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Abstract.  

In the early 1990s, the insurance industry pioneered the use of risk models to extrapolate Tropical Cyclone (TC) occurrence 

and severity metrics beyond historical records. These probabilistic models rely on past data and statistical modelling techniques 10 

to approximate landfall risk distributions. By design such models are best fit to portray risk under conditions consistent with 

our historical experience. This poses a problem when trying to infer risk under a rapidly changing climate, or in regions where 

we do not have a good record of historical experience. We here propose a solution to these challenges by rethinking the way 

TC risk models are built, putting more emphasis on the role played by climate physics in conditioning the risk distributions. 

The Unified Tropical Cyclone (UTC) modelling framework explicitly connects global climate data to TC activity and event 15 

behaviours, leveraging both planetary scale signals and regional environment conditions to simulate synthetic TC events 

globally. In this study we describe the UTC framework and highlight the role played by climate drivers in conditioning TC 

risk distributions. We then show that, when driven by climate data representative of historical conditions, the UTC is able to 

simulate a global view of risk consistent with historical experience. Additionally, the value of the UTC in quantifying the role 

of climate variability on TC risk is illustrated using the 1980-2022 period as a benchmark.   20 
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1 Introduction 

Tropical Cyclones (TCs) pose a threat to coastal communities across the globe. Recent examples include a record breaking 

2022 season for Madagascar, where 5 storms made landfall causing up to 365 fatalities across Madagascar, Mozambique and 

Malawi (Aon, 2022). Sadly, these regions were impacted again in 2023 by category 5 cyclone Freddy, causing up to three 25 

times more fatalities.  From an economic stand point, TCs caused 92B USD of global economic losses in 2021, with hurricane 

Ida alone costing 75B USD (Aon, 2021) while in 2022 Category 5 hurricane Ian became the third costliest event on record 

with over 100B USD of economic losses (NOAA, 2023). At the time of writing, Hurricanes Helene and Milton have just hit 

the west coast of Florida with combined expected economic in excess of 50B USD (Morningstar, 2024). 

A range of public and private organizations focus on mitigating this risk. To do so they require tools that quantify the 30 

occurrence and severity likelihood of events globally. Since the early 90s the insurance industry has adopted the use of large 

sets of synthetic TC events as a way to understand and quantify TC risk beyond simple analysis of historical records. These 

synthetic events all represent plausible TC scenarios, typically generated from statistical extrapolation of historical occurrences 

(Hall and Jewson, 2007; Rumpf et al., 2007, Vickery et al. 2009, Bloemendaal et al. 2020; Arthur 2021). The climatology and 

statistics of such event sets (often referred to as stochastic event sets in reference to their generation process) are consistent 35 

with history, but allow extrapolation beyond what was observed. They help quantify probabilistic measures of risk such as the 

1-in-100-yrs return period hazard intensity (i.e. an intensity level with a 1% annual chance of occurrence).  

While such methods have greatly helped the industry better understand TC risk, they suffer from a fundamental limitation: 

they are mostly driven by statistics of past data rather than physics. At the core of the event generation process resides a series 

of statistical relationships that are fit to historical data, and therefore best represent TC risk under conditions that are consistent 40 

with historical data points. This presents two important challenges when assessing global risk in a changing climate: 

• A model anchored in past climate conditions is not able to adapt and quantify shifts in risks associated with a 

changing climate: e.g. how do TCs react to regional changes in patterns of dominant atmospheric steering flow, 

ocean temperatures or wind shear?  

• A model fit to historical data will be best fit to those regions where we have abundant historical records (e.g. the 45 

North Atlantic) but will generalize poorly to other basins where data are scarce and TC behaviours may differ (e.g. 

the South Indian Ocean).  

One solution to this problem is to build smarter event generation algorithms, that do not simply memorize and extrapolate 

history but also understand how climate physics influenced the observed outcomes. Explicitly linking the event generation 

algorithms to key climate drivers allows the creation of climate-connected event sets that can naturally quantify risk (1) under 50 

changing climate conditions and (2) in regions where historical data are scarce. Several climate-connected TC event sets have 

recently been developed by the academic community, with leading modelling groups developing TC risk solutions that 

explicitly link some components of the event generation process to climate model outputs (Lee et al. 2018, Jing and Lin. 2020, 
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Emanuel 2021 and citations within, Lin et al. 2023, Sparks and Toumi 2024). We here present a novel approach (the Unified 

Tropical Cyclone – UTC) that, while following a similar philosophy, differs in several key aspects: 55 

 

• The UTC links the annual frequency of TC occurrence in each active basin to large scale environment 

signals (e.g. El Nino Southern Oscillation - ENSO) rather than through the use of more localized genesis 

potential indices (e.g. TCGI, see Wang and Murakami, 2020). 

 60 

• The UTC directly simulates the impact of sea surface temperatures, atmospheric steering flow, mean sea 

level pressure and vertical wind shear on the TC trajectory and intensity hourly increment distributions 

thanks to a machine learning (ML) algorithm called quantile regression forest (Meinshausen 2006; Loridan 

et al. 2017, Lockwood et al. 2024, Bruneau et al. 2024). Using ML ensures the impact of local 

environmental factors can be inferred directly from data without the need for any expert judgment in 65 

formulating or tuning the relationship. 

 

• The UTC is initialized with reanalysis data and model simulations of the past (see the results of this study 

below), but also with seasonal forecast data and future climate projections (this will be the focus of a 

follow up study). Figure 1 provides an introductory illustration of how the UTC risk distributions (here for 70 

annual major hurricane US landfalls) shift according to different climate forcing conditions. More details 

on this experiment are provided in section 3. 
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Fig. 1. UTC modelled distributions of annual US major hurricane landfalls, under a range of climate forcing assumptions. Vertical 75 
dashed lines show observed levels of occurrence for each scenario.  

 

In this study we describe how climate gridded data are used to condition the UTC event generation algorithms: namely 

the TC occurrence frequencies by basin, genesis location, date, track trajectory, and intensity modules. We then show how 

such a climate connected approach can reproduce a risk climatology across the globe that is consistent with history, with 80 

minimal need for local tuning, track filtering or calibration. We then conclude by analysing the impact of climate variability 

on the UTC view of risk, considering alternative climates of the 1980-20222 period as forcing when deploying the model. 
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2 The Unified Tropical Cyclone (UTC) modelling framework 

The UTC framework consists of a series of algorithms that allow generation of synthetic events from knowledge of global 85 

climate conditions (Fig. 2). By generating a large number (i.e. millions) of such climate-connected synthetic events, we aim to 

capture a complete view of TC risk under the climate conditions provided as input. An overview of the event generation 

framework is first provided in section 2.1. Section 2.2 details how the event generation algorithms are developed, combining 

reanalysis of past climate with historical TC event records. In section 2.3 we come back to the event generation framework 

and formally list the sequence of algorithmic steps that make up the UTC.   90 

 

 

Fig. 2. Overview of the UTC event generation framework. Global gridded climate data are used as input to a series of algorithms 

responsible for the generation of synthetic TC events. The output is a set of millions of events, representative of TC activity under 

conditions set by the input climate data. Details of the algorithms are provided in section 2.2 and Appendix A.1. 95 

 

2.1 Event generation framework overview 

The overarching objective when creating a climate-connected TC event set is to sample two dimensions of risk variability (see 

Fig. 1): 

