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Abstract. As a crucial climate-forcing driver, the aerosol optical enhancement factor
(fARH)) is significantly modulated by chemical compositions and the evolution of
particle number size distribution (PNSD), e.g., during new particle formation (NPF).
However, the mechanisms regulating aerosol optical hygroscopicity during different
NPF days, particularly those influenced by heatwaves due to global warming, remain
poorly understood. In the extremely hot summer of 2022 in urban Chongqing of
southwest China, simultaneous measurements of aerosol optical and hygroscopic
properties, PNSD, and bulk chemical compositions were conducted. Two distinct
types of NPF were identified: the ones with relatively polluted period (NPERNPF so11uted)
and clean cases during heatwave-dominated period (NPEc uwNPFciean nw). Compared
to the NPERNPFoiued events, NPEc pwNPFcjean, nw occurred approximately one hour
earlier and the subsequent growth was prolonged, accompanied by a smaller aerosol
effective radius (Ref) and lower formation/growth rate during heatwaves. This agreed
with the concurrently increased aerosol hemispheric backscattering fraction and
scattering Angstrdom exponent. f{RH) was generally higher on NPF days in
comparison to that for non-event cases in both periods. Moreover, heatwave-induced
stronger photooxidation may intensify the formation of more hygroscopic secondary
components, as well as the atmospheric aging/subsequent growth of both pre-existing
and newly formed particles, thereby enhancing fRH) especially during NPEc.
awNPFcean. nw days. The promoted f(RH) and lowered Res could synergistically
elevate the aerosol direct radiative forcing, specifically under persistent heatwave
conditions. Further in-depth exploration on molecular-level characterizations and
aerosol radiative impacts of both direct and indirect interactions during weather

extremes (e.g., heatwaves) with the warming climate are recommended.

1 Introduction

Weather extremes (e.g., heatwaves) have become more and more frequent and

intense largely due to the global climate change, and the heatwave-driven
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environmental, climatic, and health effects have garnered widespread attention
(Hauser et al., 2016; Sun et al., 2016). The China Climate Bulletin 2022 confirmed
that the national average temperature reached an unprecedented high level since 2012
(China Meteorological Administration, 2022), and the risk of heatwaves in China will
persist and potentially intensify in the future (Guo et al., 2016; Li et al., 2017).
Extreme heatwave events could pose significant threats to human health, the survival
of organisms, agriculture, and socio-economic activities (e.g., power supply
restrictions) (Anderson and Bell, 2011; Ma et al., 2021; Su, 2021). Moreover,
heatwaves can trigger natural disasters such as droughts and wildfires, affecting social
stability (Sharma and Mujumdar, 2017).

Heatwaves could also affect the atmospheric physical and chemical processes by
modulating ambient meteorological conditions. Specifically, extremely high
temperature weather is typically characterized by a combination of intensified solar
radiation with elevated temperature and low humidity levels. This could significantly
affect the formation and evolution of secondary aerosols in the atmosphere (Bousiotis
et al., 2021; Hamed et al., 2011; Kurtén et al., 2007), given that the air temperature is
crucial for chemical reactions (Xu et al., 2011). New particle formation (NPF) serves
as a crucial source of atmospheric particulate matter and plays a significant role in the
secondary transformation processes in the atmosphere (Zhu et al., 2021). Generally,
NPF involves the initial formation of thermodynamically stable clusters from
condensable vapors (e.g., ammonia, sulfuric acid, and organic precursor gases) and
subsequent growth of the formed clusters, eventually reaching detectable sizes or even
larger dimensions (Kerminen et al., 2018; Kulmala et al., 2003, 2012). Over time,
these newly formed particles have the potential to serve as cloud condensation nuclei
(CCN), thereby impacting the global climate (Salma et al., 2016). NPF events
normally introduce a sharp increase in the number concentration of nucleation mode
particles within a short time, altering the particle number size distribution (PNSD).
These variations in PNSD likely influence intrinsic physicochemical properties of
aerosols, such as the optical hygroscopicity (Chen et al., 2014; Titos et al., 2016; Zhao
etal., 2019).
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Aerosol hygroscopicity plays a critical role in the atmospheric environment and
climate change, given the complex interaction between aerosol particles and water
vapor (Zhao et al., 2019; Zieger et al., 2011). Water uptake by aerosols not only alters
the particle size and composition (e.g., as reflected in the aerosol refractive index) but
also impacts aerosol scattering efficiency, which further contributes to the uncertainty
in aerosol radiative forcing estimation (Titos et al., 2016, 2021). The aerosol optical
hygroscopicity parameter, f{RH), defined as the ratio of the scattering coefficient at a
certain RH to that of the dry condition, was widely used to describe the aerosol
scattering enhancement through water uptake (Covert et al., 1972; Titos et al., 2016;
Zhao et al., 2019). Numerous studies have demonstrated that f{RH) is influenced by
the size distribution, in addition to particle chemical composition (Chen et al., 2014;
Kuang et al., 2017; Petters and Kreidenweis, 2007; Quinn et al., 2005). There is
currently limited research on the variations in aerosol optical hygroscopicity during
NPF days despite significant changes in aerosol size distributions and chemical
compositions, partly due to that newly formed particles insignificantly affect the
optical properties of aerosols (Kuang et al., 2018). However, previous studies have
observed the enhancement in aerosol hygroscopicity (Cheung et al., 2020; Wu et al.,
2015, 2016) and extinction coefficients (Shen et al., 2011; Sun et al., 2024) during the
subsequent growth of NPF. It is suggested that the influence of NPF on aerosol
hygroscopicity was likely due to changes in aerosol chemical composition at different
stages of NPF events (Cheung et al., 2020), whereas the subsequent particle growth
associated with NPF events can significantly affect particle hygroscopicity as well
(Wu et al., 2016). Although previous studies showed the dependences of aerosol
hygroscopicity on chemical composition (Petters and Kreidenweis, 2007; Titos et al.,
2016; Zhao et al., 2019) (e.g., the variation in composition of precursor species during
NPF events), it is important to acknowledge that the utilized chemical compositions
of NPF were either from PM>s or PMi bulk data. This may differ from the
corresponding composition of newly formed ultrafine particles primarily in the
nucleation and Aitken modes, further introducing bias in exploring the impacts of
NPF and subsequent growth on aerosol optical hygroscopicity. Hence, more

3
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comprehensive investigations on the influencing mechanisms of aerosol optical
hygroscopicity from different perspectives are required, e.g., for the aspects of the
evolution of particle size distribution in modulating aerosol optical and hygroscopic
properties (Tang et al., 2019; Zhao et al., 2019). Additionally, field observations on
A(RH) under extreme weather conditions (e.g., heatwaves) are rather scarce, largely
hindering our understanding of how weather extremes (e.g., extremely high
temperature) influence the optical hygroscopic properties of aerosols. This knowledge
gap further impedes comprehensive understanding of the aerosol water uptake
property and resulted effects on air quality and the climate under varied synoptic
conditions.

During the summer of 2022, a rare heatwave event raged throughout China,
especially the Sichuan-Chongqing region of southwest China (Chen et al., 2024;
Wang et al., 2024), with the daily maximum temperature exceeding 40 °C lasted for
29 days observed at Beibei meteorological station in Chongqing (Hao et al., 2023).
This persistent heatwave not only impacted residents' daily lives significantly, but also
affected the aerosol optical and hygroscopic properties likely through changed aerosol
physicochemical characteristics and relevant atmospheric processing during the
period. In this study, a field observation was conducted by using a combination of a
home-built humidified nephelometer system and a scanning mobility particle sizer
(SMPS), along with the total suspended particle (TSP) filter sampling. A main goal of
this study is to investigate the influence of heatwaves on both aerosol optical
hygroscopicity and the NPF with subsequent growth events, along with the related
discrepancies. Furthermore, we aimed to explore the mechanisms behind the
variability in f{RH) under different meteorological conditions and diverse NPF events.
This study will further enrich insights into the potential environmental impacts due to
variations in the aerosol optical hygroscopicity and size distribution, specifically

under weather extremes (e.g., heatwaves) with the changing climate.
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2 Data and Methods

2.1 Field observation

A continuous field observation on aerosol optical, hygroscopic and chemical
properties was carried out from July 29 to August 19, 2022. The detailed description
of the observation site is available in Supporting Information, S1. During the
observation period, urban Chongqing suffered a rare heatwave (Fig. S1; Chen et al.,
2024; Wang et al., 2024), which significantly affected the local transportation and
industrial activities (Hao et al., 2023). China Meteorological Administration (CMA)
defines heatwaves as three or more consecutive days with daily maximum
temperature (Tmax) above 35 °C (http://www.cmastd.cn/standardView.jspx?id=2103;
Guo et al., 2016; Sun et al., 2014; Tan et al., 2007). Since no unified definition of
heatwaves worldwide, the whole study period was categorized into two stages
according to CMA’s criteria of the daily Tmax records and the Excess Heat Factor
(EHF) metric proposed by Nairn and Fawcett (2014) (Fig. S2a): (1) the normally hot
period from 29 July to 6 August (marked as P1); (2) the heatwave-dominated period
from August 7-19 (marked as P2) characterized with the consistently occurrence of
Tmax exceeding 38 °C (approximately the last 25" percentile of temperature records

for the whole observation period; Fig. S2b).

2.2 Instrumentation and methods

2.2.1 Measurements of aerosol optical hygroscopicity

The humidified nephelometer system, consisting of two three-wavelength (i.e.,
450, 525, and 635 nm) nephelometers (Model Aurora 3000, Ecotech Inc.) and a
humidification unit, was used to determine the aerosol light scattering enhancement
factor, fARH). Ambient air was firstly dried through a Nafion dryer (model MD-700,
Perma Pure LLC) to ensure RH <35%, then split into two streams for both dry and
humidified nephelometers operated in parallel. The flowrate for each nephelometer
was 2.6 LPM. The aerosol scattering (Gsca, 1) and backscattering coefficients (Gusca, 1)

were detected in a dry state (RH <35%) and at a controlled RH level of 85 + 1%,
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respectively, with the humidification efficiency regulated automatically by a
temperature-controlled water bath. More details on the home-built humidified
nephelometer system are available in Kuang et al. (2017, 2020) and Xue et al. (2022).

Hence, fARH) could be calculated as the ratio of the aerosol scattering coefficient
at a predefined RH (Gsca, rH) to the dry (Osca, ary) state, i.e., ARH) = Gsca, RH / Osca, dry
(Covert et al., 1972). In this study, the {RH) discussed is mainly targeted for the 525
nm wavelength, unless otherwise specified. More information about the measurement
of humidified nephelometer system was illustrated in Sect. S2 of the supplement.

In additional to fARH), aerosol optical parameters, such as scattering Angstrém
exponent (SAE; Schuster et al., 2006) and hemispheric backscattering fraction (HBF;

Collaud Coen et al., 2007), were calculated as below:

— ln(Gsca, al /Gsca, A 2)

SAE = 1
T T n(aa2) W)
HBF}\‘ _ Obsca, A (2)
O'sca, A

where Gsa, 2 and Ousca, 2 represent the aerosol scattering and backscattering
coefficients at a specific wavelength A (e.g., A1, A2), respectively.

Both HBF and SAE reflect crucial optical properties of aerosols, e.g., an elevated
HBF (or SAE) generally signifies a higher concentration (or a smaller particle size) of
fine particles within the aerosol population (Jefferson et al., 2017; Kuang et al., 2017;
Luoman et al., 2019). The HBF and SAE discussed in this study are targeted for the
dry condition, unless otherwise specified. Based on the measurements with the
humidified nephelometer system, the equivalent aerosol liquid water content (ALWC)
and the corresponding fraction of ALWC (fw) can also be obtained (Kuang et al, 2018;
see Sect. S2 of the supplement).

