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Abstract. Thresholds of motion (𝜏!∗) strongly control bedload transport in gravel-bed rivers. Uncertainty in 𝜏!∗ limits the 10 
accuracy of predictions of transport and morphologic change. To improve our quantitative understanding of morphodynamic 
feedbacks in rivers, we propose a flow history-dependent model where 𝜏!∗ evolves temporally as a function of bed shear 
stress. Relatively low shear stresses strengthen the bed, increasing 𝜏!∗ and reducing transport. Larger floods rapidly weaken 
the bed, decreasing 𝜏!∗ and increasing transport. We calibrate the model to a 23-year record of flow and bedload transport 
from the Erlenbach Torrent, Switzerland, and find that the model predicts the field-based 𝜏!∗ record more accurately than 15 
assuming a constant 𝜏!∗.  Calibrated parameters describing strengthening are more tightly distributed than weakening 
parameters, which suggests that flood-induced bed weakening is more stochastic and less predictable than strengthening.  

1 Introduction 

Erosion, deposition and morphological change in gravel-bed rivers implies bedload transport. Models for bedload 

transport often include a threshold parameter, typically interpreted to represent the onset of sediment motion (e.g., Engelund 20 

& Fredsoe, 1976; Luque & Beek, 1976; Meyer-Peter & Müller, 1948; Wong & Parker, 2006; Shields, 1936; Wiberg & Smith, 

1987). Transport often occurs close to threshold conditions even during floods, making transport rate predictions particularly 

sensitive to threshold values (e.g. Parker, 1978; Phillips & Jerolmack, 2016; Phillips et al., 2022; Pretzlav et al., 2020). Erosion 

thresholds also modulate the mapping of climate onto fluvial processes, informing short- and long-term sediment fluxes and 

the relative importance of extreme events for channel evolution (e.g. Blom et al., 2017; DiBiase & Whipple, 2011; Lague et 25 

al., 2005; Shobe et al., 2018; Tucker & Bras, 2000). 

Early work assumed that, when nondimensionalized accounting for fluid density and grain weight per unit area, 

termed critical Shields stress, 𝜏!∗, that this threshold parameter should attain an essentially constant value for typical conditions 

in gravel-bed rivers (e.g. Buffington & Montgomery, 1997; Shields, 1936). However, Buffington & Montgomery (1997) 

https://doi.org/10.5194/egusphere-2024-3250
Preprint. Discussion started: 10 December 2024
c© Author(s) 2024. CC BY 4.0 License.



2 

showed that 𝜏!∗ varied systematically with the ratio of D50 (median grain size) to flow depth, and argued that a universal 30 

threshold should be applied with caution. More recent work has explored how both flow and grain interactions lead to inherent 

variability in 𝜏!∗. 𝜏!∗ is observed to vary spatially with channel morphology and can be influenced by variations in slope (Lamb 

et al., 2008; Mueller et al., 2005), reach-scale bed morphology (Monsalve & Yager, 2017; Powell & Ashworth, 1995; Roberts 

et al., 2020), and changes in riverbed microtopography (Brayshaw, 1985; Hodge et al., 2019; Kirchner et al., 1990; Masteller 

& Finnegan, 2017; Yager et al., 2018). 35 

Thresholds for motion can also evolve over time. For example, hysteresis in bedload transport rates is often observed 

between the rising and falling limbs of individual floods (Hsu et al., 2011; Mao, 2018; Mao et al., 2014; Pretzlav et al., 2020; 

Reid et al., 1985; Roth et al., 2017). Dynamic threshold evolution over the duration of a flood event is implied by the observed 

change in bedload transport rate. Changes in 𝜏!∗ over multiple events have also been observed, and in most cases, 𝜏!∗ values 

remain correlated across events, indicative of a memory of past conditions (Downs & Soar, 2021.; Hassan et al., 2020; Johnson, 40 

2016; Lenzi et al., 2004; Mao, 2018; Masteller et al., 2019; Rickenmann, 2018, 2020; Saletti et al., 2015; Turowski et al., 

2011). 