A. The variability in TC risk under a given climate state (the distribution in each row of Fig. 1).  100 

B. The variability in the climate state itself (different rows in Fig. 1). 
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While most traditional TC event sets are designed to address A (for a climate representative of a selected historical average 

state. e.g.. first row of Fig. 1), they fail to acknowledge the importance of B. To address B and drive the generation of events 

covering a wide range of climate conditions, we connect the UTC to global gridded climate inputs: ERA5 (Hersbach et al., 

2020) is our preferred source to portray the climate experienced historically, and we also augment that view with alternative 105 

simulated climates from the CESM LENS2 project (Rodgers et al., 2021). While ERA5 data are available at higher resolution, 

we choose to aggregate to a similar 1-degree spatial resolution as the CESM LENS2 data. This choice is driven by a desire for 

consistency between model training (with ERA5) and deployment (using a wider range of sources not always available at the 

same resolution as ERA5, such as the CESM LENS2). When representing climate state at 1-degree spatial resolution we focus 

on variability in global and regional climate patterns rather than finer scale weather. In this framework the sampling of risk 110 

due to finer scale weather variability is part of dimension A above. This large database of monthly global gridded climate data 

is the starting point for our model deployment (Fig. 2). We limit the range of climate inputs to state variables that are known 

to impact TC dynamics:  

• Sea Surface Temperature (SST) 

• Mean Sea Level Pressure (MSLP) 115 

• Zonal component of the wind flow at 850 mb (U850) and 200 mb (U200) 

• Meridional component of the wind flow at 850 mb (V850) and 200 mb (V200) 

• Vertical wind shear magnitude (SHR) – computed from the wind field components above 

• Steering flow – also computed from the wind field components. 

 120 

The UTC then implements the following modelling sequence (see Fig. 2): 

1) A climate state is defined as a time series of monthly gridded climate data fields. From knowledge of key climate 

patterns in a given climate state (see section 2.2.1), the UTC models one distribution per basin to define event count 

likelihood during a TC season experiencing that climate (section 2.2.2). This process is repeated for a large number 

of climate states to capture dimension B described above. 125 

2) Within each climate state, hundreds of different sample years (stochastic years) are computed to capture dimension 

A. These stochastic years account for variability in finer scale climate conditions (e.g. weather) not captured by the 

coarse climate forcing, as well as other stochastic TC behaviours occuring under a given climate state. For each 

stochastic year, and from knowledge of the distributions in 1, a number of events (nTC) per basin is sampled to 

define TC activity for that year.  130 

3) For each of the nTC events sampled in a stochastic year, a likely genesis date and location are sampled from 

knowledge of historical occurrence rates and local environment conditions (section 2.2.3). 

4) For each sampled event, the UTC simulates the trajectory of the TC centre at one-hour intervals, taking into account 

track persistence and the effect of environmental conditions such as the steering flow (section 2.2.4). 
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5) Simultaneously, the evolution of the TC intensity (centre pressure) is also sampled along the track at one-hour 135 

intervals, from knowledge of the track characteristics to date and environmental conditions such as the vertical wind 

shear and ocean temperatures (section 2.2.5). An estimate of maximum sustained winds at 10 m is also computed 

from the modelled TC centre pressure following Bruneau et al. (2024). 

By repeating the steps above for a large number of climate states (i.e. many years of climate forcing in 1) and a large number 

of stochastic samples (i.e. repeated sampling of 2) the UTC generates a set of events characterizing risk variability across 140 

dimensions A and B.  

With complete record of the climate states used to generate any of the stochastic years, the UTC framework opens a whole 

new range of analysis around the impact of climate variability (e.g. Fig. 1). By grouping years according to the phase of the El 

Nino Southern Oscillation (ENSO), one can for instance quantify the resulting shifts in likelihood of TC landfalls across the 

world, along with potential correlations between basins / regions. Similarly, questions around the impact of already realized 145 

warming of the atmosphere on TC activity can be addressed objectively by sub-sampling the event set according to the warming 

levels of the forcing climate states (e.g. first 3 rows of Fig. 1). From a risk analysis point of view, the UTC also helps identify 

regions of the world that may have been lucky / unlucky in their historical experience compared to what should be expected 

over the period of records (see section 3).  

 150 

2.2 Event generation algorithms 

When training the UTC event generation algorithms, we combine two data sources that jointly capture historical TC risk 

conditions over the 1980-2020 period (i.e. the model training period): 

• Monthly gridded data from the ERA5 reanalysis dataset (Hersbach et al., 2020) provide a best-estimate of the 

climate experienced globally over the period.  155 

• The International Best Track Archive for Climate Stewardship (IBTrACS, Knapp et al. 2010) records frequency, 

trajectory and intensity of TC events globally. 

Most of the algorithms described below are based on machine learning (ML): i.e. derive their form directly from data rather 

than from a human selected relationship. Throughout this section, key concepts are illustrated using case studies and simplified 

algorithms where the physics is easily discussed. The complete algorithms, as implemented in the UTC, are detailed in 160 

appendix A1. 
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2.2.1 Extracting patterns of climate variability impacting TC activity 

The first step in the UTC framework is to reduce the dimension of the raw input of monthly gridded data into a selection of 165 

patterns important to TC activity. This dimension reduction phase is done via Principal Component Analysis (PCA, see 

appendix A1.1), performed on a range of standardized anomaly fields (FLD = SST, MSLP, U850, U200, V850, V200 and 

SHR - see section 2.1). 

The end result for a given field is a series of spatial patterns (PCFLD,i, see Fig. 3) allowing decomposition of any state of the 

field using a series of coordinates (WFLD,i, see equation A.1 in Appendix A1.1). While the PCA step provides important insights 170 

into the leading modes of global climate variability for each field (the PCFLD,i), these are not all equally relevant to TC risk. To 

filter out the patterns most relevant to TC activity across different basins we rely on two criteria (Appendix A1.2): 

• Only consider PCFLD,i modes whose weights (WFLD,i) correlate with TC activity in at least one basin 

(candidate PCFLD,i, see Fig. 4).  

• Ensure the physical reasons for that correlation are understood. This is done by screening the patterns in 175 

the candidate PCFLD,i and explicitly linking them to conditions known to be favourable / unfavourable to 

TC genesis. 

An example of the above is given in Fig. 3 with PCSST,3 obtained from the SST decomposition of equation A1.1. The correlation 

between the number of North Atlantic hurricanes and the associated weights (WSST,3), averaged over the July-November period, 

is shown in Fig. 4. The reasons for the (negative) correlation between the magnitude of the weights and north Atlantic hurricane 180 

activity can be understood from analysis of Fig. 3: large values of the WSST,3 weights are associated with anomalously warm 

SSTs in the eastern and centre Pacific (typical of an El Nino event) and anomalously cold SSTs in the tropical Atlantic. Both 

trends are signals of a likely weak hurricane season, which is confirmed by Fig. 4. Conversely, large negative values of the 

weight tend to be associated with La Nina type of Pacific SSTs and anomalously warm tropical Atlantic: i.e. conditions 

favourable to hurricane activity. 185 

 

 

Fig. 3: Principal component field representing one of the leading modes of global sea surface temperature variability (PCSST,3). See 

equation A1.1 for details. 
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 190 

 

Fig. 4: Relationship between the weight associated with the principal component from Fig. 3 (x-axis) averaged over the Jul-Nov 

period (i.e. CNA,1, appendix A1.2) and the number of North Atlantic tropical storms in that season (y-axis). Colours indicate the 

season of record.  

