirical thRML values are much lower than the theoretical

ones, and less affected by the number of parameters of f(x) (compare thRML for GEV3 with GEV1 and GEV2). While im-

portant for the general field of model evaluation, a detailed discussion of these results is beyond the scope of the present study.

However, they present an interesting topic for further research.
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Number of parameters Empirical thRML Theoretical thRML

GEV1 2+3 1.5 3

GEV2 2+3 1.5 3

GEV3 1+3+3 1.6 4.7
Table 1. RML significance thresholds, thRML, at 5%

4 Results240

4.1 Phase 1: correlation analysis

Table 2 reports the number of gauges (at-site), or tiles (resolutions from 15km to 30km), showing statistically significant

correlations at 5% for each teleconnection and the two statistical moments considered here (i.e., the mean, µ, and the L-

coefficient of variation, L-CV) for durations of 1 and 24 hours.

1h 24h

at-site 15km 30km 50km at-site 15km 30km 50km

NAO - µ 118 61 25 7 110 55 19 9

EA-WR - µ 131 97 53 32 106 58 30 10

PDO - µ 123 62 28 12 101 53 22 5

ENSO - µ 8 7 2 0 3 2 1 0

WeMOI - µ 139 87 30 16 133 78 35 14

MOI - µ 102 55 25 8 102 51 17 7

NAO - L-CV 96 48 21 10 101 49 27 10

EA-WR - L-CV 86 55 22 7 94 52 22 8

PDO - L-CV 101 57 20 11 102 61 24 9

ENSO - L-CV 8 4 3 2 4 3 2 0

WeMOI - L-CV 82 47 25 5 98 48 17 7

MOI - L-CV 107 59 22 11 98 55 25 11
Table 2. Number of significant correlations for all the considered teleconnections and tiles’ resolutions. The numbers stand for stations in

columns “at-site” and for tiles in the other columns. For each case (i.e., each semi-column), the highest number is marked with underlined

bold font, while the second highest has bold font.

The most correlated indices are WeMOI and the EA-WR for µ, and PDO and MOI for L-CV. ENSO shows the weakest245

influence on both statistics, and therefore is excluded from further analysis. The overall number of significant correlations is

not sufficient to fully understand the dependence relationships of µ-teleconnection or L-CV-teleconnection, nor to compare the

influence of various teleconnections. Instead, our main objective is the description of the spatial correlation field, consisting

of the spatial patterns of significant correlations, and their robustness to varying the resolution of the spatial aggregation (i.e.,
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tiles’ size). This is represented through the interpolated reliability index, ri, in Figure 3. As defined in Sections 2.1 and 3.2,250

areas where ri≥ 3 or ri≤−3 indicate “consistent” correlation. Focusing on µ, it is confirmed that WeMOI and EA-WR have

a strong influence, particularly concentrated in two major patterns of consistent negative correlation in the Gulf of Genoa and

in the North-Eastern Alps (panels b, d, g and i of Figure 3). These patterns are evident in the case of 1h duration, where the

North-East shows consistent correlation with all the indices (panels a-e of Figure 3). For the 24h duration the two patterns for

WeMOI and EA-WR are more fragmented and less extended, even tough still present, while the other indices show only small255

areas with strong influence on µ.

Focusing on L-CV, consistent correlation patterns for 1h are highly heterogeneous, suggesting that regional GEV2 models

could be ineffective (panels k-o of Figure 3). More extended, yet still restrained, patterns can be observed for 24h, in particular

in the western portion of the Gulf of Genoa and in the central region of the study area (see panels p-t in Figure 3). It is difficult

to establish which index is the most influent, but PDO and MOI show high similarities and promising homogeneous patterns,260

in agreement with Table 2.

