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Abstract

Wetlands are valuable and diverse environments that contribute to a vast range of ecosystem services, such as
flood control, drought resilience, and carbon sequestration. The provision of these ecosystem services depends on
their hydrological functioning, which refers to how water is stored and moved within a wetland environment. Since
the hydrological functions of wetlands vary widely based on location, wetland type, hydrological connectivity,
vegetation, and seasonality, there is no single approach to defining these functions. Consequently, accurately
identifying their hydrological functions to quantify ecosystem services remains challenging. To address this issue,
we investigate the hydrological regimes of wetlands, focusing on water extent, to better understand their
hydrological functions. We achieve this goal using Sentinel-1 SAR imagery and a self-supervised deep learning
model (DeepAqua) to predict surface water extent for 43 Ramsar sites in Sweden between 2020 and 2023. The
prediction results in wetlands grouped into five archetypes based on their hydrological similarity: 'spring-surging',
‘spring-flooded', 'summer-flooded', ‘slow-drying'. and ‘summer-dry’. The archetypes represent great
heterogeneity, with flashy regimes being more prominent at higher latitudes and smoother regimes found
preferentially in central and southern Sweden. Additionally, many wetlands show exceptional similarity in the
timing and duration of flooding and drying events, which only became apparent when grouped. We attempt to link
hydrological functions to the archetypes, whereby headwater wetlands, for example, we find that spring-surging
wetlands have the potential to accentuate floods and droughts, while slow-drying wetlands, typical of floodplain
wetlands, are more likely to provide services such as flood attenuation and water storage during low flow
conditions. Additionally, although wetlands can be classified in myriad ways, we propose that classifying wetlands
based on the hydrological regime derived from water surface extent is useful for identifying hydrological functions

specific to the site and season, and when discharge or water depth data is not available. Lastly, we foresee that
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hydrological regime-based classification can be easily applied to other wetland-rich landscapes to better

understand the hydrological functions better-and identify their respective ecosystem services.

1 Introduction

Wetlands are ecosystems that are seasonally or permanently covered by or saturated with water (Bullock and
Acreman, 2003). After centuries of wetland loss (Fluet-Chouinard et al., 2023), wetlands are now viewed as key
providers of provisioning and regulating services such as forestry, fishing, food production, flood control, drought
resilience, nutrient and sediment retention and carbon sequestration (Ameli and Creed, 2019; Barbier et al., 1997;
Colvin etal., 2019; Johnston, 1991; Matthew et al., 2010; Tang et al., 2020; Villa and Mitsch, 2015). Additionally,
they offer cultural and supporting services (Margaryan et al., 2022; Mitsch et al., 1991; Wood et al., 2024) and are

crucial for achieving the sustainable development goals outlined in Agenda 2030 (Jaramillo et al., 2019).

The degree to which wetland environments provide ecosystem services is largely controlled by their hydrological
functions (Okruszko et al., 2011) or how wetlands store and transfer water. For instance, hydrological functions
such as prolonged water storage contribute to services like flood control and sustaining water supply during low
flow periods (Ahlén et al., 2020; Bullock and Acreman, 2003; Gerakés, 1992). Other functions, such as surface-
ground water exchange, relate to provisioning services such as water supply, while surface wetness and soil
moisture help regulate the local climate and retain nutrients (Ameli and Creed, 2017; Hansson et al., 2005; Le and
Kumar, 2014; Mitsch et al., 2015). Furthermore, large fluctuations of surface water extent isare strongly correlated
to fluctuations of methane emissions for boreal wetlands (North of 50°N), which is important for services like

carbon sequestration (Ringeval et al., 2010).

Quantifying the hydrological functions of wetlands and the provision of ecosystem services is challenging as
wetlands are spatiotemporally variable and diverse (McLaughlin and Cohen, 2013). For example, a wetland type
can either reduce or enhance flooding downstream depending on the environmental setting or time of year (Bullock
and Acreman 2003). One way to improve our understanding of wetland hydrological functions and related
ecosystem services is by quantifying their hydrological regime. This refers to the seasonal availability of water
(water, extent, or volume) within a wetland, measured through either in-situ or remote sensing technologies

(Acreman and Holden, 2013; Helmschrot, 2016).
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The analysis of hydrological regimes to understand hydrological functioning usually focuses on rivers and
catchments (Magilligan and Nislow, 2005; Robinson and Sivapalan, 1997). However, over the last two decades,
its application for wetlands has steadily increased (e.g., Cuevas et al., 2024; Stevaux et al., 2020; Na and Li, 2022;
Vilardy etal., 2011). In fact, methods for studying water extent have been driven by the need to quantify ecosystem
services (Park et al., 2022). For instance, by monitoring water level or extent, we can evaluate whether a wetland
is in a water-storing or transmitting state, which influences its ability to attenuate high flows downstream (Spence
et al., 2011; Yanfeng and Guangxin, 2021). Furthermore, analysis of the hydrological regimes based on water
extent and level in Siberian wetlands has enhanced the understanding of how water availability in winter influences
spring flooding (Zakharova et al., 2014). In Europe, Vera-Herrera et al. (2021) demonstrated that grouping
wetlands based on their long-term changes in surface water extent can help to maximize agricultural productivity,
while Ahlén et al (2022) distinguished between the flood buffering capacity of wetlands in upland and downstream

wetlands by studying variations in water level.

When in-situ water level or dichargedischarge measurements from water gauges are spatiotemporally sparse, water
surface extent can be used to understand the hydrological regime. Estimating hydrological regimes from water
surface extent is achievable with remote sensing technologies, such as optical or Synthetic Aperture Radar (SAR)
(Graversgaard et al., 2021; Ramsar Convention, 2011; Vera-Herrera et al., 2021). For example, multi-spectral
optical sensors like Sentinel-2 can help estimate surface water extent at a resolution of 10 m (Brown et al., 2022).
Others have exploited the ability of SAR to detect water below flooded vegetation in a range of wetland
environments at similar resolutions (Canisius et al., 2019; Kovacs et al., 2013; Melack and Hess, 2011; Widhalm

etal., 2015; Pena et al., 2024).