 195 

Altogether a total of 13 patterns (PCFLD,i) are selected to characterize climate states within the UTC framework (globally). As 

is the case in the example of Fig. 4 we maximize the correlation from the raw time series of weights by averaging over a time 

window that covers the peak TC activity period in each basin. The result is a set of 13 scalars that allow conditioning of TC 

activity in all active basins of the world. In what follows we refer to these scalars as climate connectors and the complete list 

of connectors is provided in Appendix A1.2. 200 

2.2.2 Conditional distribution of TC numbers given magnitude of climate patterns 

By design the connectors selected in 2.2.1 correlate with TC activity in at least one basin. They therefore offer a way to link 

the input climate state to trends in basin-wide TC numbers. However, a large uncertainty exists around the exact number of 

TCs to expect under a given climate state (e.g. see vertical spread in Fig. 4 for a given CNA,1 value).  

Our approach to this challenge is to adopt a hierarchical Bayesian modelling framework, similar in concepts to that of Elsner 205 

and Jagger (2004). We use the connectors listed in Appendix A1.2 to condition the λ rate of a Poisson distribution (see appendix 

A1.3). Fig. 5 illustrates the end result in a simplified case where the distribution of north Atlantic hurricanes is conditioned 

only on the value of the average July – November WSST,3 shown in Fig. 4 (i.e. connector CNA,1, see equation A2). 

In years with large positive values of the connector (e.g. El-Nino years - see Fig. 3) the modelled distribution of hurricane 

numbers shifts to a less active state (light blue), while for large negative connector values (e.g. La-Nina years) the shift is 210 

towards more frequent activity (red). 
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Fig. 5: Modelled distribution of hurricane activity conditioned on the value of the average July – November WSST,3 weight from Fig. 

4, for 2009 (blue) and 2011 (red) climates. The vertical lines show observed activity levels in 2009 (El- Nino year) and 2011 (La-Nina 

year). 215 

For each basin that is TC active (i.e. North Atlantic, East Pacific, Western North Pacific, North Indian, South Indian and South 

Pacific basins) we have developed a different hierarchical Bayesian model using between 2 and 3 connectors. These are listed 

in Appendix A1.3. The ability of this approach to capture variability in TC basin frequency over the 1980-2022 period is 

illustrated in section 3.1 (see Fig. 10). 

 220 

2.2.3 Genesis date and location within a basin 

Once the level of activity in each basin has been established, the next step is to leverage patterns in both historical event 

occurrence and local environment conditions to determine the distributions of likely genesis location and date for all stochastic 

events. For these two components of the UTC we have so far relied on simple parametrizations rather than machine learning 

methods. Upgrading this component of the system is a priority in future UTC development (e.g. following a Bayesian 225 

modelling approach as for section 2.2.2). In the interim we have implemented the parametrizations described below. 

In a static TC risk model, the likely genesis location of a stochastic event is typically sampled from a probability density map 

representing a generalized version of historical records. An example of such a map is provided in Fig. 6a for the North Atlantic 

basin where a spatial smoothing was applied to all 1980 2020 genesis coordinates (i.e. 2D convolution using a 5x3 spatial 

kernel). While this allows sampling from a climatology consistent with history, the approach does not account for season-to-230 

season variability in climate conditions known to impact TC genesis likelihood. To condition the UTC genesis likelihood maps 
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we here adjust the static probabilities using a simple dimensionless scaling factor, that is based on the ratio of SST and SHR 

anomalies for each grid cell k.  

𝑠𝑐𝑎𝑙𝑖𝑛𝑔(𝑘) =  
1 +

𝑆𝑆𝑇𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝑘)
|𝑆𝑆𝑇|

⁄

1 +
𝑆𝐻𝑅𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝑘)

|𝑆𝐻𝑅|
⁄

 

Physically, this adjustment ensures that the probability of genesis increases as the SST moves up from its climatological 235 

average and/or the vertical wind shear is reduced compared to its climatological state. 

Fig. 6 provides an example of the adjusted genesis probability maps for two contrasting seasons: 2015 (Fig. 6b) and 1999 (Fig. 

6c). In 2015, climate conditions show anomalously cold SSTs and strong wind shear conditions in the Caribbean Sea (Fig. 

7a,c) while SSTs are anomalously warm in most of the mid-latitudes of the basin. This set up translates into an increased 

likelihood of genesis along the US east coast and a reduction in the Caribbean Sea (Fig. 6b) when compared to the static 240 

historical baseline (Fig. 6a). Conversely, year 1999 is characterized by anomalously cold SSTs east of Florida and in the NW 

Gulf of Mexico (Fig. 7b) with very favourable shear conditions across the Caribbean and southern Gulf of Mexico (Fig. 7d). 

The impact on the modelled genesis likelihood map is towards an increased probability in the Caribbean Sea / Gulf of Mexico 

and a reduction east of Florida. In both years the patterns of actual observed event genesis (white circles, Fig. 6) are consistent 

with these regional trends in favourable environmental conditions.  245 

 

Fig. 6: Spatial genesis density maps at 1 deg resolution; a) shows smoothed out static version of historical occurrences while b) and 

c) illustrate the dynamic spatial probability of genesis accounting for SST and wind shear anomalies. The white dots show the 

historical cyclone genesis occurrence for the two years considered (2015 and 1999, see Fig. 7). 
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 250 

Fig. 7: (a,b) SST and (c,d) SHR anomalies with regards to the 1980-2020 mean for July-October in year (a,c) 2015 and (b,d) 1999. 

Historical TC genesis locations are shown in white. 

 

Once the starting position of an event is known, a similar approach is used to allocate a starting date. The likelihood of genesis 

for a given month is computed as the average of two components: 255 

• a probability density function fit to observed historical records (Phist), 

• a probability density function derived from monthly gridded SST, SHR and MSLP variables (Pclim). 

Using historical genesis locations and associated climate conditions, three probability density functions (PSST, PSHR, PMSLP) are 

first independently derived to link the likelihood of genesis in a month to different levels of monthly SST, SHR and MSLP. 

These are then combined into Pclim as follows: 260 

𝑃𝑐𝑙𝑚 =  𝑃𝑆𝑆𝑇  . 𝑃𝑆𝐻𝑅
2  . 𝑃𝑀𝑆𝐿𝑃  

 

Pclim allows conversion of the gridded climate fields into a monthly time series of probability maps. From knowledge of the 

sampled genesis location (see above), a time series of monthly probability is extracted and averaged with the climatological 

probability (Phist). After linear interpolation of the monthly probabilities to daily resolution, a genesis day is sampled. Finally, 265 

the hour of genesis is uniformly sampled within the chosen day, and the date gets incrementally updated with the storm hourly 

displacements. 
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2.2.4 Track trajectory 

As is common for most TC risk modelling systems (Hall and Jewson 2007, Blomenthaal et al. 2020, Arthur 2021), our approach 270 

to modelling individual event trajectories is to simulate incremental changes in latitude (dlat in deg/h) and longitude (dlon in 

deg/h) at fixed time intervals (1h in this study). Under that framework a track trajectory is simulated by iteratively sampling 

the next displacement from distributions conditioned on parameters at current and past locations (i.e. a Markov Chain Monte 

Carlo (MCMC) approach).  