The results obtained for WeMOI are presented in detail in Figure 4, which reports statistically significant Spearman correla-

tion coefficients at different spatial resolutions for µ (panels a-h) and L-CV (panels i-p), respectively. Several stations present

statistically significant correlation values with WeMOI, with signs and amplitude changing depending on the site considered

(panels a and e for µ, i and m for L-CV, Figure 4). Aggregating stations into tiles reduces spatial heterogeneity and decreases265

the extension of significantly correlated areas, which allows to describe the geographical pattern of the correlation field (see

other panels). Both for 1h and 24h duration, the correlation fields of extreme rainfall with µ present consistent spatial patterns,

with extended areas characterized by homogeneous values (panels a-h). On the contrary, the correlation field of L-CV is more

sensitive to the change of tiles’ resolution and presents smaller isolated hotspots (panels i-p). Similar results are observed also

for the other teleconnections, but they are not reported for the sake of brevity.270

4.2 Phase 2: Frequency analysis

Following the adopted framework (see Sections 2.2 and 3.2), polynomial relations are fitted at-site (i.e., µ-teleconnection) and

at 30km-tiles (i.e., L-CV-teleconnection) to obtain the parameters for GEV1 and GEV2 distributions, respectively, and jointly

for GEV3. Then, the goodness-of-fit is compared with the stationary framework (i.e., GEV0) with RML (equation 6). For the275

sake of brevity, the gauged sites where RML is higher than a given RML threshold (Table 1) will be hereinafter referred to

as “doubly-stochastic sites”. The number of doubly-stochastic sites in each case, nDS , is reported in Table 3, while Figure 5

represents their location.

Regarding GEV1, WeMOI has the highest number of doubly-stochastic sites for 1h, followed by EA-WR and PDO, depend-

ing on the threshold for RML (3 or 1.5, respectively, see Table 3). For 24h, WeMOI and EA-WR are confirmed as the most280

influent indices. Figure 5 is quite in agreement with Figure 3, confirming that in the two regions of the Gulf of Genoa and

North-East GEV1 fits the AMS better than GEV0. These two regions show non-stationarity signals with all the indices (see

panels a-j), but particularly with the most influent ones (panels b, d, g, i).
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Figure 3. Raster maps of reliability index (ri) of the correlation between teleconnections and mean (panels a-j), or L-CV (panels k-t) of

AMS of rainfall depths with duration of 1h (panels a-e and k-o) and 24h (panels f-j and p-t)

Regarding GEV2, WeMOI has the highest number of doubly-stochastic sites both for 1h and 24h, followed closely by the other

indices (see Table 3). In this case, detecting clear geographical patterns is difficult, but it is possible to spot some sub-regions285

where the signal is strong for multiple indices. Some examples are the North-East for 1h (see panels k-o of Figure 5), and

the western portion of the Gulf of Genoa (in agreement with Figure 3) and the south-central portion of the Adriatic coast (see

panels p-t of Figure 5).

Considering the theoretical threshold (i.e., 4.7) doubly-stochastic sites for GEV3 have a very similar spatial configuration rel-

ative to GEV1 or GEV2, according to the case (see panels u-d1 of Figure 5). Hence, the numbers of GEV3 doubly-stochastic290

sites in Table 3 are close to the maximum value within GEV1 and GEV2 for each index and duration. Differently, when the

empirical threshold is considered (i.e., 1.6), the results suggest that GEV3 doubly-stochastic sites are much more than GEV1
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Figure 4. Spearman correlation coefficient between WeMOI and the mean [L-CV] for AMS of rainfall depths with duration of 1h and 24h:

at-site (a [i] and e [m]) and for tiles of size 15km (b [j] and f [n]), 30km (c [k] and g [o]), and 50km (d [l] and h [p]). Statistically significant

(at 10%) correlation coefficients are illustrated using a blue-red color scale. Red outlines highlight correlation significant at 5% (i.e., the

ones considered for the ri). Black outlines highlight tiles where only one station is present. In panels a and i, gray circles represent non-

significantly correlated stations
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nDS , RML ≥ empirical thRML nDS , RML ≥ theoretical thRML

NAO EA-WR PDO WeMOI MOI NAO EA-WR PDO WeMOI MOI

1h - GEV1 101 105 113 171 85 31 45 33 61 22

24h - GEV1 67 98 72 141 86 19 43 17 53 16

1h - GEV2 58 51 60 85 46 12 16 12 16 10

24h - GEV2 65 70 60 93 59 17 18 22 21 18

1h - GEV3 152 173 169 248 149 22 36 26 50 18

24h - GEV3 125 170 138 213 119 16 29 18 43 13
Table 3. Number of doubly-stochastic sites (nDS). I.e., stations where RML ≥ thRML. The highest number is marked with bold font in each

line, corresponding to a specific duration and doubly stochastic framework. Emprical and theoretical threshold are reported in Table 1

and GEV2, and located over the whole study area.