Both variable flow strength and sediment supply can influence threshold evolution. Reid et al. (1985) first suggested 

the influence of antecedent flows based on field-based bedload transport monitoring, hypothesizing that longer inter-flood 

durations led to increases in 𝜏!∗ and reduced sediment transport rates. Experiments have confirmed that the magnitude of inter-45 

event flow affects 𝜏!∗ evolution (Haynes & Pender, 2005; Masteller & Finnegan, 2017; Monteith & Pender, 2005; Ockelford 

et al., 2019; Ockelford & Haynes, 2013; Paphitis & Collins, 2005). With little to no active sediment transport, grain-scale 

changes in interlocking and surface reorganization increase particle resistance to motion (Masteller & Finnegan, 2017; 

Ockelford & Haynes, 2013; Yager et al., 2018). Pretzlav et al. (2020) documented systematic discharge-dependent increases 

and decreases in transport thresholds during several weeks of a snowmelt flood, using instrumented “smartrocks” to measure 50 

transport. Reduction of 𝜏!∗ following larger floods has also been documented (Lenzi et al., 2004; Turowski et al., 2009; Yager 

et al., 2012), and has been attributed to significant reorganization of the riverbed. Increased sediment supply from channel 

banks and hillslopes can also be important in destabilizing the bed surface or introducing unconsolidated, more mobile material, 

reducing thresholds of motion (Turowski et al., 2011; Recking et al., 2012; Rickenmann, 2020). Building on observations by 
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Recking et al. (2012), Johnson (2016) developed a model in which 𝜏!∗ evolves as a function of net erosion or deposition, which 55 

are controlled by sediment supply in relation to transport capacity. After calibration to laboratory experiments, the evolving-

𝜏!∗ model successfully predicted how transport rates evolved during disequilibrium conditions caused by sediment pulses. 

Using data from the Erlenbach torrent in Switzerland, Rickenmann (2020) calculated the degree of disequilibrium in 

bedload transport – interpreted to reflect variations in sediment supply – and showed that it correlated with evolving thresholds, 

supporting a supply dependence on thresholds. For the same stream, Masteller et al. (2019) showed that the magnitude of 60 

antecedent flows also influenced the evolution of 𝜏!∗ for individual years. Consistent with experiments, Masteller et al. (2019) 

observed that the start of transport events showed increases in critical Shields stress with increasing inter-event flow magnitude 

(herein termed “strengthening”) for an intermediate range of flows spanning inter-event periods and floods with observable 

sediment transport. However, following even higher-magnitude flows, the threshold for motion decreased (herein termed 

“weakening”). Masteller et al. (2019) hypothesized that the transition from bed strengthening to bed weakening was associated 65 

with a transition from local rearrangement of particles to more intense transport disrupting bed structure via particle collisions 

or long-distance particle transport, modified sediment supply through evacuation of bed sediments (Yager et al., 2012), or 

enhanced hillslope-channel coupling (Golly et al., 2017). Thus, both flow strength and sediment supply likely influence 

thresholds of motion in the Erlenbach torrent (Rickenmann, 2020; Masteller et al., 2019; Turowski et al., 2011), but the ability 

to predict the role of discharge-dependence remains elusive due to a lack of validated models. 70 

While empirical evidence exists for systematic, flow strength-dependent temporal variations in thresholds for motion, 

few equations exist that quantify feedbacks leading to threshold evolution which can be incorporated into existing bedload 

transport models. Johnson’s (2016) model predicts 𝜏!∗ evolution as a function of sediment supply. Nonetheless, this model is 

an incomplete description of 𝜏!∗ evolution because it does not account for riverbed strengthening or weakening directly caused 

by the flow. Our goals in the present work are (i) to propose a new model in which 𝜏!∗ evolves as a function of flow magnitude 75 

and encapsulates some memory of past shear stresses as reflected in the changing state of the riverbed, and (ii) to evaluate 

whether the model can broadly capture annual strengthening and weakening trends as a function of discharge, as observed in 