The SMPS-measured concurrent particle number size distributions were further
utilized to calculate the aerosol effective radius (Refr) and representative parameters
for NPF events, e.g., the formation rate (FR) and growth rate (GR) of new particle,
condensation sink (CS) and coagulation sink (CoagS) (Dal Maso et al., 2005; Kulmala

et al., 2012). More details are provided in the supplement (Sect. S5).
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Results of the offline chemical analysis with TSP filter samples are provided
in Sect. S3 and Fig. S3. It should be noted that certain secondary organics and crustal
elements (e.g., Ca?", Mg?") that could exhibit a broader size distribution may
contribute to the observed discrepancy in the total mass concentration between the
24-h TSP samples and daily mean PMazs (of similar temporal variations; Fig.S3)
(Duan et al., 2024; Kim et al., 2020; Xu et al., 2021). Nonetheless, previous studies
reported that key components such as SNA (i.e., SO4*, NOs", and NH4") and primary
organics of PMazs (or PMig) were predominantly concentrated within the submicron
size range (An et al., 2024; Bae et al., 2019; Chen et al., 2019; Duan et al., 2024; Kim
et al., 2020; Xu et al., 2024). While the use of TSP samples contains some
uncertainties, the bulk chemical information remains reasonable for characterizing the
optical and hygroscopic properties of PMzs. The descriptions of simultaneous
meteorological and air quality data can be found in Sect. S4, and the 48-h/72-h
backward trajectory analysis was given in Sect. S5 of the supplement.

2.2.2 Determination of the aerosol direct radiative forcing (ADRF) enhancement
factor

Given the high sensitivity of aerosol optical properties (e.g., fARH)) to the
changes in RH under real atmospheric conditions, the influence of RH, or rather the
aerosol hygroscopicity, on ADRF can be quantitatively estimated with the radiative
transfer model by the following equation (Chylek and Wong, 1995; Kotchenruther et
al., 1999; L. Zhang et al., 2015):

AFR(RH)= —(So/4)x[Ta*x (1—= Ac)]x[2x (1-Rs)* xBRHX s —4xRx ]~ (3)

where So is the solar constant, Ta. is the atmosphere transmittance, Ac is the
fractional cloud amount, Rs is the albedo of the underlying surface, B(RH) is the
upscattering fraction at a defined RH, ts and 1. are the optical thicknesses of the
aerosol layer due to light scattering and light absorption, respectively, which can be

expressed as follows (Kotchenruther et al., 1999):

Ts = MX 0lsX f(RH),Ta = MX 0a (4)
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where M is the column burden of aerosol (unit: gm~2), as is the mass scattering
efficiency (MSE), and o. is the mass absorption efficiency (MAE). The direct
radiative forcing is usually calculated with the assumption that the absorption
enhancement is negligible, in comparison to the aerosol scattering enhancement (Xia
etal., 2023).

Hence, the dependence of ADRF on RH (i.e., fRr(RH)) can be estimated by
equation (5) (Chylek and Wong, 1995; Kotchenruther et al., 1999; L. Zhang et al.,
2015):

_ AFx(RH) _ (1-Ro)’ xB(RH) x as x f (RH) = 2 x Rs x 0

= (5
AFr(dry)  (1—=Rs)* xB(dry)x asx f(dry)—2xRsx o )

fre(RH)

where the constant parameters used were Ry = 0.15, a2 = 0.3 m?-g! (Hand and
Malm, 2007; Fierz-Schmidhauser et al., 2010). It should be noted that the assumed
constant o, might introduce some uncertainty in the calculated frr(RH), given the fact
that the contribution of absorption by brown carbon was unknown, although the mass
fraction of BC in TSP remained almost constant (i.e., 4.6% + 1.1%, Fig. S3) during
the observation period. The parameter as was calculated by dividing Ggca, 525 in the dry
condition by the mass concentration of PMas (i.e., 0s = Osca, 525 / PMa.s). B could be
calculated empirically from the measured HBF: f = 0.0817 + 1.8495 x HBF — 2.9682
x HBF? (Delene and Ogren, 2002).

3 Results and discussion

3.1 Overview of the aerosol optical hygroscopicity and PNSD measurements

Figure 1 displayed the time series of the measured aerosol scattering coefficients,
AIRH), PNSD, and the corresponding meteorological conditions and air pollutants
during the study period. A sharp decrease in aerosol scattering coefficients and PMa s,
accompanied with the continuous excellent visibility over 20 km was observed after
August 6, indicating a markedly cleaner environment during P2 in comparison to P1
in summer 2022 of Chongqing. This could be largely attributed to the reduction in

anthropogenic emissions (e.g., NO2, CO, except SO2) from limited outdoor activities
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influenced by the heatwaves in P2, as well as partly suspended industries and
transportation to alleviate the power shortage issue (Chen et al., 2024). Notably, the
increased wind speed and enhanced mixing layer height (MLH) also enabled a more
favorable atmospheric diffusion condition in P2, facilitating the dilution of surface air
pollutants (Zhang et al., 2008). However, a higher mass concentration of SO> was
observed in the P2 period, likely due to a surge in electricity demand and resulted
higher emissions from power plants operating almost at full capacity during the
heatwave (Su, 2021; Teng et al., 2022). Moreover, significant discrepancies in the
aerosol optical and hygroscopic properties were observed under different synoptic
conditions (Table S2). Both HBF and SAE were higher during the P2 period, aligning
with the smaller Resr (Table S2). The f{RH) was found to be relatively higher (p <0.05)
in heatwave days, with the mean values of 1.61 + 0.12 and 1.71 £ 0.15 during the P1
and P2 periods, respectively. Differently, ALWC was more abundant during the
normally hot P1 period than the heatwave-dominated P2 period. This is likely due to
that the derivation algorithm of ALWC utilized in this study (Kuang et al., 2018) was
partly dependent on (e.g., positively correlated) the dry aerosol scattering coefficient,
or rather the aerosol volume concentration in the dry condition (refer to Sect. S3 and
Fig. S11 of the supplement). The mean Gsca, 525 for P2 was about 46.8% of that for the
P1 period, and the corresponding mean level of ALWC was approximately 55.8% of
that for P1. This partly agrees with the stronger aerosol optical hygroscopicity with a
marginally higher fw during the P2 period, highlighting a complex interaction between
the optical enhancement and aerosol physicochemical properties.

The particle number size distribution data suggested that NPF events appeared in
about half the number of observation days (Fig. 1i), with an overall occurrence
frequency of 52.4% (Fig. S4a). This suggests the rather frequent summer NPF events
in Chongqing, notably higher than those observed in other regions of the world, e.g.,
Beijing (16.7%, Deng et al., 2020; ~20%, Wang et al., 2013), Dongguan (4%, Tao et
al., 2023), Hyytidlad (<40%, Dada et al., 2017) and LiLLE (<20%, Crumeyrolle et al.,
2023). Moreover, the frequent NPF events during heatwaves formed substantially
ultrafine particles that are of less contribution to aerosol optical properties in

9



279

280

281

282

283

284

285

286

287

288

comparison to large particles (Fig. S13), partially explaining the significantly lower
levels of total scattering coefficients observed during the P2 period. It should be noted
that the hourly Gsca, 525 values during the P2 period were exclusively below 100 Mm™
(approximately the last 10" percentile of o, 525 data, regarded as the threshold value
of relatively polluted cases; Fig. S2c), suggesting a much cleaner environment
compared to the relatively polluted P1 period. Correspondingly, NPF events occurring
during the relatively polluted P1 period (as detailed in section 3.2) were defined as
NPEpNPF poliued, While cases during the cleaner and heatwave-dominated P2 period

were classified as NPEc gwNPFclean nw.
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Figure 1. Time series of the measured aerosol scattering coefficients, f{RH),
meteorological conditions, air pollutants, and particle number size distribution during

the study period.
3.2 Characteristics of NPF events in different periods

Aside from gaseous precursors (e.g., SOz, volatile organic compounds),
meteorological conditions also play a key role in the occurrence of NPF events. In
brief, NPF events are more likely to appear under sunny and clean conditions
(Bousiotis et al., 2021; Crumeyrolle et al., 2023; Deng et al., 2021; Wang et al., 2017).
The backward trajectory analysis revealed that the southerly breeze was predominant
during the study period (Fig. S4b). Although the surface wind vector slightly varied
between the P1 and P2 periods, this consistency in air mass origins suggests that some
other factors (e.g., changes in environmental conditions and emissions of gaseous
precursors under heatwaves) could have played a crucial role in modulating NPF
events. To further explore the characteristics of NPF events in different periods, the
time-averaged diurnal variations of meteorological parameters and air pollutant

concentrations during both NPF events and non-event days are presented in Fig. 2.
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Figure 2. Diurnal variations of temperature (a), PM2s mass loading (b), RH (¢), SO:
(d), UVB (e), H2S04 (f), O3/0x (g), O3 (h), WS (i), NO2 (j), MLH (k) and CO (1)
during P1 (red) and P2 (blue) NPF days (solid line), as well as the corresponding

non-event days (dash line).

As stated in Sect.3.1, NPF events during the P1 period tended to occur in
relatively polluted environments compared to that of P2 NPEc ywNPFciean, nw events,
as evidenced by the frequent occurrence of Gsca, 525 >100 Mm™!, increased air pollutant
concentrations and lower visibility levels during P1 (Table S2, Fig. 1). Additionally,
the mean CS of the NPEpNPF uied €vents was above 0.015 s (Table S2), which
could be considered as the “polluted” NPF cases (Shang et al., 2023). On P2 NPEc_
#wNPFelean, nw days, the overall mean Gsca, 525 was 33.2 £ 11.7 Mm’!, decreased by
68.0% (39.3%) in comparison to that for P1 NPEpNPFoueq days (P2 non-event days).
In addition, the mean PMas concentration was even lower than 10.0 pg'm™, and the

13
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corresponding visibility level was almost maintained at 30 km (Fig. 1e). All the above
implies that the P2 NPEc_pywNPFcean, nw events were generally accompanied with a
much cleaner environment. It is notable that the increase in SO; concentration after
9:00 LT (Fig. 2d), along with the significant decrease in PM2s mass loadings after
8:00 LT during P1 NPEpNPF oiueeq events (Fig. 2b), likely favored the occurrence of
NPF events. The higher gas-phase sulfuric acid (i.e., H2SO4, as estimated with the
UVB and SO concentration, Lu et al., 2019, Sect. S4) on the same NPF days (Fig. 2f),
further suggesting that sulfuric acid concentration was a critical factor for the
occurrence of P1 NPEpNPF,o1ued €vents.

The diurnal evolutions of meteorological conditions (e.g., T, RH, MLH) for NPF
events were distinct between P1 and P2 periods, although relatively insignificant
differences were observed for both NPF days and non-event days within a same
period (Fig. 2). This likely suggests that meteorological factors might not be the
predominant determining factor of NPF occurrence during the heatwaves of 2022
summer in urban Chongqing, while NPF could be accompanied with quite different
meteorological conditions depending on gaseous precursors and preexisting
condensation sinks. For instance, the NPEc_nwNPFcean, 1w events were typically of
clean-type NPF, characterized with lower background aerosol loading, higher
temperature and favorable atmospheric dispersion capacity with the higher MLH.
However, it is reported that excessive heat can increase the evaporation rate of critical
acid-base clusters during the nucleation process and reduce the stability of initial
molecular clusters (Bousiotis et al., 2021; Kurtén et al., 2007; Zhang et al., 2012), in
line with a recent study that NPF events were weaker during heatwaves in Siberian
boreal forest due to the unstable clusters (Garmash et al., 2024). On the other hand,
the emission rate of biogenic VOCs (BVOCs, e.g., isoprene, monoterpene) from
nearby plants and trees would decrease when temperature exceeded around 40 °C
(Guenther et al., 1993; Pierce and Waldruff, 1991), despite that BVOCs plays a key
role in the nucleation mechanism of NPF (Wang et al., 2017; Zhang et al., 2004).