As mentioned in Section 2.2, the field significance of non-stationary (i.e., doubly-stochastic in this context) signals in presence

of intersite dependence is tested by means of lower thresholds thnDS to the number of doubly-stochastic sites nDS (see details295

of the test in Supporting Material B). While WeMOI and EA-WR are clearly very effective for GEV1 and GEV3 distribu-

tions, it is hard to unequivocably establish the best teleconnections for GEV2. For coherence, the test in the present study is

performed for WeMOI and EA-WR for all of the three models, and the results are reported in Table 4. Regarding GEV1, the

number of doubly-stochastic sites is not significant when considering 1.5 as thRML (with the exception of WeMOI for 1h),

while the null hypothesis (i.e., the distribution is stationary) is always rejected with a threshold of 3. Differently, for GEV2 and300

GEV3 the null hypothesis is rejected with all the thresholds.

Figure 6 illustrates for a specific location an example of doubly-stochastic modeling. Panels d-f show frequency curves

corresponding to single “realizations” of the teleconnection of interest (i.e. WeMOI in the example, colorscale from yellow

to purple). Indeed, frequency curves are not theoretically consistent with the non-stationary framework. Nevertheless, the

representation is very useful to visualize the degree of variability of design rainfall depth associated with alterations of the305

driving teleconnection.

As clearly illustrated in Figure 6, the variability of predicted rainfall percentiles associated with changes in the teleconnection

may be very significant. It is worth noting that WeMOI changes in the example span across observed values, no extrapolation

is performed. The prediction of the 100-year 24-hour rainfall depth in the selected location is equal to 240mm according to

the stationary model (GEV0), but may vary between 200 and 240 if the empirical relationship between WeMOI and L-CV is310

explicitly modelled (GEV2), between 200 and 300 if the mean 24-hour annual maximum rainfall depth becomes a function of

WeMOI (GEV1), and may be as low as 170 and as high as 300 if both mean and L-CV are expressed as functions of WeMOI

(GEV3).
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Empirical thRML Theoretical thRML

nDS , RML ≥1.5 thnDS , RML ≥1.5 nDS , RML ≥3 thnDS , RML ≥3

EA-WR, 1h - GEV1 105 117 45 30

WeMOI, 1h - GEV1 171 139 61 41

EA-WR, 24h - GEV1 98 126 43 34

WeMOI, 24h - GEV1 141 148 53 47

EA-WR, 1h - GEV2 56 19 11 6

WeMOI, 1h - GEV2 85 24 16 8

EA-WR, 24h - GEV2 70 28 18 9

WeMOI, 24h - GEV2 93 31 36 11

nDS , RML ≥1.6 thnDS , RML ≥1.6 nDS , RML ≥4.7 thnDS , RML ≥4.7

EA-WR, 1h - GEV3 173 120 36 11

WeMOI, 1h - GEV3 248 150 50 17

EA-WR, 24h - GEV3 170 139 29 16

WeMOI, 24h - GEV3 213 168 43 23
Table 4. Number of doubly-stochastic sites (i.e., sites where RML≥ thRML) in the original dataset (nDS), and significance thresholds

against spatial dependence (i.e., empirical and theoretical thnDS). For each case, corresponding to a given duration and doubly-stochastic

framework, the highest number between nDS and thnDS is marked with bold font.