Erlenbach field data (Masteller et al., 2019). 
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2 Model Development 

Johnson (2016) argued that 𝜏!∗ is a “state variable” for gravel-bed river morphodynamics because it simultaneously 80 

controls transport rates and evolves due to feedbacks with fluid shear stresses and transport rates. In our new model, changes 

in 𝜏!∗ depend not only on discharge-dependent shear stress, but also on the current state of the transport system as characterized 

by 𝜏!∗	itself. The rate of change of 𝜏!∗	depends on two terms, which both evolve as a function of the transport capacity, 𝜏∗ 𝜏!∗⁄ . 

Conceptually, the first term represents the contribution of any strengthening processes that may increase 𝜏!∗, while the second 

term represents any weakening processes that reduce 𝜏!∗:  85 
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 , with 𝜏!,-.∗ = 0.14𝑆/.1 + 0.0075,  𝜏!,23∗ = 1.4𝑆/.1 + 0.075.  (2) 

Shields stress 𝜏∗ is equal to τ/(ρs-ρ)gD, where τ, ρs, ρ, g and D are the dimensional bed shear stress, sediment density, water 

density, gravitational acceleration and median sediment diameter. t is time, and k1 and k2 are scaling factors on the strengthening 90 

and weakening terms of Equation 1, respectively. Exponents γ and ε influence the form and magnitude of the strengthening 

and weakening terms. H is the Heaviside step function (H[τ*/τ*c-1]=0 for  τ*/τ*c<1;  H[τ*/τ*c-1]=1 for τ*/τ*c>=1) such that 

weakening only occurs when transport is predicted. 𝜏!,-.∗  and 𝜏!,23∗  are upper and lower bounds imposed on 𝜏!∗, and S is 

channel reach slope (an approximation of energy or water surface slope). 𝜏!,-.∗  and 𝜏!,23∗  represent physical limits for how 

loosely-packed and mobile, or tightly-packed and immobile, the bed surface can become. Figure S1 shows that the empirical 95 

𝜏!,-.∗  and 𝜏!,23∗  relations in Equation 2 capture the slope-dependence of gravel thresholds of motion compiled in both flume 

and field settings, while asymptoting to reasonable bounds at low channel slopes (e.g. Johnson, 2016; Lamb et al., 2008; 

Prancevic & Lamb, 2015). Our model is similar in form to that of Johnson (2016). 

B is a “feedback parameter” because it contributes to 𝜕𝜏!∗ 𝜕𝑡⁄  being a function of 𝜏!∗ (Johnson, 2016). B has a value 

between 0 and 1, and changes the relative importance of the strengthening and weakening terms, depending on the current 100 
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value of 𝜏!∗ relative to 𝜏!,-.∗  and 𝜏!,23∗  (Fig. 1). A loosely-packed bed, with 𝜏!∗ close to 𝜏!,-.∗  and B close to 1, can strengthen 

significantly in a low flow (increasing 𝜏!∗), but a high flow would not cause a significant decrease in 𝜏!∗. Conversely, a bed that 

was already as tightly-packed as physically possible, with 𝜏!∗ close to 𝜏!,23∗  and B close to 0, cannot further increase 𝜏!∗ in 

response to a low flow, but a destabilizing flood would cause a significant decrease in 𝜏!∗ (Johnson, 2016).   