Hence, the even higher temperature (e.g., T >40 °C) likely suppressed the nucleation

14



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

processes and the subsequent growth of nucleation mode particles on P2 non-event
days (Fig. S6b2), in spite of higher concentrations of SOz and H2SOs.

To further investigate the effect of heatwave on NPF events, the diurnal
variations of PNSD, Refr and particle mode diameter (Dmode) Were shown in Fig. S6.
Aerosol number and volume concentrations, as well as Res, for different modes were
illustrated in Figs. S7-8, and the relationship between temperature and the duration of

NPF events was displayed in Fig. S9. Distinct particle size distributions were

observed for different NPF event days. While the number concentrations of Aitken

mode particles (Naij) were comparable during NPF days of both periods, the

corresponding number concentration of nucleation mode (Nnue) was significantly

higher on P1 NPF,oued days (1880.8 + 2261.5 cm™) than that for P2 NPF cases

(1132.0 + 1333.5 cm?) (Fig. 1i, Fig. S7). The reduced N during P2 period was

likely attributed to the influence of transport on the local nucleation process (Fig. S4:

Cai et al., 2023: Lee et al., 2019). Namely, some nucleation mode particles

transported from upwind regions had undergone atmospheric aging thereby a certain

degree of growth upon arrival (Cai et al., 2023). resulting in relatively lower

concentrations of smaller-sized particles than the case of locally formed. However,

tFhe NPF events under heatwaves usually initiated earlier (Fig. S€9), with the aumber-
concentration—of nucleation—meodeparticles{(Nnuc) in P2 NPEc_uwNPF jean, Hw cases
peaked about an hour earlier in comparison to NPEeNPFoiued days (Fig. S78a). The
Dmode on P2 NPEc nwNPFcjean, nw days also reached its minimum earlier than that on
P1 NPEpNPFomued days (Fig. S6). Since the sunrise and sunset time did not
significantly vary within the study period (i.e., less than a half hour discrepancy),
heatwaves likely provided more favorable conditions (e.g., enhanced volatile gaseous
emissions, low RH; Bousiotis et al., 2021; Hamed et al., 2007; Wang et al., 2024) for
the occurrence of NPF events in urban Chongqing. This is supported by the earlier
start time of NPEc uwNPFcean, nw corresponding to higher temperature ranges (Fig.
S89). Furthermore, the end time of subsequent particle growth during P2 period was
even later (i.e., ~ 21:00 LT) than that of P1 cases (Fig. S€9). Given that the growth
rates of new particles were generally lower during P2 NPEc ywNPFcean, nw events
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(Table S2), these explosively formed new particles could persist longer in the warmer
atmosphere and probably undergo aging processes with a relatively higher oxidation
degree. This is supported by the commonly higher ratios of secondary organic carbon
(SOC) to organic carbon (OC) (i.e., SOC/OC >0.5) during the NPEc_uwNPFciean, nw
days (Fig. S3b). In addition, aerosol Resr was significantly smaller on the NPEc
#wNPFean, nw days under heatwave conditions. The Refr and Dmode nearly kept at a
same level below/approaching 50 nm during the subsequent growth on the P2 NPEc_
#wNPF cean, nw days, while the Resr was generally above 50 nm and larger than Dmode
for both P1 NPEpNPF iued cases and non-event days (Fig. S6). The diurnal patterns
of aerosol volume concentrations for different size modes were similar to that of
aerosol number concentrations during NPF events (Fig. S78b1-b3). However, both the
Refr of Aitken mode particles (Rait) and accumulation mode particles (Race.) were
smaller during P2 NPEc nwNPFcjean, nw events than that of P1 NPEpNPFE joiueeq €vents
(Fig. S#8c2-c3), which may further influence size-dependent aerosol optical and
hygroscopic properties (€.g., Osca, 525, HBF, SAE, f{RH)). The decrease in Rai.. and Racc.
during heatwaves could be attributed to three factors: (1) evaporation of the outer
layer of particles and unstable clusters due to heatwaves (Bousiotis et al., 2021;
Cusack et al., 2013; Deng et al., 2020; Garmash et al., 2024; Li et al., 2019); (2) lower
FR and GR of particles under the cleaner environment (Table S2); (3) reduced
emissions of larger primary particles during the P2 period.
3.3 Characteristics of the aerosol optical and hygroscopic properties on different
types of NPF days

Diurnal variations of the aerosol optical and hygroscopic parameters during
different NPF days were shown in Fig. 3, and the corresponding results for non-event
days can refer to Fig. S910. Generally, Gsca, 525 possessed a similar bimodal diurnal
pattern to that of the accumulation mode aerosol volume concentration (Vac.) (Fig.
S78b3), as supported by the positive correlation between Gsca, 525 and SMPS-measured
aerosol volume concentration (Fig. S142). This is also consistent with the Mie theory,

with a stronger increase in the scattering efficiency for accumulation mode particles
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(Titos et al., 2021). The diurnal pattern of Gsea, 525 also varied distinctly between
different NPF days. Specifically, a minor peak of Osca, 525 around 12:00 LT (Fig. 3a)
was influenced by the newly formed particles during P2 NPEc ywNPFciean, nw events,
which contributed more significantly to the aerosol number and volume
concentrations within 100 nm size ranges in markedly clean environments (Fig. S5cl,
c2). Instead of a noontime peak, Gsca, 525 was observed with an early peak around the

morning rush hours and a maximum value similarly occurred at the nighttime on P1

NPEpNPF poliuted days.
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Figure 3. Diurnal variations of osa, 525 (a), ARH) (b), HBFs25 (¢), ALWC (d),
SAEs3s4s50 (€) and fw (f) on NPF days during P1 (red line) and P2 (blue line) periods.

The shaded areas stand for the corresponding = 1c standard deviations.

Both HBF and SAE on P2 NPEc nwNPFcjean, nw days were significantly higher
than that of P1 NPERNPF, e cases (Fig. 3c, e), largely due to the smaller Resr
observed during heatwave-dominated period (Table S2). Moreover, the correlation

between HBF (or SAE) and particle size in each mode was weaker on NPF days than
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on non-event days, especially for NPEc ywNPF ey, nw days (Fig. S134). A strongest
negative correlation was found between HBF and Resr of the accumulation mode in
comparison to other modes, highlighting that HBF is more sensitive to the size
distribution of accumulation mode particles (Collaud Coen et al., 2007). Given that
NPF would largely enhance the abundance of both nucleation and Aitken mode
aerosols_(Fig. S7), no significant variation in HBF was observed during the daytime
due to the weakened correlation between HBF and Racc.. of NPF events. SAE is
commonly used as an indicator of particle size distribution, almost decreasing
monotonously with the increase of aerosol size within 1 um (Kuang et al., 2017, 2018;
Luoma et al., 2019). Accordingly, SAE decreased over the morning and evening rush
hours when coarse particles (e.g., aged particles, road dust, automobile exhaust)
generated during anthropogenic activities, accompanied with an increase in CO that is
taken as the proxy for primary emissions (Fig. 21) (Yarragunta et al., 2020). On the
contrary, the abundant ultrafine particles formed during NPF events led to a
continuous increase in SAE during the day.

ARH) exhibited a similar diurnal pattern on the P1 and P2 NPF days (Fig. 3b).
During the daytime, f{RH) remained relatively stable and gradually increased until
peaking around 16:00-18:00 LT, with a generally higher fRH) particularly after 15:00
LT during P2 NPEc pwNPFcea, nw days than that of P1 cases. The insignificant
fluctuation of relatively lower f{RH) levels before the noon could be attributed to the
continuous development of the mixing layer (Fig. 2k), leading to an efficient mixing
of particles in the nocturnal residual layer with anthropogenic emissions near the
ground. Additionally, photochemical reactions in the afternoon facilitated the
formation of more hygroscopic secondary aerosols with a higher oxidation level (Liu
et al., 2014; R. Zhang et al., 2015). The diurnal patterns of O3 and the O3/Ox ratio (i.e.,
an indicator of atmospheric oxidation capacity, where Ox = O3 + NO, Tian et al.,
2021) also showed similar trends (Fig. 2g, 2h). The presence of black carbon (BC)
mixed with organic compounds (e.g., from traffic emissions and residential cooking
activities) explained the rapid decrease in f{RH) during the evening rush hours (Liu et
al., 2011). Furthermore, the daily mean f{RH) for NPF days was higher than that of
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non-event days (Table S2), particularly after the ending of NPF events around 12:00
LT. Given that newly formed particles were too small to significantly impact the total
light scattering (Fig. S101a), this indicates that the atmospheric conditions conducive
to the occurrence of NPF may promote further growth (e.g., via photooxidation or
atmospheric aging processes) of pre-existing particles and newly formed ones, leading
to enhanced aerosol optical hygroscopicity as clued from the concurrent variations of
ALWC and fw in urban Chongqing during hot summer (Asmi et al., 2010; Wang et al.,
2019; Wu et al., 2016). The diurnal pattern of ALWC closely mirrored the variation in
Osca, 525, While fw followed the similar evolution of f{RH). This suggests that ALWC
was more sensitive to changes in the aerosol volume concentration, as determined by
the corresponding retrieval algorithm (Kuang et al., 2018). The fw levels were slightly
higher during NPF days in comparison to that of non-event days (Table S2). This
difference was more pronounced in the afternoon of NPF days (e.g., even exceeded
50%; Fig. 3f), verified the enhancement of aerosol hygroscopicity during the
subsequent growth and atmospheric aging of both pre-existing and newly formed

particles.
3.4 Heatwave-induced divergent changes in aerosol optical hygroscopicity

To further explore the impacts of heatwaves on f{RH) during diverse NPF events,
data mainly within the time window of 08:00-22:00 LT (i.e., typically covered the
complete process of NPF and subsequent growth, while excluded higher RH
conditions at night) were utilized for the following discussion.

Although ultrafine particles exhibited higher number concentrations during the

study period, accumulation mode particles dominated the aerosol volume

concentration and contributed predominantly to the total light scattering (Figs. S7,

S13). A positive correlation between f(RH), Rer and the volume fraction of
accumulation mode particles (VFacc.) was found on non-event days (Fig. 4c-d), when
the aerosol size distribution was undisturbed by newly formed ultrafine particles and
the corresponding VFace. maintained around a high level of 0.95 (Fig. 4a-b). The

notably positive correlation between f{RH) and Resr could be linked to the secondary
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formation of hygroscopic particles within the accumulation mode, primarily via

photochemical reactions and further intensified by heatwaves during the non-event

day particularly of the P2 period (Gu et al., 2023; Liu et al., 2014; R. Zhang et al.,

2015; Zhang et al., 2024). Consequently, fARH) at a specific Rer was generally higher

during the P2 period in comparison to that of P1 (Fig. 4c-d), also with high f{RH)

levels observed for smaller size cases of Rer <110 nm under some extremely high

temperature conditions (T >40 °C, as highlighted by the red dashed circle in Fig. 4d).

The higher SOC/OC on P2 non-event days further demonstrated the stronger

secondary aerosol formation in comparison to P1 non-event days (Fig. S3b).
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Figure 4. Diurnal variations of (a) the number fraction (NFac.) and (b) volume
fraction of accumulation mode particles (VFacc.) on P1 (red) and P2 (blue) NPF days
(solid line), as well as non-event days (dash line). The time window of 08:00-22:00
LT was shaded in red. The relationship of ARH) with Resr and VFacc. (as indicated by
the colored dots) on P1 (¢) and P2 non-event days (d), as well as on P1 (e) and P2 (f)
NPF days during the 08:00-22:00 LT time window.

