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Abstract. Gassmann’s equations, formulated several decades ago, remain a cornerstone in geophysics due to their perceived

exactness. However, a concise and rigorous derivation rooted in thermodynamic principles and conservation laws has been

missing from the literature. Additionally, recent studies have pointed out potential logical inconsistencies in the original for-

mulation. This paper introduces a derivation of Gassmann’s equations, anchored in fundamental conservation laws and constitu-

tive relations, ensuring their thermodynamic consistency. Alongside this, we extend the discussion to include Biot’s poroelastic5

equations, which are widely used to describe the coupled behavior of fluid-saturated porous media under mechanical deforma-

tion. By demonstrating that Gassmann’s equations are a specific case within the broader framework of Biot’s theory, we further

validate their relevance and applicability in geophysical contexts. Given the numerous independent rederivations and numerical

verifications of these equations for diverse pore geometries, we affirm their robustness, provided the underlying assumptions

are respected. To facilitate reproducibility and further exploration, symbolic Maple routines are provided for the derivations10

presented in this study.

1 Introduction

Gassmann’s equations (Gassmann, 1951), developed several decades ago, stand as fundamental expressions in geophysics

for analyzing the elastic properties of fluid-saturated porous media. These equations provide a means to predict the seismic

velocities and mechanical behavior of such materials. However, despite their widespread use, recent studies have highlighted15

concerns regarding the logical consistency in the derivation of Gassmann’s equations. This has sparked a demand for a more

rigorous thermodynamically admissible framework, rooted in conservation laws and constitutive relations, to ensure their

reliability and applicability in geophysical modeling and exploration.

This article aims to address these concerns by presenting a novel derivation of Biot’s poroelastic equations and Gassmann’s

equations, which strictly adheres to fundamental conservation laws and thermodynamic principles. In particular, we leverage20

the formalism of classical non-equilibrium thermodynamics as described in Lebon et al. (2008), focusing on the interrelation

of fluxes and forces, entropy production, and the thermodynamic admissibility of constitutive equations. This approach allows

us to systematically derive the targeted equations while ensuring that the derived models are consistent with the second law of

thermodynamics.
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We demonstrate the thermodynamic admissibility of the derived equations and validate their integrity through theoretical25

analysis and numerical simulations. By incorporating the entropy production constraints and internal variables approach from

classical non-equilibrium thermodynamics, we ensure that the derived models not only describe the macroscopic behavior

accurately but also respect the microscopic interactions between phases in porous media. While the general methodology was

outlined by Yarushina and Podladchikov (2015), this study specifically focuses on the rigorous derivation of Biot’s poroelastic,

Gassmann’s, and effective stress law equations, along with addressing concerns related to their physical validity.30

The paper is organized as follows: First, essential equations of classical irreversible thermodynamics are presented, em-

phasizing the link between thermodynamic forces and fluxes. Next, we introduce the resulting evolution equations applicable

to poro-viscoelastoplastic media. Following this, the target Biot’s poroelastic, Gassmann’s, and effective stress law equations

are derived within this thermodynamically consistent framework. In the discussion section, we provide a detailed analysis of

the validity and applicability of Gassmann’s equations, highlighting the importance of respecting thermodynamic principles in35

their derivation and use. To facilitate reproducibility, symbolic Maple routines are provided to verify the presented results. The

routines archive (v1.0) is available from a permanent DOI repository (Zenodo) at https://doi.org/10.5281/zenodo.13942953

(last access: October 17, 2024) (Alkhimenkov and Podladchikov, 2024).

2 Assumptions and Scope of the Study

The following assumptions are made throughout the derivation of Biot’s poroelastic and Gassmann’s equations to ensure the40

validity of the results:

– The material is assumed to be linearly elastic, and the strains are small, implying small fluid pressure perturbations

relative to the confining stress.

– The porous medium is considered homogeneous and isotropic.

– The interactions between the solid and fluid phases are governed by linear constitutive laws, and the fluid flow obeys45

Darcy’s law.

The constraint of zero dissipation (entropy production) during reversible poroelastic deformation provides an essential

constraint on the poroelastic constitutive equation for porosity evolution.

– The derivation assumes a quasi-static process, meaning inertia effects are ignored.

These assumptions provide a simplified framework for the derivation and are crucial for ensuring the thermodynamic ad-50

missibility of the results. Future work may extend these derivations to include non-linear elasticity, anisotropy, and dynamic

effects.
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3 Derivation of Gassmann’s Equations

3.1 General Representation of Classical Irreversible Thermodynamics

Porous materials can be modeled as systems consisting of two interacting phases: a solid skeleton and a saturating fluid.55

These phases can exchange heat, momentum, and matter, leading to complex interactions that must be captured within the

framework of classical irreversible thermodynamics (Gyarmati et al., 1970; Jou et al., 1996; Lebon et al., 2008; Yarushina and

Podladchikov, 2015). Using the principles of classical non-equilibrium thermodynamics, the conservation equations governing

mass, momentum, entropy, and energy for each phase are expressed in the Eulerian framework as follows:

∂(ρϕ)
∂t

+∇j

(
ρϕvvvj + qj

ρ

)
= Qp, (1)60

∂(ρϕvvvi)
∂t

+∇j

(
ρϕvvvivvvj + qij

vvv

)
= Qvi

, (2)

∂(ρϕsss)
∂t

+∇j

(
ρϕsssvvvj + qj

sss

)
= Qs, (3)

65

∂(ρϕeee)
∂t

+∇j

(
ρϕeeevvvj + qj

eee

)
= Qe, (4)

where vvvj , sss, and eee denote the velocity, specific entropy, and specific total energy per unit mass, respectively. The terms ∇j

represents the partial derivative with respect to spatial coordinates, while qj
ρ, qij

vvv , qj
sss , and qj

eee correspond to the fluxes of mass,

momentum, entropy, and energy, respectively. The terms Qp, Qvi , Qs, and Qe represent the corresponding production rates

due to irreversible processes (Yarushina and Podladchikov, 2015).70

Local Entropy Production

In the context of classical non-equilibrium thermodynamics (Lebon et al., 2008), each phase within the porous medium is

considered to be locally in thermodynamic equilibrium, which means that intensive variables such as temperature and chemical

potential are well-defined at each point. This leads to a fundamental relationship between the infinitesimal change in specific

internal energy U for each phase and the corresponding changes in specific entropy S, specific volume ρ, the elastic component75

of porosity ϕe. The local entropy production is derived from the energy balance and is given by:

dU

dt
= T

dS

dt
− p

d(1/ρ)
dt

+ v
dv

dt
+ µ

dC

dt
+

τϕ

ρϕ

dϕe

dt
, (5)

where τϕ is the thermodynamic variable (pressure) conjugated to porosity change (to be defined). τϕ can be viewed as analogy

to pressure as conjugate variable to volume change.
d

dt
=

∂

∂t
+vi∇i denotes the Lagrangian (material) derivative with respect

to a specific phase,
dϕe

dt
is the reversible part of the porosity change.80
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– T
dS

dt
: Heat stored in internal energy U .