It is widely recognised that although ecosystem services are not undervalued, they are often poorly characterised
and understood in the context of wetlands. Furthermore, generalising hydrological functions and services across
different wetlands is not recommended due to their unique characteristics. Here, we quantify changes in water
surface extent to understand the hydrological regimes of wetlands and determine their hydrological functions,
using the case of Sweden. This study aims to categorise wetlands by their hydrological regime based on recent
water surface extent observations using a remote sensing data and a pre-trained self-supervised deep learning
model called DeepAqua (Pefa et al., 2024). We use the case of 43 Ramsar wetlands as they are well inventoried,
and present good spatiotemporal coverage of SAR data and are of national and international importance due to the

ecosystem services they provide (Gunnarsson and Lofroth, 2014; Ramsar Convention, 2011). We propose that by
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grouping hydrologically similar sites into descriptive archetypes (as suggested by Lane et al., 2018), more
comprehensive insights can be gained about the hydrological regime (and thus functions) than by studying each

wetland's hydrological regime in isolation.

2 Methods

2.1. Wetland dataset description

Sweden has 68 Ramsar wetlands in total (Ramsar-Conventions1+971)(Ramsar Convention, 1971). HereFor this

study, we _first excluded coastal sites because coastal wetlands are hydrologically different from inland wetlands
and should therefore be studied separately. Sites with a total area exceeding 180,000 ha were also excluded due to
computational and memory limitations when computing water extent changes with deep learning. EasthxFurther

exclusions were made for sites with low SAR data availability-due-te-, defined here as fewer than one acquisition

every 14 days, resulting from processing issueschallenges such as significant orbit gaps, incomplete bursts, and
the loss of Sentinel-1B in December 202 1-were-emitted{rom-the-analysis. This left 43 Ramsar sites suitable for
hydrological regime analysis, and each site was delimited based on the boundaries of the Ramsar Convention

(Ramsar Convention - Sweden, 2023) (Fig. 1).

The sites are distributed throughout all regions in Sweden, albeit with a higher concentration of sites in central and
southern Sweden. Site areas range between 200 ha and 28,900 ha and encompass various wetland types, including
marshes, fens, bogs, mires, palsa mires, lakes, streams, wetland forests, peatlands, and shrub wetlands. For these
wetlands, during the observation period (2020-2023), the average temperature and precipitation were 5.76°C and
706.5 mm, which waswere 0.68°C warmer and 25.6 mm wetter on average compared to the 1990-2020 climate
normal (Johansson, 2002). Additionally, the mean number of snow days in Sweden between 2020-2023 was 108.0,
which is 12.3 days less compared to the last climate normal (Climate indicator - Snow, 2024). Daily precipitation
from the Copernicus Climate Change Service E-OBS ensemble (0.1° grid) for each Ramsar site is available in Figs

A7-11 (Cornes et al., 2018).
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Figure 1. Spatial distribution of Ramsar wetland study sites (grey polygons) in terms of (a) Elevation from a 50m
resolution DEM by Landmiditeriet (grey thin lines denote main catchments), (b) Average precipitation in mm/yr, and (c)
Average temperature in °C between 2020 and 2023. Temperature and precipitation data were obtained from the
Precipitation Temperature Hydrological Agency's Water Model (PTHBYV), available at the Swedish Meteorological and

Hydrological Institute (SMHI).
2.2. Wetland characteristics

To place the wetlands into an environmental context, we tabulated each site's latitude, elevation, open water as a
percentage of the total area, and general wetland type (Fig. 8). The elevation was calculated as the average
elevation (m.a.s.l) derived from the Digital Elevation Model 50m (Markhdjdmodell Nedladdning, grid 50+)
(Lantmateriet, 2022) within the wetland boundary. Open water extent for each wetland was calculated for every
month in 2023 using monthly composites of Normalised Difference Water Index (NDWI) binary (water/non-

water) masks from Sentinel-2 optical imagery.



130

135

140

145

150

155

The wetland type was estimated using the following databases of wetland classification: (1) The Ramsar
Convention database for sites in Sweden, (2) the National Wetland Inventory for Sweden (VMI) (Gunnarsson and
Lofroth, 2009), and (3) an updated satellite-based open wetland mapping classification from 2018-2022 (Hahn and
Wester, 2023). Each wetland was assigned a generic wetland class adapted from Gunnarsson and Lofroth (2014):
‘open’, 'limnic', 'mixed', or 'mire'. 'Open' refers to meadows, grasslands, and temporarily flooded land, 'limnic' refers
to lake shores, beaches by watercourses, overgrown lakes, and limnogeneous beach complexes. 'Mixed' wetlands
are regarded as a combination of multiple wetland types and may include different mires with open or limnic
wetland environments. A 'mire' wetland consists primarily of bogs and fens. A fifth wetland type, 'fjé@ll' (mountain),

was assigned to wetlands located in Sweden's mountainous regions as they are not classified in the datasets.