Nevertheless, ARH) was almost independent of the two parameters (i.e., Refr
and VFacc.) for NPF events (Fig. 4e-f). This is mainly due to the explosive formation
of ultrafine particles and subsequent growth on NPF days, significantly altering
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aerosol size distributions and inducing large fluctuations in the number and volume
fractions of accumulation mode particles (as shaded in Fig. 4a-b). Therefore,
characterizing f{RH) with the corresponding Resr of aerosol populations was no longer
applicable. Alternatively, SAE was commonly used to estimate or parameterize f{RH)
(Titos et al., 2014; Xia et al., 2023; Xue et al., 2022), in line with the similar diurnal
patterns of A{RH) and SAE observed in this study. Figure 5 demonstrated a
significantly positive correlation between f(RH) and SAE during NPF days in
comparison to non-event days, with a similar slope of approximately 0.65 suggesting
the consistent variation of {RH) with SAE across both periods. As larger particles
contributed higher to the aerosol volume concentrations (Fig. S5), the decrease of
SAE also corresponded to an increase in Gse, 525 (Fig. 5a3, b3). Given that larger
Osca, 525 values typically indicate the condition of a higher aerosol loading, f{RH)

increased with SAE whereas decreased with G, 525, or rather the pollution level,

during NPF days. The cleaner environment of P2 period generalhypeossessed-atower

ES-(Fable-S2-as-denoted-by-the-stze-of-cireles-in-Fio-5a2.-b2)-therebymay further in-
favor-ef the occurrence of NPF events. Aeresel-Both fARH) and SAE exhibited a

higher level on P2 NPEc uwNPFcean, nw days (as shown by the dash lines in Fig. 5),
the—pessible—reasens—ean—belikely attributed to the following two aspects. One is
related to the smaller aerosol Resr (with a larger SAE) due to the lower FR and GR,
likely influenced by the evaporation of newly-formed unstable clusters and particle
coatings under heatwaves (Bousiotis et al., 2021; Cusack et al., 2013; Deng et al.,
2020) during the subsequent growth of aerosols. Secondly, the higher temperature was
normally associated with stronger photochemical oxidation, which could intensify the
formation of secondary aerosol components with a higher hygroscopicity (Asmi et al.,
2010; Gu et al., 2023; Liu et al., 2014; Wu et al., 2016; R. Zhang et al., 2015; Zhang
et al., 2024). This is further supported by the slightly higher levels of UVB (P1: 2.6 +
1.9 W-m2 versus P2: 2.7 = 2.0 W-m?) and O3/Ox (P1: 0.81 + 0.17 versus P2: 0.82 +
0.17) during P2 heatwave days, also in line with a recent study which demonstrated
that heatwaves affected secondary organic aerosols (SOA) formation and aging by
accelerating photooxidation in Beijing (Zhang et al., 2024).
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It is worth noting that f{RH) did not show a consistently higher level after the
NPEc_uwNPFeiean. nw occurrence during P2 period, and it was slightly higher within
the first few hours of NPF occurrence (i.e., ~ 12:00 -15:00 LT) on P1 NPENPF hoiuted
days (Fig. 3b). In fact, aerosol optical hygroscopicity not fully corresponds to the bulk
hygroscopicity primarily determined by aerosol chemical components, and the
variability in aerosol optical features also plays a key role in f{RH). Hence, the
size-dependency of aerosol optical properties should be considered. The size-resolved
Osca, 525 distribution and size-resolved cumulative frequency distribution (CFD) of
Osca, 525 over different NPF days were calculated using the Mie theory, with good
agreements between the theoretically calculated and measured Gsca, 525 values (R? =
0.99). As shown in Fig. S181a and Fig. S123, new particles must grow into the
accumulation mode size at least before they can exert a significant influence on the
total scattering coefficient. The critical sizes corresponding to the cumulative
frequency of 50% in Osca, 525 were 358.7 nm and 333.8 nm on P1 and P2 NPF days,
respectively. This indicates that relatively smaller particles including the newly
formed and grown ones mixed with pre-existing and aged particles contributed a
slightly higher portion to Gsca, 525 on P2 NPEc ywNPFcjean, nw days, while the Gsca, 525
was mainly contributed by larger ones on P1 NPEpNPF oued days. Nevertheless, the
Mie theory suggests that these smaller particles generally have a weaker enhancement
in total scattering after hygroscopic growth, in comparison to larger size particles
(Collaud Coen et al., 2007, Fig. S181a). Consequently, the changes in aerosol optical
and hygroscopic properties necessitate consideration of both aerosol optical and
chemical characteristics during different NPF events. Newly formed ultrafine particles
contributed minor to aerosol optical properties, resulting in a lower fRH) during the
initial hours of P2 NPEc_ywNPFjean, nw events compared to that of P1 NPEpNPF joi1uted
events (Fig. 3b), as evidenced by a smaller Refr for P2 NPEc ywNPF iean, nw events
(Fig. S6). In contrast, the growth of pre-existing and newly formed particles into
larger sizes would subsequently affect bulk aerosol optical properties, which was
evidenced by the enhancement in aerosol extinction coefficient observed after NPF
occurrence in a recent study (Sun et al., 2024). Specifically, particles could undergo a
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563  longer and more intensified photochemical aging process during NPEc uwNPFciean, nw

564  events as influenced by persistent heatwaves, which facilitated the secondary
565  formation of hygroscopic aerosols and resulted in a higher f{RH) after 15:00 LT (Fig.
566 3b).
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Figure 5. The relationship between f{RH) and SAEge3su4s0, as well as temperature (as
indicated by the color of dots, missing values are represented in gray)-and-CS—(as-
denoted-by-the-size-ofeireles), on P1 non-event days (al), NPEpNPF oiued days (a2)
during the 08:00-22:00 LT time window. The vertical (horizontal) dash line represents
the median value of SAEs3s450 (f{RH)). (a3) The corresponding Gsca, 525 under different
SAEs¢35450 levels on P1 NPEpNPF yo11uted days. (b1-b3) The same but for P2 period.

3.5 f(RH)-induced changes in aerosol direct radiative forcing

The changes in f{RH) have significant implications for aerosol direct radiative
forcing. Despite considerably lower osa, 525 results during heatwaves, the
corresponding mean frr(RH) levels particularly for P2 NPEc_pwNPF e, nw days were
higher than that of the P1 cases (Fig. 6a). A robust positive correlation (R?= 0.68) was
observed between f(RH) and aerosol radiative forcing enhancement factor, frr(RH)
(Fig. 6b). This is likely attributed to the enhanced frr(RH) with the larger forward
scattering ratio [, or rather higher HBF for smaller particle sizes, as supported by a
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generally negative correlation between frr(RH) and Refr. Specifically, the highest
fre(RH) value of 2.21 £ 0.23 was observed on P2 NPEc ywNPFiean, nw days,
characterized with the highest f{RH) and smallest Resr (i.e., highest HBF) of the entire
study period.

The definition of frr(RH) in Eq.(5) implies the dependences of frr(RH) on both
AIRH) and HBF-derived B(RH) and B(dry), or rather the ratio of HBFs2s, ru/HBFs2s.
The mean HBFs2s ru was generally larger than HBFs»s in this study, specifically with
the HBFs2s, ru/HBFs2s ratios centered around 1.8 and even approached 2.5 on P2
NPEc nuwNPFcjean, nw days (Fig. 6c, Table S2). This could be different from the
classical Mie theory with the spherical-particle premise, i.e., the observed light
backscattering was enhanced after hydration likely resulted from the evolution in
particle morphology that significantly influences their optical properties (Mishchenko

2009). Additionally, the predominant organic components when heterogeneously

mixed with diverse chemical compositions (e.g., inorganics and black carbon) likely

introduced the heterogeneity in aerosol hygroscopicity (Yuan and Zhao, 2023). which

may alter particle morphology thereby optical properties upon water uptake (Giordano

et al., 2015; Tan et al., 2020; Tritscher et al., 2011). Fhe-organie-rich-particlesmight
remain—non-spherical-even—after—water—uptake—due—to+tThe efficient evaporation of

organic coatings under extremely hot conditions_could also contribute to the change in

particle morphology (e.g., non-spherical inregular shapes) upon humidification, as

evidenced by a recent study that high temperature conditions could accelerate the
evaporation rate of SOA (Li et al., 2019). Given that the backward scattering intensity
of non-spherical particles is suggested to be much larger than its spherical
counterparts at scattering angles between 90° and 150° (Mishchenko 2009; Yang et al.,
2007) and that the HBF-derived asymmetry parameter (g) normally correlates
positively with the aerosol forward scattering (Andrews et al., 2006; Marshall et al.,
1995), the generally smaller gru results (in comparison to g) confirmed the decrease
(increase) in the forward (backward) light scattering after water uptake (Fig. S181bc),
likely implying the change in the morphological structure of particles. This is
particularly evident for P2 NPEc pwNPFciean nw days, with a much lower level of gru
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was observed (Fig. S161bc). Another possible reason is the distinct size dependences

of both light scattering and backscattering efficiencies (Fig. S1la), with much more

significant enhancements in the backscattering efficiency thereby HBF specifically of

accumulation mode particles after hygroscopic growth (Fig. S11b). that-As reflected

by the Mie model, although the abundant newly formed particles were generally

optically-insensitive_(e.g., below 100 nm), their contributions to Osca, 525 and especially

tO Obsca, 525 could be amplified upon humidification (Fig. S11b).-Namely-even-ifthese-

HBEs»s ru-levels—during NPE-events: Besides, the shift of size distribution towards

larger accumulation-mode particles could also result in a significant elevation in

HBFs2s. ru/HBFs2s5 ratios, especially under the condition of a smaller mode diameter

and narrower distribution of ultrafine-mode particles (e.g.. during NPF events) (Fig.

S15al-b2 for the theoretical sensitivity tests of Sect. S9 in the supplement).

Furthermore, the HBFs»s. ru/HBFs2s ratio exhibited a significant positive correlation

with the real part of complex refractive index (n) of bulk aerosols (Fig. S16), and n

tends to increase with the aging process of organic species (Moise et al.. 2015: Zhao

et al., 2021). In this sense, the evolution of both aerosol size distribution pattern and

chemical compositions, combined with the heterogeneity in  aerosol

hygroscopicty. Fhese-combined-effeets could potentially change particle morphology

and optical properties (e.g., complex refractive index and elevated the-HBFs2s, ru)

particularly during heatwave-influenced NPEc_uwNPF iean. nw days, characterized with
the smallest aerosol Refr (102.8 = 12.4 nm) (Figure. S6), lowest number concentration

(1897.0 + 680.8 cm™) and fraction (0.20 = 0.10) of accumulation mode particles-0-20-

+=-0-10), intensified photooxidation, and a higher SOC/OC ratio. The higher HBFs2s,

ru/HBFs2s ratios increased the HBF-derived B(RH)/B(dry) levels, in combination of
the elevated f{RH), further resulting in the highest frr(RH) observed during P2 NPEc_
uwNPFean, nw events. Given that previously observed HBFs2s ru was typically lower
than HBFss (Titos et al., 2021; Xia et al., 2023; L. Zhang et al., 2015), the mean
fre(RH) results of this study (frr(85%) = 2.05 + 0.24) were significantly higher than
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those observed in the Yangtze River Delta (frr(85%) = 1.5, L. Zhang et al., 2015), the
North China Plain (frr(80%) = 1.6 = 0.2, Xia et al., 2023), and some other regions in
the world (Titos et al., 2021, Fig. 6d). It should be noted that the reported frr(RH) for
the UGR site (Spain) was even higher, likely due to the higher Rs and a5 used in the
derivation of frr(RH) in that area (Titos et al., 2021).
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Figure 6. (a) The box-plot of frr(RH) during P1 or P2 NPF event and non-event days.
(b) The relationship between frr(RH) and f{RH), as colored by the corresponding Refr,
during P1 or P2 NPF and non-event days (shown in different symbols). (c)
Occurrence frequency of the HBFsas, ru/HBFsos ratios during P1 or P2 NPF and
non-event days. (d) The mean frr(RH) under different fRH) levels (the error bars
stand for = one standard deviations corresponding to frr(RH) and f{RH), respectively),

along with the reported frr(RH) and f{RH) data for other regions in the world.