–
p

ρ2

dρ

dt
: Energy change due to volumetric deformation (Hooke’s Law).

– v
dv

dt
: Newtonian mechanics (kinetic energy, e.g., v dv

dt = 1
2

dv2

dt ).

– µ
dC

dt
: Energy due to changes in composition (chemical potential), which is zero in the present derivation.

–
τϕ

ρϕ

dϕe

dt
: Poroelastic effects: reversible part of the energy change due to the changes in porosity. Note, that τϕ is not85

defined yet.

Entropy Production (TQs)

Solving the local entropy production equation for Qs and multiplying both sides by T , we have (for details see Appendix B):

TQs = ηϕ

(
dv

dx

)2

+
λϕ

T

(
dT

dx

)2

+ pv
dϕ

dx
+ µQρC − vQv −QρGGibbs + Qu + p

dϕ

dt
− τϕ

dϕe

dt
(6)

This expression represents the entropy production, which must be non-negative according to the second law of thermodynam-90

ics. This formulation, which assumes local thermodynamic equilibrium for only the solid and fluid phases, is less strict than

Biot’s classical assumption of a single internal energy potential for the entire two-phase system in the linear poroelastic case

(Yarushina and Podladchikov, 2015).

3.2 Extended Thermodynamic Admissibility

Building upon the concepts from Lebon et al. (2008) and the nonlinear viscoelastoplastic framework developed by Yarushina95

and Podladchikov (2015), the derivation of Gassmann’s and Biot’s equations must satisfy the constraints of thermodynamic

admissibility. Specifically, the entropy production Qs must be non-negative, and the constitutive relations must be derived in a

way that ensures compliance with the second law of thermodynamics.

3.2.1 Thermodynamic Constraints on Fluxes and Productions

The second law of thermodynamics requires that the total entropy production of the system remains non-negative. This con-100

dition applies both to the intra-phase and inter-phase entropy production within a porous medium. Mathematically, this is

expressed as:

∑

phases

Qs =
∑

phases

Qintra
s + Qinter

s ≥ 0. (7)

Here, Qintra
s represents the intra-phase entropy production within each phase, while Qinter

s accounts for the inter-phase contri-

butions due to interactions between the solid skeleton and the fluid phase. To satisfy the second law, both components must be105

non-negative.
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Entropy Production and Compaction Mechanisms

In the context of poroelasticity, the most important outcome from expression (6) is in the two terms, which describe porosity

change:

TQporo
s = p

dϕ

dt
− τϕ

dϕe

dt
=

∑

phases

(
p
dϕ

dt
− τϕ

dϕe

dt

)
. (8)110

We assume that the porosity evolution can be decomposed into elastic and dissipative components, which together with the

negativity of entropy production requires that inelastic porosity equation takes the form (Yarushina and Podladchikov, 2015):

dsϕ

dt
− dsϕe

dt
=− pe

ηϕ
, (9)

where ϕe denotes the elastic portion of porosity, pe = p̄− pf represents the effective pressure (total pressure, p̄ = (1−ϕ)ps +

ϕpf , minus fluid pressure, pf , respectively), and ηϕ stands for the effective bulk viscosity. Using the definition (9), we can115

rewrite expression (8) in the following form:

TQporo
s =

∑

phases

[
(ps− τs

ϕ)− (pf − τf
ϕ )

] dϕe

dt
, (10)

In equilibrium conditions, the entropy production tends to zero, which implies that the term
[
(ps− τs

ϕ)− (pf − τf
ϕ )

]
= 0 (!).

The fluid phase does not contain the porosity term, meaning that τf
ϕ = 0. It implies that

[
(ps− τs

ϕ)− (pf − τf
ϕ )

]
= 0 corre-

sponds to τs
ϕ = ps−pf (Yarushina and Podladchikov, 2015). We also notice that τs

ϕ = pe/(1−ϕ). By definition the poroelastic120

constant Kϕ is defined that as linear rheological relationship during reversible poroelastic part of deformation:

dϕe

dt
= Kϕ(1−ϕ)

dτs
ϕ

dt
= Kϕ

dpe

dt
, (11)

The statement (11) means that changes in porosity are proportional to changes via τs
ϕ, which is the pressure difference pe/(1−

ϕ). Due to the requirement of zero entropy production, this statement provides us with the definition that equal changes in

pressures leave porosity unchanged.125

One of the key assumptions made during the original derivation of Gassmann’s equations (Gassmann, 1951) is that equal

changes in pore (fluid) pressure and confining (total) pressure leave the porosity unchanged. This assumption holds when

considering a homogeneous elastic frame material (Korringa, 1981; Alkhimenkov, 2024). Any discrepancy in total and fluid

pressure changes will lead to porosity changes as follows from equation (11). As highlighted by Korringa (1981), applying

confining (external) pressure to a homogeneous elastic frame material causes it to behave as a linear mapping. Note that in the130

present thermodynamically admissible model, this is not assumed, but derived as a condition necessary to ensure zero

entropy production during reversible poroelastic processes.

After simplifying and collecting terms (see Appendix B), the total entropy production becomes:

TQs,total =
1
ηϕ

(
pe

(1−ϕ)

)2

+ ηt (divvs)2 +
(qD)2ηdV

ϕ
+

λt

T

(
∂T

∂x

)2

(12)
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–
1
ηϕ

(
pe

(1−ϕ)

)2

: Entropy production due to poroelastic deformation (poroelastic coefficient ηϕ and pressure difference135

pe).