 Strengthening and weakening terms combine to cause increases and decreases in 𝜕𝜏!∗ 𝜕𝑡⁄  (Fig. 1). The strengthening 105 

term is generally sigmoidal for γ >1; it goes to zero as 𝜏∗ approaches zero, and asymptotes to a value of k1B for 𝜏∗ 𝜏!∗⁄ ≫ 1 

(Fig. 1a). Using a sigmoid allows strengthening over a wide range of flows, but limits how much strengthening can increase 

from changes in grain organization. When 𝜏∗ 𝜏!∗⁄ < 1, flow causes the bed to become stronger but not weaker, consistent with 

previous observations (Haynes & Pender, 2005; Masteller et al., 2019; Masteller & Finnegan, 2017; Monteith & Pender, 2005; 

Ockelford et al., 2019). Strengthening increases as 𝜏∗ 𝜏!∗⁄  approaches 1, consistent with some (Paphitis & Collins, 2005), but 110 

not all previous work (Haynes & Pender, 2007). Strengthening increases further for 𝜏∗ 𝜏!∗⁄ > 1, consistent with protrusion-

dependent thresholds (Masteller and Finnegan, 2017, Yager et al., 2018; Masteller et al., 2019), and with coarse grain 

clustering, which increases bed stability and requires transport to develop (Brayshaw, 1985; Church et al., 1998; Hassan et al., 

2020; Johnson, 2017; Strom et al., 2004). At the same time, as 𝜏∗ 𝜏!∗⁄  exceeds 1, the weakening term becomes increasingly 

important (Fig. 1). The combination of terms results in the transition from strengthening to weakening occurring at different 115 

𝜏∗ 𝜏!∗⁄ , depending on γ, ε, k1, k2, and 𝜏!∗. Higher shear stresses capable of mobilizing more sediment grains can destabilize a 

larger fraction of the bed. Impacts from transported grains may also directly contribute to destabilization (Ancey & Heyman, 

2014; Heyman et al., 2014; Lee & Jerolmack, 2018; Martin et al., 2014). Nonetheless, we note that the model is agnostic 

towards any specific processes driving strengthening and weakening. 

120 
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Figure 1: A) Predicted change in threshold for strengthening (blue) and weakening terms (red) for a range of γ and ε values. k1, k2, 
and B are constant. B) Predicted change in threshold for the full model with a specified B and ε. k1, k2, and γ are held constant. 
This example uses Erlenbach values  𝝉∗𝒄𝒎𝒊𝒏 = 𝟎. 𝟎𝟑𝟔, 𝝉∗𝒄𝒎𝒂𝒙 = 𝟎. 𝟑𝟔.  Perceptually uniform scientific colourmaps were used 
(Crameri et al., 2020).

3 Field application 125 

The Erlenbach is a small (0.7 km2), steep (10% grade) channel in the Swiss Prealps. Bedload transport has been 

actively monitored for over 30 years by a variety of methods (Rickenmann & McArdell, 2007; Rickenmann, 2020). Previous 

analyses have shown that the threshold for motion varies significantly across the span of the record (Masteller et al., 2019; 

Turowski et al., 2011; Yager et al., 2012). Masteller et al. (2019) demonstrated that seasonal trends in 𝜏!∗ were unlikely to be 

random; threshold evolution depends, in part, on the magnitude of past flows.  130 

Our goal is to evaluate how well discharge-dependent shear stress variations alone (Equations 1 and 2) capture first-

order seasonal trends in evolving τ*c from well-constrained field data. We utilize publicly available 23-year, 10-minute interval 

discharge and bedload transport records from the Erlenbach (Rickenmann et al., 2020). To calculate thresholds of motion for 

model comparison, we measure the discharge when the in-channel impact plate system registers grain collisions near the 

beginning of a flow event, following Turowski et al. (2011). Thus, the threshold data are independent of any bedload transport 135 

model. Using a rating curve from discharge to shear stress developed by Yager (2006) and a median grain size, D50 = 8 cm 

(Wyss et al. 2016), the flow and transport time series were nondimensionalized to Shields stress. The median grain size is 
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assumed to have not changed systematically across the Erlenbach record (as discussed by Masteller et al., 2019), although 

hillslope sediment supply may cause grain size variability both during and between transporting events.  