However, instead of relying purely on the track history to date and its location to predict the next dlat and dlon increment 275 

distributions, the UTC algorithms are also trained to account for local environmental conditions capturing the dominant 

steering flow. To do so we have overlaid the ERA5 reanalysis dataset on top of all historical TC events as reported in IBTrACS, 

and have trained a quantile regression forest algorithm (see Appendix A1.4) to approximate the dlat and dlon distributions, 

conditional on regional steering patterns. At any time step along the track the algorithm takes the following quantities as input 

to condition the distributions: storm translational speed, track heading angle as well as incremental changes in latitude, 280 

longitude since previous time step, meridional and zonal components of the steering flow and spatial gradients of wind shear, 

mean sea level pressure and sea surface temperature. To ensure the algorithms generalize information globally rather than 

memorize local historical behaviours, no direct information of location (lat, lon coordinates) are provided. Conditional on this 

information, a distribution of dlat and dlon is modelled at every time step allowing sampling of the next hourly track 

displacement (see section 2.3).  285 

Fig. 8a illustrates the role played by environmental conditions in simulating event trajectories in the UTC. Using a 20 000 

years subset form the event set of section 3.1, we extract the sampled dlon values of all events that pass through a selected 

region of the North Atlantic mid-latitudes (see map in Fig 8a).  Sampled dlon values that correspond to time steps when 

monthly steering winds are predominantly blowing east are shown as a red distribution while the blue distribution represents 

time steps with steering winds blowing west. The ability of the UTC to react to dominant steering patterns is clear from the 290 

shift between both dlon distributions, with simulated tracks encountering easterlies (westerlies) more likely to move westward 

(eastward). Under that set up, strong anomalies in steering flow patterns are naturally reflected in the modelled event 

trajectories, and therefore in the resulting statistics of landfall risk. It is this type of model behaviour that allows translation of 

regional climate anomalies into shifts in TC landfall risk.  

 295 
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Fig. 8: (a) Distributions of hourly change in longitude (dlon) simulated by the UTC for all events passing through the circle in 

subpanel (for reference IBTrACS data are displayed in green). Values of dlon corresponding to time steps with easterly (westerly) 

steering flow are shown by the blue (red) distribution. (b) Distributions of hourly change in center pressure (dCp) simulated by the 300 
UTC for the same region. Values of dCp corresponding to time steps with SSTs above 28C are shown in red and those below 26C in 

blue. 

2.2.5 Event intensity 

To simulate the intensity evolution over the lifetime of events, two separate algorithms are built. They target:  

• the event intensity at genesis point (Center pressure, Cpt=0 in mb),   305 

• the increment change in intensity from one step to the next (dCp in mb/h) 

Both these algorithms are trained in a similar fashion to the dlat and dlon models. By overlaying ERA5 data onto historical 

events as reported by IBTRACS we can train quantile regression forest algorithms to approximate conditional distributions 

(see Appendix A1.4). In both cases, to condition the distribution, we use known storm parameters (Cp, previous pressure 

changes, distance to land) and climate information: wind shear, mean sea level pressure and sea surface temperatures as well 310 

as their temporal gradients.  

Fig. 8b presents a similar exercise to Fig. 8a where UTC modelled values of dCp for all events passing through the same 

domain. The distributions are split into cases with monthly SSTs above 28 degrees (red) and below 26 degrees (blue). The 

SST conditioning drives a clear shift toward more likely intensification rate when ocean temperatures reach 28C.  As a result, 

any important anomalies in SSTs are naturally reflected in the modelled UTC event intensities and allow intensification (resp. 315 

weakening) to occur over patches of anomalously warm (cold) water. By being closely connected to local environment 

conditions, the UTC intensity model is able to better capture the evolution of event severity as climate conditions evolve (e.g. 

see section 3.2). 
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From a physical point of view, centre pressure is the fundamental measure of storm intensity, and is the logical starting point 320 

when modelling event intensification and weakening patterns. In terms of risk measurement however, maximum winds offer 

a more relevant metric. It is the metric most often reported by media and used to categorize storms in the Saffir Simpson scale; 

it is also the basis for estimation of TC related damage. As a final step to the intensity module, we therefore translate our Cp 

estimates into maximum wind speeds (1-min sustained winds over water at 10 m, Vmax) following the methods published in 

Bruneau et al. (2024).   325 

2.2.6 Lysis 

Sections 2.2.4 and 2.2.5 describe iterative processes that only terminate once a lysis flag is triggered, typically corresponding 

to an important weakening of the system. Modelling the cyclone lysis is a difficult exercise due to the small number of data 

available for training (a single lysis per historical cyclone, most often occurring over ocean). To construct a set of lysis 

likelihood targets that goes beyond the binary outcome of historical lysis occurrences, we first assign a probability of lysis to 330 

each time step of historical events (see appendix A1.4). A random forest is then trained to predict this probability of lysis from 

knowledge of event properties, climate conditions as well as the time spent over land and topography set up. When generating 

events, the random forest algorithm is deployed to predict this probability at each time step. The probability is then used in a 

binomial draw to sample the survival/lysis outcome.  

2.3 Model deployment steps 335 

Having described how each of the UTC algorithms is developed we now provide the detailed sequence of steps leading to the 

generation of UTC event sets: 

1. Take monthly gridded data fields for climate state X (e.g. from a historical year of ERA5 reanalysis or alternative 

gridded climate dataset) 

2. Extract WFLD,i weights values for selected PCFLD,i modes of climate state X. Compute associated climate connector 340 

values.  

3. Model distributions of annual TC numbers by basin conditioned on these connector values for climate state X. 

4. Initiate sampling of stochastic years under climate state X.  

For stochastic year 1 to N: 

a. Using the modelled distribution from 2.2, sample a number of TC events to simulate for each basin that 345 

year. 

b. In each basin, initiate loop over all events.  

For event 1 to nTC: 

i. Sample the genesis point from knowledge of environment conditions in the basin (sea surface 

temperature and wind shear). 350 
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ii. Sample the genesis date based on genesis location and environment conditions in the basin  

iii. Given the genesis location, date and local environmental conditions simulate the distribution of 

likely starting intensity (Cp in mb). Sample intensity value. 

iv. From knowledge of the above and regional steering conditions, model the distribution of likely 

latitude and longitude displacements over the following hour. Sample displacements values and 355 

move the storm. 

v. From knowledge of the above, and regional climate conditions, model a distribution for the 

increment in intensity to expect. Sample increment values and update storm intensity.  

vi. Model a probability of lysis, and sample lysis occurrence with a binomial draw. If lysis occurs, 

stop and move to next event, otherwise repeat steps iv, v and vi until lysis occurs. 360 

vii. Model 1-min sustained winds over water (Vmax) from Cp following Bruneau et al. (2024). 
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3 A probabilistic view of global tropical cyclone risk 

In this section we analyse global tropical cyclone risk, as modelled by the UTC under climates of the 1980-2023 period (i.e. 

the deployment period). The objective is twofold:  365 

 

UTC evaluation and risk analysis: Ensure that our historical experience over the 1980-2023 period is consistent with the 

probabilistic view simulated by the UTC (section 3.1). For that purpose, the UTC is forced with ERA5 reanalysis data for 

1980-2023. This dataset provides a view of the climate we have experienced over the post satellite era period where global 

TC observations are most reliable.  370 

 

Counter-factual analysis: Quantify the additional risk variability attributable to uncertainty in the climate experienced over 

the period (section 3.2). Here, 1980-2023 climate simulations from the NCAR CESM large ensemble product (LENS2 - 

Rodgers et al., 2021) are used to force the UTC. We have selected the 50 smoothed biomass burning (SBMB) ensemble 

members to allow sampling of other climate states that could have likely occurred over the 1980 – 2023 period (i.e. 375 

dimension B in section 2.1). 

