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Abstract

Wetlands are valuable and diverse environments that contribute to a vast range of ecosystem services, such as
flood control, drought resilience, and carbon sequestration. The provision of these ecosystem services depends on
their hydrological functioning, which refers to how water is stored and moved within a wetland environment. Since
the hydrological functions of wetlands vary widely based on location, wetland type, hydrological connectivity,
vegetation, and seasonality, there is no single approach to defining these functions. Consequently, accurately
identifying their hydrological functions to quantify ecosystem services remains challenging. To address this issue,
we investigate the hydrological regimes of wetlands, focusing on water extent, to better understand their
hydrological functions. We achieve this goal using Sentinel-1 SAR imagery and a self-supervised deep learning
model (DeepAqua) to predict surface water extent for 43 Ramsar sites in Sweden between 2020 and 2023. The
prediction results in wetlands grouped into five archetypes based on their hydrological similarity: 'spring-surging',
‘spring-flooded', 'summer-flooded', ‘slow-drying', and ‘summer-dry'. The archetypes represent great
heterogeneity, with flashy regimes being more prominent at higher latitudes and smoother regimes found
preferentially in central and southern Sweden. Additionally, many wetlands show exceptional similarity in the
timing and duration of flooding and drying events, which only became apparent when grouped. We attempt to link
hydrological functions to the archetypes, whereby headwater wetlands, for example, we find that spring-surging
wetlands have the potential to accentuate floods and droughts, while slow-drying wetlands, typical of floodplain
wetlands, are more likely to provide services such as flood attenuation and water storage during low flow
conditions. Additionally, although wetlands can be classified in myriad ways, we propose that classifying wetlands
based on the hydrological regime derived from water surface extent is useful for identifying hydrological functions

specific to the site and season, and when discharge or water depth data is not available. Lastly, we foresee that
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hydrological regime-based classification can be easily applied to other wetland-rich landscapes to better

understand the hydrological functions and identify their respective ecosystem services.

1 Introduction

Wetlands are ecosystems that are seasonally or permanently covered by or saturated with water (Bullock and
Acreman, 2003). After centuries of wetland loss (Fluet-Chouinard et al., 2023), wetlands are now viewed as key
providers of provisioning and regulating services such as forestry, fishing, food production, flood control, drought
resilience, nutrient and sediment retention and carbon sequestration (Ameli and Creed, 2019; Barbier et al., 1997;
Colvin et al., 2019; Johnston, 1991; Matthew et al., 2010; Tang et al., 2020; Villa and Mitsch, 2015). Additionally,
they offer cultural and supporting services (Margaryan et al., 2022; Mitsch et al., 1991; Wood et al., 2024) and are

crucial for achieving the sustainable development goals outlined in Agenda 2030 (Jaramillo et al., 2019).

The degree to which wetland environments provide ecosystem services is largely controlled by their hydrological
functions (Okruszko et al., 2011) or how wetlands store and transfer water. For instance, hydrological functions
such as prolonged water storage contribute to services like flood control and sustaining water supply during low
flow periods (Ahlén et al., 2020; Bullock and Acreman, 2003; Gerakés, 1992). Other functions, such as surface-
ground water exchange, relate to provisioning services such as water supply, while surface wetness and soil
moisture help regulate the local climate and retain nutrients (Ameli and Creed, 2017; Hansson et al., 2005; Le and
Kumar, 2014; Mitsch et al., 2015). Furthermore, large fluctuations of surface water extent are strongly correlated
to fluctuations of methane emissions for boreal wetlands (North of 50°N), which is important for services like

carbon sequestration (Ringeval et al., 2010).

Quantifying the hydrological functions of wetlands and the provision of ecosystem services is challenging as
wetlands are spatiotemporally variable and diverse (McLaughlin and Cohen, 2013). For example, a wetland type
can either reduce or enhance flooding downstream depending on the environmental setting or time of year (Bullock
and Acreman 2003). One way to improve our understanding of wetland hydrological functions and related
ecosystem services is by quantifying their hydrological regime. This refers to the seasonal availability of water
(water, extent, or volume) within a wetland, measured through either in-situ or remote sensing technologies

(Acreman and Holden, 2013; Helmschrot, 2016).
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The analysis of hydrological regimes to understand hydrological functioning usually focuses on rivers and
catchments (Magilligan and Nislow, 2005; Robinson and Sivapalan, 1997). However, over the last two decades,
its application for wetlands has steadily increased (e.g., Cuevas et al., 2024; Stevaux et al., 2020; Na and Li, 2022;
Vilardy et al., 2011). In fact, methods for studying water extent have been driven by the need to quantify ecosystem
services (Park et al., 2022). For instance, by monitoring water level or extent, we can evaluate whether a wetland
is in a water-storing or transmitting state, which influences its ability to attenuate high flows downstream (Spence
et al., 2011; Yanfeng and Guangxin, 2021). Furthermore, analysis of the hydrological regimes based on water
extent and level in Siberian wetlands has enhanced the understanding of how water availability in winter influences
spring flooding (Zakharova et al., 2014). In Europe, Vera-Herrera et al. (2021) demonstrated that grouping
wetlands based on their long-term changes in surface water extent can help to maximize agricultural productivity,
while Ahlén et al (2022) distinguished between the flood buffering capacity of wetlands in upland and downstream

wetlands by studying variations in water level.

When in-situ water level or discharge measurements from water gauges are spatiotemporally sparse, water surface
extent can be used to understand the hydrological regime. Estimating hydrological regimes from water surface
extent is achievable with remote sensing technologies, such as optical or Synthetic Aperture Radar (SAR)
(Graversgaard et al., 2021; Ramsar Convention, 2011; Vera-Herrera et al., 2021). For example, multi-spectral
optical sensors like Sentinel-2 can help estimate surface water extent at a resolution of 10 m (Brown et al., 2022).
Others have exploited the ability of SAR to detect water below flooded vegetation in a range of wetland
environments at similar resolutions (Canisius et al., 2019; Kovacs et al., 2013; Melack and Hess, 2011; Widhalm

et al., 2015; Peiia et al., 2024).