Critical Shields stresses at the start of transport vary by almost an order of magnitude in 𝜏!∗  (0.03 to 0.26). 140 

Strengthening (i.e., a systematic increase in 𝜏!	∗ for at least some portion of a given year) is dominant in 10 of the 23 years (see 

Masteller et al., 2019). Weakening is dominant in 3 years (1992, 2014, 2015), while the remaining 10 years exhibit some 

combination of these behaviors (Fig. 2e-h). 

4 Model parameterization and application 

We implement the model separately to each year’s flow time series, from the first transporting event in the spring 145 

through the fall (following Masteller et al., 2019). We do not calibrate 𝜏!∗ to the single continuous multi-year discharge and 

transport record because the bulk of landsliding occur during the winter months, supplying largely unconstrained amounts of 

sediment to the channel bed from hillslope processes (Schuerch et al., 2006). Hillslope sediment supply variations also occur 

during the rest of the year and likely influence thresholds and transport rates both during and in between the transporting events 

we consider (e.g., Rickenmann, 2020; 2024). As possible evidence of sediment supply effects during inter-event periods, 150 

Turowski et al. (2011) found that threshold discharges were often, though not always, lower at the start of a given flow event 

compared to the threshold discharge at the end of the previous event. This inter-event weakening cannot be captured by the 

model.  Because the model cannot predict every trend in the field data, we focus on the start of events only in order to evaluate 

how well discharge variations alone can improve transport predictions over seasons, consistent with the analysis of Masteller 

et al. (2019). Future analyses could focus on threshold evaluation and model calibration during individual flood events. 155 

Equation 1 has four free parameters: k1, k2, γ, and ε. We assign γ = 2.5±0.4 (at 95% confidence), which we 

independently calibrated using experiments by Paphitis and Collins (2005) over the range 𝜏∗ 𝜏!∗⁄ =	0.5 to 0.9 (Supplementary 

Fig. S2). This leaves three parameters that require calibration. For each year, we explored a range of parameter combinations 

for k1 (1×10-1 to 1×10-5, n = 40), k2 (1×10-1 to 1×10-5, n = 10), and ε (1 to 10, n = 10).  k1 and k2 were varied with log-spacing 

to explore all orders of magnitude equivalently. For each year of the dataset, we ran 16,000 forward simulations, reflecting all 160 

unique parameter combinations of k1, k2, and ε. For each year, we assign an initial 𝜏!∗ value as equal to the observed 𝜏!∗ at the 
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first transport event and calculate changes in 𝜏!∗ based on 10-minute discharge data, until the end of the final observed transport 

event. 

We determined the best-fit parameter combinations that minimized Mean Absolute Error (MAE) to 𝜏!∗ data for each 

year. We use MAE (rather than RMSE) to reduce the influence of any single large difference between the continuous model 165 

predictions and outliers in rather noisy transport data, which only represent the discrete start of each event. “Annual” 

calibrations represent the best-fit parameters for each year. The “average” calibration represents the single best-fit k1, k2, and 

ε values which minimize MAE when MAE is averaged across all sample years, with each year weighted equally. We compare 

both the annual and average best-fit model to a constant 𝜏!∗ (mean Erlenbach 𝜏!∗ = 0.1547, SE = 0.0014).  