– ηt (divvs)2: Entropy production due to viscous dissipation in the solid phase.

–
(qD)2ηdV

ϕ
: Entropy production due to viscous dissipation in fluid flow (Darcy flow).

–
λt

T

(
∂T

∂x

)2

: Entropy production due to heat conduction (Fourier’s law).

The non-negative nature of each term ensures the overall positivity of entropy production, thereby confirming the140

thermodynamic validity of the system.

For detailed derivations and applications of these principles to specific pore geometries and boundary conditions, readers are

encouraged to refer to Appendix A, Appendix B, and the discussions provided by Yarushina and Podladchikov (2015). Addi-

tionally, symbolic Maple routines used to reproduce and validate the theoretical results presented in this article are available in

a permanent DOI repository (Zenodo) will be provide after review, now see suppl. material. For a detailed explanation of the145

Maple script used in the derivation and analysis of entropy production in a single-phase medium, see Appendix A. Appendix B

provides a similar explanation for the entropy production derivation in a two-phase porous medium.

3.3 Two-phase media: fluid-saturated porous material

The equations governing fluid flow in poro-viscoelastoplastic media can be formulated based on the conservation laws and

constitutive equations for both fluid and solid phases.150

3.3.1 Conservation of linear momentum and Darcy’s law

The conservation of linear momentum is

∇j(−p̄δij + τ̄ij)− giρ̄ = 0, (13)

where p̄ = (1−ϕ)ps + ϕpf is the total pressure, τ̄ij is the deviatoric stress tensor, δij is the Kronecker delta, i, j = 1..3 and

Einstein summation convention is used (summation is applied over repeated indexes). Viscous fluid flow through porous media155

is governed by Darcy’s law:

qD
i =− k

ηf
(∇ip

f + giρ
f ), (14)

where qD
i = ϕ(vf

i − vs
i ) denotes Darcy’s flux, vf

i denotes the fluid velocity, vs
i denotes the solid velocity, k is permeability, ηf

is fluid shear viscosity.

3.3.2 Conservation of mass160

Conservation of mass for fluid phase is

∂(ϕρf )
∂t

+∇j

(
ϕρfvf

j

)
= 0, (15)
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where ρf denotes fluid density and conservation of mass for solid phase is

∂((1−ϕ)ρs)
∂t

+∇j

(
(1−ϕ)ρsv

s
j

)
= 0, (16)

where ρs denotes solid density. Equations (15)-(16) can be reformulated for divergences ∇jv
s
j and ∇jq

D
j :165

∇jv
s
j =− 1

ρs

dsρs

dt
+

1
1−ϕ

dsϕ

dt
(17)

and

∇jq
D
j =− ϕ

ρf

dfρf

dt
− dsϕ

dt
−ϕ∇jv

s
j , (18)

where
ds

dt
=

∂

∂t
+ vs

i∇i denotes the Lagrangian (material) derivative with respect to solid and
df

dt
=

∂

∂t
+ vf

i ∇i denotes the

Lagrangian (material) derivative with respect to fluid.170

3.3.3 Constitutive relations

Elastic compressibility for fluid and solid densities is formulated as (Yarushina and Podladchikov, 2015):

Kf

ρf

dfρf

dt
=

dfpf

dt
, (19)

Ks

ρs

dsρs

dt
=

1
1−ϕ

(
dsp̄

dt
−ϕ

dfpf

dt

)
, (20)175

where Kf denotes the fluid bulk modulus and Ks denotes the solid bulk modulus. A closing relation is the equation governing

porosity evolution (Maxwell viscoelastic volumetric response):

dsϕ

dt
=

1
Kϕ

(
dfpf

dt
− dsp̄

dt

)
+

1
ηϕ

(pf − p̄), (21)

where Kϕ is the poroelastic constant defined by equation (11).

3.3.4 Resulting evolution equations for poro-viscoelastoplastic media180

By eliminating the time derivatives of densities and porosity in equations (17)-(18) using expressions (19)-(21), the following

system of equations for compressibilities is obtained (Yarushina and Podladchikov, 2015):



∇kvs

k

∇kqD
k


 =− 1

Kd




1 −α

−α
α

B







dsp̄

dt
dfpf

dt


− 1

(1−ϕ)ηϕ




1 −1

−1 1







p̄

pf


 . (22)
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Deviatoric stresses are related to solid velocity gradients through the Maxwell viscoelastic relationship (Beuchert and Pod-

ladchikov, 2010):185

1
2Gsat

d∇τ̄ij

dt
+

τ̄ij

ηs
=

1
2
(∇jv

s
i +∇iv

s
j )−

1
3
(∇kvs

k)δij , (23)

where Gsat is the shear modulus of the fluid-saturated porous material,
d∇τ̄ij

dt
=

dsτ̄ij

dt
− τ̄ikωkj − τ̄jkωki correspond to Jau-

mann objective stress rate and ωki =
1
2

(∇kvs
i −∇iv

s
k) denotes the antisymmetric part of the solid velocity gradient. The

Carman–Kozeny relationship for permiability evolution as a function of porosity is

k = k0

(
ϕ

ϕ0

)nk

, (24)190

where nk = 3.

3.4 Linear elastic limit (ηϕ → +∞): Biot’s poroelastic equations

Under the small strain approximation and infinite ηϕ, a linear elastic limit of expression (22) can be derived which is know as

Biot’s poroelastic equations (Biot, 1962):



∇kvs

k

∇kqD
k


 =− 1

Kd




1 −α

−α
α

B







dp̄

dt
dpf

dt


 . (25)195

The system of equations (25) can be rewritten for stiffness. For that let us invert the matrix of coefficients:




1
Kd




1 −α

−α
α

B







−1

=
Kd

α/B−α2




α

B
α

α 1


≡ Kd

1−αB




1 B

B
B

α


 . (26)

The resulting expression for stiffness is:



dp̄

dt
dpf

dt


 =−Ku




1 B

B
B

α






∇kvs

k

∇kqD
k


 , (27)

where Ku = Kd (1−αB)−1. Poroelastic constants in the expressions (22)-(27) are the following:200

α = 1− Kd

Ks
(28)

and

B =
1/Kd− 1/Ks

1/Kd− 1/Ks + ϕ(1/Kf − 1/Ks)
. (29)
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The relation between Kd, Ks and Kϕ (defined by equation (11)) is

1
Kϕ

=
1−ϕ

Kd
− 1

Ks
. (30)205

Various poroelastic constants can be calculated numerically (Alkhimenkov, 2023) or measured using physical experimentation

in a laboratory (Makhnenko and Podladchikov, 2018).