2.3. Hydrological regime given by water surface extent analysis

We estimated the hydrological regime from water extent using an automated approach based on remote sensing
data. Automatic surface water detection was done with a deep-learning image segmentation model called
DeepAqua (Pena et al., 2024). DeepAqua is a self-supervised model with the principal function of detecting surface
water extent in wetlands from Sentinel-1 SAR imagery in the VH polarisation. DeepAqua can detect both open
and vegetated water using the C-band SAR sensor onboard Sentinel-1, which can penetrate some types of perennial
vegetation due to its emission of longer wavelength radar waves (5.6 cm) (Adeli et al., 2021). Usually, semantic
segmentation models require manually labelled images as their training label output. With DeepAqua however,
the training labels are binary images (water/non-water) of the NDWI based on cloud-free Sentinel-2 optical
imagery of the same location and time as the input training data (SAR imagery), since both missions have a ~1
week repeat cycle over Sweden (~1-2 passes per week between 2020 and 2022, after which spatiotemporal
coverage is reduced to ~10-12 days due to the failure of the Sentinel-1B satellite). We-use-a-For our analysis, we

applied the pre-trained versien-ofthe DeepAqua model £ ich(version name: ‘big-2020") without

any fine-tuning. The model was_originally trained on a Sentinel-1 and Sentinel-2-based NDWI binary image over

central Sweden from the 5™ June 2018. When the pre-trained model was tested on three wetlands in Sweden (Pefia
et al., 2024), DeepAqua outperformed existing land classification models such as Dynamic World (Brown et al.,
2022) and thresholding techniques such as Otsu (Otsu, 1979) on multiple evaluation metrics such as pixel accuracy,

intersection over union, precision, and F1.

The SAR imagery used as input to DeepAqua for surface water detection was obtained from Google Earth Engine

following basic pre-processing steps: orbit file correction, border noise removal, thermal noise removal, and
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orthorectification. The output predictions comprised polygonised binary water/non-water images for every
Sentinel-1 image available between January 2020 and August 2023, cropped to within the boundaries of each
wetland. The total water area for each image was calculated based on the WGS84 UTM Zone 33N projection
(Figures A2-A6). The monthly average of water extent between January 2020 and August 2023 was calculated to
reduce the risk of annual variability affecting potential clustering while aiming to detect hydrological regimes
under 'average' conditions. Due to extensive snow and ice cover complicating the water extent predictions, winter
months (November, December, January, and February) were removed from the hydrological regime analysis. All

water extent data and corresponding SAR acquisition dates are provided in the supplementary information.

Lastly, due to the lack of ground truth data on temporally dynamic wetland water extent within our Ramsar sites,
we validate our water extent predictions using two alternative approaches. Firstly, we compare DeepAqua’s
predicted water extent with manually delineated water extent derived from Sentinel-1 SAR imagery in the VH
polarisation for a systematic sample of wetlands for all available images during 2021. We-randombyselect-one

ithi - ing-are stou i i - s-To ensure

a representative yet unbiased sample, we selected one wetland from each resulting archetype, covering a broad

range of wetland types. sizes, and latitudes. Manual delineation was performed by an interpreter experienced in

SAR imagery analysis and conducted blind (without prior exposure to DeepAqua predictions). For the second

approach, we assess the accuracy of the predicted hydrological regimes by comparing them to daily discharge data
from nearby active stations provided by the Global Runoff Data Centre (GRDC) and SMHI. In total, there were
23 sites with available discharge data either upstream, downstream, or on--site of the wetland. For both approaches,
we calculate the error between the DeepAqua predictions to (1) manually delineated water extent and (2) daily
discharge using the normalised root mean square error (NRMSE). We normalise the root mean square error
(RMSE) to the range of water extent as-to discount the total area from the error result and to make each wetland

comparable with the others.

2.4. Cluster Analysis

The hydrological regimes based on DeepAqua’s water extent predictions (Section 2.3) were clustered based on
their hydrological similarity using a multivariate K-means cluster analysis technique and means of visual
interpretation. K-means clustering is a widely used and simple unsupervised machine learning technique in which
groups are identified based on the Euclidean distance between a data point and a centroid (a mean of the data)

(Everitt et al., 2011). To ensure reproducibility, we set the random seed to 42, preventing variations in the
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clustering results between runs. In order to conduct a cluster analysis, data points that characterise the hydrological

regime given by water extent are required. We calculated several hydrological parameters based on each
hydrological regime and used them as the input data points (Table Al). The hydrological parameters included
known hydrological signatures (Olden and Poff, 2003) and custom parameters to describe the hydrological regime
in terms of duration, timing, frequency, magnitude, and rate of change. The optimal number of clusters (k) was
chosen based on the inflection point on the Elbow Curve, which calculates the within-cluster-sum-of-squares
(WCSS) for a range of cluster sizes from 1 to n. The inflection point on the Elbow Curve is interpreted at the
optimum number of clusters since it indicates the point where adding more clusters results in a diminishing
reduction in WCSS. The best-performing parameters were picked using visual inspection (inspecting their ability
to cluster the regimes) and validated against multicollinearity using the Variance Inflation Factor (VIF). The VIF
measures the degree of multicollinearity of one hydrological parameter with all other parameters by calculating
how much the variance of the regression coefficient increases due to correlation with other independent variables.
We recognise that there is some degree of inherent correlation between the hydrological parameters since they are
descriptors of the same hydrological regime. Therefore, we used a VIF value of <10 as an indicator that the
hydrological parameters were not highly multicollinear and did not describe the same regime characteristic (Figure

Sa).

The emerging pattern given by the Elbow Curve indicated that individual hydrological regimes among wetlands
were best grouped when & = 4-6 (Figure Al). Upon visual inspection, £ = 5 was chosen as the best possible
distribution of wetlands into roughly equal-sized groups. The number of sites in each cluster ranged between 6 and
15. Each hydrological parameter was tested individually and in combination with other parameters to see how
effectively they helped cluster the wetlands. Certain variables, such as the maximum month, dominated the
clustering over other indices, and some indiees-index pairs were extremely collinear, such as maximum month and
minimum month, or Spring/Summer slope difference and slope variation. Therefore, these pairs could not be used

together for the final clustering analysis.