5 Results 170 

The annual calibrations show that, for all 23 years, Equation 1 provides a better fit to the data (lower MAE) than the 

mean Erlenbach threshold, 𝜏!∗ = 0.1547 (Fig. 2a). Annual best-fit MAE ranges from 0.0046 (2015) to 0.0293 (1990). The 

median MAE = 0.0134 from the annual calibrations is less than the median MAE = 0.0219 when applying a constant 𝜏!∗	= 

0.1547. Annual best-fit values for k1 ranged from 1×10-5 to 2.73×10-4 with a median value of 5.22×10-5 (Fig. 2b). In contrast, 

annual best-fit k2 values spanned the entire parameter range (1×10-5 to 0.1) with median k2 = 4.12×10-5 (Fig. 2c). Best-fit annual 175 

ε values also spanned the full range of parameter values explored (1 to 10) (Fig. 2c), with median ε = 6 when calculated with 

each year weighted equally.  
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Figure 2: A) Comparison of MAE fits for constant and evolving τ*c values compared to τ*c data from the Erlenbach for both annually 

calibrated and average calibration models. (B-D) Mean and interquartile range of MAE for model runs binned by (B) k1, (C) k2, and 180 

(D) ε parameters. Annually minimum MAE and associated parameters indicated by grey stars. In the event of repeated minimum 

MAE (see discussion), all parameters resulting in a minimized MAE are plotted. (E-H) Example years with (E) strengthening only 

(1988), (F) dominantly weakening, with strengthening as well (2007), (G) dominantly strengthening, with weakening as well (2010), 

and (H) dominantly weakening (2014). Upper panels show the flow time series for each year in blue; model parameter 𝛕𝐜𝐦𝐚𝐱∗  = 0.36 

is also indicated. Feedback parameter B is shown for each year (right-hand y axis). “n” gives the number of models (i.e., parameter 185 

combinations) that minimize MAE and provide an equivalent best fit to the data. Annual best-fit parameters are also specified.   
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The single best-fit value from the “average” MAE analysis was also ε = 6, with average best-fit k1 = 5.22×10-5 and k2

= 4.12×10-5. These best-fit ε, k1, and k2 values are consistent when averaging MAE across all years and when only averaging 

for the eight years with predicted weakening behavior (step drops in 𝜏!∗  > 2%). Model runs using these average best-fit 190 

parameters only perform better than the constant 𝜏!∗ assumption in 12 out of 23 sample years (median MAE = 0.217) (Fig. 2a). 

Both annual and average model performance is generally better for years which only have 𝜏!∗ strengthening, as evidenced by 

annual median MAE = 0.0145 (average median MAE = 0.0198) for these years compared to years with observed weakening 

(annual median MAE = 0.018; average median MAE = 0.0282). In 11 years, multiple combinations of parameters can give the 

same minimum MAE value. Most of these years only have systematic strengthening, not weakening, so models are relatively 195 

insensitive to k2 and ε values, allowing a range of best-fit model parameters. The field data tend to be more variable in years 

with weakening; nonetheless the calibrated model captures first-order, annual trends across a range of scenarios (Fig. 2e-h, 

Fig. S3). Across all examples, the dominance of the strengthening effects is demonstrated by B>0.5. 

Comparison of mean MAE values of all model runs as a function k1, k2, and ε elucidates the relative sensitivity of 

model performance to each parameter (Fig 2 b-d). Model performance was most sensitive to k1 for the parameter space we 200 

explored, with mean MAE values ranging from MAE = 0.0441 at k1 = 8.38×10-5 to MAE = 0.185 at k1 = 0.1, reflecting the 

clustering of best-fit k1 values (Fig. 2b). We note that γ = 2.5 was independently calibrated; it is possible that if our analysis 

also explored a range of γ values, then the range of acceptable k1 may be broader. In contrast, mean MAE values are higher 

and less variable when binned by k2 (MAE = 0.108-0.124) and ε (MAE = 0.113-0.117), suggesting that annual model 

performance is less sensitive to variations in these parameters (Fig. 2b,c). 205 

6 Discussion and Conclusion 

Our flow-history model for 𝜏!∗ (Equations 1, 2) performs better than a constant entrainment threshold, as indicated by 

lower MAE between data and model (Fig. 2a). The model captures both first-order strengthening and weakening trends seen 

in the field data. These include progressive increases in 𝜏!∗   from lower discharges (Fig. 2e), to sudden decreases in 𝜏!∗ 

following a large flood early in the season (Fig. 2f), to a smaller decrease in 𝜏!∗  following a late-season flood after the riverbed 210 

may have had more time to strengthen (Fig. 2g), to intermittent but repeated weakening events across a season (Fig. 2h). When 
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each year is calibrated separately (“annual”), the model unsurprisingly performs better than when using the single set of 

parameters that minimizes MAE averaged across all years (“average”). Nonetheless, the “average” best-fit parameters still 

outperformed a constant 𝜏!∗  assumption in a majority of years – particularly those with seasonal strengthening trends.  