3.5 Gassmann’s equations

The relation between undrained response, Ku (see expression (27) under ∇kqD
k = 0), and drained response, Kd, is known as

Gassmann’s equation (Gassmann, 1951):210

Ku = Kd (1−αB)−1
. (31)

According to Gassmann’s equations, shear modulus of a fluid-saturated rock, Gsat, is equivalent to the shear modulus of a dry

rock, Gd (equivalent to a drained response):

Gsat = Gd. (32)

The expression (31) is derived from the equation (25) via inversion of matrix of coefficients leading to the expression (27).215

Note that English translation of the the original paper by Gassmann (Gassmann, 1951) is presented by Pelissier et al. (2007).

3.6 Effective stress law

Nur and Byerlee (1971) provided the exact expressions for the effective stress law, which can be treated as an exact result in

poroelasticity. It is defined by the following expression (Yarushina and Podladchikov, 2015):

dpeff = dp̄−αdpf ≡ dp̄−
(

1− Kd

Ks

)
dpf , (33)220

where Kd can be measured as

Kd =− 1
∇kvs

k

dpeff

dt

∣∣∣∣
undrained

. (34)

The exact effective stress law given by the formula (34) strictly follows from the derived expression (25).

4 Discussion

4.1 Physical Interpretation of the Derived Equations225

The derived Biot’s poroelastic equations describe the coupled mechanical and fluid flow behavior of a fluid-saturated porous

medium. Specifically, they account for the interaction between the solid matrix deformation and the pore fluid pressure changes.

9

https://doi.org/10.5194/egusphere-2024-3238
Preprint. Discussion started: 21 November 2024
c© Author(s) 2024. CC BY 4.0 License.



The effective stress law, which modifies the classical elastic stress by incorporating fluid pressure, plays a key role in under-

standing how external loads and fluid injection or extraction influence the stability and deformation of the porous medium.

Gassmann’s equations provide a relation between the bulk moduli of the dry and fluid-saturated rock, offering insights into230

how fluid properties and porosity affect the seismic response of the material. The results show that under the assumption of

quasi-static conditions and small perturbations, the derived equations capture the essential physics of wave propagation and

attenuation in fluid-saturated media.

4.2 Derivation of Gassmann’s equations and relation to poroelasticity

Gassmann’s equations are directly related to the quasi-static (Biot, 1941) and dynamic poroelasticity (Biot, 1956, 1962). While235

the roots of the elastodynamic poroelasticity (e.g., the presence of the slow P-wave in fluid-saturated porous media) were pro-

vided by Frenkel (1944) (see also Pride and Garambois (2005)), a rigorous derivation of poroelastic equations and parameters

were presented a few years later by Biot (1941); Biot and Willis (1957); Biot (1962). Many researchers have fully rederived

Gassmann’s equations relying on different methods (or explored specific aspects of Gassmann’s equations in the framework

of poroelasticity) (Brown and Korringa, 1975; Korringa, 1981; Burridge and Keller, 1981; Zimmerman, 1990; Berryman and240

Milton, 1991; Berryman, 1999; Smith et al., 2003; Lopatnikov and Cheng, 2004; Gurevich, 2007; Fortin and Guéguen, 2021).

Of course, a full list of scientist who contributed to poroelasticity is large, and while we acknowledge their extensive contri-

butions, our intention in this short article is not to provide an exhaustive list. An interested reader is referred to Sevostianov

(2020), which provides an extensive review of Gassmann’s equations. There are several books that also might be useful, e.g.,

Bourbié et al. (1987), Zimmerman (1990), Wang (2000), Ulm and Coussy (2003), Coussy (2004, 2011), Guéguen and Boutéca245

(2004) Dormieux et al. (2006), Cheng (2016), Mavko et al. (2020).

4.2.1 Thermodynamically admissible conditions

The main assumptions behind the applicability of Gassmann’s equations (21)-(32) are: (i) Linear elasticity; (ii) Small strains;

(iii) Isotropic homogeneous frame material; (iv) Isotropic dry response (note that Gassmann’s original publication contains an

extension to anisotropy); (v) Assumption that equal changes in pore (fluid) pressure and confining (total) pressure leave the250

porosity unchanged (Korringa, 1981; Alkhimenkov, 2024). Assumption (v) holds for isotropic homogeneous frame material

(Korringa, 1981). In the framework of the present study, this condition is satisfied and is required for thermodynamic admis-

sibility (see expressions (8)-(11) and the explanation therein): "The constraint of zero dissipation (entropy production) during

reversible poroelastic deformation provides an essential constraint on the poroelastic constitutive equation for porosity evolu-

tion." In other words, in the present thermodynamically admissible model, (v) is not an assumption but a strict requirement for255

zero entropy production during reversible poroelastic processes.
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4.3 Numerical validation of Gassmann’s equations

Alkhimenkov (2023) performed a numerical validation of Gassmann’s equations considering a 3D numerical setup and rela-

tively complex pore geometry that includes narrow regions (cracks) and large pore space. Numerical calculations were per-

formed using a finite element method and the resulting system of equations was solved using a robust direct PARDISO solver260

(Schenk and Gärtner, 2004). Alkhimenkov (2023) conducted a convergence study showing that, for finer resolution, the re-

sult of the numerical solution converges towards the result obtained from the original Gassmann’s equation. Such a converges

analysis validates the accuracy of Gassmann’s equation for a particular (but arbitrary) pore geometry. Furthermore, the pore

geometry that was used did not contain any special features (among all possible geometries) that were tailored to make it

consistent with Gassmann’s equations (Alkhimenkov, 2024). There are also other 3D numerical studies that consider different265

geometries of the pore space and are consistent with Gassmann’s equations (Alkhimenkov et al., 2020a, b; Alkhimenkov and

Quintal, 2022a, b).