3.1 Analysis of global risk patterns and comparison to historical experience 

For every year in the 1980-2023 ERA5 reanalysis dataset, we run 2500 samples (i.e. N= 2500 - see step 4 in section 2.3) to 

generate 110’000 years of stochastic TC activity globally (44 climates with 2500 realisations of each). Historical observations 

over the 1980-2023 period are compared to the UTC probabilistic view of basin wide activity (section 3.1.1), spatial severity 380 

distribution (section 3.1.2) and landfall return period risk (section 3.1.3). It is important to note that historical records should 

only be seen as one sample from the distribution of potential risk over the period. The UTC on the other hand is designed to 

approximate the full distribution from which the records were sampled. The most important aspect of this evaluation exercise 

is therefore to show that the observed sample (i.e. our historical experience) falls within the UTC modelled distribution, with 

occurrence statistics that are consistent with the modelled view. There is however no expectation that the observed sample 385 

should fall at the centre of the distribution for all aspects under evaluation.  

We choose to analyse and evaluate the modelled 1-min sustained winds (Vmax) as they represent a natural measure of TC 

impact. All IBTrACS results are shown using the “USA_WIND” data field from the U.S. Navy Joint Typhoon Warning Center 

(JTWC) as it is based on a globally consistent and well documented methodology (Knapp and Kruk 2010). 

3.1.1 Global TC activity 390 

Fig. 9 shows the density distribution of annual named storm numbers in the 110’000-year stochastic event set for each of the 

active basins, and for each TC season of ERA5 forcing (1980-2023). They represent the likelihood of outcomes under each of 

the historical annual climate states (1-99th percentile intervals are displayed in Figure 9). Observed records are overlayed on 
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all the distributions as white circles. They represent the one outcome that occurred under that observed climate state. As such 

we should not expect to see the white circles at the centre of the UTC distributions for all individual years, however it is 395 

important that the circles do fall within the modelled distributions and that the overall statistics are in line with the UTC data. 

Over the full Fig. 9 dataset, observed occurrence levels are within the UTC 50th confidence interval in 64% of cases while 94% 

fall within the 90% confidence. 

In all basins the season-to-season variability in the modelled UTC distributions is consistent with variability in observed TC 

numbers. This ability to capture season -to- season variability is only possible thanks to the climate-connected nature of the 400 

model. Without climate conditioning, every year would be assigned the same (static) activity distribution by basin (the average 

distribution over the period, see right panels in Fig. 9). This has important consequences when trying to assess short term risk 

variability (e.g. the seasonal trends) as well as global connections in TC activity. For instance, by grouping the data from Fig. 

9 in terms of climate regimes known to impact TC activity we can quantify the shifts in basin-wide TC activity attributable to 

physical cycles such as ENSO, and assess how activity levels in different basins are connected (e.g. anticorrelation between 405 

North Atlantic and East Pacific, Steptoe et al. 2017). Both these aspects will be explored in separate studies where we illustrate 

the value of the UTC as a tool for seasonal risk forecasting, as well as for quantification of global risk correlations.  
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Fig. 9: Distributions of named storms numbers from a 110’000-year UTC dataset forced by ERA5 reanalysis data of the 1980-2023 410 
period for (a) North Atlantic, (b) East Pacific, (c) western North Pacific, (d) North Indian, (e) South Pacific and (f) South Indian 

basins. Historical occurrences from the Colorado State University database are shown as white dots and UTC distributions averaged 

over the whole period (climatology) are shown in the right panels. The simulated 1-99th, 10-90th, 20-80th, 30-70th and 40-60th intervals 

are displayed.  
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3.1.2 TC spatial risk distribution across the globe 415 

Beyond basin-wide activity numbers, one of the main goals of a TC stochastic event set is to capture spatial variability in risk 

severity within each basin. Observation records over the 44-year period of post-satellite-era are too scarce to provide a complete 

view of risk, but they do highlight regions where TC risk is concentrated. Analysis of maximum sustained TC winds globally 

over the 1980-2023 period (Fig. 10a) shows the eastern Philippines as the riskiest region on earth, followed by the western 

Caribbean. A closer look at the Gulf of Mexico or Florida regions reveals discontinuous patterns where important historical 420 

events are clearly identifiable among lower risk neighbouring levels. Such discontinuities in risk mapping are due to an 

insufficient number of seasons in the historical records to fully capture the spatial risk distribution of extreme events (the risk 

distribution is under-sampled). 

Using 110’000 years of simulations from the UTC, we can assemble a more consistent view of risk (Fig. 10b). The 110’000-

year UTC event set is here split in 2500 groups of 44 years (i.e. 2500 iterations of the 1980-2023 period) allowing computation 425 

of 2500 equivalent versions of Fig. 10a. Fig 10b represents the grid cell average (2.5-degree resolution) of these 2500 versions 

and captures the expected peak winds over the 1980-2023 period for each grid cell. In other words, given what the UTC has 

learnt from global historical records, and the role played by climate physics in driving TC risk, peak winds of the magnitude 

reported in Fig. 10b should be expected when experiencing the climate of the 1980-2023 period. To gain some insight into the 

main drivers influencing the UTC view of risk, we also provide maps of peak season climatology (i.e. August – October in the 430 

Northern hemisphere and December - February in Southern hemisphere) for SST, SHR, U850 and V850 fields (Fig. 11).  

For the North Atlantic (NA) basin the regions of peak risk are very consistent with historical records. This is an important 

result as the NA is the region of the world where we have access to the best quality of observation records over the 1980-2023 

period. Category 5 level winds (i.e. 1 min sustained winds of 70 m/s – the white contours in Fig. 10) are expected to occur 

during the period for regions along the Caribbean islands, Gulf of Mexico as well as southern Florida (Fig. 10b). This is in line 435 

with historical records (Fig. 10a) and directly relatable to favourable peak season climatological conditions with warm SSTs 

(above 28C, Fig. 11a) and weak vertical wind shear (below 10 m/s, Fig. 11b). Patterns of cooling SSTs, higher vertical wind 

shear as well as a strong westerly component of the steering flow (Fig. 11c) also clearly help understand the reduction in risk 

north of the Florida coast.   

For the Eastern Pacific (EP) basin, the regions of Category 5 level expected winds are again well aligned with historical 440 

evidence (Fig. 10) and coincide with favourable environmental conditions (Fig. 11) on the eastern side of the basin. Further 

west, a notable patch of large vertical wind shear is present over the Hawaiian Islands (Fig. 11b), along with a northerly 

component to the steering flow (Fig. 11c) that tend to protect the islands. and translate into reduced risk levels both in terms 

of UTC expectations (Fig. 10b) and historical experience (Fig. 10a). More favourable conditions to the south of the islands 

allow for increased risk levels.   445 

The western North Pacific (WNP) basin shows a good level of agreement between historical experience and UTC expectations. 

Environmental conditions in the basin are mostly favourable up to the Japanese coast with very warm SSTs (Fig. 11a) and 
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weak vertical shear (Fig. 11b). This translates into a wide region of peak risk to the east and north of the Philippines. As is the 

case in the eastern coast of the US, there is an important decrease in risk when moving north towards central Japan, with a 

sharp SST gradient, strong vertical wind shear and a dominant westerly steering flow. 450 

TC activity patterns in the North Indian basin are consistent between model expectations and historical experience (Fig.10), 

with higher risk localized in the north of the Bay of Bengal. The presence of high vertical wind shear to the south acts to 

dampen activity, however we note that peak activity in the basin does not occur during the August-October period displayed 

in Fig. 11 and as a result modelled patterns are not further analysed from a physical point of view. 