3 Results and Analysis
3.1. Surface water extent validation

When comparing water extent predictions from DeepAqua to manually delineated water extent to a systematic

sample of wetlands, we find that predicted water extent performs well with their manually delineated counterparts
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(Fig. 2). Hjdlstaviken and Ddttern wetlands had the lowest NRMSE with 0.04 and 0.07, respectively, whereas

Maanavuoma wetland exhibited the highest error between the manually delineated water extent and the DeepAqua

prediction with a NRMSE of 0.12. The majority of error between the DeepAqua’s and the manual water extent

estimates originates from the spring and autumn months for many of the sampled wetlands. This is particularly

apparent in Maanavuoma and Tyséarna wetlands. In both cases, the water extent is underestimated by DeepAqua

compared to the manual estimate. In Store mosse wetland, DeepAqua tends to overestimate wetland water extent
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Figure 2. (a-e) Comparison between monthly water surface extent from DeepAqua predictions and manual delineation
in 2021. (f) Values of Normalised Root Mean Square Error (NRMSE; RSME divided by the range in wetland extent)
between manually delineated and DeepAqua predictions.

compared to when the water extent is manually delineated. Overall, all five sampled sites have strong agreement

in the shape and magnitude of the hydrological regime, indicating that DeepAqua captures the seasonal

hydrological characteristics with good accuracy (Fig. 2f).
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To enhance the strength of our validation approach, we compared the wetland hydrological regimes to in-situ daily
discharge measurements. Among the 23 wetlands with available discharge data, three had an active gauging station
located upstream, two had onsite stations and sixteen had stations situated downstream (Fig. 3a). Of these, eight
sites featured regulatory structures (e.g., dams, weirs, or culverts) along their river courses, which may disrupt the
natural flow regime and weaken the correlation between wetland water surface extent and stream discharge. In
general, stations with lower mean discharge returned lower NRMSE values between water extent and discharge
(Fig. 3b). However, the relationship is weak (R? = 0.17) and based on a limited number of observations (n = 23).
Most sites cluster in the bottom-left portion of the plot, with a few high-discharge, high-NRMSE outliers in the
top-right. Regulated and non-regulated sites are distributed throughout, with no strong visual separation, although

none of the regulated sites exhibit low discharge-low NRMSE values.
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Figure 3. (a) - NRMSE between daily discharge and wetland water extent for the 23 wetlands with available discharge

data. Green boxes indicate the interquartile range (IQR), whiskers represent the range, and orange lines show the mean

NRMSE. (b) Mean NRMSE versus mean discharge for each wetland, calculated over matching dates from January

2020 to August 2023. Wetlands with regulated flow paths between the wetland pour point(s) and discharge station are

indicated by black outlines.
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Fig. 4 presents a sample of wetlands
with discharge data either upstream or
downstream and unregulated flow. In
general, daily discharge replicates the
shape of the wetland’s hydrological
regime. The correlation between river
discharge and wetland hydrological
regime is particularly apparent for
Tjdalmejaure-Laisdalen (NRMSE
39.49), Osten (NRMSE 31.40)), and
Helge a (NRMSE 12.70) wetlands,
whereby increased discharge matches
well with increased water extent in the
spring months, followed by relatively

reduced flow thereafter.

Figure 4. Left panel: Comparison of
water surface extent and discharge
from on-site, upstream, or downstream
stations for corresponding dates dates
in Maanavuoma, Storkélen,
Tjalmejaure- Laisdalen, Osten, and
Helge a wetlands from January 2020 to
August 2023  (excluding  winter
months). The GRDC station IDs are
shown in the upper left of each plot.
Right panel: Wetland boundaries
(green polygons) as defined by the
Ramsar Convention, with discharge
stations (black rings), watercourses
between the station- and wetland (thick
blue) and other watercourses (thin
blue).

Although Tjalmejaure-Laisdalen and its’its corresponding downstream station are separated by ~116 km of

watercourses, the discharge data agrees well with the wetland water extent. For Maanavuoma wetland (NRMSE

280  0.92), data from the discharge station situated ~15 km upstream agrees with water surface extent in 2020 and 20215

hewever. However, the spring surge of water in 2022 and 2023 that is present in the river is not experienced by

11



285

290

295

the wetland. Lastly, they also agree well in Storkolen wetland (NRMSE 9.37) despite greater interannual variability
compared to other sites. Notably, both time series show a pronounced peak between April and May 2021, reflecting

a concurrent increase in wetland water extent.

3.2. Cluster Analysis

Based on the surface water extent data, we conducted a cluster analysis to explore patterns in the shape and
dynamics of wetland hydrological regimes. From all parameters assessed, skewness, kurtosis, normalised
maximum slope, number of peaks and baseline month fraction (Fig. 5a) were found to collectively capture key
regime characteristics (Fig. 5b). Upon visual inspection, regimes with similar shapes were grouped together while
also maintaining the desired VIF condition (<10) with values of 3.96, 1.60, 4.07, 3.01, and 6.54 for skewness,
kurtosis, maximum slope, number of peaks and baseline month fraction, respectively. These values indicate a
reasonable level of non-multicollinearity between all other variables. The chosen parameter combination
successfully clusters related hydrological regimes into five different archetypes, with the number of sites (n) in
each archetype as follows: ‘spring surging' (n=6), 'spring flooded' (n=8), 'summer flooded’ (n=8), 'slow drying’
(n=15) and 'summer dry' (n=6). Support for the archetype names is given by the hydrological parameter results

which have been averaged by the archetype and are described in Section 3.3.
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Figure 5. (a) Overview of the chosen parameter (unitless) combination (averaged by archetype) used for the final cluster
analysis of the hydrological regimes given by water extent and the VIF value for each parameter. (b) Graphical
representation of the five selected hydrological parameters used to describe the characteristics of the hydrological

300
regime for the final cluster analysis. (c-g) Radar plots for for final hydrological parameters averaged by archetype.
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3.3. Hydrological archetype analysis

The overall spatial distribution of the archetypes and thematic graphic descriptions of the hydrological regime
given by water surface extent is presented in Fig. 6. The spring-surging (Fig. 6a) are only found in northern Sweden
305 and have flashy hydrological regimes, consisting of a dry baseline condition and a brief period of increased water

extent. Spring-flooded wetlands (Fig. 6b) are limited to southern and central Sweden. The hydrological regime of

these wetlands resembles that of spring-

L4 surging wetlands, although they have a
Spring surging wetiands 2| relatively longer spring peak. Summer-
® g flooded wetlands (Fig. 6c¢) remain
s § inundated from May to October after a
° Mar Oct rapid wetting period and are spread
Spring flooded welands ~ ®| | across  Sweden. Southern Sweden's
% slow-drying wetlands (Fig. 6d) exhibit
5 steadily  decreasing water  extent
Mar %t || throughout the summer, reaching
® ° g

summefifoodediwetiands minimum water extent in autumn.