A recent study has indicated that continuous reduction of PMzs mass loadings
can increase the net solar radiation, thereby promoting NPF events (Zhao et al., 2021).
Given the complexity and dynamic evolution of the atmospheric environment, these
can further alter the intrinsic properties of aerosol particles (e.g., fARH), HBF,
morphology), potentially feeding back into aerosol-radiation interactions. Our
findings suggest that NPF and growth events may elevate aerosol optical
hygroscopicity in rather hot environments, e.g., the Basin area and tropical regions.
Meanwhile, NPF serves as a crucial secondary transformation process in the
atmosphere (Zhu et al., 2021). The favorable atmospheric diffusion capability ensured
the mixing of newly formed particles into the upper boundary layer, where is colder
and more humid than that near the surface during heatwaves (Jin et al., 2022). Hence,
the enhancement of aerosol optical hygroscopicity during the subsequent growth of
pre-existing and newly formed particles possibly exacerbates secondary pollution and
even triggers haze events (Hao et al., 2024; Kulmala et al., 2021). On the other hand,
a large number of studies have demonstrated that the new particles of higher
hygroscopicity could contribute more to the activation of CCN (Ma et al., 2016; Ren
et al., 2021; Rosati et al., 2022; Sun et al., 2024; Wu et al., 2015), thereby modulating
the aerosol-cloud interactions and further the global climate (Fan et al., 2016;
Merikanto et al., 2006; Westervelt et al., 2013). Additionally, the simultaneous
decrease in aerosol effective radius and possibly evaporation-induced non-spherical
particle morphology further enhance the aerosol direct radiative forcing enhancement

factor, potentially amplifying the cooling effect mainly caused by light scattering
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aerosols. This highlights the needs for further in-depth exploration on aerosol
radiative impacts at weather extremes (e.g., heatwaves) with the changing climate,
given the continuous reductions of anthropogenic emissions and more intense
emissions of biogenic origins with the global warming. Besides, more detailed
information on the evolution of particle morphology with the changing environment
(e.g., varied temperature and RH) would enrich insights into the aerosol radiative

forcing.

4 Conclusions and implications

A rare heatwave event raged throughout urban Chonggqing of southwest China in
the summer of 2022, which significantly influenced aerosol physicochemical
properties and atmospheric processes (e.g., NPF and subsequent growth). Concurrent
measurements of aerosol optical and hygroscopic properties, PNSD, and bulk
chemical compositions were conducted to explore the mechanisms behind the
variations in aerosol optical hygroscopicity during different NPF days under diverse
weather conditions.

NPF events exhibited distinct characteristics during the normally hot (P1,
relatively polluted) and heatwaves-dominated (P2, quite clean) periods.
NPEpNPF poliued Within P1 period was favored by the decrease in background aerosol
loading and the higher abundance of H2SO4. NPEc nwNPFcjean, 1w events that occurred
during the heatwave P2 period were characterized with lower CS, CoagS, FR and GR,
as well as smaller Refr and Dimode, than P1 NPEpNPFoiued cases. In comparison to the
P1 NPEpNPFolued events, NPEe ywNPFcean, nw occurred approximately one hour
earlier and the subsequent growth was longer during P2, likely intensifying the
photochemical oxidation due to heatwave-influenced aging processes and modulating
the evolution of aerosol size distributions differently. Furthermore, significant
differences in aerosol optical and hygroscopic properties were observed between the

normally hot and heatwave-dominated NPF days. The newly formed and grown
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particles mixed with pre-existing aerosols contributed a minor Gsca, 525 noontime peak
occurred on the much cleaner P2 NPEc ywNPFiean, nw days, while the o, 525 peaked
earlier around the morning rush hours on P1 NPENPF,oued days. HBF and SAE
were significantly higher on P2 NPEc pywNPFcean, nw days, primarily due to the
smaller Rer for heatwave-influenced NPEc pywNPFcean, nw cases. fARH) remained
relatively stable during the daytime of NPF days and peaked around 16:00-18:00 LT.
Specifically, aerosol optical hygroscopicity tended to be higher during the subsequent
growth and aging of both pre-existing particles and newly formed ones on P2
NPEc pwNPFcean, nw days than that for P1 NPEpNPF oueq days, which aligned with
the higher fw levels.

Compared with non-event cases, the generally higher levels of daily mean f{RH)
suggested that the aerosol optical hygroscopicity was enhanced on NPF days in hot
summer of urban Chongqing. A significantly positive (negative) correlation between
ARH) and SAE (€S;-0ca, 525, or rather the pollution level) was observed on NPF days
for both periods, accompanied by higher f{IRH) and SAE values on NPEc
#wNPF cean, nw days. This was likely due to the evaporation of both unstable clusters
and particle coatings under heatwaves (Bousiotis et al., 2021; Cusack et al., 2013;
Deng et al., 2020; Garmash et al., 2024), thereby reducing aerosol sizes (e.g., Ref,
Dmode) Whereas increasing SAE. Moreover, heatwave-influenced stronger
photooxidation enhanced the formation of more hygroscopic secondary components
during the subsequent growth/aging processes of both pre-existing and newly formed
particles on P2 NPEc_ywNPF iean. nw days in comparison to that of P1 NPEpNPF oiuted
cases. The aerosol light scattering or volume concentration was mainly contributed by
the larger accumulation-mode particles, while more ultrafine particles dominated the
size distribution especially for the initial stage of heatwave-influenced
NPEc_uwNPFoean. nw events, further leading to a lower ARH) following the NPF
occurrence (i.e., ~ 12:00 -15:00 LT) in comparison to P1 NPEpNPF oi1ueeq days.

Changes in f{RH) could potentially impact the aerosol direct radiative forcing. A
robust positive (negative) correlation existed between frRr(RH) and ARH) (Ref).
Despite a lower G, 525 during heatwaves, the corresponding mean frr(RH) was
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relatively higher and the maximum value of 2.21 + 0.23 was observed on P2
NPEc uwNPFeean, nw days, associated with the highest ARH) (1.71 + 0.13), smallest
Refr (102.8 + 12.4 nm), and highest HBFs2s, ru/HBFs2s ratios (1.78 £ 0.29). The above

highlights that heatwaves could influence the NPF (e.g., the evolution in the aerosol

size distribution pattern and chemical composition) and atmospheric processing

(although with a decreased aerosol Refr and Dmode likely due to evaporation-resulted
non-spherical particle morphology under persistently high temperature conditions),
thereby enhancing aerosol optical hygroscopic growth and potentially reducing the net
solar radiation directly especially in hot summer. Further explorations on detailed
molecular-scale characterizations (e.g., molecular structures and compositions of
newly and secondary formed particles, as well as particle morphology) and aerosol
radiative impacts including the aerosol-cloud interactions of weather extremes (e.g.,

heatwaves) with the changing climate are highly recommended.
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S1. Site description

The observation site was located on the rooftop of a building (~15 m above the
ground) in the main campus of Chongqing University (29.57°N, 106.46°E) in the urban
center of Chongqing, southwest China. The site is characterized by a typical residential
and commercial environment, mainly influenced by local emissions (e.g., traffic,
cooking). All instruments were installed in an air-conditioned room, with the room
temperature maintained about 25°C. The ambient air was sampled at a flowrate of 16.7
LPM through a PM:s impactor (model 2000-30EH, URG Inc.) and dried with a Nafion
dryer (model MD-700, Perma Pure LLC), to achieve a low relative humidity level (RH
<35%) prior to the online aerosol size distribution, optical and hygroscopic measurements.
During the observation period, urban Chongqing suffered a rare heatwave. The mean
temperature and relative humidity during the study period and the same period from 2011
to 2021 in urban Chongqing are given in Figure S1. Based on the method proposed by
Nairn and Fawcett (2014), the Excess Heat Factor (EHF) metric was accordingly
calculated for this study (Figure S2a).
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Figure S1. The variation trends of annual temperature and RH during the study period in

2022 and the same period from 2011 to 2021 in urban Chongqing.
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Figure S2. (a) Time series of calculated EHF, along with the daily maximum

temperature (Tmax) and dry Gsca, 525 results, during the study period. The corresponding

occurrence frequency and cumulative frequency of hourly (b) temperature and (¢) Gca, 525

data records.
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S2. Derivation of aerosol liquid water content (ALWC)
In this study, ALWC was determined as the discrepancy in aerosol volume
concentration between the humidified and dry particles:

ALWC = Vayx (f v(RH) —1) (1)

where the dry aerosol volume concentration (Vaiy) was estimated with the dry
scattering coefficients at three wavelengths utilizing a machine learning method (Kuang
et al., 2018). Given the dependence on aerosol hygroscopicity and size distribution, the
aerosol volume growth factor (fv(RH)) can be obtained from the observed f{RH) and SAE
(a proxy of aerosol size distribution) with the humidified nephelometer system (Kuang et
al., 2018). Accordingly, the fraction of aerosol water content (fw) upon hydration could
be expressed as:

ALWC
fw= 2)
ALWCH+ Vay
Both dry and humidified nephelometers were calibrated before the measurement for

the zero/span check with the particle-free air/standard gas (R134a), following standard
calibration procedures. More detailed descriptions about the home-built humidified

nephelometer system can refer to Kuang et al. (2017, 2020) and Xue et al. (2022).
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S3. Offline particle sampling and chemical analysis

Total suspended particle (TSP) filter samples were collected by a moderate volume
air sampler at a flow rate of 200 L/min from August 5 to 19, 2022. Daily (from 9:30 a.m.
to 9:00 a.m. of the next day) integrated ambient TSP samples were collected on prebaked
(600°C, 5h) quartz-fiber filters (90 mm, Whatman) for water-soluble ions, organic carbon
(OC), and elemental carbon (EC) analysis.

Water-soluble inorganic anions (i.e., SO4>, NOs, CI- and F") and cations (i.e., NH4",
Na®, Mg?*, Ca?*"and K*) were quantified using an ion chromatograph analyzer (Dionex
600, Dionex, USA) following standard procedures (Peng et al., 2019; Wang et al., 2018).
Elemental carbon (EC) and organic carbon (OC) in the collected TSP samples were
analyzed using a DRI Model 2015 Multi-wavelength Carbon Analyzer (Magee Scientific,
USA). The methodology for OC/EC analysis was based on the thermal-optical
reflectance (TOR) method following the Interagency Monitoring of Protected Visual
Environments (IMPROVE-A) protocol, as shown in Chow et al. (2007, 2011) and Peng
et al. (2020). The secondary organic carbon (SOC) can be estimated with the obtained
OC and EC data according to the EC-tracer method (Castro et al., 1999; Strader et al.,
1999), details of which was also available in our previous study (Hao et al., 2024).