It is widely recognised that although ecosystem services are not undervalued, they are often poorly characterised
and understood in the context of wetlands. Furthermore, generalising hydrological functions and services across
different wetlands is not recommended due to their unique characteristics. Here, we quantify changes in water
surface extent to understand the hydrological regimes of wetlands and determine their hydrological functions,
using the case of Sweden. This study aims to categorise wetlands by their hydrological regime based on recent
water surface extent observations using a remote sensing data and a pre-trained self-supervised deep learning
model called DeepAqua (Pefia et al., 2024). We use the case of 43 Ramsar wetlands as they are well inventoried,
and present good spatiotemporal coverage of SAR data and are of national and international importance due to the

ecosystem services they provide (Gunnarsson and Lofroth, 2014; Ramsar Convention, 2011). We propose that by
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grouping hydrologically similar sites into descriptive archetypes (as suggested by Lane et al., 2018), more
comprehensive insights can be gained about the hydrological regime (and thus functions) than by studying each

wetland's hydrological regime in isolation.

2 Methods

2.1. Wetland dataset description

Sweden has 68 Ramsar wetlands in total (Ramsar Convention, 1971). For this study, we first excluded coastal sites
because coastal wetlands are hydrologically different from inland wetlands and should therefore be studied
separately. Sites with a total area exceeding 180,000 ha were also excluded due to computational and memory
limitations when computing water extent changes with deep learning. Further exclusions were made for sites with
low SAR data availability, defined here as fewer than one acquisition every 14 days, resulting from processing
challenges such as significant orbit gaps, incomplete bursts, and the loss of Sentinel-1B in December 2021. This
left 43 Ramsar sites suitable for hydrological regime analysis, and each site was delimited based on the boundaries

of the Ramsar Convention (Ramsar Convention - Sweden, 2023) (Fig. 1).

The sites are distributed throughout all regions in Sweden, albeit with a higher concentration of sites in central and
southern Sweden. Site areas range between 200 ha and 28,900 ha and encompass various wetland types, including
marshes, fens, bogs, mires, palsa mires, lakes, streams, wetland forests, peatlands, and shrub wetlands. For these
wetlands, during the observation period (2020-2023), the average temperature and precipitation were 5.76°C and
706.5 mm, which were 0.68°C warmer and 25.6 mm wetter on average compared to the 1990-2020 climate normal
(Johansson, 2002). Additionally, the mean number of snow days in Sweden between 2020-2023 was 108.0, which
is 12.3 days less compared to the last climate normal (Climate indicator - Snow, 2024). Daily precipitation from
the Copernicus Climate Change Service E-OBS ensemble (0.1° grid) for each Ramsar site is available in Figs A7-

11 (Cornes et al., 2018).
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Figure 1. Spatial distribution of Ramsar wetland study sites (grey polygons) in terms of (a) Elevation from a 50m
resolution DEM by Landmditeriet (grey thin lines denote main catchments), (b) Average precipitation in mm/yr, and (c)
Average temperature in °C between 2020 and 2023. Temperature and precipitation data were obtained from the
Precipitation Temperature Hydrological Agency's Water Model (PTHBYV), available at the Swedish Meteorological and
Hydrological Institute (SMHI).

2.2. Wetland characteristics

To place the wetlands into an environmental context, we tabulated each site's latitude, elevation, open water as a
percentage of the total area, and general wetland type (Fig. 8). The elevation was calculated as the average
elevation (m.a.s.l) derived from the Digital Elevation Model 50m (Markhdjdmodell Nedladdning, grid 50+)
(Lantmateriet, 2022) within the wetland boundary. Open water extent for each wetland was calculated for every
month in 2023 using monthly composites of Normalised Difference Water Index (NDWI) binary (water/non-

water) masks from Sentinel-2 optical imagery.
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The wetland type was estimated using the following databases of wetland classification: (1) The Ramsar
Convention database for sites in Sweden, (2) the National Wetland Inventory for Sweden (VMI) (Gunnarsson and
Lbfroth, 2009), and (3) an updated satellite-based open wetland mapping classification from 2018-2022 (Hahn and
Wester, 2023). Each wetland was assigned a generic wetland class adapted from Gunnarsson and Lofroth (2014):
'open’, 'limnic', 'mixed', or 'mire'. 'Open' refers to meadows, grasslands, and temporarily flooded land, 'limnic' refers
to lake shores, beaches by watercourses, overgrown lakes, and limnogeneous beach complexes. 'Mixed' wetlands
are regarded as a combination of multiple wetland types and may include different mires with open or limnic
wetland environments. A 'mire' wetland consists primarily of bogs and fens. A fifth wetland type, 'fjd/l' (mountain),

was assigned to wetlands located in Sweden's mountainous regions as they are not classified in the datasets.

2.3. Hydrological regime given by water surface extent analysis

We estimated the hydrological regime from water extent using an automated approach based on remote sensing
data. Automatic surface water detection was done with a deep-learning image segmentation model called
DeepAqua (Pea et al., 2024). DeepAqua is a self-supervised model with the principal function of detecting surface
water extent in wetlands from Sentinel-1 SAR imagery in the VH polarisation. DeepAqua can detect both open
and vegetated water using the C-band SAR sensor onboard Sentinel-1, which can penetrate some types of perennial
vegetation due to its emission of longer wavelength radar waves (5.6 cm) (Adeli et al., 2021). Usually, semantic
segmentation models require manually labelled images as their training label output. With DeepAqua however,
the training labels are binary images (water/non-water) of the NDWI based on cloud-free Sentinel-2 optical
imagery of the same location and time as the input training data (SAR imagery), since both missions have a ~1
week repeat cycle over Sweden (~1-2 passes per week between 2020 and 2022, after which spatiotemporal
coverage is reduced to ~10-12 days due to the failure of the Sentinel-1B satellite). For our analysis, we applied the
pre-trained DeepAqua model (version name: ‘big-2020°) without any fine-tuning. The model was originally
trained on a Sentinel-1 and Sentinel-2-based NDWI binary image over central Sweden from the 5™ June 2018.
When the pre-trained model was tested on three wetlands in Sweden (Pefia et al., 2024), DeepAqua outperformed
existing land classification models such as Dynamic World (Brown et al., 2022) and thresholding techniques such
as Otsu (Otsu, 1979) on multiple evaluation metrics such as pixel accuracy, intersection over union, precision, and

F1.