Largest discrepancies between UTC expectations and observation records occur in the Southern hemisphere (SH). In particular 455 

the UTC has wider expectations of peak winds for the North East (east of Townsville) and North West of Australia (north of 

Port Hedland) as well as for most of the northern part of the South Indian (SI) ocean (Fig. 10b). Environmental conditions 

during peak SH season are mostly favourable in these three regions (Fig. 11) which helps understand why the UTC expected 

levels are high. With SSTs around the 28C level and wind shear conditions below the 10 m/s threshold, these areas are 

comparable to the Caribbean and southern Gulf of Mexico regions. Consequently, UTC expectations in terms of peak winds 460 

are of similar magnitudes (i.e. at the category 5 level). While it is possible that the discrepancies could be attributable to a 

model bias (e.g. missing some local physics) or over generalization, it is also likely that events in these regions are under 

reported in IBTrACS. Coverage of TC events in the South Indian in particular, is likely not as thorough as in other basins. In 

the north East and North West of Australia, historical records are in line with the UTC expectations at the coast (see also Fig. 

13), but differ further out at sea. Here again it is possible that events have been underreported away from their direct landfall 465 

impacts (no immediate risk to population). The alternative would be that events tend to only reach their peaks at the coast, and 

the physical reason for such behaviour is missed by our modelling approach / resolution. Steering flow patterns (Fig 11c,d) 

around Port Hedland are worth noting as they help explain the concentration of risk observed historically over that section of 

the coast (see Figure 13r). With a corridor of strong northerly steering above warm SSTs and a weak shear environment leading 

to increased risk expectations. 470 
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Fig. 10: 2.5-degree resolution map of (a) peak 1-min sustained winds recorded in IBTRACS over the 1980-2023 period and (b) 

expected 44-year peak sustained winds from the ERA5-driven UTC stochastic set (110’000 years of activity). The white contours 475 
represent the 70 m/s wind level (Cat5 threshold).  
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 480 

 

Fig. 11: peak season climatology (Aug-Oct in Northern hemisphere and Dec – Feb in Southern hemisphere for 1980-2023) for ocean 

surface temperatures (a), vertical wind shear (b) as well as meridional (c) and zonal (d) components of the 850hpa winds. Contour 

lines correspond to 28C ocean temperatures (in panel a), 10m/s wind shear (panel b) and the 0m/s steering (panels c and d).  

https://doi.org/10.5194/egusphere-2024-3253
Preprint. Discussion started: 4 November 2024
c© Author(s) 2024. CC BY 4.0 License.



24 

 

 485 

The analysis of Fig. 10 and 11 shows that the UTC, driven by physical patterns known to be important to TC risk, is able to 

reproduce a global TC risk severity distribution that is consistent with historical records. As such it provides a reliable tool to 

assess the impact of climate phases linked to shifts in patterns of ocean temperatures, vertical wind shear or steering currents. 

As an example, we here briefly discuss the influence of the ENSO cycle. La Nina events are characterized by a western shift 

in warm ocean temperatures in the Pacific, with a resulting change in atmospheric circulation leading to reduced (increased) 490 

vertical wind shear in the Gulf of Mexico and Caribbean Sea regions (in the eastern Pacific). With these shifts in climate 

patterns directly conditioning the UTC event generation algorithms, the framework can be used to quantify the impact of the 

cycle on global TC risk. Here we show the annual occurrence of Category 3 events across the globe as modelled by the UTC 

for El Niño (Fig 12a) and La Niña (Fig. 12b) conditions. The differences between both states is also shown in Fig. 12c. 

Consistent with the shifts in climate conditions described above, the risk of major hurricane occurrence in the Gulf of Mexico 495 

and Caribbean Sea under La Niña conditions is over 50% higher than during El Niño conditions with the opposite happening 

along the western Mexican coast. In the western Pacific, during El Niño conditions, the occurrence risk for category 3 events 

and above is increasing by up to 50% on the eastern side of the basin, while the risk around the Philippines and the Chinese 

coast is decreasing. In the Southern Hemisphere, during La Niña conditions, Category 3 occurrence risk increases around the 

Australian coast and decreases for the Pacific Islands. 500 

 

 

 

 

 505 

 

 

 

 

 510 
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Fig. 12: Annual occurrence rates of category 3 tropical cyclones for 2 subsets of the 110’000-year UTC event set, characterizing the 515 
10 strongest El Niño (a) and La Niña (b) seasons in the period 1980-2023; each hemisphere uses the ENSO conditions of the in-season 

months (ASO for the Northern hemisphere and DJF for the Southern hemisphere).  The absolute differences between El Niño and 

La Niña rates of Cat3+ are shown in the last panel (c).  

 

  520 
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3.1.3 TC landfall risk statistics 

From the perspective of risk to society, the most relevant aspect to analyse is the severity distribution at landfall. We here 

focus on major metropolitan coastal region across the globe and use the 110’000 years of UTC activity to assess return period 

wind speed levels at landfall (Fig. 13). For each region, the intensity of events is recorded for both the historical dataset and 

the UTC stochastic set. By ranking events in terms of their peak intensity in a 100 km circle centred on a given city (y-axis, 525 

Fig. 13) we can then compute the associated return periods (x-axis, Fig. 13).  

For all panels, the 44 years of observations are reported as black dots, with the most intense events for each region located at 

the 44 years return period level. Quantifying the severity of rare extreme events from such a short record of observation years 

is an obvious issue, and here again the UTC offers an alternative by providing 110’000 years of activity. Return period intensity 

levels from the UTC are presented in solid-coloured lines up to return periods of 1 in 300 years (i.e. beyond any available 530 

reliable historical records). Uncertainty bands are also reported by overlaying the regions covered by UTC subsets of 44 years 

(shaded areas). The darker shaded region captures the spread between the 5th and 95th percentiles from all 44 years subsets. 

The lighter shaded region extends to the entire dataset showing the spread between the two most extreme 44 years subsets 

available in the 110’000 years simulation. 

In all cases the historical records fall within the range covered by the lighter shaded area, showing that our historical experience 535 

is contained within the distribution modelled by the UTC. The majority of data points are also contained in the range covered 

by the 5th to 95th quantiles, with the relative positions of the modelled averaged view (solid line) and historical records (dark 

line with dots) varying from one city to another. The modelled view is sometimes suggesting higher (e.g. Hong Kong – Fig. 

13o) or lower (e.g. New York – Fig. 13d) expected risk than experienced. As was the case for the discussion of Fig. 11, these 

discrepancies are mostly attributable to the limited length of historical records (under sampling of the risk) but could also be 540 

the result of local physical patterns being missed by the UTC modelling framework. The spatial resolution of the forcing 

climate data can for instance be too coarse to capture local steering shifts or sharp SST gradients in some regions (for example 

around the Gulf Stream).   
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Fig. 13: Return period of maximum 1-min sustained wind levels (m/s) in major coastal cities across the 6 active TC basins of the 545 
world. The thick dark-dotted line provides historical information for the period 1980-2023. The light shaded regions show the whole 

range simulated by the model considering 2500 samples of 44 years while the stronger shaded regions show the 5-95th interval. 

Finally, the coloured line illustrates the converged view, aggregating the 110’000 years of stochastic simulations. 
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3.2  Impact of climate variability. 

The exercise presented in section 3.1 focused on analysing TC risk under the climate conditions observed between 1980 and 550 

2023. Here we expand the analysis to consider other climate conditions that could have occurred over the period (i.e dimension 

B in section 2.1). For this purpose, we ran an additional 550’000 years of stochastic TC activity based on the 50 smoothed 

biomass burning members of the CESM LENS2 (Rodgers et al., 2021) climate outputs for 1980-2023 (i.e. N = 250 samples, 

for 50 members, each covering the 44 years period). This allows reproduction of the analysis in Fig. 13, accounting for 

variability in the climate of the 1980-2023 period.  555 

Fig. 14 below shows 60 curves capturing the return period risk for events crossing segments of the coast in Louisiana (Fig. 