The chemical components mass concentration and mass fraction in TSP, as well as
the PM» s (PM10) mass concentration and the ratio of SOC/TOC during the study period
are depicted in Figure S3.
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Figure S3. The mass concentration (a) and mass fraction (b) of chemical components in
TSP (total suspended particulates) during the study period. The black stars, box plots and
white line stands for daily mean PMio, PMa.s and SOC/OC, respectively. The red or blue
circle symbols below specific dates represent the P1 or P2 non-event days, and the blue

stars represent the P2 NPEc ywNPFcjean, nw days.
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S4. Meteorological and air quality data

All the contemporary hourly meteorological datasets including relative humidity
(RH), temperature (T), visibility (VIS), wind speed (WS), wind direction (WD),
precipitation were obtained from the Integrated Surface Database from the U.S. National
Centers for Environmental Information (https://ncdc.noaa.gov/isd) (Wan et al., 2023; Xu
et al., 2020), and the mixing layer height (MLH) data were achieved from China
Meteorological Administration in this study. Ultraviolet (UV) radiation data were
downloaded from European Centre for Medium-Range Weather Forecasts
(https://cds.climate.copernicus.eu/).

Hourly air pollutant datasets including PMz.s, PMio, NO2, SOz, CO and O3 were
achieved from the China National Environmental Monitoring Center
(http://www.cnemc.cn/en). The gas-phase sulfuric acid, known as the most ubiquitous
and key precursor for NPF, was estimated with the UVB (UVB = 5%UV, Fitsiou et al.,
2021) and SO: concentration (Lu et al., 2019):

H2SO04 = 280.05 x UVB™'* x SO, (3)
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SS. Particle number size distribution measurements

During the field observation, every 3-min PNSD and particle volume size
distribution (PVSD) was measured by a SMPS, which consisted of a soft X-Ray
neutralizer (model 3088, TSI Inc.), a differential mobility analyzer (model 3081, TSI
Inc.), and a condensation particle counter (model 3775, TSI Inc.) (Dominick et al., 2018;
Rissler et al., 2006). The SMPS was operated at a sheath/sample flow rate of 3.0/0.3 LPM,
and the detected size range was 14.1-710.5 nm with 110 size bins. Data inversion of
measured particle size distributions was achieved with the Aerosol Instrument Manager
software (AIM, TSI Inc.), including the multiple charge and diffusion corrections
(Denjean et al., 2015; Rosati et al., 2022).

The aerosol effective radius (Refr) is a crucial parameter regulating optical properties
(e.g., light scattering) of the aerosol population (Hansen and Travis, 1974; Grainger et al.,
1995). It can be calculated with the measured size distribution as below (Hansen and

Travis, 1974; Grainger et al., 1995):
J. Dr’n(logDr) dlogDer

Resr =
J Dr’°n(logDr) dlogDe

(4)

where n(logDp) is the particle number size distribution in log scale.

Using the measured PNSD data, NPF events were identified according to the criteria
raised by Dal Maso et al. (2005), and the key parameters related to NPF events (e.g.,
formation rate (FR) and growth rate (GR) of new particles, condensation sink (CS) and
coagulation sink (CoagS)) could be derived following the methodologies introduced by
Dal Maso et al. (2005) and Kulmala et al. (2012).
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The specific dates for NPF and non-event classifications were summarized in Table
S1, and the frequencies of NPF, non-event and Undefined days during both periods were
shown in Figure S4a. By using the HYSPLIT (Hybrid Single-Particle Lagrangian
Integrated Trajectory) 4 model developed by NOAA (Stein et al., 2015), the 48-h and 72-
h back trajectories of air masses at 500_or 1000 m altitude above the observation site
during this study period were calculated and visualized by MeteolnfoMap (version 3.9.9;

Figure S4b) (Chen et al., 2021; Tian et al., 2021; Wang, 2014).
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Figure S4. (a) The occurrence frequencies of NPF, non-event and Undefined days during
P1, P2 and the whole observation periods. (b-¢) The 48-h_and 72-h air-mass back
trajectories at 500 or 1000 m altitude during the study period.
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146 Figure S5. The PNSDs (al-d1) and PVSDs (a2-d2) for different event categories. The

147 blackred and redbhae lines represent the mean and median values, respectively.
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148 The diurnal variations of PNSD, Refr, particle mode diameter (Dmode), as well as CS,

149 were given in Figure S6.
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Figure S6. Diurnal variations of PNSDSs, Dimode, Reff, and CS during P1 and P2 NPF days

(al, b1) and non-event days (a2, b2), the error bars stand for + one standard deviations.
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The PNSD is typically categorized into three modes: the nucleation mode (D, <25
nm), Aitken mode (25-100 nm), and accumulation mode (D, >100 nm) (Zhu et al., 2021).

The number concentrations and volume concentrations of different mode particles for

different event categories are shown in Figure S7. The diurnal variations of aerosol

number and volume concentrations, as well as Ref, for different modes on NPF event

days are illustrated in Figure S78.
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Figure S7. The number concentrations (left column: al-a3) and volume concentrations

(right column: b1-b3) of different mode particles for different event categories.
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Figure S78. Diurnal variations of the number (al-a3), volume (b1-b3) concentration and

effective radius (c1-c3) of nucleation mode (left column), Aitken mode (middle column),
and accumulation mode (right column) particles on NPF event days during P1 (red line)

and P2 (blue line) periods. The shaded areas stand for the corresponding + 1o standard

deviations.
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The specific start and end time of NPF, along with the subsequent growth end time
during NPF events were displayed in Figure S&9. The NPF event end time is defined as
the moment when the formation of new nucleation-mode particles (diameter <25 nm)
ceases, specifically identified by the absence of a notable increase in sub-25 nm particles
(Dal Maso et al., 2005; Hamed et al., 2007; Kerminen et al., 2018). The growth event end
time refers to the time when the newly formed particles stop growing, typically due to the
depletion of low-volatility vapors or particle coagulation (Dal Maso et al., 2005;
Kerminen et al., 2018). This can be observed as the stabilization of particle diameters in
the Aitken/accumulation mode, marked by a flattening of the growth trajectory in the

PNSD plot (Figure 11).
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Figure S89. The start and end time of NPF, along with the subsequent growth end time

and their corresponding temperature levels during NPF events.
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Figure S910. Diurnal variations of osa, 525 (a), ARH) (b), HBFsxs (¢), ALWC (d),
SAEs3s450 (€) and fw (f) on non-event days during P1 (red line) and P2 (blue line) periods.

The shaded areas stand for the corresponding + 1c standard deviations.

17



189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

S7. Calculation of 6sca, 525 and HBF with the Mie theory and measured PNSD

The size-dependent efficiencies of Gsca, Obsca and HBF in dry conditions, as well as

the corresponding enhancements in these efficiencies of a single particle upon hydration

at A = 525 nm could be simulated using the Mie model. Aerosol diameter growth factor

(g(RH)) is normally determined by the aerosol hygroscopicity parameter x (Brock et al.,

2016; Tan et al., 2024). The bulk aerosol xxrm) of this study could be derived from the

fIRH) measurements based on the method proposed by Kuang et al. (2017). The aerosol

population was typically divided into the ultrafine (D, <100 nm: Uf)) and accumulation

(D, >100 nm: Acc.) modes (Fig. S5). Although the size-resolved x results were

unavailable. the mean «; for both Uf. and Acc. mode particles could be roughly estimated

assuming that xgrp) is a linear combination of volume-weighted «; for different modes
(Hong et al., 2024). Since the hygroscopicity for Uf. mode was generally weaker (Chen et

al., 2012: Petters and Kreidenweis, 2007), the mean xus_was defined to be half of the

measured bulk xqru), and xace. can be derived from the bulk xqrm with the measured VFur,

and VF .. Consequently, the corresponding g(RH) for both Uf. and Acc. modes can be

calculated with the x-Kohler theory. The complex refractive index is another critical input

parameter for the Mie model, with the real part of complex refractive index (n)

determining the aerosol light scattering ability. Under the assumption of a fixed » for dry

aerosols (nary = 1.53) in this study, the volume-weighted n of hydrated particles can be

derived with ngy and fIRH)-derived volume fractions of uptake water, fw and the n of

pure water (1.33; Jung et al.., 2016) (Chen et al., 2012). Hence, the efficiencies of Gsca,

obsca_and HBF after hyeroscopic growth could be simulated with the time-averaged dry
PNSD, the mean g(RH) of Uf. Mode (1.15) and Acc. mode (1.27). and the mean n of

humidified aerosols (1.44) for the observation period. The theoretically simulated results

are displayed in Figure S11.

in—Figure—S10ta- A good correlation between SMPS-determined particle volume

concentration and the measured Gsc, s25 1s also observed in Figure S142. The size-

18



220
221

222

223
224

225
226
227

resolved Gsca, 525 distributions and size-resolved Gsca, 525 cumulative frequency distribution

on NPF event (non-event) days during P1 and P2 periods are displayed in Figure S123.
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228  fremwith the Mie theory-for-the-case-of-%-—-325-nm-and-refractive-index-of-133-+-0h.
229  (be) The box plots of the HBFs2s (HBFs2s, ru) derived asymmetry factor g (grn).
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241  S8. Correlation coefficients between different PNSD-related parameters,
242 temperature, O3/Ox, aerosol optical and hygroscopic properties on NPF (non-event)

243 days during either P1 or P2 period
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S9.The sensitive test on dependences of the HBFsys rp/HBF's25 ratio on the aerosol

size distribution, hvgroscopic growth, and complex refractive index

To investigate the distinct influences of PNSD. optical and hygroscopic properties

on the HBFs»s ru/HBFs2s ratio, a sensitivity analysis with the measured data specifically

for both P1 and P2 NPF days using the Mie model was conducted. Aerosol number size

distributions could be assumed as a combination of multi-lognormal distribution

functions, with each mode representing a distinct particle population (Hussein et al.,

2004):

(5)

n . _ _l 2
dN__ ¢ N exp[_ (logDs~ log Dre.) W
dlogDr  Z'V2nlogoe: | 2log’c e |

Where the three representative parameters, i.e., the total number concentration N ;, the

geometric standard deviation (GSD) o, ;, and the geometrical mean diameter Dpe_;, can be

used to characterize an individual mode i; and n is the number of individual modes

(Hussein et al.. 2004). In this study, the measured PNSD data on NPF days during P1 and

P2 periods were normally fitted into two modes: the predominant Uf. mode and the other

one dominated by Acc. Mode particles (Fig. S5). Hence, nine parameters were employed

in the Mie model: four parameter pairs (Dps, GSD, N; and g(RH)) for both Uf. and Acc.

mode particles, along with the mean »n of the bulk aerosol population upon hydration.

Further, the HBFs»s. ru/HBF 525 can be simplified as a function of aerosol size distribution
(i.e.. Dpo, GSD, Ny), water uptake (e.g.. g¢(RH)), and n as below:
HBF s25, ru/HBF 525 = £ (Dre, GSD, Ni, 2(RH), 1) (6)

The influence of a specific parameter on the HBFs»s ru/HBFs25s was evaluated by fixing

all the other parameters at their measured mean values and computing HBFs2s. ku/HBF 525

ratios across the range of this target parameter.

The measured mean value and variation range of each parameter were summarized
in Table S3. The ranges of Dp., GSD. N; and g(RH) were determined based on field

measurements of this study. Zhao et al. (2021) reported that n of diverse aerosol

populations could range from 1.36 to 1.78 across different Chinese cities, and this study

constrained #n to vary from 1.3 (nearly pure water of 1.33: Jung et al., 2016) to 1.8

similar to black carbon of approximately 1.87: Schkolnik et al., 2007) in the modelin

framework. The results are shown in Figures S15-16.
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288  Table S1. Specific dates for different event categories during P1 and P2 periods.