The SAR imagery used as input to DeepAqua for surface water detection was obtained from Google Earth Engine

following basic pre-processing steps: orbit file correction, border noise removal, thermal noise removal, and
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orthorectification. The output predictions comprised polygonised binary water/non-water images for every
Sentinel-1 image available between January 2020 and August 2023, cropped to within the boundaries of each
wetland. The total water area for each image was calculated based on the WGS84 UTM Zone 33N projection
(Figures A2-A6). The monthly average of water extent between January 2020 and August 2023 was calculated to
reduce the risk of annual variability affecting potential clustering while aiming to detect hydrological regimes
under 'average' conditions. Due to extensive snow and ice cover complicating the water extent predictions, winter
months (November, December, January, and February) were removed from the hydrological regime analysis. All

water extent data and corresponding SAR acquisition dates are provided in the supplementary information.

Lastly, due to the lack of ground truth data on temporally dynamic wetland water extent within our Ramsar sites,
we validate our water extent predictions using two alternative approaches. Firstly, we compare DeepAqua’s
predicted water extent with manually delineated water extent derived from Sentinel-1 SAR imagery in the VH
polarisation for a systematic sample of wetlands for all available images during 2021. To ensure a representative
yet unbiased sample, we selected one wetland from each resulting archetype, covering a broad range of wetland
types, sizes, and latitudes. Manual delineation was performed by an interpreter experienced in SAR imagery
analysis and conducted blind (without prior exposure to DeepAqua predictions). For the second approach, we
assess the accuracy of the predicted hydrological regimes by comparing them to daily discharge data from nearby
active stations provided by the Global Runoff Data Centre (GRDC) and SMHI. In total, there were 23 sites with
available discharge data either upstream, downstream, or on-site of the wetland. For both approaches, we calculate
the error between the DeepAqua predictions to (1) manually delineated water extent and (2) daily discharge using
the normalised root mean square error (NRMSE). We normalise the root mean square error (RMSE) to the range
of water extent to discount the total area from the error result and to make each wetland comparable with the

others.

2.4. Cluster Analysis

The hydrological regimes based on DeepAqua’s water extent predictions (Section 2.3) were clustered based on
their hydrological similarity using a multivariate K-means cluster analysis technique and means of visual
interpretation. K-means clustering is a widely used and simple unsupervised machine learning technique in which
groups are identified based on the Euclidean distance between a data point and a centroid (a mean of the data)
(Everitt et al., 2011). To ensure reproducibility, we set the random seed to 42, preventing variations in the

clustering results between runs. In order to conduct a cluster analysis, data points that characterise the hydrological
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regime given by water extent are required. We calculated several hydrological parameters based on each
hydrological regime and used them as the input data points (Table Al). The hydrological parameters included
known hydrological signatures (Olden and Poff, 2003) and custom parameters to describe the hydrological regime
in terms of duration, timing, frequency, magnitude, and rate of change. The optimal number of clusters (k) was
chosen based on the inflection point on the Elbow Curve, which calculates the within-cluster-sum-of-squares
(WCSS) for a range of cluster sizes from 1 to n. The inflection point on the Elbow Curve is interpreted at the
optimum number of clusters since it indicates the point where adding more clusters results in a diminishing
reduction in WCSS. The best-performing parameters were picked using visual inspection (inspecting their ability
to cluster the regimes) and validated against multicollinearity using the Variance Inflation Factor (VIF). The VIF
measures the degree of multicollinearity of one hydrological parameter with all other parameters by calculating
how much the variance of the regression coefficient increases due to correlation with other independent variables.
We recognise that there is some degree of inherent correlation between the hydrological parameters since they are
descriptors of the same hydrological regime. Therefore, we used a VIF value of <10 as an indicator that the
hydrological parameters were not highly multicollinear and did not describe the same regime characteristic (Figure

5a).

The emerging pattern given by the Elbow Curve indicated that individual hydrological regimes among wetlands
were best grouped when k = 4-6 (Figure Al). Upon visual inspection, £ = 5 was chosen as the best possible
distribution of wetlands into roughly equal-sized groups. The number of sites in each cluster ranged between 6 and
15. Each hydrological parameter was tested individually and in combination with other parameters to see how
effectively they helped cluster the wetlands. Certain variables, such as the maximum month, dominated the
clustering over other indices, and some index pairs were extremely collinear, such as maximum month and
minimum month, or Spring/Summer slope difference and slope variation. Therefore, these pairs could not be used

together for the final clustering analysis.

3 Results and Analysis
3.1. Surface water extent validation

When comparing water extent predictions from DeepAqua to manually delineated water extent to a systematic
sample of wetlands, we find that predicted water extent performs well with their manually delineated counterparts

(Fig. 2). Hjdlstaviken and Ddttern wetlands had the lowest NRMSE with 0.04 and 0.07, respectively, whereas
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Maanavuoma wetland exhibited the highest error between the manually delineated water extent and the DeepAqua
prediction with a NRMSE of 0.12. The majority of error between the DeepAqua’s and the manual water extent
estimates originates from the spring and autumn months for many of the sampled wetlands. This is particularly
apparent in Maanavuoma and Tyséarna wetlands. In both cases, the water extent is underestimated by DeepAqua

compared to the manual estimate. In Store mosse wetland, DeepAqua tends to overestimate wetland water extent
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Figure 2. (a-¢) Comparison between monthly water surface extent from DeepAqua predictions and manual delineation
in 2021. (f) Values of Normalised Root Mean Square Error (NRMSE; RSME divided by the range in wetland extent)
between manually delineated and DeepAqua predictions.

compared to when the water extent is manually delineated. Overall, all five sampled sites have strong agreement
in the shape and magnitude of the hydrological regime, indicating that DeepAqua captures the seasonal

hydrological characteristics with good accuracy (Fig. 2f).