Lastly, summer-dry wetlands (Fig. 6e)

@
(]
Water extent

exhibit the maximum wetland extent in

April,  preceding  generally  dry

Slow drying wetlands .. .
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Figure 6. Spatial distribution of
t hydrological archetypes for sampled

Ramsar wetlands in Sweden (n=43) and
fal qQ © e stancs representation of their hydrological
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R P S o One of the most distinctive differences

between archetypes is the magnitude of water extent at the beginning of Spring. For instance, slow-drying and

335 summer-dry archetypes already have large water extents in March and, therefore, do not undergo a rapidly
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inundating period during Spring or Summer. The lack of any inundation period is reflected in the normalised
maximum slope values (Fig. 5f,g), which are the lowest out of all archetypes, suggesting smaller changes in water
extent across the year (0.21, and 0.14 for summer-dry and slow-drying, respectively). Additionally, archetypes
with large water extent in Spring tend to be found in central and southern Sweden, while archetypes such as spring-
surging and summer-flooded wetlands start with a small water extent in March preceding a rapid inundation period.
These archetypes, with higher normalised maximum slope values of 0.59 and 0.77, respectively, are more abundant

in the north (Fig. 5c,e).

A second defining feature between different archetypes is the duration of the dry period (baseline fraction), defined
by months with water extent within the 25" percentile of the range. Archetypes with a significant dry period, such
as summer-dry, spring-surging and slow-drying wetlands, have -high baseline month fractions (0.65, 0.63 and
0.66, respectively) and positive skewness (1.14, 1.45, and 1.58, respectively), which indicates that wet conditions
are limited to the spring months (Fig. 5g,c,f). Conversely, with a negative skewness and low baseline month
fraction (-1.60 and 0.17, respectively; Fig. Se), summer-flooded wetlands are the only archetype that retains its

large water extent throughout the year.

The resulting archetypes show how wetland hydrological regimes can be broadly differentiated into two primary
‘modes’: peaky and smooth. We define peaky regimes as those with large fluctuations in water extent, while smooth
regimes follow more consistent, gradual changes in monthly water extent. Peaky archetypes, such as spring-
surging (Fig. 7a) and summer-flooded wetlands (Fig. 7c), exhibit relatively high values of kurtosis (2.27 and 2.93,
respectively), maximum slope (0.59 and 0.77, respectively), and the number of peaks (1.2 and 1.0, respectively).
On the other hand, smooth archetypes, like slow-drying and summer-dry wetlands are characterised by relatively
stable water extent from March to October (Fig. 7d,e). Spring-flooded wetlands share some traits with peaky
archetypes, particularly a marked increase in water extent during spring (Fig. 7b) and high normalised slope values
(0.70). However, they differ from typical spring-or summer-flooded wetlands in having a low average kurtosis (-
0.04), which suggests a more even distribution of water extent over time. Although we refer to peaky archetypes
here, it is important to note that the number of peaks is not necessarily descriptive of just peakedness (kurtosis).
For instance, slow-drying wetlands have high kurtosis (2.03) yet few peaks on average (0.2), indicating that

although they experience large variability in water extent, there is no distinguishable wet month.
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wetlands (Fig. 8d), typically lying
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at low elevations and exhibiting o T R TR TI

similar hydrological regimes (Fig.

7e). Spring-surging wetlands are also considered a homogenous archetype, since they are located primarily in high
latitude regions (Fig. 8a), are mainly fjdll wetlands, and tend to have little variability in their hydrological regime
(Fig. 7a). In contrast, spring-flooded and summer-flooded wetlands are found all over Sweden, across a range of
elevations (Fig. 8b) and encompass many different wetland types. This highlights that hydrological regimes are
not always associated with a specific wetland type, but rather depend on the broader archetype to which the wetland

belongs.

Despite the varingvarying degrees of diversity within archetypes, grouping wetlands into archetypes still reveals
a remarkable similarity in the timing of key features of their hydrological regimes. For instance, most summer-
flooded wetlands reach low water extent by May or June, despite varying rates of drying for the rest of the year.
This indicates that the hydrological parameters correctly capture timing characteristics, even across archetypes

with with-more hetereogeneityheterogeneity, such as summer-flooded wetlands.
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4 Discussion
4.1. The value of archetypes for understanding wetland hydrology

425  One of the defining features for most archetypes was the timing of large changes in surface water extent, which
only became apparent when the sites were grouped into archetypes. This highlights the usefulness of employing
archetypes in hydrological studies, as hydrological regimes may not be best evaluated across sites when using a
single parameter (Cutler and and Breiman, 1994; Huggins et al., 2024; Piemontese et al., 2020). Although our
classification was based solely on_surface water dynamics, it also inevitably captured the cumulative effects of

430 other environmental factors, such as vegetation, soil type and climate. The archetype approach to classification is
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further supported by Bullock and Acreman (2003), who concluded that grouping wetlands based on their local
classification term is less intuitive than grouping them by hydrological characteristics. This suggests that the
hydrological perspective is a valuable lens for understanding ecosystem services of wetlands, especially when

complemented with other environmental data (Okruszko et al., 2011; Poff et al., 1997).