5 Discussion315

5.1 Spatial correlation fields

The results in Section 4.1 clearly show that WeMOI and EA-WR have a very strong influence on the mean of extreme precipita-

tion over the study area. This was expected, as it is in line with the observations of Caroletti et al. (2021) for Southern Italy, and

Romano et al. (2022) for Central Italy. In fact, WeMOI consists of the normalized difference in atmospheric pressure between

Cadiz, in the South of Spain, and Padua, in Northern Italy, and thus, it describes the formation of precipitation systems over the320

Tyrrhenian Sea (Lopez-Bustins et al., 2020; Redolat et al., 2019). Nevertheless, EA-WR pattern consists of four atmospheric

anomalies extending from North Atlantic to Western Russia (Barnston and Livezey, 1987). Negative phases, which correspond

to low-pressure anomalies over Europe and Northern China and high-pressure anomalies over the Central North Atlantic and

North of the Caspian Sea, have been found to drive wetter conditions across Europe and the Mediterranean (e.g., Krichak and

Alpert, 2005). Moreover, EA-WR is highly correlated with WeMOI, and hence is reasonable that the two teleconnections have325

similar influence.

In particular, the presence of significant intense negative correlation values in the Gulf of Genoa and the North-East for the

mean with WeMOI (panels b and g of Figure 3) and EA-WR (panels d and i of Figure 3) is consistent with the known patterns

of precipitation regimes over North-Central Italy. In fact, intense daily precipitation values are expected over the Tyrrhenian
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Coast and North-Eastern Alps in the presence of intense southwesterly flows from the Mediterranean, typical during the au-330

tumn season and favored by large scale circulation anomalies associated with negative value of WeMOI and EA-WR. In the

remaining portion of the study area, precipitation systems are more complex, as influenced by the passage of cut-of lows favor-

ing precipitation over the Southern and Eastern portion of the Apennines area. In this case, correlation patterns with WeMOI

and EA-WR are expected to be more fragmented.

It is very interesting to notice that although the 1h rainfall maxima are mostly linked to convective phenomena, often charac-335

terized by a very limited spatial scale, the correlation with WeMOI and EA-WR presents more extended geographical patterns

than in the daily case (compare Figure 3.b and 3.d with 3.g 3.i).

Regarding the L-CV, the absence of evident correlation patterns for hourly annual maxima confirms our knowledge about spa-

tial variability of convective phenomena (Figure 3.k-o). Small and fragmented, mainly positive patterns are visible for daily

rainfall (Figure 3.p-t), but a physical interpretation of the L-CV-teleconnection dependence is more complex. In general, the340

consistency of patterns with spatial aggregation is lower than for the mean, which may be partly due to higher uncertainty in

at-site computation of L-CV within a 10-year time window. For this reason, we believe that for L-CV, a spatial aggregation at

30km should be preferred for RFA.

An important element to consider when commenting Figure 3 is that only correlations with p-value ≤0.05 were considered

in the computation of ri (eq. 7). Even though this threshold value is the most commonly adopted in the literature, it is still345

subjective, and it could lead to discard some significant correlations. This is evident when looking at the correlations with

p-value within 0.1 and 0.05 in Figure 4 (i.e., tiles without red outlines). An additional source of subjectivity is the interpolation

of ri with kriging, that depends on the choice of kriging type and semivariance function.

Nevertheless, based on the results described in Section 4, the methods adopted generally lead to a useful characterization of

the teleconnection-extreme rainfall correlation field, which can be used to drive frequency analyses. In fact, sub-regions with350

homogeneous rainfall-teleconnection dependence may be defined, in order to set specific doubly-stochastic RFA models. This

option requires to define an objective grouping criterium, possibly based on a set of morphoclimatic characteristics (see e.g.,

the morphoclimatic characteristics adopted in Magnini et al., 2024); due its complexity, this problem deserves specific studies,

and is not further investigated in the present study.