To enhance the strength of our validation approach, we compared the wetland hydrological regimes to in-situ daily

discharge measurements. Among the 23 wetlands with available discharge data, three had an active gauging station
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located upstream, two had onsite stations and sixteen had stations situated downstream (Fig. 3a). Of these, eight
sites featured regulatory structures (e.g., dams, weirs, or culverts) along their river courses, which may disrupt the
natural flow regime and weaken the correlation between wetland water surface extent and stream discharge. In
general, stations with lower mean discharge returned lower NRMSE values between water extent and discharge
(Fig. 3b). However, the relationship is weak (R? = 0.17) and based on a limited number of observations (n = 23).
Most sites cluster in the bottom-left portion of the plot, with a few high-discharge, high-NRMSE outliers in the
top-right. Regulated and non-regulated sites are distributed throughout, with no strong visual separation, although

none of the regulated sites exhibit low discharge-low NRMSE values.
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Figure 3. (a) - NRMSE between daily discharge and wetland water extent for the 23 wetlands with available discharge
data. Green boxes indicate the interquartile range (IQR), whiskers represent the range, and orange lines show the mean
NRMSE. (b) Mean NRMSE versus mean discharge for each wetland, calculated over matching dates from January
2020 to August 2023. Wetlands with regulated flow paths between the wetland pour point(s) and discharge station are
indicated by black outlines.
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Fig. 4 presents a sample of wetlands
with discharge data either upstream or
downstream and unregulated flow. In
general, daily discharge replicates the
shape of the wetland’s hydrological
regime. The correlation between river
discharge and wetland hydrological
regime is particularly apparent for
Tjalmejaure-Laisdalen (NRMSE
39.49), Osten (NRMSE 31.40), and
Helge a (NRMSE 12.70) wetlands,
whereby increased discharge matches
well with increased water extent in the
spring months, followed by relatively

reduced flow thereafter.

Figure 4. Left panel: Comparison of
water surface extent and discharge
from on-site, upstream, or downstream
stations for corresponding dates in
Maanavuoma, Storkolen,
Tjilmejaure- Laisdalen, Osten, and
Helge a wetlands from January 2020 to
August 2023  (excluding  winter
months). The GRDC station IDs are
shown in the upper left of each plot.
Right panel: Wetland boundaries
(green polygons) as defined by the
Ramsar Convention, with discharge
stations (black rings), watercourses
between the station and wetland (thick
blue) and other watercourses (thin
blue).

Although Tjalmejaure-Laisdalen and its corresponding downstream station are separated by ~116 km of

watercourses, the discharge data agrees well with the wetland water extent. For Maanavuoma wetland (NRMSE

0.92), data from the discharge station situated ~15 km upstream agrees with water surface extent in 2020 and 2021.

However, the spring surge of water in 2022 and 2023 that is present in the river is not experienced by the wetland.
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Lastly, they also agree well in Storkélen wetland (NRMSE 9.37) despite greater interannual variability compared
to other sites. Notably, both time series show a pronounced peak between April and May 2021, reflecting a

concurrent increase in wetland water extent.

3.2. Cluster Analysis

Based on the surface water extent data, we conducted a cluster analysis to explore patterns in the shape and
dynamics of wetland hydrological regimes. From all parameters assessed, skewness, kurtosis, normalised
maximum slope, number of peaks and baseline month fraction (Fig. 5a) were found to collectively capture key
regime characteristics (Fig. 5b). Upon visual inspection, regimes with similar shapes were grouped together while
also maintaining the desired VIF condition (<10) with values of 3.96, 1.60, 4.07, 3.01, and 6.54 for skewness,
kurtosis, maximum slope, number of peaks and baseline month fraction, respectively. These values indicate a
reasonable level of non-multicollinearity between all other variables. The chosen parameter combination
successfully clusters related hydrological regimes into five different archetypes, with the number of sites (n) in
each archetype as follows: 'spring surging' (n=6), 'spring flooded' (n=8), 'summer flooded’ (n=8), 'slow drying’
(n=15) and 'summer dry' (n=6). Support for the archetype names is given by the hydrological parameter results

which have been averaged by the archetype and are described in Section 3.3.
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parameter value
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Figure 5. (a) Overview of the chosen parameter (unitless) combination (averaged by archetype) used for the final cluster
analysis of the hydrological regimes given by water extent and the VIF value for each parameter. (b) Graphical
representation of the five selected hydrological parameters used to describe the characteristics of the hydrological
regime for the final cluster analysis. (c-g) Radar plots for for final hydrological parameters averaged by archetype.
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3.3. Hydrological archetype analysis

The overall spatial distribution of the archetypes and thematic graphic descriptions of the hydrological regime

given by water surface extent is presented in Fig. 6. The spring-surging (Fig. 6a) are only found in northern Sweden

and have flashy hydrological regimes, consisting of a dry baseline condition and a brief period of increased water

extent. Spring-flooded wetlands (Fig. 6b) are limited to southern and central Sweden. The hydrological regime of
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these wetlands resembles that of spring-
surging wetlands, although they have a
relatively longer spring peak. Summer-
flooded wetlands (Fig. 6¢) remain
inundated from May to October after a
rapid wetting period and are spread

across Sweden. Southern Sweden's

slow-drying wetlands (Fig. 6d) exhibit

steadily  decreasing water extent

throughout the summer, reaching

minimum water extent in autumn.