Period Category Date
NPF poliuted 7.29,8.1-3
P1 non-event 8.4-6
Undefined 7.30-31
NPF clean, nw 8.7-9, 8.12-14, 8.19
P2 non-event 8.11, 8.15-16
Undefined 8.10, 8.17-18
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290
291
292
293
294
295

Table S2. A summary (avg. + std.) of the humidified nephelometer system determined

parameters (Gsca, 525, fIRH), ALWC, HBFs»s, SAEe34/450, fw). SMPS-relevant parameters

(Neonc., Veones Reft, NFace., VFacc), meteorological parameters (T, RH, WS, VIS. MLH).

air pollutants (PMas, NO2. SO», O3, CO, O3/Ox), NPF events related parameters (FR, GR,

CS. CoagS), HBFs»s. ru/HBFs2s and fRr(RH) on NPF event and non-event days, as well as

overall mean results during P1 and P2 periods.

NPF non-event Overall
P1 P2 P1 P2 P1 P2
} 103.8 +
a2 (Mm!) o 322117 767£235 547176 88.0£293 4122160
AARH) 1644010 1.71+0.13 1.62+0.10 1.66+0.12 1.61+£0.12 1.71+0.15
ALWC (ugm®) 259466 102+32 1890+75 148+45 214+78 120+39
HBE 0.134+ 0157+ 0133+ 0152+ 0135+ 0153+
HBLs2s 0.007 0.011 0.008 0.016 0.008 0.012
SAEgsas0 1314000 148+0.03 1274011 144+016 129+012 147+0.16
fu 047004 048+005 046-004 046+006 046+005 048=0.05
Neone, (10*#-cm
3 14407 12+£06  09+03 0.9+0.3 1.2£0.6 1.0£0.6
_M . .
Veone. (wm™cm 254 101 + 17.0 + 159+ 19.5 % 121
) 55 3.6 48 5.6 6.0 5.0
Reg (nm) 1248+ 1028+ 1262+ 186«  1220= 11062
10.7 12.4 10.6 11.4 10.0 13.7
NFacc. 028+0.11 020+£0.10 028+0.06 033+0.07 028+0.09 026+0.11
VFacc 0.96+£0.02 091+004 096+002 096+002 096+0.02 0.93+0.04
T (°C) 340134 368+3.1 332+33 37.6+27 338434 373430
RH (%) 466+ 141 347+91 526+13.0 340+75 479+13.7 335+85
WS (m/s 11+06 18410 14+11 16+09 12+08 18+1.0
VIS (km) 2334163 299+0.7 257+51 292+21 250456 298+12
10620~ 14613+  1075.6- 13408+ 10633+ 14548+
MLH (m) 475.6 529.9 4154 589.8 4658 562.6
PMos(uem®)  183+£62 93+45 105+42 118+40 151466 10.1+44
NO, (nem?)  308+187 227+128 217496 334+192 298+19.1 248+ 154
SO, (ug'm?) 72+18 88+23 64+15 96+39 69+18 9.0+3.0
0s (ug'm™) 1%%22* 8414502 9874519 82.3+58.3 “gﬁi 82.5+£49.5
CO (mgm?®)  057+0.10 044+0.09 053£0.05 051£010 0.55+010 0.45%0.09
04/0x 0.71+£024 072+021 078+0.14 062+027 070+025 0.70+0.22
17.10 + 1122+
3.1
R (em™s") 7.79 6.81 . . ! !
GRors o (nm-h” 133'638; 931+3.23 / / / /
GRasaomn (nm-h)  7.12£2.05 9.22 + 428 / / / /
GRupsopn (nm-h’)  6.87+627 441+1.72 / / / /
GReo.s0m (nm-h'1) 1%7337i 5.51 +2.98 / / / /
CS (s1) 23+ 13+ / / / /
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0.4x107 0.3x1072

13+ 0.9+

1 1.5= V.7 x

Cougs (+7) 02x10*  02x10* L ! ! !

HBFss /HBFss 1222000 178£029 1394024 143£0.18 1322019 1.63£0.29
fr(RH) 1.89£017 221£023 193+0.04 201+0.18 19120.16 2.15+0.23
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297  Table S3. A summary of the input parameters for the sensitivity analysis with the Mie

298  models.
Variable Mode Mean Range
Uf. 39 14-100
Dp, (nm
Acc. 173 100-300
Uf. 1.69 1.2-2.1
GSD
Acc 1.56 1.2-2.7
P1 NPFpoliuted Uf. 16,844 2.000-28.000
I — N, (#-em) 0 =
Acc. 2.311 1,000-5,500
RH Uf. 1.14 1.0-1.3
Acc 1.26 1.0-1.3
n / 145 1.3-1.8
Uf. 39 14-100
Dpe (nm
Acc 150 100-300
Uf. 1.46 1.2-2.1
GSD
Acc. 1.65 1.2-2.7
P2 NPFclean. oW N (i X Uf. 14,963 2.000-28.000
(#cm>)
: Acc 2251 1,000-5.500
RH Uf. 1.15 1.0-1.3
Acc. 1.27 1.0-1.3
n / 1.44 1.3-1.8
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300
301
302
303

B 5 5255~

SAE 14507 Fw - SMPS-relevant-parameters{Neone 7 Veone 7 Retir N Ace 7V EAcc S aeteorelogteal parameters (I RHEH-WS WS- MEHai

Neone-HHH-em™)
M R R

Overall

Pt P2

380293 H2=+=160

+-61=012 +H=015

2478 12:0+39

0-135+0-008 0153+0-042

+20+042 +47+016

09103 +2+06 +0+0-6
12624106 18 6+114 125-0-+10-0 HO-6+13-7
033007 0:28+0-09 026011

37627 338+34 373+30

+6+09 +2+038 +2+10

202=2-1 25-0-+5-6 298=+12
1075-6+4154 1340-83+5898 10633+4658 14548 +562-6
HE+40 151+66 +04+=+=44
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NOx(peg-m™)
SOx-(ig-m™)
Os-fpg-m™)
CO(mg-m™)
O3/0x
ER ferrs)

GRoos b ™)
GRos 4o (rm-h)
GRup s (rm-h™)
GReo-s0 (b

€8s
CoagS+s™)

HBE;s»s ru/HBEs2s

Fre(RED

231
FA b2

227=128 217+96 334192 298=19-1
8823 64+15 9-6=39 69138
44+=+562 987=+=51+9 823=+583 1002+61-1
0:44=+=0-09 053=+0:05 0:51+=+=010 055=+=010
0-72=+=021 078014 062027 070+025
H22+6:81 4 4 4
934=+323 4 / 4
9224428 4 / 4
e e 4 4 4
551+298 4 / 4
F3—03 40 4 4 4
e 4 / 4

35



305

306
307
308
309
310
311
312

313
314
315
316

317
318
319

320
321
322

323
324
325
326

327
328
329
330

References

Brock, C. A., Wagner, N. L., Anderson, B. E.. Attwood, A. R., Beyersdorf, A.,
Campuzano-Jost, P., Carlton, A. G., Day, D. A., Diskin, G. S., Gordon, T. D., Jimenez, J.
L., Lack, D. A., Liao, J., Markovic, M. Z., Middlebrook, A. M., Ng, N. L., Perring, A. E.,
Richardson, M. S., Schwarz, J. P., Washenfelder, R. A., Welti, A., Xu, L., Ziemba, L. D.,

and Murphy, D. M.: Aerosol optical properties in the southeastern United States in

summer - Part 1: Hygroscopic growth, Atmos. Chem. Phys.. 16, 4987-5007,
https://doi.org/10.5194/acp-16-4987-2016. 2016.

Castro, L. M., Pio, C. A., Harrison, R. M., and Smith, D. J. T.: Carbonaceous aerosol in
urban and rural European atmospheres: Estimation of secondary organic carbon
concentrations, Atmos. Environ., 33, 2771-2781, https://doi.org/10.1016/S1352-
2310(98)00331-8, 1999.

Chen, J., Wu, Z., Chen, J., Reicher, N., Fang, X., Rudich, Y., and Hu, M.: Size-resolved
atmospheric ice-nucleating particles during East Asian dust events, Atmos. Chem. Phys.,

21, 3491-3506, https://doi.org/10.5194/acp-21-3491-2021, 2021.

Chen, J., Zhao, C. S., Ma. N., Liu, P. F.. Gobel, T., Hallbauer, E., Deng, Z. Z., Ran, L.,
Xu, W. Y., Liang., Z.. Liu, H. J., Yan, P.. Zhou, X. J.. and Wiedensohler, A.: A

parameterization of low visibilities for hazy days in the North China Plain, Atmos.

Chow, J. C., Watson, J. G., Chen, L. W. A., Chang, M. C. O., Robinson, N. F., Trimble,
D., and Kohl, S.: The IMPROVE A temperature protocol for thermal/optical carbon

analysis: Maintaining consistency with a long-term database, J. Air Waste Manag. Assoc.,

57, 1014-1023, https://doi.org/10.3155/1047-3289.57.9.1014, 2007.

Chow, J. C., Watson, J. G., Robles, J., Wang, X., Chen, L. W. A., Trimble, D. L., Kohl, S.
D., Tropp, R. J., and Fung, K. K.: Quality assurance and quality control for

thermal/optical analysis of aerosol samples for organic and elemental carbon, Anal.

Bioanal. Chem., 401, 3141-3152, https://doi.org/10.1007/s00216-011-5103-3, 2011.

36



331
332
333
334

335
336
337
338
339

340
341
342
343

344
345
346

347
348
349

350
351
352
353

354
355

356
357

Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and
Lehtinen, K. E. J.: Formation and growth of fresh atmospheric aerosols: Eight years of
aerosol size distribution data from SMEAR II, Hyytiél4, Finland, Boreal Environ. Res.,
10, 323-336, 2005.

Denjean, C., Formenti, P., Picquet-Varrault, B., Camredon, M., Pangui, E., Zapf, P.,
Katrib, Y., Giorio, C., Tapparo, A., Temime-Roussel, B., Monod, A., Aumont, B., and
Doussin, J. F.: Aging of secondary organic aerosol generated from the ozonolysis of a-
pinene: Effects of ozone, light and temperature, Atmos. Chem. Phys., 15, 883-897,
https://doi.org/10.5194/acp-15-883-2015, 2015.

Dominick, D., Wilson, S. R., Paton-Walsh, C., Humphries, R., Guérette, E. A., Keywood,
M., Kubistin, D., and Marwick, B.: Characteristics of airborne particle number size
distributions in a coastal-urban environment, Atmos. Environ., 186, 256-265,

https://doi.org/10.1016/j.atmosenv.2018.05.031, 2018.

Fitsiou, E., Pulido, T., Campisi, J., Alimirah, F., and Demaria, M.: Cellular Senescence
and the Senescence-Associated Secretory Phenotype as Drivers of Skin Photoaging, J.

Invest. Dermatol., 141, 1119-1126, https://doi.org/10.1016/5.jid.2020.09.031, 2021.

Grainger, R. G., Lambert, A., Rodgers, C. D., Taylor, F. W., and Deshler, T.:
Stratospheric aerosol effective radius, surface area and volume estimated from infrared

measurements, J. Geophys. Res., 100, https://doi.org/10.1029/95;d00988, 1995.

Hamed, A., Joutsensaari, J., Mikkonen, S., Sogacheva, L., Dal Maso, M., Kulmala, M.,
Cavalli, F., Fuzzi, S., Facchini, M. C., Decesari, S., Mircea, M., Lehtinen, K. E. J., and

Laaksonen, A.: Nucleation and growth of new particles in Po Valley, Italy, Atmos. Chem.

Phys., 7, 355-376, https://doi.org/10.5194/acp-7-355-2007, 2007.

Hansen, J. E. and Travis, L. D.: Light scattering in planetary atmospheres, Space Sci.
Rev., 16, 527-610, https://doi.org/10.1007/BF00168069, 1974.