We estimate spatial correlation fields based on two major elements: temporal and spatial aggregation of the data. First, tem-355

poral aggregation through sliding time windows allows to consider the statistics of the extreme rainfall during time, instead of

the rainfall depth themselves. In this way, it is possible to filter out inter-annual variability of the seasonality and magnitude

of the annual maxima and focus on the decadal precipitation statistics. Second, spatial aggregation into tiles allows to obtain

more reliable values of the rainfall statistics. This produces a smoothing local effect, that could be due to data fragmentation

and noise and enhance geographical pattern recognition (see Figure 4). The choice of wg for spatial aggregation be carefully360

conducted to preserve the local climatology, depending on the morphology of the study area, and the density and location of

the rain gauges. Generally, considering a number of different values for wg is useful to analyze the reliability of the detected

correlation patterns. A different approach for spatial aggregation could be the one described in Castellarin et al. (2024), where

overlapping tiles are used. However, including each gauged site in multiple tiles could result in eccessive smoothing of the oro-
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graphic effect over the correlation field, and strenghtening of spatial dependence. Thus, this solution should be preferred only365

in case of scarce density of gauges network. Alternatively, not strictly orthogonal grids could be considered, after preliminary

analyses.

A key aspect of the proposed approach is its high adaptability. In fact, the same methodology with an appropriate parametriza-

tion could be used to study the influcence of teleconnections on several environmental variables, such as AMS of floods or

temperature or wind. Moreover, raster maps of the correlation field (as the ones in Figure 3) could be used as descriptors of370

the drivers of an environmental variable, and adopted as input of predictive raster-based models (e.g., for prediction of flood

susceptibility, as in Magnini et al., 2023).

5.2 Doubly-stochastic regional frequency analysis

Looking at the results of the second phase of our study, two main points are of general interest. First, the range of variability

of the expected percentiles with doubly-stochastic models (i.e., non-stationary models depending on teleconnections) is very375

wide, confirming what observed locally by other authors (Figure 6). Second, the regional dependency of rainfall statistics

on teleconnections can be successfully exploited locally for frequency analysis (see Table 3 and Figure 5). This is a useful

improvement over present literature, as it allows to obtain extreme rainfall statistics (i.e., µst and L−CVst) even where obser-

vations are not locally available.

The framework we adopted for doubly-stochastic RFA is based on the strong assumption that the same type of function (i.e.,380

a polynomial function) can represent the teleconnection-statistic relationships within all the study area. Indeed, this approxi-

mation is sufficiently accurate in some stations, while being not adatp in others. This is probably also the reason why GEV1

models outperform GEV0 globally more often than GEV2 models (Table 3). In fact, the polynomial approximation may fit the

data better when these are collected locally (as for the µtel-µst case) than when they result from tile-wise averaging (as for the

µtel-L-CVt case). Nevertheless, it is encouraging that a significant number of sites with RML≥3 is detected for GEV1 and385

GEV2 (see Table 4), despite the low-complexity of the function adopted for modelling the dependence on teleconnections. Ac-

cordingly, GEV3 models derive their goodness or badness from the sum of GEV1 and GEV2 contributes, which leads them to

be the most adaptable models. Therefore, a high number of doubly-stochastic sites is observed when 1.6 is considered as RML

significance threshold, corresponding to a small penalty for the additional parameters of f(x) (compare 1.6 and 4.7 thresholds

for GEV3 in Table 3).390

It is very interesting that the comparison of ri (essentially based on Spearman correlation) and RML highlights differences in

the most influent indices (i.e., compare Table 2 with Table 3) and doubly-stochastic patterns (e.g., compare panels k-t of Fig-

ures 3 and 5). A partial difference between the two metrics is expected and natural, mainly due to three reasons. First, ri takes

into account both the significance of the correlation and its sign, while RML represents the goodness-of-fit, and hence it does

not describe the nature of the teleconnection-rainfall dependence (i.e., increasing/decreasing). Thus, RML may lead to group395

sites whose dependence on the teleconnection has different sign. Second, RML is probably more similar to a single correlation