4.4 Applicability of Gassmann’s equations

Gassmann’s equation (Gassmann, 1951) represented by expression (31) can be rewritten in the following form:

Ku = Kd +

(
1−Kd K−1

s

)2

ϕK−1
f + (1−ϕ)K−1

s −Kd /K2
s

. (35)270

Thomsen (2023) argued that the original derivation of Gassmann’s equations contains a logical error and provided an updated

version of these relations (see also Brown and Korringa (1975)):

Ku = Kd +

(
1−Kd K−1

M

)2

ϕK−1
f + (1−ϕ)K−1

s −Kd /K2
M

, (36)

where KM is a new parameter, so-called “mean" incompressibility (or “mean" bulk modulus) (Thomsen, 2023). Note the

similarity between expressions (35) and (36). Relation (36) contains one more parameter, KM , compared to the original275

Gassmann’s equation (35). Thomsen (2023) also provided ways to evaluate KM by using the following expressions:

KM =
[
1/Kd−

(1/Kd− 1/Ku)
B

]−1

, (37)

where B is directly observable in a quasi-static experiment. Alternatively, expression (37) for KM can be exactly reformulated

as:

KM =

[
B (ϕK−1

f + (1−ϕ)K−1
s )− (1−B)K−1

d

2B− 1

]−1

. (38)280

Alkhimenkov (2023) conducted a numerical convergence study showing that KM is converging to Ks as the resolution in-

creases (in the numerical experiment KM was calculated independently using expression (37), so B was calculated in addition

to other parameters). Consequently, the result of the expression (36) is converging to the original Gassmann’s formulation (35)
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as the resolution increases. As a result, there is no difference between the two formulations (equations (35) and (36)) since

KM ≡Ks, that validates the original Gassmann’s formulation.285

We fully agree with the proposal by Thomsen (2023) that an additional measurement (or an additional parameter) can

significantly improve the characterization of fluid-saturated rocks. Indeed, rocks are usually composed by several anisotropic

minerals; rocks have some degree of anisotropy; rocks contain compliant cracks (or grain-to-grain contacts) and stiff pores that

behave differently under loading; rocks may have some degree of heterogeneity that cannot be represented via a representative

volume element. Furthermore, the elastic moduli might be different by several percent under compression or extension. All290

these divergences of ideal small strain elasticity suggest more degrees of freedom and, as a consequence, more experimental

(or numerical) measurements are needed to fully characterize the fully saturated realistic rocks.

5 Conclusions

This study has presented a novel and thermodynamically admissible derivation of both Gassmann’s and Biot’s poroelastic

equations, which are crucial for characterizing the elastic and coupled mechanical behavior of fluid-saturated porous media in295

geophysics. By adhering to conservation laws and constitutive relations, we have addressed concerns about logical inconsis-

tencies in the original derivation of Gassmann’s equations and extended the theoretical framework to include Biot’s equations,

which describe the interaction between solid deformation and pore fluid pressure. These results provide a robust foundation

for future research and applications. The inclusion of Symbolic Maple routines facilitates the reproducibility of our findings,

enhancing accessibility and verification within the scientific community.300

Code availability. The software developed and used in this study is licensed under the MIT License. The latest version of the symbolic Maple

routines is available from a permanent DOI repository (Zenodo) at: https://doi.org/10.5281/zenodo.13942953 (last accessed: 17 October

2024) (Alkhimenkov and Podladchikov, 2024). The repository contains code examples and can be readily used to reproduce the results

presented in the paper. The codes are written in the Maple programming language.
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Appendix A: Explanation of the Maple Script for a single phase media305

The following Maple script provides a step-by-step derivation of the entropy production for a one-dimensional system using the

principles of classical non-equilibrium thermodynamics. It uses the volume-specific formulation for mass conservation and the

principles of local thermodynamic equilibrium (LTE) to establish the relationship between different thermodynamic fluxes and

forces. The script calculates the entropy production, Q[s], and demonstrates the impact of various choices for flux definitions.

Below is a detailed explanation of each step in the script.310

1: restart;

2: V := 1/rho:

3: dVdt := -diff(q[V](x), x)/rho(x): # mass balance (using volume and not density)

4: dUdt := -diff(q[e](x), x)/rho(x): # conservation of energy315
5: dsdt := -diff(q[s](x), x)/rho(x) + Q[s]/rho(x): # balance of entropy

6: LTE := dUdt = T(x)*dsdt + P(x)*dVdt: # local thermodynamic equilibrium

7: Q[s] := solve(LTE, Q[s]); # solving for entropy production

8:

9: q[e](x) := T(x)*q[s](x); # choice for energy flux320
10: q[V](x) := v: # Galileo's principle for volume flux

11: q[s](x) := -lambda*diff(T(x), x): # Fourier's law for entropy flux

12: Q[s] := simplify(eval(Q[s])); # final expression for entropy production

Listing 1. Maple Script for Entropy Production

Below, we provide a detailed explanation of each line in the script.325

Initialization and Mass Conservation

1: restart;

2: V := 1/rho:330

Here, V is defined as the specific volume, which is the inverse of density, ρ.

1: dVdt := -diff(q[V](x), x)/rho(x):

This line represents the mass conservation equation using the volume-specific formulation. It calculates the time derivative of335

the specific volume as the negative divergence of the volume flux q[V](x) divided by the local density.

Conservation of Energy

1: dUdt := -diff(q[e](x), x)/rho(x):340

This represents the conservation of energy, where dUdt is the time derivative of the specific internal energy, q[e](x) is the

energy flux, and the equation states that the change in internal energy is equal to the negative divergence of energy flux divided

by the density.

Entropy Balance
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345
1: dsdt := -diff(q[s](x), x)/rho(x) + Q[s]/rho(x):

The equation represents the entropy balance. Here, dsdt is the time derivative of specific entropy, q[s](x) is the entropy

flux, and Q[s] is the entropy production rate per unit volume. This equation states that the change in entropy is equal to the

divergence of the entropy flux plus the entropy production term.350

Local Thermodynamic Equilibrium (LTE)

1: LTE := dUdt = T(x)*dsdt + P(x)*dVdt:

This equation expresses the principle of local thermodynamic equilibrium (LTE). It relates the internal energy change dUdt to355

the product of temperature T(x) and entropy change dsdt, plus the product of pressure P(x) and the volume change dVdt.