Lastly, summer-dry wetlands (Fig. 6e)
exhibit the maximum wetland extent in

April, generally

preceding dry

conditions until September-October.

Figure 6. Spatial distribution of
hydrological archetypes for sampled
Ramsar wetlands in Sweden (n=43) and
representation of their hydrological
regime through March and October; (a)
Spring surging wetlands (n=6), (b) Spring
flooded wetlands (n=8), (¢) Summer
flooded wetlands (n=8), (d) Slow drying
wetlands (n=15) and (e¢) Summer dry
wetlands (n=6).

One of the most distinctive differences

between archetypes is the magnitude of water extent at the beginning of Spring. For instance, slow-drying and

summer-dry archetypes already have large water extents in March and, therefore, do not undergo a rapidly
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inundating period during Spring or Summer. The lack of any inundation period is reflected in the normalised
maximum slope values (Fig. 5f,g), which are the lowest out of all archetypes, suggesting smaller changes in water
extent across the year (0.21, and 0.14 for summer-dry and slow-drying, respectively). Additionally, archetypes
with large water extent in Spring tend to be found in central and southern Sweden, while archetypes such as spring-
surging and summer-flooded wetlands start with a small water extent in March preceding a rapid inundation period.
These archetypes, with higher normalised maximum slope values of 0.59 and 0.77, respectively, are more abundant

in the north (Fig. 5c,e).

A second defining feature between different archetypes is the duration of the dry period (baseline fraction), defined
by months with water extent within the 25" percentile of the range. Archetypes with a significant dry period, such
as summer-dry, spring-surging and slow-drying wetlands, have high baseline month fractions (0.65, 0.63 and 0.66,
respectively) and positive skewness (1.14, 1.45, and 1.58, respectively), which indicates that wet conditions are
limited to the spring months (Fig. 5g,c,f). Conversely, with a negative skewness and low baseline month fraction
(-1.60 and 0.17, respectively; Fig. 5¢), summer-flooded wetlands are the only archetype that retains its large water

extent throughout the year.

The resulting archetypes show how wetland hydrological regimes can be broadly differentiated into two primary
‘modes’: peaky and smooth. We define peaky regimes as those with large fluctuations in water extent, while smooth
regimes follow more consistent, gradual changes in monthly water extent. Peaky archetypes, such as spring-
surging (Fig. 7a) and summer-flooded wetlands (Fig. 7¢), exhibit relatively high values of kurtosis (2.27 and 2.93,
respectively), maximum slope (0.59 and 0.77, respectively), and the number of peaks (1.2 and 1.0, respectively).
On the other hand, smooth archetypes, like slow-drying and summer-dry wetlands are characterised by relatively
stable water extent from March to October (Fig. 7d,e). Spring-flooded wetlands share some traits with peaky
archetypes, particularly a marked increase in water extent during spring (Fig. 7b) and high normalised slope values
(0.70). However, they differ from typical spring-or summer-flooded wetlands in having a low average kurtosis (-
0.04), which suggests a more even distribution of water extent over time. Although we refer to peaky archetypes
here, it is important to note that the number of peaks is not necessarily descriptive of just peakedness (kurtosis).
For instance, slow-drying wetlands have high kurtosis (2.03) yet few peaks on average (0.2), indicating that

although they experience large variability in water extent, there is no distinguishable wet month.
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7e). Spring-surging wetlands are also considered a homogenous archetype, since they are located primarily in high
latitude regions (Fig. 8a), are mainly fjill wetlands, and tend to have little variability in their hydrological regime
(Fig. 7a). In contrast, spring-flooded and summer-flooded wetlands are found all over Sweden, across a range of
elevations (Fig. 8b) and encompass many different wetland types. This highlights that hydrological regimes are
not always associated with a specific wetland type, but rather depend on the broader archetype to which the wetland

belongs.

Despite the varying degrees of diversity within archetypes, grouping wetlands into archetypes still reveals a
remarkable similarity in the timing of key features of their hydrological regimes. For instance, most summer-
flooded wetlands reach low water extent by May or June, despite varying rates of drying for the rest of the year.
This indicates that the hydrological parameters correctly capture timing characteristics, even across archetypes

with more heterogeneity, such as summer-flooded wetlands.
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4 Discussion

4.1. The value of archetypes for understanding wetland hydrology
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Figure 8. (a-c) Wetland
topographical and
ecological characteristics
per archetype. The boxes
represent the
interquartile range (IQR),
with orange lines
indicating the mean value
across all wetlands within
each archetype. Whiskers
outline the range, and
small black circles denote
wetlands with anomalous
results compared to the
rest of the archetype. (d)
Stacked bar plot showing
the occurrence of wetland
types (fjill, limnic, mire,
mixed or open) per cluster
as a percentage of the total
number of sites in each

archetype.

One of the defining features for most archetypes was the timing of large changes in surface water extent, which

only became apparent when the sites were grouped into archetypes. This highlights the usefulness of employing

archetypes in hydrological studies, as hydrological regimes may not be best evaluated across sites when using a

single parameter (Cutler and and Breiman, 1994; Huggins et al., 2024; Piemontese et al., 2020). Although our

classification was based solely on surface water dynamics, it also inevitably captured the cumulative effects of

other environmental factors, such as vegetation, soil type and climate. The archetype approach to classification is
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further supported by Bullock and Acreman (2003), who concluded that grouping wetlands based on their local
classification term is less intuitive than grouping them by hydrological characteristics. This suggests that the
hydrological perspective is a valuable lens for understanding ecosystem services of wetlands, especially when

complemented with other environmental data (Okruszko et al., 2011; Poff et al., 1997).