(i.e., at-site in the GEV1 case, and at 30km-tiles in the GEV2 case), while ri depends on correlations at several spatial aggre-

gations, which may disagree. Third, also correlations that are not considered significant could lead to good doubly-stochastic
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models. Furthermore, some studies (e.g., Sugihara et al., 2012; Cappelli and Grimaldi, 2023; Zhang et al., 2004) suggest that

correlation may fail in describing the causality of two variables, and that an approach based on a model’s performance can be400

more accurate. However, we believe that in our case both the metrics are very useful, as they can help to delineate sub-regions

with homogeneous teleconnection-rainfall dependence function (see also Section 5.1). As perfectly exemplified in our results,

sometimes the presence of such regions is evident (e.g., the Gulf of Genoa and North-East for GEV1, see Figure 5), while in

other cases it is hard to distinguish between small homogeneous regions and effects of spatial dependence (e.g., Adriatic coast

and western Gulf of Genoa for GEV2, see Figure 5).405

It is important to underline that the aim of the present research is to investigate the potential of teleconnections as indepen-

dent variables in RFA models, and not to propose a specific method for RFA. Indeed, the RFA results depend on a number

of parameters, including the widths of sliding time windows for temporal aggregation of the teleconnection indices (wtel) and

AMS (wAMS), and the resolution for spatial aggregation (wg). These can be set after a careful sensitivity analysis for defining

the spatial field of the teleconnection-statistic correlation (see Sections 2 and 4.1). The case of formalizing a function f(x) of410

extreme rainfall statistics depending on teleconnections is very different and much more complex. In fact, one should decide

not only the shape of this function, but also the way its parameters vary in space and should be estimated, which may require

the delineation of sub-regions (see considerations above). In our study, we adopted a simple framework, as this function has a

limited number of parameters and the same shape (i.e., polynomial) in all the spatial domain. We showed a hierarchical RFA

approach where the parameters of the polynomial functions are fitted at-site for µ and at 30km-tiles for L-CV. Our analyses415

overall suggest that even with a simple RFA framework, the use of teleconnections as dependent variables to describe the

extreme rainfall regime may increase the accuracy in frequency modelling.

Different approaches are indeed possible. First, the best resolution for spatial aggregation and the shape of the teleconnection-

statistic function should be carefully evaluated for each specific case. Second, a more complex teleconnection-statistics function

could be defined. A possible approach is the one proposed by Magnini et al. (2024), which leverages neural networks’ capabil-420

ities to obtain functions whose parameters depend on the location of the considered site and other morphoclimatic descriptors,

or the one adopted by Machado et al. (2015), which exploits generalized additive models. Indeed, the implementation and

discussion of more sophisticated RFA methods to exploit teleconnections’ informative content is complex, and should be ad-

dressed by future studies.

Overall, our results suggest several pathways for future reserch about non-stationary frequency analysis, but two major points425

of interest can be underlined. First, teleconnection-AMS relationships may be defined regionally (i.e., pooling together mea-

surements from several stations), instead of locally (i.e., considering separately single sites). With respect to a local approach, a

regional approach (where it is possible) is less affected by measurement errors, noise, and outliers (Hosking and Wallis, 1997),

and may lead to more accurate climate dependence functions. Second, the variation of the expected percentiles is very wide

if a teleconnection-informed frequency model is considered. This may be taken into account when planning long- to midterm430

water management (e.g., reservoir regulation) and designing hydraulic structures.
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6 Conclusions

A growing number of recent studies show how large scale climatic indices (or teleconnections) can be used as covariates to in-

crease reliability of local frequency analysis of rainfall extremes across diverse geographical regions worldwide (e.g., Fauer and

Rust, 2023; Ouarda et al., 2020; Ragno et al., 2018). It is theoretically possible to extend these methods to regional frequency435

analysis (RFA), but the teleconnection-extreme rainfall dependency at a regional scale should be first investigated. Beside its

usefulness for correct estimation of the design rainfall for engineering applications, this topic is still not well addressed in the

literature.