Solving for Entropy Production

1: Q[s] := solve(LTE, Q[s]);360

The script solves the LTE equation for the entropy production term Q[s].

Choice for Energy Flux

1: q[e](x) := T(x)*q[s](x);365

The energy flux q[e](x) is chosen as the product of temperature T(x) and the entropy flux q[s](x). This is a common

assumption based on the linear coupling between the energy and entropy fluxes.

Flux Definitions

1: q[V](x) := v: # Galileo's principle for volume flux370
2: q[s](x) := -lambda*diff(T(x), x): # Fourier's law for entropy flux

The volume flux q[V](x) is represented by velocity v following Galileo’s principle. The entropy flux q[s](x) is defined

according to Fourier’s law, where it is proportional to the temperature gradient diff(T(x), x) with thermal conductivity

lambda.375

Final Expression for Entropy Production

1: Q[s] := simplify(eval(Q[s]));

The final expression for entropy production Q[s] is simplified to:380
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Q[s] =
λ

T (x)

(
dT (x)

dx

)2

, (A1)

This result shows that the entropy production is non-negative and is proportional to the square of the temperature gradient,

divided by temperature, which is a classical result in non-equilibrium thermodynamics.

Appendix B: Explanation of the Maple Script for Two-Phase Fluid-Saturated Media

This appendix provides a detailed explanation of the Maple script used to derive the governing equations and analyze the385

behavior of a two-phase fluid-saturated medium. The script covers the conservation laws, flux definitions, and the derivation of

entropy production for the coupled fluid and solid phases, using principles from classical non-equilibrium thermodynamics.

General Conservation Equations

First, we define the conservation equations for a general quantity A(t,x) and mass conservation for density ρ(t,x):
390

1: restart; #some useful relations

2: eqA := diff(rho(t, x)*A(t, x), t) + diff(rho(t, x)*A(t, x)*Vx(t, x) + qx(t, x), x) - QA;

3: eqM := diff(rho(t, x), t) + diff(rho(t, x) * Vx(t, x), x) - Qrho;

- eqA represents the conservation of a general quantity A(t,x), incorporating the advective term ρ(t,x)A(t,x)vx(t,x) and an395

additional flux qx(t,x). - eqM is the mass conservation equation for density ρ(t,x) with velocity vx(t,x) and a source term

Qρ. The difference between these equations is simplified to derive a general expression for the time derivative of A(t,x).

1: eq := simplify(eqA - eqM * A(t, x));

2: dA_dt := solve(eq, diff(A(t, x), t));400

The equation eq is derived by subtracting the mass conservation equation, multiplied by A(t,x), from eqA. This results in an

equation for the time derivative of A(t,x), which is then solved to obtain dA_dt. Next, we calculate the total derivative of

A(t,x), including the convective term:
405

1: DA_dt := collect(simplify(dA_dt + diff(A(t, x), x)*Vx(t, x)), Q);

The variable DA_dt represents the total (material) derivative of A(t,x), which includes both the time derivative and the

convective term ∂A
∂x · vx(t,x). The resulting expression is then collected and simplified with respect to the source terms Q:

DA_dt =
dA

dt
=
−A(t,x)Qρ− ∂qx(t,x)

∂x + QA

ρ(t,x)
(B1)410

B1 Thermodynamic Admissibility in Fluid-Saturated Porous Media

Simplifying Assumptions

To simplify the model under specific assumptions, we set several parameters to zero:
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1: Qrhof := 0; # No mass source or sink in the fluid phase415
2: RDarcy := 0; # Removes contribution of Qrhof from fluid momentum balance

3: Pcor := 0; # Allows reaction to change porosity

4: Dc[ph] := 0; # Turns off intraphase mass diffusion

5: eta[f] := 0; # if=0 then no full Stokes for pore scale fluid flow = only Darcy's law

6: lam[ph]:= 0; # Turns off intraphase heat diffusion420

Flux Definitions and Constitutive Relations

Effective properties

We define the effective properties of the solid phase using mixture rules:

1. Effective Thermal Conductivity: Starting from the total thermal conductivity:425

λt = (1−ϕ)λs + ϕλf (B2)

Solving for λs:

λs =
λt−λfϕ

1−ϕ
(B3)

2. Effective Mass Diffusion Coefficient:

D(s)
c =

D
(t)
c −D

(f)
c ϕ

1−ϕ
(B4)430

3. Effective Viscosity:

ηs =
ηt− ηfϕ

1−ϕ
(B5)

Kinematic Relations

1: dphi_dt := diff(phi(t, x), t) + V(x) * diff(phi(t, x), x);435

The rate of change of porosity ϕ is given by:

dϕ

dt
=

∂ϕ

∂t
+ v

∂ϕ

∂x
(B6)

where v is the velocity, and dϕ
dt represents the material derivative of porosity. The fluid velocity vf relates to the solid velocity

vs and the Darcy flux qD:440

vf = vs +
qD

ϕ
. (B7)
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Fluxes and Source Terms

Here we define fluxes for heat, momentum, and solute transport based on non-equilibrium thermodynamics:

1: qs := -lam[ph]*phi(t, x)*diff(T(x), x) / T(x); # Fourier's law for heat flux445
2: qv := -eta[ph]*phi(t, x)*diff(V(x), x) + phi(t, x)*P(x); # Stokes' law for viscosity

3: qc := -Dc[ph]*phi(t, x)*diff(mu(x), x); # Fick's law for diffusion

4: qu := T(x)*qs + V(x)*qv + mu(x)*qc; # Energy flux

- ‘qs‘: Heat flux defined according to Fourier’s law, with thermal conductivity λ[ph].450

- ‘qv‘: Viscous flux based on Newtonian viscosity, incorporating pressure P (x).

- ‘qc‘: Solute flux following Fick’s law of diffusion, with chemical potential gradient µ(x).

- ‘qu‘: Total energy flux, a combination of heat, mechanical, and chemical contributions.

– Heat Flux (qs). According to Fourier’s law:

qs =−λphϕ
∂T

∂x
· 1
T

, (B8)455

where λph is the phase-dependent thermal conductivity.