Calibrated model performance varies most with k1, which governs the efficacy of strengthening (Fig. 2b, Eq. 1). γ 215 

also influences strengthening, but was independently calibrated and held constant in our analysis (γ = 2.5; Supplementary Fig. 

S2). At the Erlenbach, sediment-transporting flood events only comprise about 2% of the discharge record (Masteller et al., 

2019). Weakening parameters k2 and ε can only influence 𝜏!∗  evolution during this portion of the record, when 𝜏∗/𝜏!∗  >1 

(Equation 1). High values of ε and B result in 𝜏!∗	weakening only becoming dominant at even higher transport capacities (Fig. 

1). In years without large floods, the strengthening term of Equation 1 dominates for the majority of the year, resulting in 220 

steady increases in 𝜏!∗	, such as in 1988 when floods did not exceed 𝜏∗/𝜏!∗ = 1.64 (Fig. 2e). Therefore, 1988 best-fit models 

were insensitive to k2 and ε, resulting in 248 parameter combinations that minimized MAE (Fig. 2e). More broadly, because 

gravel-bed river geometry has been suggested to adjust so that bankfull flows only just exceed the threshold for motion (Parker 

1978, Phillips and Jerolmack, 2016), weakening processes, which in our model only occur when 𝜏∗/𝜏!∗ > 1, can only reduce 

𝜏!∗	 for a limited fraction of the full discharge record. Thus, we may expect more generally that strengthening processes are 225 

dominant for the majority of the time in gravel river beds relative to weakening processes that may only occur during floods. 

The consequences of this difference in the total time over which strengthening and weakening processes may occur and their 

resultant impact on the time-averaged state of the riverbed, as reflected by 𝜏!∗, is not explored here, but should explored in 

future work. At the Erlenbach, the success of the model in matching annual strengthening trends (Fig. 2a, e-h) with a narrow 

distribution of best-fit k1 values and a single, independently-calibrated value of γ = 2.5 suggests that the physical processes 230 

that are encapsulated in the strengthening term of Equation 1 may be more consistent and predictable across the full discharge 

record in similar field settings and that they may be further interrogated by flume experiments (e.g. Church et al., 1998; 

Masteller & Finnegan, 2017; Ockelford & Haynes, 2013). 

In contrast, calibrations of weakening parameters find much more variability in best-fit ε and k2, and MAE is higher 

for weakening years (Fig. 2a). Annual best-fit results span the full range of both parameters (Fig. 2c,d). High-magnitude floods, 235 

one mechanism that can cause weakening, are relatively rare and short-lived; it is possible that a data set with many more 
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discharge-driven weakening events could more narrowly constrain these variables. However, a simpler interpretation 

consistent with our analysis is that weakening is inherently more stochastic and difficult to predict. Weakening events can be 

de-coupled from flow, for example, if hillslopes supply sediment to the channel during inter-event periods, leading to a 

reduction in 𝜏!∗ at low discharge. Indeed, Masteller et al. (2019) identified a minimum discharge for inter-event strengthening, 240 

below which 𝜏!∗	becomes uncorrelated with flow magntiude. This loss of correlation likely indicates instances where supply 

effects introduce event-scale variability in 𝜏!∗. While this paper focuses on evaluating a discharge-driven model for 𝜏!∗ , it is 

not intended to fully address all factors influencing variability in 𝜏!∗.  The discrepancies between observed 𝜏!∗ and model 

predictions may highlight conditions where sediment supply significantly alters bed mobility, outweighing the flow history 

effects that are addressed here. 245 

Fig. 2e-h illustrates how feedback parameter B controls how 𝜏!∗ changes in response to a given shear stress. Low 𝜏!∗ 