14a) and the Carolinas (Fig. 14b). The 50 blue lines correspond to the 50 CESM LENS2 members and are each built from 

11’000 years of stochastic activity, they represent 50 different views of the climate over the 1980-2023 period. The 10 red 

lines are subsets of the ERA5 forced stochastic set (i.e. the one analysed in section 3a). They are also built from 11’000 years 

of activity, but are all representative of the exact same climate over the 1980-2023 period (the one we experienced). By 560 

including additional climate conditions, the CESM driven curves (blue) cover a wider spread than when only the ERA5 climate 

is considered (red curves).  

This missing variability is important: while the narrow spread of the red curves provides the impression that the modelled view 

of risk has converged, it is important to acknowledge that it is only sampling dimension A. Therefore, it has converged under 

the assumption that the only climate we could have observed over the 1980-2023 period is the one portrayed by ERA5. When 565 

considering the alternative climates from CESM, the spread widens (blue curves). The UTC is now sampling a more complete 

risk distribution.  

At the Category 5 wind speed threshold of 70 m/s for instance the red curves all assign a return period between 40-45 years in 

Louisiana (Fig. 14a). The range covered by the blue curves on the other hand goes from 40 to 80 years, suggesting that return 

period for Cat5 winds along that section of the coast could be much lower and that the climate experienced along the Louisiana 570 

coast may have been on the unlucky side with regards to its influence on hurricane risk. At the same threshold of 70 m/s along 

the Carolina coast, the ERA5 driven view of risk is once again converged towards an estimate of 160-180 years. However, 

once we allow sampling from the wider range of climates covered by the CESM simulations that estimates ranges from 100 

to 300 years. Note similar patterns can be observed at other intensity thresholds, with the width of the CESM spread narrowing 

for lower winds. 575 

The ability to sample dimension B comes with a heavy computing cost (5x dimension A in the example above). Yet, the 

analysis of Fig. 14 shows it has an important impact on our estimates of landfall risk distributions. The inclusion of that extra 

layer of risk variability is even more important when considering risk under future climate conditions, given the larger 

associated uncertainty. The use of the UTC to derive forward looking TC event set will be presented in a follow up study, with 

two key use cases: 580 
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1. Deploy the UTC with seasonal climate projections (e.g. 51 members from the ECMWF monthly seasonal 

forecast): this allows generation of a seasonally conditioned TC stochastic event set, translating projected 

anomalies in SST, wind steering and vertical wind shear patterns into regional shifts in TC risk for the 

season ahead. 

2. Deploy the UTC with future climate projections (e.g. CESM members for the 2025-2100 period). This 585 

allows analysis of projected shifts in regional TC risk over the coming decades, under varying levels of 

global warming.    

 

In both use cases above, the inclusion of dimension B is critical. Focussing only on one climate path vastly under-samples the 

full risk distribution, with important implications in terms of risk management and mitigation.  590 

 

Fig. 14: Return period of maximum 1-min sustained wind levels (m/s) along two segments of the US coast (inset) for 10 sets of 11’000 

years event set driven by ERA5 1980-2023 climate (red curves) and 50 sets of 11’000 years driven by the CESM-ENS2 over the same 

period (blue curves). 

 595 
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4. Conclusion 

Stochastic event sets have helped understand and manage Tropical Cyclone (TC) risk for over three decades. They are 

particularly useful in quantifying tail risk far beyond historical experience. However, to date they have mostly been built from 

statistical relationships fit to historical records, without accounting for variability in the state of the climate. We here present 600 

an alternative approach (Unified Tropical Cyclone – UTC) where we explicitly connect the event generation algorithms to an 

input climate state. After an initial description of all algorithms involved in the climate-connected event generation process, 

we show results from two stochastic event sets representative of the 1980-2023 climate.  

First, we force the UTC with reanalysis data over the period and compare the resulting view of risk to historical records. This 

analysis shows that the UTC modelled view is consistent with our historical experience over the past 44 years. It also highlights 605 

known limitations when it comes to assessing risk levels from historical records only: the period of reliable global records is 

too small and as a result (i) it under samples the spatial distribution of risk (Fig. 10) and (ii) misrepresents the likelihood of 

rare extreme events (i.e. tail risk, Fig. 12). Using 110’000 years of stochastic activity from the UTC helps analyse global TC 

risk beyond these limitations. 

We then extend the analysis using additional forcing from a global climate model (CESM LENS2) over the same period to 610 

quantify the impact of climate variability. Accounting for this additional dimension of risk variability increases the sampling 

space (Fig. 14) and allows analysis of physically realistic scenarios that fall outside of the scope covered by traditional TC risk 

assessment frameworks.  

The natural next step is to deploy the UTC under forward looking climate scenarios, allowing risk assessment in the context 

of the season ahead, or mitigation and planning strategies for the decades ahead. For such applications, the need to include 615 

sampling of climate variability (dimension B) is even more important, given the additional uncertainty associated with future 

climate projections and pathways. 
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APPENDIX 

A1: Technical description of event generation algorithms 620 

A1.1. Principal component analysis of gridded climate data 

In machine learning terminology, Principal Component Analysis (PCA) falls into the category of unsupervised learning 

algorithms. These are methods designed to identify patterns in large datasets, without being told what to look for (the learning 

step does not involve any explicit target). Thanks to PCA, gridded fields can be decomposed into a series of patterns ranked 

in terms of how much data variability they explain. A typical use of PCA is then to select only a subset of all patterns (those 625 

that explain most of the variability) to reduce the dimension of the original dataset. The approach applied here differs slightly 

in that the subset of patterns are selected based on how they correlate to TC activity in various basins of the world (e.g. see 

Fig. 4). 

Prior to PCA, the raw gridded fields are standardized via a centering / scaling step, where the time average of each cell is 

removed (centering) before normalization by the cell standard deviation over the time dimension (scaling). For each climate 630 

field (i.e. FLD = SST, MSLP, U850, U250, V850, V250 or SHR - see section 2.2) a PCA is then performed on the standardized 

array. This results in the projection of the gridded fields into a set of orthogonal vectors (Principal Components – PCFLD,i -  see 

Fig. 3) with associated coordinates, or weights (WFLD,i). 

For a given field (e.g. FLD = SST) the full decomposition of the raw monthly arrays can be formulated as follows: 

 𝐹𝐿𝐷(𝑡) =  𝑀𝑈𝐹𝐿𝐷 + 𝑆𝐷𝐹𝐿𝐷 ∗  ∑ 𝑊𝐹𝐿𝐷,𝑖(𝑡)𝑃𝐶𝐹𝐿𝐷,𝑖
𝑁𝑝𝑐

𝑖=1
       (A.1) 635 

Where MUFLD is the time averaged field array, SDFLD the standard deviation array, Npc is the total number of principal 

components and t is the time variable (monthly resolution). Note that the decomposition above can also be applied to stacked 

combinations of fields where several arrays are layered. These will be referred to with a “+” sign in what follows (e.g. FLD = 

SST+SHR+MSLP, see connector 3 in A2). 

 640 

A1.2. List of climate connectors selected to condition TC activity 

By computing the correlation between TC activity in each of the world’s active basin and the WFLD,i averaged over several 

months covering peak season activity, we can identify PCFLD,i fields that are good candidates to connect climate state and TC 

occurrence (see Fig. 4). After screening these candidates to ensure the physical reasons for the correlation are understood (see 

example in section 2.2.1) we end up with a selection of 13 PCFLD,i physical patterns to characterize a global climate state. The 645 

scalar values below are referred to as climate connectors and are used to condition TC activity globally: 
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Table A.1: list of connectors selected to condition the UTC model. 