4.2. Methodological considerations

Despite the overall success of the classification, not all wetlands were easily categorised. We suggest that there
are two main reasons for this. First, the hydrological regimes of some wetlands may form a continuum rather than
falling into clearly separated categories, making strict archetype assignment challenging. Second, the limited scope
of the wetland database used for clustering might have excluded the existence of additional archetypes that could
emerge from a broader dataset. It is also important to note that our archetypes were defined from ~four years of
monthly water extent data, representing only the observed period. This relatively short-term record is unlikely to
capture the full range of long-term hydrological variability. Longer observational periods are necessary for

determining extended trends and assessing the impact of changing climatological conditions.

Our results were also shaped by the choice of sensor. Using water extent as our key measurement, SAR imagery
provided dense spatiotemporal coverage across 43 wetland sites, which can be applied to any wetland larger than
200 ha. The reliance on remote sensing is driven by a lack of in situ data, which would have partly or wholly
missed the hydrological regime signatures for most of the chosen wetlands in this study. However, this also limits
the generalisability of our findings, since smaller wetlands may differ hydrologically and therefore may not
conform to our archetype distribution. In addition, Sentinel-1 SAR has intrinsic limitations. C-band wavelengths
likely underestimate surface water extent in wetlands, particularly under dense vegetation (Adeli et al., 2021).
Surface water detection would therefore benefit from longer-wavelength radar, such as that on the NISAR mission

launched in July 2025.

To efficiently process large volumes of remotely sensed data, we chose an automatic deep learning-based approach
(DeepAqua) to detect water extent without the need for extensive manual annotation. However, DeepAqua was
trained on a limited number of SAR scenes, therefore it could only produce accurate predictions for the period
January 2020 and August 2023. Future model development should aim for greater temporal generalisability and
reduced sensitivity to changes in Sentinel-1 backscatter distributions, enabling the use of the >10 years of Sentinel-

1 data currently available.
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An additional assumption of our study is that surface water extent is analogous to total water storage, which may
not be true for mire types (Acreman and Holden, 2013) or topographically constrained wetlands. Therefore,
including water level data from hydrogeodetic technologies such as water levels from the Surface Water and Ocean
Topography (SWOT) mission (Hamoudzadeh et al., 2024) or soil moisture observations (Mupepi et al., 2024)
could improve hydrological regime classification, especially for seasonal wetlands (see more examples in

Jaramillo et al., 2024).

Finally, other hydrological variables could improve the explanatory power of the archetypes. Snow and ice
interfere with SAR-based water detection methods, which leave winter hydrology poorly observed. Limited
availability of discharge stations further restricts observational validation. Incorporating additional data such as
groundwater inputs, evapotranspiration, and hydrological connectivity metrics could provide a more complete

picture of wetland hydrology.

4.3. Controls and variability in wetland hydrological behaviour

Although detailed exploration of the physical drivers of the observed hydrological regimes is beyond this study's
scope, we theorise that factors such as position within the watershed and surface connectivity contribute to at least
some extent. For example, spring-surging wetlands, with few surface water inlets, rely mainly on snowmelt and
tend to dry rapidly, while summer-flooded wetlands benefit from multiple inflows and sustain inundation longer
(Lane et al., 2018). Secondly, wetlands located in headwater regions, like spring-surging and summer-flooded
wetlands, experience rapid flood peaks characteristic of upper catchment water flows. This is in contrast to
wetlands such as those within the slow-drying archetype, which are located in the lower parts of the catchment
and are therefore linked to less pronounced flood peaks (Morley et al., 2011). Similar seasonal patterns have been
described for downstream wetlands in climates with high winter precipitation, where water levels remain high
from November to April before declining during summer and rising again at the onset of the wet season (Lane et
al., 2018). These dynamics also correspond to the winter-rainfall catchments in Sweden identified by (Matti et al.,

2017), which generally experience flood peaks early in the year and/or after autumn.

It should also be acknowledged that hydroclimatic variability plays a critical role in shaping wetland hydrological
regimes and represents an important consideration for the interpretation of our archetypes. On interannual and

seasonal time scales, fluctuations in precipitation, snowmelt, and evapotranspiration strongly influence wetland
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hydroperiods (Jaramillo et al., 2018; Winter, 2000). For instance, snow-affected wetlandscapes typically reach
maximum inundation extent later in spring—similar to our spring-surging wetlands, while rain-fed wetlandscapes
peak earlier in the year, resembling closely the regime of slow-drying wetlands (Park et al., 2022). Latitudinal
gradients in inundation duration, with shorter hydroperiods in northern Sweden and longer ones in the South

(Prigent et al., 2001), broadly align with our results.

On a climatic temporal scale, warming trends and increasing dryness index have been observed in Swedish
wetlandscapes since the 1970s, suggesting that there is a greater evaporative demand and reduced water storage in
wetlands, especially during summer (Ahlén et al., 2021). These observations also align with model projections
showing substantial summer drying and reduced wetland extent in North America under high-emission scenarios
due to evapotranspiration exceeding precipitation input (Xu et al., 2024). Similarly, Xi et al., 2021 projected future
declines in inland wetland area across Europe, though with a higher degree of uncertainty in Scandinavia.
Furthermore, hydrological stability will likely be reduced in the future, with modelled studies of prairie pothole
wetlands showing diminished monthly-scale stability in water storage under uncertain climate conditions (Zhang

etal., 2011).

Despite this, the degree to which wetlands are vulnerable to such changes is dependent on their dominant water
sources and topographical setting. For example, wetlands that are reliant on direct precipitation or snowmelt, such
as spring-surging wetlands, are more sensitive to hydroclimatic variability, while wetlands sustained by regional
groundwater inputs on larger floodplains (like slow-drying or spring-flooded wetlands) have greater buffering
capacity to hydroclimatic change (Winter, 2000). These findings highlight the need for long-term observations and

the integration of hydroclimatic data when interpreting wetland hydrology in future work.

4.4. Hydrological regimes as indications of ecosystem services

In this study, we quantified the hydrological regimes of Swedish wetlands to better understand their hydrological
functions, which are closely tied to the ecosystem services they provide. Inland wetlands are estimated to
contribute approximately US$27 trillion annually in ecosystem service value, with the majority of the value

deriving from water regulating services (Davidson et al., 2019).