– Momentum Flux (qv). Using Newtonian viscosity (Stokes flow approximation):

qv =−ηphϕ
∂V

∂x
+ ϕP, (B9)

where ηph is the phase-dependent viscosity.

– Mass Flux (qc). Following Fick’s law for diffusion:460

qc =−D(ph)
c ϕ

∂µ

∂x
, (B10)

where D
(ph)
c is the phase-dependent mass diffusion coefficient.

– Energy Flux (qu). Combining the above fluxes:

qu = Tqs + vqv + µqc (B11)

Balance Equations465

1: qdrho_dt := (-(diff(V(x),x)*phi(t,x)+dphi_dt)*rho(t,x) # conservation law in non-divergent form

2: +Qrho)/phi(t,x):

3: dU_dt := (-diff(qu,x) + Qu - U *Qrho)/rho(t,x)/phi(t,x): # Energy - eq balance energy

4: dV_dt := (-diff(qv,x) + Qv - V(x)*Qrho)/rho(t,x)/phi(t,x): # Newton 2nd law470
5: dC_dt := (-diff(qc,x) + Qc - C(x)*Qrho)/rho(t,x)/phi(t,x): # balance mass of solute

6: dS_dt := (-diff(qs,x) + Qs - S(x)*Qrho)/rho(t,x)/phi(t,x): # balance of entropy - increasing
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– Mass Balance (Non-Divergent Form). The rate of change of density ρ is:

dρ

dt
=
−

(
ϕ

∂v

∂x
+

∂ϕ

∂t
+ v

∂ϕ

∂x

)
ρ + Qρ

ϕ
, (B12)475

where Qρ is the mass source term.

– Energy Balance

dU

dt
=
−∂qu

∂x
+ Qu−UQρ

ρϕ
, (B13)

where Qu is the energy source term.

– Momentum Balance (Newton’s Second Law)480

dv

dt
=
−∂qv

∂x
+ Qv − vQρ

ρϕ
, (B14)

where Qv is the momentum source term.

– Concentration Balance

dC

dt
=
−∂qc

∂x
+ Qc−CQρ

ρϕ
, (B15)

where Qc is the concentration source term.485

– Entropy Balance

dS

dt
=
−∂qs

∂x
+ Qs−SQρ

ρϕ
, (B16)

where Qs is the entropy source term.

Deriving Entropy Production

490
1: LET := dU_dt = T(x)*dS_dt

2: + P(x)*drho_dt/rho(t, x)^2

3: + V(x)*dV_dt

4: + mu(x)*dC_dt

5: + tau[phi]*dphie_dt/rho[ph](t,x)/(phi(t,x));495
6: TQs := simplify(T(x)*solve(LET, Qs));

- ‘LET‘: The local thermodynamic equilibrium condition, which includes terms for internal energy, entropy, volume, kinetic

energy, chemical potential, and porosity change.

- ‘TQs‘: The entropy production term, simplified from the LTE condition to ensure non-negative production.500
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Local Entropy Production

The local entropy production is derived from the energy balance and is given by:

dU

dt
= T

dS

dt
+

p

ρ2

dρ

dt
+ v

dv

dt
+ µ

dC

dt
+

τϕ

ρϕ

dϕe

dt
, (B17)

where:

– τϕ is the thermodynamic variable (pressure) conjugated to porosity change. Note, that τϕ is not defined yet.505

–
dϕe

dt
is the reversible part of the porosity rate change.

Physical Interpretation of Terms:

– T
dS

dt
: Heat stored in internal energy U .

–
p

ρ2

dρ

dt
=−p

d(1/ρ)
dt

: Work stored in elastic energy (Hooke’s Law). Note that
dp

K
=

dρ

ρ
, where K is the bulk modulus,

dp = p− pref, and pref is the reference pressure.510

– v
dv

dt
: Newtonian mechanics (kinetic energy, e.g., v dv

dt = 1
2

dv2

dt ).

– µ
dC

dt
: Energy due to changes in composition (chemical potential), which is zero in the present derivation.

–
τϕ

ρϕ

dϕe

dt
: Poroelastic effects: reversible part of the energy change due to the changes in porosity.

Entropy Production (TQs)

Solving the local entropy production equation for Qs and multiplying both sides by T , we have:515

TQs = ηϕ

(
dv

dx

)2

+
λϕ

T

(
dT

dx

)2

+ pv
dϕ

dx
+ µQρC − vQv −QρGGibbs + Qu + p

dϕ

dt
− τϕ

dϕe

dt
(B18)

This expression represents the entropy production, which must be non-negative according to the second law of thermodynam-

ics.

Phase Properties and Kinematic Substitutions

We consider both fluid and solid phases, assigning specific properties to each.520

1: Fluid := {ph=f,rho(t,x)=rho[f](t,x),V(x)=Vf ,P(x)=Pf(x) ,G(x)=Gf ,Qv= Qvf,Qrho= Qrhof,Qc= Qcf,Qu=

Quf,tau[phi]=0 }:

2: Solid := {ph=s,rho(t,x)=rho[s](t,x),V(x)=Vs(x),P(x)=Pf(x)-dP(x),G(x)=Gf-dG,Qv=-Qvf,

3: Qrho=-Qrhof,Qc=-Qcf,Qu=-Quf,phi(t,x)=1-phi(t,x)}:525
4: sbs:={diff( phi(t,x),t) = dphife_dt+dphifvis_dt - Vs(x)*diff( phi(t,x),x)

5: ,diff(rho[s](t,x),t) = drhos_dt - Vs(x)*diff(rho[s](t,x),x)

6: ,diff(rho[f](t,x),t) = drhof_dt - Vf*diff(rho[f](t,x),x)

7: ,diff(Vs(x),x) = divVs};530

We introduce substitutions for derivatives to simplify the expressions:
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– Porosity Rate Change (note that porosity is divided into reversible (elastic) and irreversible (viscous) parts)

∂ϕ

∂t
=

dϕ

dt
− vs ∂ϕ

∂x
(B19)

– Solid Density Rate Change

∂ρs

∂t
=

dρs

dt
− vs ∂ρs

∂x
(B20)535

– Fluid Density Rate Change

∂ρf

∂t
=

dρf

dt
− vf ∂ρf

∂x
(B21)