Basin Region Variable PCA Period Formulation 

Northern 

Hemisphere  

(NA, WP & EP) 

Global SST PCA 3 
July-

November 

𝐶𝑁𝐴,1(𝑘) =  
1

5
 ∑ 𝑊𝑆𝑆𝑇,3

𝑡=𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟(𝑘)

𝑡=𝐽𝑢𝑙𝑦(𝑘) (𝑡) 

Where k is an index for the year. 

North Atlantic 

(NA) 
NA only MSLP PCA 3 

July-

September 
𝐶𝑁𝐴,2(𝑘) =  

1

3
 ∑ 𝑊𝑀𝑆𝐿𝑃,3

𝑡=𝑂𝑐𝑡𝑜𝑏𝑒𝑟(𝑘)

𝑡=𝐴𝑢𝑔𝑢𝑠𝑡(𝑘) (𝑡) 

North Atlantic NA only 

SST, 

SHR, 

MSLP 

PCA 1 
July-

November 
𝐶𝑁𝐴,3(𝑘) =  

1

3
 ∑ 𝑊𝑆𝑆𝑇+𝑆𝐻𝑅+𝑀𝑆𝐿𝑃,1

𝑡=𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟(𝑘)

𝑡=𝐽𝑢𝑙𝑦(𝑘) (𝑡) 

Western North 

Pacific (WP) 
WP only 

Usteering

, SHR 
PCA 6 April-August idem 

Eastern North 

Pacific (EP) 
EP only 

SST, 

SHR, 

MSLP 

PCA 3 
September-

November 
… 

North Indian 

(NI) 
NI only SHR PCA 9 April-August … 

North Indian 

(NI) 
NI only 

Usteering

, SST 
PCA 6 

March-

September 
… 

Southern 

Hemisphere 
Global SST PCA 3 

January-

March 
… 

South Western 

Indian 
Global SHR PCA 8 

February-

April 
… 

Australia Global 

Usteering

, SST, 

MSLP 

PCA 5 
December-

February 
… 

Australia Australia 
SHR, 

MSLP 
PCA 9 

August-

September 
… 

Southern Pacific Pacific 

Usteering

, SHR, 

MSLP 

PCA 4 
February-

April 
… 

Southern Pacific Pacific 

Usteering

, SHR, 

MSLP 

PCA 8 
January-

March 
… 

 650 
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A1.3. Bayesian Generalized Linear Model for TC annual frequency 

Bayesian Generalized Linear Models (GLMs) are a common approach to model conditional distributions when the training 

data is scarce (Elsner and Jagger, 2004). In this study we use a Poisson GLM to model the conditional distribution of annual 

tropical cyclones in each basin. The λ rate from the Poisson distribution is conditioned on selected climate connectors (see 655 

A1.2). We use TC storm count data by season for the 1980-2020 period to train the relationship between λ and the climate 

state as described by the selected connector values. 

As an example, the simplified model of Fig. 5 is presented below: 

      nTC𝑘  ~ Poisson(𝜆𝑘) 

log(𝜆𝑘) =  𝛽0 + 𝛽1𝐶𝑁𝐴,1(k)     (A.2) 660 

Where k is an index for the season of interest, nTCk represents the number of storms occurring in that year (season). A Poisson 

process is assumed with parameter λk referring to the rate for season k and the logarithm of λk is modelled as a function of the 

July – November average WSST,3 (i.e. connector 1 in A1.2 and the relationship shown in Figure 4).  The parameter vector β = 

( β0, β1) is specified by a multivariate normal distribution as discussed in Elsner and Jagger (2004). 

 665 

The complete model, as implemented in the UTC involves 3 connectors for the North Atlantic basin:  

log(𝜆𝑘) =  𝛽0 + 𝛽1𝐶𝑁𝐴,1(k) + 𝛽2𝐶𝑁𝐴,2(k) + 𝛽3𝐶𝑁𝐴,3(k) (A.3) 

Genesis models for all other active basins follow a similar structure, with the description of connectors involved in each model 

detailed in Table A.1.  

A1.4: Random forests and quantile regression forest algorithms 670 

Supervised learning refers to the sub-group of ML algorithms that require an explicit target during the training phase. When 

trained with a large volume of data, and carefully set up to avoid overfitting issues, these algorithms offer a very powerful tool 

to extract relationships without the need for a human to parametrize and tune their form. In this study we rely mainly on a 

family of such algorithms called random forests, because of their flexibility and robustness with regard to the overfitting issue. 

The building block at the core of the random forest algorithm is the decision tree. Decision trees are essentially a series of 675 

nested if-then statements designed to recursively partition the training data into smaller groups that are more homogeneous 

with regards to the target. They are very popular due to their transparency and ease of interpretation. However, they are also 

known to lack stability and small perturbations in the data can lead to very different tree architectures. 

The random forest algorithm (Breiman 2001) was developed to overcome these limitations, by grouping together a large 

number of decision trees trained under slightly different conditions (random subsets of the input data and features at each tree 680 
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nodes). The resulting ensemble of trees is then used as a cohort and the prediction from the forest is obtained by averaging 

each tree’s vote. This greatly reduces challenges of overfitting and leads to a much more stable algorithm.  

When used on new data to make a prediction, a random forest estimates the mean from the outcome distribution. In some 

cases, such as the example of section 2.2.6, this is sufficient information. However, in other cases it is desirable to retain 

information about the entire outcome distribution rather than simply focus on the mean prediction.  685 

For such cases we leverage an algorithm called quantile regression forest (Meinshausen, 2006), designed to keep the value of 

all observations in the terminal leaves to allow assessment of the full conditional distribution when making prediction on new 

data. This contrasts with the standard random forest where only the mean of observations in the leaves is kept (see Loridan et 

al. 2017 for more details). 

 690 

In section 2.2.6 we use a random forest algorithm to model lysis probability. To train the algorithm we first assign a target 

lysis probability value to all historical TC track points in the IBTRACS database. Note the target probabilities are capped at 

0.5, acknowledging that some ambiguity can exist around the decision to stop reporting an event (i.e. the last point is not an 

exact representation of the time of lysis): 

- Points for which a lysis occurred (last point recorded for a given event) are assigned a value of 0.5. 695 

- Points within 24h of lysis are assigned a value between 0 and 0.5 to reflect the belief that lysis was a likely possibility, 

following a simple linear law: 𝑃𝑙𝑦𝑠𝑖𝑠(𝑡𝑙𝑦𝑠𝑖𝑠 − 𝑡) =  
1

2𝑡
 

- All others points are assigned a value of 0.  

 

We then train a random forest to predict this scalar value. Pressure field and pressure change to previous time step, climate 700 

conditions (MSL, SST, SHR and their spatial gradient at the storm location), topography, time spent overland and distance 

travelled overland are provided to the random forest algorithm to predict the probability of lysis. 

 

Quantile regression forest (qrf) algorithms are the building block of our Markov Chain Monte Carlo (MCMC) modelling of 

event trajectories and intensity evolution. We train the various qrf involved to predict distributions of the hourly changes in 705 

latitude, longitude and center pressure from knowledge of the event parameters at current and previous step as well as the local 

environment (SST, vertical wind shear and steering flow). The end result is a collection of qrf algorithms able to efficiently 

generate conditional distributions on the fly at every event time step knowing the state of the climate, therefore allowing 

sampling of all parameters needed to update the track to its next state (i.e. next center position and intensity).  

  710 
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