In the present study, we propose a framework to assess the link between teleconnections and the frequency regime of rainfall

extremes at a regional scale, in order to perform climate-informed RFA. The approach is tested for a large and climatically440

diverse region in Northern Italy. Our dataset consists of 680 annual maximum series (AMS) of hourly and daily (i.e., 1 and 24

hours durations) rainfall depth, recorded between 1921 and 2022. We select six climate indices, known to have significant cor-

relation with local climate variability over the study area (Caroletti et al., 2021; Criado-Aldeanueva and Soto-Navarro, 2020;

Romano et al., 2022): the North Atlantic Oscillation, Pacific Decadal Oscillation (PDO), East Atlantic – West Russia pattern,

El Niño Southern Oscillation, Mediterranean Oscillation Index, and Western Mediterranean Oscillation Index (WeMOI).445

The main steps of the proposed framework can be summarized as follows. First, we define sliding time windows in order to

obtain time series of pluridecadal averaged teleconnections and statistics of annual maxima. The latter consist of the sliding

mean and L-coefficient of variation (L-CV) of AMS, which in our case are used to characterize the distribution of sub-daily

rainfall extremes. Second, we discretize the study area into tiles where L-moments are averaged into regional predictions. Then,

we evaluate the correlation of teleconnections with time series of spatially gridded L-moments. Finally, we show a preliminary450

application of climate-informed RFA of rainfall extremes, where L-moments are modelled as functions of the teleconnections

singularly. These models are compared with the corresponding stationary models by means of goodness-of-fit metrics.

Our results show that the sliding mean of annual maxima (both hourly and daily) has a higher number of significant correlations

with WeMOI and EA-WR than with the other indices. Moreover, the relationship between these indices and sliding mean of

extreme rainfall shows clear spatial patterns across the study area, whose robustness is confirmed by their limited sensitivity to455

the chosen grid resolution and the partial agreement with previous studies (Caroletti et al., 2021; Romano et al., 2022). Similar

patterns are found when considering the areas where the goodness-of-fit of the climate-informed regional models (where the

mean depends on the WeMOI and EA-WR) outperforms the stationary approach. As well, this is coherent with the known

spatial variability of precipitation regimes over the region.

The relationship between the sliding L-CV and the teleconnections is more complex, since the number of significant correla-460

tions is lower, and dependence patterns are less extended and more heterogeneous. Nevertheless, the regional models where

L-CV depends on the teleconnections outperforms the stationary approach in a significant number of stations.

The proposed approach is simple and easily reproducible, yet it is new with respect to the existing literature. In fact, while

most authors investigated the correlation between the teleconnections and the raw AMS, we consider the L-moments. This,

in combination with spatial discretization of the domain, allows us to focus on the relationship between the teleconnections465
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and the extreme rainfall regime, instead of the extreme values themselves, whose seasonality and interannual variability can

affect the correlation analysis. Beside the preliminary nature of our RFA application, commonly used metrics (e.g., Ashkar

and Ba, 2017) detect overall an increase in goodness-of-fit with respect to a stationary approach, in line with previous studies

(Nerantzaki and Papalexiou, 2022). This shows that teleconnections may be useful covariates in a regional a framework.

Overall, our research suggests promising pathways for climate-informed local and regional frequency analysis of rainfall ex-470

tremes, and our methodology is highly adaptable to different environmental variables, such as floods and temperature.
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Figure 5. Doubly-stochastic sites observed for GEV1 (panels a-i), GEV2 (panels l-o) and GEV3 (panels u-(d1)). Black triangles represent

sites where theoretical thRML >RML≥empirical thRML. In red triangles, RML≥ theoretical thRML. Stations where RML< empirical

thRML (i.e., stationary sites) are represented with grey dots.
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Figure 6. hierarchical frequency analyses of 24h rainfall annual maximum series at a given location where the hypothesis of doubly-

stochasticity in the mean (µ) and L-CV resulted to be significal at 5% level. Upper panels: considered station (a), polynomial function

of µ (b) and L-CV depending on WeMOI (c). Lower panels: expected percentiles with given return periods in stationary (black line) and

doubly-stochastic framework (colored scale lines), under the assumption that the mean depends on WeMOI (GEV1, panel d), L-CV depends

on the WeMOI (GEV2, panel e), or both mean and L-CV depend on the WeMOI (GEV3, panel f).
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