– Solid Velocity Divergence

∂vs

∂x
= divvs (B22)

Total Entropy Production540

The entropy production for both fluid and solid phases is computed:

1: TQs_total := subs(Fluid, TQs) + subs(Solid, TQs);

Substituting the phase properties and kinematic relations into the expression for TQs, we obtain the total entropy production:545

TQs,total = TQ(f)
s + TQ(s)

s (B23)

Thermodynamic Variable Conjugated to Porosity Changes:

The thermodynamic variable τϕ conjugated to porosity changes is now defined as:

τϕ = ∆p≡ ps− pf . (B24)

Additional Relations:550

– Fluid Momentum Flux (Qvf ). Given that Qρf = 0 and RDarcy = 0:

Qvf =
∂ϕ

∂x
pf − ηdVqD (B25)

– Porosity Rate Change in Fluid Phase (
dϕf

dt
) Since Qρf = 0 and Pcor = 0:

dϕf

dt
=

dϕ(e)

dt
+ kϕ∆P (B26)

– Gibbs Free Energy Change (∆G). With Pcor = 0:555

∆GGibbs = ∆G2Gibbs−
vf qD

ϕ
(B27)

– Mass Source Term in Fluid Phase (Qρf ). Given by:

Qρf =−kρ∆G2Gibbs (B28)

But since Qρf = 0, it implies ∆G2Gibbs = 0 or kρ = 0.
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Total Entropy Production560

1: TQs_total := collect(expand(simplify(subs(sbs, eval(TQs_total)))), {dphie_dt});

After simplifying and collecting terms, the total entropy production becomes:

TQs,total =
1
ηϕ

(
pe

(1−ϕ)

)2

+ ηt (divvs)2 +
(qD)2ηdV

ϕ
+

λt

T

(
∂T

∂x

)2

. (B29)565

As a result, entropy production is non-negative if material parameters are non-negative, which proves the thermody-

namic admissibility of the two-phase system.

Explanation of Terms:

–
1
ηϕ

(
pe

(1−ϕ)

)2

: Entropy production due to poroelastic deformation (poroelastic coefficient kϕ and pressure difference).

– ηt (divvs)2: Entropy production due to viscous dissipation in the solid phase.570

–
(qD)2ηdV

ϕ
: Entropy production due to viscous dissipation in fluid flow (Darcy flow).

–
λt

T

(
∂T

∂x

)2

: Entropy production due to heat conduction (Fourier’s law).

B2 Darcy’s Law and Fluid Flow

Darcy’s law is derived for fluid flow and evaluated for the fluid phase:
575

1: Mom_f := 0 = subs(Fluid, dV_dt):

2: Mom_s := 0 = subs(Solid, dV_dt):

3: qDx := simplify(solve(Mom_f, qD(x)));

- ‘qDx‘: Expression for Darcy’s flux, relating it to the pressure gradient. From the fluid momentum balance
dvf

dt
= 0, we derive580

Darcy’s law for the fluid flux qD. Starting from the momentum balance for the fluid phase:

0 =
−∂qv

∂x
+ Qvf

ρfϕ
(B30)

Using the expression for qv and substituting Qvf :

0 =
− ∂

∂x

(
−ηphϕ

∂vf

∂x
+ ϕpf

)
+

(
∂ϕ

∂x
pf − ηdv qD

)

ρfϕ
(B31)

Simplifying and solving for qD:585

qD =− 1
ηdv

∂pf

∂x
(B32)

This indicates that the fluid flux is driven by the pressure gradient and is proportional to the permeability (inverse of viscosity),

which is Darcy’s law.
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Solid Velocity Divergence

Using the mass balance equations and the substitutions, we derive the divergence of the solid velocity. The mass conservation590

for the solid, accounting for porosity changes, is given by:

∂

∂t
(ρs(1−ϕ)) +

∂

∂x
(ρs(1−ϕ)vs) = 0. (B33)

Expanding the derivatives, we obtain:

(1−ϕ)
∂ρs

∂t
− ρs

∂ϕ

∂t
+ ρs(1−ϕ)

∂vs

∂x
+ vs ∂

∂x
(ρs(1−ϕ)) = 0. (B34)

We further expand the derivative of the last term:595

(1−ϕ)
∂ρs

∂t
− ρs

∂ϕ

∂t
+ ρs(1−ϕ)

∂vs

∂x
+ vs(1−ϕ)

∂ρs

∂x
− vsρs

∂ϕ

∂x
= 0. (B35)

Grouping terms and recognizing the material derivative ds

dt = ∂
∂t + vs ∂

∂x :

(1−ϕ)
(

∂ρs

∂t
+ vs ∂ρs

∂x

)
− ρs

(
∂ϕ

∂t
+ vs ∂ϕ

∂x

)
+ ρs(1−ϕ)

∂vs

∂x
= 0. (B36)

Using the material derivatives:

(1−ϕ)
dsρs

dt
− ρs

dϕ

dt
+ ρs(1−ϕ)

∂vs

∂x
= 0. (B37)600

We can infer the solid velocity divergence:

divvs ≡ ∂vs

∂x
=− 1

ρs

dsρs

dt
+

1
1−ϕ

dsϕ

dt
. (B38)

By using equation (9) we can further simplify the expression:

divvs =− 1
ρs

dρs

dt
− 1

1−ϕ

dϕe

dt
− ∆p

ηϕ(1−ϕ)
. (B39)

Each term in the expression (B39) for divvs has a physical interpretation:605

1. Solid Density Changes:

− 1
ρs

dsρs

dt
(B40)

This term accounts for the volumetric changes due to variations in the solid density, such as thermal expansion or

compression under pressure.

2. Reversible Porosity Changes:610

− 1
1−ϕ

dϕe

dt
(B41)

Accounts for the reversible part of the porosity change.

3. Irreversible Porosity Changes:

− ∆p

ηϕ(1−ϕ)
(B42)

Incorporates the effect of pressure changes through the poroelastic coefficient ηϕ.615
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Summary

The derived expressions ensure thermodynamic admissibility by demonstrating that the total entropy production TQs,total is

non-negative, satisfying the second law of thermodynamics. Each term in the entropy production has a clear physical interpre-

tation, representing the irreversible processes contributing to entropy increase in the system.
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