H _despited.2. Methodological id .
Despite the overall success of the classification, not all wetlands were easily categorised. We suggest that there
are two main reasons for this. First, the indistinet
nature-of some-wetlands-suggests-that some-hydrological regimes ean-sometimes-be-seen-asof some wetlands may
form a continuum rather than easiyfalling into clearly separated categories, making itstrict archetype assignment
challenging-te-greup-them-into-distinet-archetypes—Seeondly. Second, the limited scope of the wetland database
used for clustering might have excluded the existence of additional archetypes that ean-be-obtained-whenfoecusing

on-the-hydrological regimecould emerge from water-extent-changes-a broader dataset. It is also important to note
that shileswve-defined-our archetypes usingan-average-ofwere defined from ~four years of monthly water extent

data, theserepresenting only refleet-the observed period. This relatively short-term record is unlikely to capture the

full range of long-term hydrological variability. Longer observational periods are necessary for determining

extended trends and assessing the impact of changing climatological conditions—Sinee-the BeepAqua-modelwe

Our results were also shaped by the choice of sensor. Using water extent as our kev measurement, SAR
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across 43 wetland sites, which can be applied to any wetland larger than 200 ha. The reliance on remote sensing

is driven by a lack of in situ data, which would have partly or wholly missed the hydrological regime signatures

for most of the chosen wetlands in this study. However, this also limits the generalisability of our findings, since

smaller wetlands may differ hydrologically and therefore may not conform to our archetype distribution. In

addition, Sentinel-1 SAR has intrinsic limitations. C-band wavelengths likely underestimate surface water extent

in wetlands, particularly under dense vegetation (Adeli et al., 2021). Surface water detection would therefore

benefit from longer-wavelength radar, such as that on the NISAR mission launched in July 2025.

To efficiently process large volumes of remotely sensed data, we chose an automatic deep learning-based approach

(DeepAqua) to detect water extent without the need for

However, DeepAqua was trained on a limited number of SAR scenes, therefore it could only produce accurate

predictions for the period January 2020 and August 2023. Future model development should aim for greater

temporal generalisability and reduced sensitivity to changes in Sentinel-1 backscatter distributions, enabling the

use of the >10 years of Sentinel-1 data currently available.

An additional assumption of our study is that surface water extent is analogous to total water storage, which may

not be true for mire types (Acreman and Holden, 2013) or topographically constrained wetlands. Therefore,

including water level data from hydrogeodetic technologies such as water levels from the Surface Water and Ocean
Topography (SWOT) mission (Hamoudzadeh et al., 2024) or soil moisture observations (Mupepi—et—al;
2024 Mupepi et al., 2024) could improve hydrological regime classification, especially for seasonal wetlands (see
more examples in Jaramilo-et-al52024)Jaramillo et al., 2024).

Finally, other hydrological variables

could improve the explanatory power of the archetypes. Snow and ice interfere with SAR-based water detection

methods, which leave winter hydrology poorly observed. Fhe-issue-is-furthercompounded-by-the-fact-that there
are—fewLimited availability of discharge stations are-available-to—fill-thesefurther restricts observational gaps:

Meoreovereven-where-dischargevalidation. Incorporating additional data is-available they-ean-be-affeeted-bysuch
as_groundwater inputs, evapotranspiration, and hydrological barriers—er—complex—flow—paths—in—higher-order
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4.3. Controls and variability in wetland hydrological behaviour

Although detailed exploration of the physical drivers of the observed hydrological regimes is beyond this study's
scope, we theorise that factors such as position within the watershed and surface connectivity contribute to at least
some extent. For example, spring-surging wetlands, with few surface water inlets, rely mainly on snowmelt and
tend to dry rapidly, while summer-flooded wetlands benefit from multiple inflows and sustain inundation longer
(Lane et al., 2018). Secondly, wetlands located in headwater regions, like spring-surging and summer-flooded
wetlands, experience rapid flood peaks eharacteristiescharacteristic of upper catchment water flows. This is in
eenstrastcontrast to wetlands such as those within the slow-drying archetype, which are located in the lower parts
of the catchment; and are therefore linked to less pronounced flood peaks (Morley et al., 2011). Similar seasonal

patterns have been described for downstream wetlands in climates with high winter precipitation, where water

levels remain high from November to April before declining during summer and rising again at the onset of the

wet season (Lane et al., 2018). These dynamics also correspond to the winter-rainfall catchments in Sweden

identified by (Matti et al., 2017), which generally experience flood peaks early in the year and/or after autumn,,

It should also be acknowledged that hydroclimatic variability plays a critical role in shaping wetland hydrological
regimes and represents an important consideration efor the interpretation of our archetypes. Eorinstanee;on-anOn
interannual and seasonal temperalsealetime scales, fluctuations in precipitation, snowmelt, and evapotranspiration

strongly influence wetland hydroperiods (Jaramillo et al., 2018; Winter, 2000). For instance, snow-affected

wetlandscapes typically reach maximum inundation extent later in spring—similar to our spring-surging wetlands

while rain-fed wetlandscapes peak earlier in the year, resembling closely the regime of slow-drying wetlands (Park

etal., 2022). Latitudinal gradients in inundation duration, with shorter hydroperiods in northern Sweden and longer

ones in the South (Prigent et al., 2001), broadly align with our results.

On a climatic temporal scale, warming trends and increasing dryness index hashave been observed in Swedish
wetlandscapes since the 1970s, suggesting that there is a greater evaporative demand and reduced water storage in
wetlands, especially during summer (Ahlén et al., 2021). These observations also align with model projections
showing substantial summer drying and reduced wetland extent in North America under high-emission scenarios

due to evapotranspiration exceeding precipitation input (Xu et al., 2024). Similarky-—=X-etal-2624Similarly, Xi et
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al.. 2021 projected future declines in inland wetland area across Europe, though with a higher degree of uncertainty
in Scandinavia. Furthermore, hydrological stability will likely be reduced in the future, with modelled studies of
prarieprairie pothole wetlands showing diminished monthly-scale stability in water storage under uncertain climate

conditions (Zhang et al., 2011).