We theorise that hydrological regimes can serve as indicators of the hydrological ecosystem services a wetland

may deliver at any given time. For instance, spring-surging wetlands, which are characterised by high water extent
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during spring and low extent during summer, resemble headwater wetlands, which are known to increase high
water flows during the wet season while retaining baseflow during the dry season (Bullock and Acreman, 2003).
This suggests they may contribute less to flood mitigation and, in some cases, exacerbate flooding (Ahlén et al.,
2022), a pattern supported by the Ramsar site descriptions, where no wetlands in the spring surging archetype list
flood control as a key service. Similar observations have also been made in wetland-rich headwater catchments in
central Europe, which exhibit rapid activation of pre-event water, indicating an ability to quickly mobilise
floodwaters (Votrubova et al., 2017). Nevertheless, headwater wetlands can provide temporary flood storage
(Kadykalo and Findlay, 2016), but confirming such dynamics requires temporally dense water extent observations

to capture lag times between water storage and downstream flows.

Conversely, slow-drying wetlands exhibit traits more typical of floodplain wetlands, which are well-documented
in their role in flood reduction and water retention (Acreman and Holden, 2013; Golden et al., 2021; Opperman et
al., 2010). The gradual reduction of water extent in these wetlands may suggest sustained water storage, likely
contributing to both flood peak attenuation and maintaining summer baseflows. This aligns with Ahlén et al.
(2022), who suggest that downstream wetlands in central Sweden remain relatively dry during summer while
maintaining high buffering capacity. The Ramsar site descriptions for slow-drying wetlands further support this,
since the majority of them have flood control and/or water storage listed as a known ecosystem service.
Additionally, Doherty et al., 2014 suggest that wetlands with periodically dry soils (such as slow-drying or
summer-dry wetlands) slow down flows and can remove large volumes of water from the system. Although we
did not perform a detailed analysis of ecosystem service delivery or have dense downstream discharge data
(Andersson, 2012), our results offer a foundation for prioritising wetlands for future conservation or Ramsar

designation, particularly in flood-prone or drought-prone regions.

Another strength of hydrological regime classification is its ability to infer hydrological functions at different times
of the year, recognising that wetland functions are not static in time or space (Spence et al., 2011). For example,
variability in water extent can signal the transition between water storage and runoff-dominated states (Yanfeng
and Guangxin, 2021). Flashy water extent variability observed in spring-surging, spring-flooded, and to a lesser
extent, summer-flooded wetlands, suggests a switch to conditions where wetlands act as conduits rather than
reservoirs. This may result from frozen ground hindering water storage in soils (Yanfeng and Guangxin, 2021) or
the dominance of rapid snowmelt inputs (Spence et al., 2011). However, further investigation combining water

level, connectivity analyses and catchment precipitation data would be needed to verify these hypotheses.
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Aside from hydrological-related ecosystem services, wetlands offer other valuable ecosystem services that are also
linked to their hydrological regimes, such as biodiversity and carbon sequestration (Okruszko et al., 2011).
Hydrological variability is a major driver of wetland biodiversity due to species’ water tolerance thresholds.
Additionally, wetlands classified under the 'northern' archetypes are particularly significant carbon sinks, as
evidenced in Ramsar site records. Differentiating hydrological regimes in carbon-sequestering wetlands or those
with particularly rich biodiversity could improve our understanding of their role in the delivery of other ecosystem

services (Kirpotin et al., 2011).

5 Conclusion

This research aimed to improve our understanding of wetlands by revealing their hydrological regimes using
remotely sensed data on water surface extent. We chose an automatic detection method based on Sentinel-1 SAR
imagery because it can operate in cloudy and dark conditions and detect more water under vegetation compared
to optical-based methods. The hydrological regimes were grouped based on similar hydrological characteristics
identified by custom hydrological parameters. For 43 Ramsar sites in Sweden, the hydrological regimes based on
monthly water extent between 2020 and 2023 could be grouped into five distinct archetypes. The defining traits
were mainly related to the timing of change and the duration of wet and dry periods. Despite heterogeneity in the
archetypes' spatial distribution, flashy archetypes with high water extent variability were preferentially found at
higher elevations and latitudes, while less variable and drier archetypes were concentrated towards low elevations
and latitudes. Additionally, wetlands with mire were more likely to be part of the same archetype compared to

open or limnic wetland types.

While contextual information is vital for our deeper understanding of wetlands, valuable insights into runoff and
storage dynamics can be gained simply by tracking water extent over time. Furthermore, by reducing multiple
wetland hydrological characteristics to the hydrological regime, we demonstrated that we could use the concept of
archetypes to infer information about their specific hydrological functionality nationwide. Since many archetypes
consist of multiple wetland classifications, we recommend estimating hydrological functions based on the
hydrological regimes, not individual wetland types. By being able to draw information from the archetypes, we
reveal a new understanding of the hydrological functioning of wetlands with a particular emphasis on hydrological-

related regulating ecosystem services such as flood control and water supply during low flow periods.
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Appendix A

Table Al. Hydrological parameters used for cluster analysis. Each parameter was evaluated individually and in
combination with others to assess its effectiveness in capturing the characteristics of the hydrological regime. (N) —
Normalized to remove the effect of wetland size.