Hao, Y., Gou, Y., Wang, Z., Huang, W., Wan, F., Tian, M., and Chen, J.: Current

challenges in the visibility improvement of urban Chongqing in Southwest China: From

37



358
359

360
361
362
363
364
365

366
367
368

369
370
371

372
373
374

375
376
377
378
379

380
381
382
383

the perspective of PM2.5-bound water uptake property over 2015-2021, Atmos. Res.,
300, 107215, https://doi.org/10.1016/j.atmosres.2023.107215, 2024.

Hong. J.. Ma. J.., Ma. N.. Shi. J., Xu, W., Zhang, G., Zhu, S., Zhang. S.. Tang, M., Pan. X.,
Xie, L., Li, G., Kuhn, U., Yan, C., Q1, X., Zha, Q., Nie, W., Tao. J.. He, Y., Zhou, Y.,
Sun, Y., Xu, H., Liu, L., Cai, R., Zhou, G.. Kuang, Y.. Yuan, B., Wang, Q., Petiji, T.,

Kerminen, V. M., Kulmala, M., Cheng, Y., and Su, H.: Low Hygroscopicity of Newly
Formed Particles on the North China Plain and Its Implications for Nanoparticle Growth,

Geophys. Res. Lett.. 51, https://doi.org/10.1029/2023GL107516. 2024.

Hussein, T.., Puustinen, A., Aalto, P. P.. Mikela, J. M., Hameri, K., and Kulmala, M.:

Urban aerosol number size distributions, Atmos. Chem. Phys.. 4. 391411,
https://doi.org/10.5194/acp-4-391-2004. 2004.

Jung. C. H.., Shin, H. J.. Lee, J. Y.. and Kim, Y. P.: Sensitivity and contribution of

organic aerosols to aerosol optical properties based on their refractive index and

hygroscopicity, Atmosphere (Basel).. 7. https://doi.org/10.3390/atmos7050065, 2016.

Kerminen, V. M., Chen, X., Vakkari, V., Petdji, T., Kulmala, M., and Bianchi, F.:
Atmospheric new particle formation and growth: Review of field observations, Environ.

Res. Lett., 13, https://doi.org/10.1088/1748-9326/aadf3c, 2018.

Kuang, Y., He, Y., Xu, W., Zhao, P., Cheng, Y., Zhao, G., Tao, J., Ma, N., Su, H., Zhang,
Y., Sun, J., Cheng, P., Yang, W., Zhang, S., Wu, C., Sun, Y., and Zhao, C.: Distinct
diurnal variation in organic aerosol hygroscopicity and its relationship with oxygenated
organic aerosol, Atmos. Chem. Phys., 20, 865-880, https://doi.org/10.5194/acp-20-865-
2020, 2020.

Kuang, Y., Zhao, C. S., Zhao, G., Tao, J. C., Xu, W., Ma, N, and Bian, Y. X.: A novel
method for calculating ambient aerosol liquid water content based on measurements of a
humidified nephelometer system, Atmos. Meas. Tech., 11, 2967-2982,
https://doi.org/10.5194/amt-11-2967-2018, 2018.

38



384
385
386
387

388
389
390
391
392

393
394
395
396
397

398
399
400

401
402
403
404

405
406
407
408
409

410
411

Kuang, Y., Zhao, C., Tao, J., Bian, Y., Ma, N., and Zhao, G.: A novel method for
deriving the aerosol hygroscopicity parameter based only on measurements from a
humidified nephelometer system, Atmos. Chem. Phys., 17, 66516662,
https://doi.org/10.5194/acp-17-6651-2017, 2017.

Kulmala, M., Petdji, T., Nieminen, T., Sipild, M., Manninen, H. E., Lehtipalo, K., Dal
Maso, M., Aalto, P. P., Junninen, H., Paasonen, P., Riipinen, I., Lehtinen, K. E. J.,
Laaksonen, A., and Kerminen, V. M.: Measurement of the nucleation of atmospheric
aerosol particles, Nat. Protoc., 7, 1651-1667, https://doi.org/10.1038/nprot.2012.091,
2012.

Lu, Y., Yan, C,, Fu, Y., Chen, Y., Liu, Y., Yang, G., Wang, Y., Bianchi, F., Chu, B.,
Zhou, Y., Yin, R., Baalbaki, R., Garmash, O., Deng, C., Wang, W., Liu, Y., Petdja, T.,
Kerminen, V. M., Jiang, J., Kulmala, M., and Wang, L.: A proxy for atmospheric daytime
gaseous sulfuric acid concentration in urban Beijing, Atmos. Chem. Phys., 19, 1971-

1983, https://doi.org/10.5194/acp-19-1971-2019, 2019.

Nairn, J. R. and Fawcett, R. J. B.: The excess heat factor: A metric for heatwave intensity
and its use in classifying heatwave severity, Int. J. Environ. Res. Public Health, 12, 227—

253, https://doi.org/10.3390/ijerph120100227, 2014.

Peng, C., Tian, M., Chen, Y., Wang, H., Zhang, L., Shi, G., Liu, Y., Yang, F., and Zhai,
C.: Characteristics, formation mechanisms and potential transport pathways of PM2.5 ata
rural background site in Chongqing, Southwest China, Aerosol Air Qual. Res., 19, 1980—
1992, https://doi.org/10.4209/aaqr.2019.01.0010, 2019.

Peng, C., Tian, M., Wang, X., Yang, F., Shi, G., Huang, R. J., Yao, X., Wang, Q., Zhai,
C., Zhang, S., Qian, R., Cao, J., and Chen, Y.: Light absorption of brown carbon in
PM2.5 in the Three Gorges Reservoir region, southwestern China: Implications of
biomass burning and secondary formation, Atmos. Environ., 229, 1174009,

https://doi.org/10.1016/j.atmosenv.2020.117409, 2020.

Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M. O.:

Size distribution and hygroscopic properties of aerosol particles from dry-season biomass

39



412
413

414
415
416
417

418
419
420
421

422
423
424

425
426
427

428
429
430

431
432
433
434

435
436
437

burning in Amazonia, Atmos. Chem. Phys., 6, 471-491, https://doi.org/10.5194/acp-6-
471-2006, 2006.

Rosati, B., Isokddntd, S., Christiansen, S., Jensen, M. M., Moosakutty, S. P., De Jonge, R.
W., Massling, A., Glasius, M., Elm, J., Virtanen, A., and Bilde, M.: Hygroscopicity and
CCN potential of DMS-derived aerosol particles, Atmos. Chem. Phys., 22, 13449-13466,
https://doi.org/10.5194/acp-22-13449-2022, 2022.

Schkolnik, G., Chand, D.. Hoffer, A., Andreae, M. O.. Erlick, C.. Swietlicki, E., and

Rudich, Y.: Constraining the density and complex refractive index of elemental and

organic carbon in biomass burning aerosol using optical and chemical measurements,

Atmos. Environ., 41, 1107—1118. https://doi.org/10.1016/j.atmosenv.2006.09.035, 2007.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.:
Noaa’s hysplit atmospheric transport and dispersion modeling system, Bull. Am.

Meteorol. Soc., 96, 2059—2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.

Strader, R., Lurmann, F., and Pandis, S. N.: Evaluation of secondary organic aerosol
formation in winter, Atmos. Environ., 33, 48494863, https://doi.org/10.1016/S1352-
2310(99)00310-6, 1999.

Tan, F.. Zhang, H., Xia, K.. Jing, B.. Li. X.. Tong. S., and Ge, M.: Hygroscopic behavior

and aerosol chemistry of atmospheric particles containing organic acids and inorganic
salts, npj Clim. Atmos. Sci., 7, 1-21. https://doi.org/10.1038/s41612-024-00752-9. 2024.

Tian, J., Guan, H., Zhou, Y., Zheng, N., Xiao, H., Zhao, J., Zhang, Z., and Xiao, H.:
Isotopic source analysis of nitrogen-containing aerosol: A study of PM2.5 in Guiyang
(SW, China), Sci. Total Environ., 760, 143935,
https://doi.org/10.1016/j.scitotenv.2020.143935, 2021.

Wan, F., Hao, Y., Huang, W., Wang, X., Tian, M., and Chen, J.: Hindered visibility
improvement despite marked reduction in anthropogenic emissions in a megacity of

southwestern China: An interplay between enhanced secondary inorganics formation and

40



438
439

440
441
442
443

444
445

446
447
448
449

450
451
452

453
454
455
456

457
458
459
460

hygroscopic growth at prevailing high RH conditions, Sci. Total Environ., 895, 165114,
https://doi.org/10.1016/j.scitotenv.2023.165114, 2023.

Wang, H., Tian, M., Chen, Y., Shi, G., Liu, Y., Yang, F., Zhang, L., Deng, L., Yu, J.,
Peng, C., and Cao, X.: Seasonal characteristics, formation mechanisms and source origins
of PM2.5 in two megacities in Sichuan Basin, China, Atmos. Chem. Phys., 18, 865881,
https://doi.org/10.5194/acp-18-865-2018, 2018.

Wang, Y. Q.: Meteolnfo: GIS software for meteorological data visualization and analysis,

Meteorol. Appl., 21, 360-368, https://doi.org/10.1002/met.1345, 2014.

Xu, W., Kuang, Y., Bian, Y., Liu, L., Li, F., Wang, Y., Xue, B., Luo, B., Huang, S., Yuan,
B., Zhao, P., and Shao, M.: Current Challenges in Visibility Improvement in Southern
China, Environ. Sci. Technol. Lett., 7, 395401,
https://doi.org/10.1021/acs.estlett.0c00274, 2020.

Xue, B., Kuang, Y., Xu, W., and Zhao, P.: Joint increase of aerosol scattering efficiency
and aerosol hygroscopicity aggravate visibility impairment in the North China Plain, Sci.

Total Environ., 839, 141163, https://doi.org/10.1016/j.scitotenv.2022.156279, 2022.

Zhao. G., Hu, M., Fang, X.. Tan, T., Xiao, Y., Du, Z.. Zheng, J.. Shang. D.. Wu. Z.. Guo,

S.. and Zhao, C.: Larger than expected variation range in the real part of the refractive

index for ambient aerosols in China, Sci. Total Environ., 779. 146443.

https://doi.org/10.1016/i.scitotenv.2021.146443. 2021.

Zhu, Y., Shen, Y., Li, K., Meng, H., Sun, Y., Yao, X., Gao, H., Xue, L., and Wang, W.:
Investigation of Particle Number Concentrations and New Particle Formation With

Largely Reduced Air Pollutant Emissions at a Coastal Semi-Urban Site in Northern
China, J. Geophys. Res. Atmos., 126, 1-20, https://doi.org/10.1029/2021JD035419, 2021.

41



	1 Introduction
	2 Data and Methods
	2.1 Field observation
	2.2 Instrumentation and methods
	2.2.1 Measurements of aerosol optical hygroscopici


	The humidified nephelometer system, consisting of 
	2.2.2 Determination of the aerosol direct radiativ

	3 Results and discussion
	3.3 Characteristics of the aerosol optical and hyg
	3.4 Heatwave-induced divergent changes in aerosol 

	To further explore the impacts of heatwaves on f(R
	3.5 f(RH)-induced changes in aerosol direct radiat

	The changes in f(RH) have significant implications
	4 Conclusions and implications
	Divergent changes in aerosol optical hygroscopicit
	S1. Site description
	The observation site was located on the rooftop of
	Figure S1. The variation trends of annual temperat
	Figure S2. (a) Time series of calculated EHF, alon
	S2. Derivation of aerosol liquid water content (AL
	Both dry and humidified nephelometers were calibra
	S3. Offline particle sampling and chemical analysi
	S4. Meteorological and air quality data
	During the field observation, every 3-min PNSD and
	Figure S910. Diurnal variations of σsca, 525 (a), 