Despite this, the degree to which wetlands are vulnerable to such changes is dependent on their dominant water
sources and topographical setting. For example, wetlands that are reliant on direct precipitation or snowmelt, such
as spring-suringsurging wetlands, are more sensitive to hydroclimatic variability, while wetlands sustained by
regional groundwater inputs on larger floodplains (like slow-drying or spring-flooded wetlands};) have greater
buffering capacity to hydroclimatic change (Winter, 2000). These findings highlight the need for long-term

observations and the integration of hydroclimatic data when interpreting wetland hydrology in future work.

4.4. Hydrological regimes as indications of ecosystem services

In this study, we quantified the hydrological regimes of Swedish wetlands to better understand their hydrological
functions, which are closely tied to the ecosystem services they provide. Inland wetlands are estimated to
contribute approximately US$27 trillion annually in ecosystem service value, with the majority of the value

deriving from water regulating services (Davidson et al., 2019).

We theorise that hydrological regimes can serve as indicators of the hydrological ecosystem services a wetland
may deliver at any given time. For instance, spring-surging wetlands, which are characterised by high water extent
during spring and low extent during summer, resemble headwater wetlands—Headwaterwetlands, which are known
to increase fleedhigh water flows during the wet season while retaining baseflow during the dry season (Bullock
and Acreman, 2003);-s sttt se-wetlands. This suggests they may netprovidecontribute less to flood
mitigation serviees-butratherand, in some cases. exacerbate flooding (Ahlén et al., 2022)—This-is, a pattern
supported by the Ramsar site descriptions, where no wetlands in the spring surging archetype list flood control as

fera key service. Similar observations have also

been made in wetland-rich headwater catchments in central Europe, which exhibit rapid activation of pre-event

water, indicating an ability to quickly mobilise floodwaters (Votrubova et al., 2017). Nevertheless, headwater

wetlands can provide temporary flood storage (Kadykalo and Findlay, 2016), altheughbut confirming thesesuch
dynamics requires temporally dense water extent observations to capture lag times between water storage and

downstream flows.
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Conversely, slow-drying wetlands exhibit traits more typical of floodplain wetlands, which are well-documented

in their role in flood reduction and water retention (Aereman-and Heolden; 2013+ Goldenet-al;2021)(Acreman
and Holden, 2013 Golden et al., 2021: Opperman et al., 2010). The gradual reduction of water extent in these

wetlands may suggest sustained water storage, likely contributing to both flood peak attenuation and maintaining

summer baseflows.

arehetypeThis aligns with Ahlén et al. (2022), who suggest that downstream wetlands in central Sweden remain

relatively dry during summer while maintaining high buffering capacity. The Ramsar site descriptions for slow-

drying wetlands further support this, since the majority of them have flood control and/or water storage listed as a

known ecosystem service. Additionally, Beherty—et-al-—2044Doherty et al., 2014 suggest that wetlands with

periodically dry soils (such as slow-drying or summer-dry wetlands) slow down flows and can remove large
volumes of water from the system. Although we did not perform a detailed analysis of ecosystem service delivery
or have dense downstream discharge data (Andersson, 2012), our results offer a foundation for prioritising

wetlands for future conservation or Ramsar designation, particularly in flood-prone or drought-prone regions.

Another strength of hydrological regime classification is its ability to infer hydrological functions at different times
of the year, recognising that wetland functions are not static in time or space (Spence et al., 2011). For example,
variability in water extent can signal the transition between water storage and runoff-dominated states (Yanfeng
and Guangxin, 2021). Flashy water extent variability observed in spring-surging, spring-flooded. and to a lesser
extent, summer-flooded wetlands, suggests a switch to conditions where wetlands act as conduits rather than
reservoirs. This may result from frozen ground hindering water storage in soils (Yanfeng and Guangxin, 2021) or
the dominance of rapid snowmelt inputs (Spence et al., 2011). However, further investigation combining water

level, connectivity analyses and catchment precipitation data would be needed to verify these hypotheses.

Aside from hydrological-related ecosystem services, wetlands offer other valuable ecosystem services that are also
linked to their hydrological regimes, such as biodiversity and carbon sequestration (Okruszko et al., 2011).
Hydrological variability is a major driver of wetland biodiversity due to species’ water tolerance thresholds.
Additionally, wetlands classified under the 'morthern' archetypes are particularly significant carbon sinks, as
evidenced in Ramsar site records. Differentiating hydrological regimes in carbon-sequestering wetlands or those
with particularly rich biodiversity could improve our understanding of their role in the delivery of other ecosystem

services (Kirpotin et al., 2011).
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5 Conclusion

This research aimed to improve our understanding of wetlands by revealing their hydrological regimes using
remotely sensed data on water surface extent. We chose an automatic detection method based on Sentinel-1 SAR
imagery because it can operate in cloudy and dark conditions and detect more water under vegetation compared
to optical-based methods. The hydrological regimes were grouped based on similar hydrological characteristics
identified by custom hydrological parameters. For 43 Ramsar sites in Sweden, the hydrological regimes based on
monthly water extent between 2020 and 2023 could be grouped into five distinct archetypes. The defining traits
were mainly related to the timing of change and the duration of wet and dry periods. Despite heterogeneity in the
archetypes' spatial distribution, flashy archetypes with high water extent variability were preferentially found at
higher elevations and latitudes, while less variable and drier archetypes were concentrated towards low elevations
and latitudes. Additionally, wetlands with mire were more likely to be part of the same archetype compared to

open or limnic wetland types.