Hydrological parameters

Description

Max Month

Timing of the highest water extent

Min Month

Timing of the lowest water extent

Standard Deviation

Measure of dispersion of water extent values in a dataset

Skewness

Measure of symmetry in a distribution of water extent values

Kurtosis

Measure of peakedness in a distribution of water extent values

Coefficient of Variation

Measure of the dispersion water extent values around the mean

Range (N)

Difference between the maximum water extent value and the minimum water

extent value, normalised to the mean wetland size

Minimum slope (N)

Smallest slope of monthly water extent change taken from the first derivative,

normalised to the water extent range

Maximum slope (N)

Highest slope of monthly water extent change taken from the first derivative

and normalised to the water extent range

Spring/Summer Area

Difference (N)

Difference between the average spring water extent (in March, April and May)
and average summer water extent (June, July, August), normalised to the mean

wetland size

Spring/Summer Slope
Difference (N)

Difference between the average spring slope of monthly water extent change
(in March, April and May) and average summer slope of monthly water extent

change (June, July and August), normalised to the mean wetland size

Slope Variation (N) Standard deviation of all month-to-month slopes of monthly water extent
change, normalised to the water extent range
Number of Peaks Number of peaks, defined as a relatively high value of water extent between

two relatively low values of water extent

Baseline Month Fraction

Number of months within 25% percentile of the distribution of water extent

values as a fraction of the year
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Figure Al. Elbow curve showing the within cluster sum of squares (WCSS) for k values ranging from 1-10. The Elbow
Curve helps identify the number of clusters by indicating where adding more clusters result in a diminishing reduction
in the WCSS.
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Spring surging wetlands
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Figure A2. Average monthly water extent (March-October) between 2020-2023 for all wetlands belonging to the spring-
surging archetype. Grey area shows the monthly interannual variability given by the range of water extent from all
years. The monthly standard deviation is given in the top right bar plots.
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Spring flooded wetlands
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595 Figure A3. Average monthly water extent (March-October) between 2020-2023 for all wetlands belonging to the spring-
flooded archetype. Grey area shows the monthly interannual variability given by the range of water extent from all
years. The monthly standard deviation is given in the top right bar plots.
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Summer flooded wetlands
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Figure A4. Average monthly water extent (March-October) between 2020-2023 for all wetlands belonging to the
summer-flooded archetype. Grey area shows the monthly interannual variability given by the range of water extent
from all years. The monthly standard deviation is given in the top right bar plots.
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Figure AS. Average monthly water extent (March-October) between 2020-2023 for all wetlands belonging to the slow-
605  drying archetype. Grey area shows the monthly interannual variability given by the range of water extent from all
years. The monthly standard deviation is given in the top right bar plots.
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Figure A6. Average monthly water extent (March-October) between 2020-2023 for all wetlands belonging to the
summer-dry archetype. Grey area shows the monthly interannual variability given by the range of water extent from

610 all years. The monthly standard deviation is given in the top right bar plots.

29



Spring surging wetlands

Mannavuoma 0 Mossatrask-Stormyran o Persofjarden 5
4000
299 5 3 50 = 2000 50 =
= 8 = T T 2
%400 SDE %3000 mog %‘ 100E
g g g
g b= = g 1500 150 =
g3 5 5 %2000 e 3 2005
& 200 100% 5 200“?1 K] %
3 a ] = 5 s
= 100 g = 1000 205 2 1000 250 5
1254 & &
566 300
o 0
Pirttimysvuoma o Sikdsvagarna o Tarnasjon o
1500 600
- - 7000 -
2 50 3 = =
,(‘;150 5 ’6500 200,3 3 6000 2003
2 & 2
£ 1000 100 E = 400 E = €
£ E H 400E £ 5000 £E
g < £ s £ 400 g
s 70 150 S 5300 2 34000 S
5 3 5 B 5 5
2 500 £ £ 200 600 =2 2 H
s 2008 & & g3000 6005
230 & 100 800 2000 EH
250
0 0 1000 800
S 0 0 0 MmN N NN MMM 2 0 0 0 MMM NN NN mom S 0 0 0 Mmoo NN NN omom
338333y yyynasaq S33333 sy q S3333333yyyyrasa
§888g8888gg8s8s88s8¢8 §888g8s8g8s888888 888883888888 gg8¢8
SRRRRIRRRERIRRERRRR SRERRSIRRRRRRR/RRESSRR SRRRRIRERRERRRIRR/RR
2 >9>2 >038 >09322 >0 2 >9 228 >9328>9322 >0 2 >9 22 >0328>09322 >0
8233832333333 8%73 3338333383338 %73 3332382323383 33%8373
£22282228222¢22 ¢2228&82232¢232¢322 f£2z2e232e232¢8322
Water extent (ha) Precipitation (mm/day)

Figure A7. Wetland water extent from January 2020 to August 2023 (excluding January, February November and
December) for spring-surging wetlands, shown alongside daily precipitation totals for matching dates. Precipitation is
615 aggregated separately for each wetland’s catchment and Ramsar area.
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Figure A8. Wetland water extent from January 2020 to August 2023 (excluding January, February November and

December) for spring-flooded wetlands, shown alongside daily precipitation totals for matching dates. Precipitation is
620 aggregated separately for each wetland’s catchment and Ramsar area.
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Figure A9. Wetland water extent from January 2020 to August 2023 (excluding January, February November and
December) for summer-flooded wetlands, shown alongside daily precipitation totals for matching dates. Precipitation
is aggregated separately for each wetland’s catchment and Ramsar area.
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Figure A10. Wetland water extent from January 2020 to August 2023 (excluding January, February November and
December) for slow-drying wetlands, shown alongside daily precipitation totals for matching dates. Precipitation is
aggregated separately for each wetland’s catchment and Ramsar area.
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630 Figure A11. Wetland water extent from January 2020 to August 2023 (excluding January, February November and
December) for summer-drying wetlands, shown alongside daily precipitation totals for matching dates. Precipitation is
aggregated separately for each wetland’s catchment and Ramsar area.

Code and data availability. All data including, environmental data, hydrological parameter results and water extent

635 data for all wetlands is available through (Robinson, 2024) (https://doi.org/10.5281/zenodo.13833605). Code for

processing data and cluster analysis is available at https://github.com/ab-e-rob/hydrological archetypes. Code for

predicting water extent in wetlands using DeepAqua can be found at https://github.com/melgkiades/deep-

wetlands.
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