(such as at the start of the 1988 and 2010, and following the large 2007 flood) corresponds to high B, which increases the 

strengthening term and reduces the weakening term (Equations 1,2). As relatively smaller shear stresses lead to progressive 

strengthening, 𝜏!∗ increases, B decreases, and less strengthening occurs for a given increment of shear stress, resulting in a 

gradual rollover in the rate of strengthening through time (e.g., Fig. 2e). Model response (i.e.,	𝜕𝜏!∗/𝜕𝑡) is also influenced by 𝜏!∗ 250 

through changes in transport capacity. For example, under strengthening conditions, even if 𝜏∗ remains constant, increasing 

𝜏!∗	would cause a gradual decrease in 𝜏∗/𝜏!∗, slowing the rate of strengthening. 

Thus, the “memory” in this model is represented by the value of 𝜏!∗, which integrates the effects of the past history of 

both flow conditions and channel bed conditions. Model memories tend to be asymmetric through time in that floods large 

enough to cause significant weakening will rapidly reset the memory to lower 𝜏!∗  values; strengthening can only occur 255 

gradually as it requires the cumulative effects of lower discharges over time. Conceptually, these memory effects relate to 𝜏!∗ 

being a state variable for gravel-bed channels (Johnson, 2016); by knowing 𝜏!∗, one can predict future channel response to 

floods. We view this model as a step towards a more complete understanding of mountain river morphodynamics. Our 

calibrated 𝜏!∗ equation should be useful for improved modeling of channel transport and evolution, and as a component of 

landscape evolution modeling. When high-resolution discharge data is available for field sites, incorporation of a flow-260 
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dependent 𝜏!∗ may improve quantitative predictions of transport in gravel-bed rivers, although calibration to local conditions 

is likely necessary. 

Perhaps the biggest mechanistic limitation of our model is that it only accounts for discharge controls on evolving 

thresholds, even though sediment supply and transport disequilibrium have been shown to explicitly influence transport rates 

in the Erlenbach data (Rickenmann, 2020; 2024). Future work could attempt to disentangle how sediment supply influences 265 

our parameter calibrations. These best-fit model parameter values found in this study could be used as specific predictions to 

be independently tested using other field and flume data. Model performance could also be assessed at the scale of individual 

events using continuous bedload measurements, rather than just thresholds at the start of events as done here. The model does 

not try to isolate granular interaction-based processes that likely cause strengthening and weakening, but rather lumps 

processes together using empirical parameters. Quantifying the systematics, inherent variability, and dominant processes 270 

involved in bed weakening warrants additional study. We suggest that a combination of discharge-based controls on 𝜏!∗ (as 

explored here) and sediment-supply controls on 𝜏!∗ (e.g., Recking, 2012; Johnson, 2016; Rickenmann, 2020; Rickenmann, 

2024) may be able to explain much of the deterministic variability in threshold evolution and sediment transport rates in gravel-

bed rivers. 

Code availability 275 

A working version of the code used to complete the model runs, associated best-fit model runs, and a summary of MAE values 

for all model runs produced during this research are publicly available through Zenodo (Masteller et al., 2024). Due to file 

upload limits of Zenodo, additional model runs are available by request to the corresponding author. 

Note to the Editor and Reviewers – All data will be made publicly availably on Zenodo, however, the data are not yet formally 

published with a DOI. The formally published data will be cited here and linked with a DOI following review. This delay is to 280 

enable edits to the dataset if substantive methodological changes are suggested during the review process resulting in material 

changes to the data. 
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