While contextual information is vital for our deeper understanding of wetlands, valuable insights into runoff and
storage dynamics can be gained simply by tracking water extent over time. Furthermore, by reducing multiple
wetland hydrological characteristics to the hydrological regime, we demonstrated that we could use the concept of
archetypes to infer information about their specific hydrological functionality nationwide. Since many archetypes
consist of multiple wetland classifications, we recommend estimating hydrological functions based on the
hydrological regimes, not individual wetland types. By being able to draw information from the archetypes, we
reveal a new understanding of the hydrological functioning of wetlands with a particular emphasis on hydrological-

related regulating ecosystem services such as flood control and water supply during low flow periods.
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Appendix A

605 Table Al. Hydrological parameters used for cluster analysis. Each parameter was evaluated individually and in
combination with others to assess its effectiveness in capturing the characteristics of the hydrological regime. (N) —
Normalized to remove the effect of wetland size.

Hydrological parameters Description

Max Month Timing of the highest water extent

Min Month Timing of the lowest water extent

Standard Deviation Measure of dispersion of water extent values in a dataset

Skewness Measure of symmetry in a distribution of water extent values

Kurtosis Measure of peakedness in a distribution of water extent values

Coefficient of Variation Measure of the dispersion water extent values around the mean

Range (N) Difference between the maximum water extent value and the minimum water

extent value, normalised to the mean wetland size

Minimum slope (N) Smallest slope of monthly water extent change taken from the first derivative,

normalised to the water extent range

Maximum slope (N) Highest slope of monthly water extent change taken from the first derivative

and normalised to the water extent range

Spring/Summer Area | Difference between the average spring water extent (in March, April and May)
Difference (N) and average summer water extent (June, July, August), normalised to the mean

wetland size

Spring/Summer Slope | Difference between the average spring slope of monthly water extent change
Difference (N) (in March, April and May) and average summer slope of monthly water extent

change (June, July and August), normalised to the mean wetland size

Slope Variation (N) Standard deviation of all month-to-month slopes of monthly water extent

change, normalised to the water extent range

Number of Peaks Number of peaks, defined as a relatively high value of water extent between

two relatively low values of water extent

Baseline Month Fraction Number of months within 25" percentile of the distribution of water extent

values as a fraction of the year
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610 Figure Al. Elbow curve showing the within cluster sum of squares (WCSS) for k values ranging from 1-10. The Elbow
Curve helps identify the number of clusters by indicating where adding more clusters result in a diminishing reduction
in the WCSS.
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Spring surging wetlands

Mossatrask-Stormyran 6 Pirttimysvuoma
Monthly Varabity (1] Moty Varabilty ()
g Ry 3500 1000 £
56 1500 - P
50 500 a0 -
3000 w0 .
1400
SAMTTASS ITIEpess ITagpess [ITaRpes:
150 2500 o~
1300
2000
100 1200 150
1500
1100
1000 100
s0
1000
500
50
o 3 900
Sikésvagama Tarnasjon
Moty Variabilty vt Moty Variabilty (9
Horly T - v Y

= 5000 500

RETTIEresS 566 TR
4000
3500
250 3000

2500

2000

J ] A s O
Range (min-max, 2020-2023) Mean (2020-2023)

615 Figure A2. Average monthly water extent (March-October) between 2020-2023 for all wetlands belonging to the spring-
surging archetype. Grey area shows the monthly interannual variability given by the range of water extent from all
years. The monthly standard deviation is given in the top right bar plots.
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Figure A3. Average monthly water extent (March-October) between 2020-2023 for all wetlands belonging to the spring-
620 flooded archetype. Grey area shows the monthly interannual variability given by the range of water extent from all
years. The monthly standard deviation is given in the top right bar plots.
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Summer flooded wetlands
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Figure A4. Average monthly water extent (March-October) between 2020-2023 for all wetlands belonging to the
summer-flooded archetype. Grey area shows the monthly interannual variability given by the range of water extent
625  from all years. The monthly standard deviation is given in the top right bar plots.
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Figure AS. Average monthly water extent (March-October) between 2020-2023 for all wetlands belonging to the slow-
drying archetype. Grey area shows the monthly interannual variability given by the range of water extent from all
630 years. The monthly standard deviation is given in the top right bar plots.
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Figure A6. Average monthly water extent (March-October) between 2020-2023 for all wetlands belonging to the
summer-dry archetype. Grey area shows the monthly interannual variability given by the range of water extent from
all years. The monthly standard deviation is given in the top right bar plots.
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Spring surging wetlands
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Figure A7. Wetland water
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Water extent (ha)

Precipitation (mm/day)

extent from January 2020 to August 2023 (excluding January, February November and
December) for spring-surging wetlands, shown alongside daily precipitation totals for matching dates.
aggregated separately for each wetland’s catchment and Ramsar area.
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Spring flooded wetlands
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Figure A8. Wetland water extent from January 2020 to August 2023 (excluding January, February November and
December) for spring-flooded wetlands, shown alongside daily precipitation totals for matching dates. Precipitation is
aggregated separately for each wetland’s catchment and Ramsar area.
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Summer flooded wetlands
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Figure A9. Wetland water extent from January 2020 to August 2023 (excluding January, February November and
December) for summer-flooded wetlands, shown alongside daily precipitation totals for matching dates. Precipitation
is aggregated separately for each wetland’s catchment and Ramsar area.
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Slow drying wetlands
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Figure A10. Wetland water extent from January 2020 to August 2023 (excluding January, February November and
December) for slow-drying wetlands, shown alongside daily precipitation totals for matching dates. Precipitation is
aggregated separately for each wetland’s catchment and Ramsar area.
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Figure A11. Wetland water extent from January 2020 to August 2023 (excluding January, February November and
December) for summer-drying wetlands, shown alongside daily precipitation totals for matching dates. Precipitation is
aggregated separately for each wetland’s catchment and Ramsar area.

Code and data availability. All data including, environmental data, hydrological parameter results and water extent

data for all wetlands is available through (Robinson, 2024) (https://doi.org/10.5281/zenodo.13833605). Code for

processing data and cluster analysis is available at https:/github.com/ab-e-rob/hydrological_archetypes. Code for
predicting water extent in wetlands using DeepAqua can be found at https:/github.com/melgkiades/deep-

wetlands.
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