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Introduction  

We provide three supplementary figures to support the model calibration (Fig. S1, S2) and to 
illustrate model performance (Fig. S3). We provide a description of the calibration of the 𝛾 
parameter in the state function model (Text S1).  

Text S1. Description of the 𝜸 parameter calibration 
Paphitis and Collins (2005) conducted experiments using fine, medium and coarse sand, 

in which they systematically varied both the conditioning time (𝐸!, the duration of flow between 
threshold condition, between 5 and 120 minutes), and also the ratio of shear velocity (𝑢") to 
initial critical shear velocity (𝑢"#$).  The ratio of shear velocities they explored was between 70% 
and 95% of critical, which corresponds to conditioning flow shear stresses between 50% and 
90% of the initial critical shear stress.  Paphitis and Collins (2005) present a rather complex 
equation that they fit to their experimental data: 
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(Equation S1) for    0.7 ≤ %!
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≤ 0.95   and    𝐸! ≤ 120 minutes. 
 

The function they present fits their data with a correlation coefficient of 0.83 (i.e., 
R2=0.69).  To calibrate 𝛾, we calculate 𝑢"#(1) 𝑢"#$⁄  for a range of 𝐸! and 𝑢", using values of 𝑢"#$ 
they report.  We then calculate 𝜏2∗  from 𝑢"#(1). We then numerically calculate the partial 
derivative of equation (S1) with respect to time, 𝜕𝜏2∗ 𝜕𝑡⁄ . Figure S2 shows a nonlinear regression 
(using Matlab’s cftool) of the strengthening term in our model (equation 1) to 𝜕𝜏2∗ 𝜕𝑡⁄  calculated 
from equation S1.  This regression provides a best-fit estimate of 𝛾, including empirical 
regression uncertainties.  Remember that the weakening term in equation (1) is zero for the 
below-threshold flow conditions explored in their experiments, and so the fitting of gamma is not 
influenced by other model parameters, in particular weakening exponent 𝜀. 
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Our reported 95% confidence interval on gamma only represents the empirical 
regression uncertainty when fitting our function (the strengthening term) to their function 
(equation Sx).  Therefore, it is likely that a somewhat wider range of gamma may be able to fit 
the range of their data, and the true range of possible values may be somewhat larger than 
2.5+-0.32.  We hypothesize that a range of 𝛾 =2 to 𝛾 =3 may be possible.   

We use the data and fitting function of Paphitis and Collins (2005) to calibrate 𝛾 because 
it is the most complete and internally consistent data set we are aware of with sufficient 
constraints on how thresholds evolve with both tau*/tau*c and time. Nonetheless, a possible 
limitation of applying these experimental data to calibrate our model and then applying it to 
gravel-bed channels is that the Paphitis and Collins (2005) experiments were conducted with 
unimodal sand.  In particular, boundary Reynolds numbers in their experiments are transitional 
between hydraulically smooth and hydraulically rough flow.  For the coarsest grains they use 
(D50=0.0774 mm), boundary Reynolds number 𝑅𝑒4 = 𝑢"𝑘5 𝜐⁄ ≈ 15 , where 𝑘5 is a roughness 
length scale assumed to be D50, and 𝜐 is the kinematic viscosity of water.  If ks was instead 
assumed to be a multiple of D50 (such as ks=3.5D84) then  𝑅𝑒4 would be closer to the 
hydraulically rough flow criteria of 𝑅𝑒4 ≥ 100.  It is also worth noting that grain size did not 
explicitly factor into equation (S1), beyond its implicit control on 𝑢"#$.  The insensitivity of their 
results to grain size suggests that the results may not depend significantly on grain size or on 
hydraulically rough flow being fully developed.   

 
 
 
 

Figure S1. Field and flume data are weighted equally in the best-fit regression, removing 
possible bias from there being ~3.5 times more flume data points.  Minimum and maximum 
bounds were determined visually to accommodate almost all data points, assuming the best-fit 
exponent (0.36). Compiled data are limited to slopes < 0.2 and D50 ≥ 2 mm. Most data were 
compiled by Prancevic and Lamb (2015), building on Buffington and Montgomery (1997), with 
additional data from Olinde (2015) and Lenzi et al. (2006). 
  



 
 

 
Figure S2. Calibration of strengthening term exponent gamma based on Paphitis and Collins 
(2005).  For both the shortest conditioning time (5 minutes) and longest conditioning time (120 
minutes) spanned by the Paphitis and Collins (2005) data, regressions to their best-fit empirical 
equation give gamma exponents within uncertainty of each other.  
 
  



 

Figure S3. Best-fit model runs for every year on the record. “n” gives the number of models 
(i.e., parameter combinations) that minimize MAE and provide an equivalent best fit to the data. 
Annual best-fit parameters are also specified.   
 
 


