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Abstract. Gassmann’s equations have long served as a cornerstone of geophysics and rock physics, widely regarded as exact
within their domain of applicability. However, recent studies have questioned their validity, arguing that Gassmann’s derivation
involves a logical error and that an additional solid modulus is needed even for monomineralic materials. In this work,
we present a general derivation of the Extended Biot poroelasticity equations, grounded in conservation laws and classical
irreversible thermodynamics. We show that the formulations of Gassmann (1951), Brown and Korringa (1975), Detournay and
Cheng (1993) and Rice and Cleary (1976) emerge as special cases of this unified framework. While previous studies have
analyzed the thermodynamic admissibility of standard Biot and Gassmann models, we extend this analysis to the more general
theory by explicitly incorporating the off-diagonal terms arising from the second partial derivatives (Hessian) of internal energy.
A key finding is that Gassmann’s self-similarity condition—that porosity remains unchanged under equal changes in fluid and
total pressure—is a sufficient but not necessary condition for the derivation of Gassmann-type relationship between undrained
and drained bulk moduli. It holds if and only if the matrix of the second partial derivatives of internal energy is diagonal. When
the off-diagonal terms in this matrix are retained, a generalized form of Gassmann’s equations is required, which we derive.
To promote transparency and support further research, we provide symbolic Maple routines with thermodynamic consistency

checks, ensuring full reproducibility and accessibility.

1 Introduction

Gassmann’s equations (Gassmann, 1951), developed several decades ago, are fundamental in geophysics for analyzing the
elastic properties of fluid-saturated porous media. These equations provide a means to predict seismic velocities and mechanical
behavior in such materials. However, despite their widespread use, recent studies have questioned the logical consistency of
Gassmann’s derivation, suggesting that it contains a logical error (Thomsen, 2023a, b, 2024, 2025). This has highlighted the
need for an extended, transparent and thermodynamically consistent framework to ensure reliability in geophysical modeling
and interpretation.

This paper presents a structured, transparent, and fully reproducible derivation of the Extended Biot poroelastic equations,

with the formulations of Gassmann (1951), Detournay and Cheng (1993), Brown and Korringa (1975) and Rice and Cleary

(1976) emerging as special cases. Our approach is rooted in fundamental conservation laws and classical irreversible thermodynamics
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(CIT) (Lebon et al., 2008). While earlier works have demonstrated the thermodynamic admissibility of the standard Biot and
Gassmann models (Coussy et al., 1998; Yarushina and Podladchikov, 2015), we extend this analysis to a broader class of
models by evaluating the full Hessian matrix (i.e., matrix of second partial derivatives) of internal energy.

We respond directly to the critiques presented in Thomsen (2023a, b, 2024, 2025), adopting the CIT formalism as described
in Lebon et al. (2008) and extended to poromechanics by Yarushina and Podladchikov (2015). We demonstrate the thermodynamic
admissibility of the Extended Biot equations by incorporating entropy production constraints and the internal-variable formalism
of CIT. Internal consistency is verified through both theoretical analysis and numerical evaluation. In particular, we emphasize
the interplay between thermodynamic forces and fluxes, entropy production, and the admissibility of constitutive laws.

The paper is structured as follows: we begin by reviewing the foundational equations of classical irreversible thermodynamics,
highlighting the roles of thermodynamic forces and fluxes. We then derive the evolution equations for the Extended Biot
poroelastic system, followed by formulations of the Detournay—Cheng, Brown—Korringa, and Gassmann models. After we
revisit Gassmann’s assumptions and delineate the specific conditions under which they remain valid. We also directly address
the critiques raised in Thomsen (2023a, b, 2024, 2025) regarding the validity of Gassmann’s equations.

To ensure full reproducibility, we provide symbolic Maple routines with detailed line-by-line commentary, enabling transparent
derivation and verification. This framework also supports future extensions, including multiphase flow and viscous deformation
mechanisms. All Maple scripts are available in a symbolic archive via a permanent DOI on Zenodo: https://doi.org/10.5281/

zenodo.15777522 (last access: June 30, 2025) (Alkhimenkov and Podladchikov, 2025).

2 Scope of the Manuscript

One can distinguish between two related but distinct tasks in the formulation of coupled (poroelastic) theories: (i) identifying
the appropriate set of state variables that fully describe the coupled mechanical behavior, and (ii) deriving the material
parameters that link these variables. Task (i) is particularly challenging and has been addressed by numerous researchers;
a comprehensive review is beyond the scope of this manuscript. In this work, we build on those earlier studies and assume
from the outset that the correct variables have been identified.

Task (ii), while relatively more straightforward, remains essential: various modifications of poroelastic theory have been
proposed, often based on simplifying assumptions that affect how material parameters are defined and interpreted. The main
novelty of this manuscript is the consideration of the full Hessian matrix of second derivatives of internal energy — including
the off-diagonal terms (which are often neglected in classical formulations) — which enables us to derive a generalized set
of Gassmann-type relations. Furthermore, we demonstrate that under appropriate mappings between poroelastic coefficients,

several classical poroelastic theories can be viewed as equivalent.
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3 Derivation of the Extended Biot’s Poroelastic Equations
55 3.1 General Pattern of the Derivation
To derive the Extended Biot poroelastic equations, one typically combines the following components:

— Conservation laws:

— Conservation of linear momentum for the total stress,
— Conservation of mass for the solid phase,

60 — Conservation of mass for the fluid phase,
— Fluid dynamics:
— Darcy’s law for the Darcy flux g” (assuming low-Reynolds-number flow),

— Isothermal constitutive relations:

A solid density-pressure constitutive law (equation of state),

65

A fluid density-pressure constitutive law (equation of state),

A porosity constitutive law (e.g., pore compressibility),

Stress-strain relation for the deviatoric components of the stress and strain tensors.

By expressing the solid and fluid densities, as well as the medium’s porosity, in terms of pressures and fluxes via these
constitutive laws, one obtains the Extended Biot poroelastic equations. Under additional simplifying assumptions, the formulation

70 reduces to the classical Biot poroelastic equations (Biot, 1962), the Brown and Korringa equations (Brown and Korringa,

1975), Rice and Cleary (1976) equations and Gassmann’s equations (Gassmann, 1951) as limiting cases. In the case of Biot

poro-visco-elasticity, viscous effects are incorporated through the specific choice of the porosity evolution law (Yarushina and

Podladchikov, 2015), which can include time-dependent or rate-sensitive terms. To ensure thermodynamic consistency, these

constitutive relations are derived within the framework of classical irreversible thermodynamics, which we describe in the

75 following section.

4 Thermodynamic admissibility of the extended Biot poroelasticity framework

4.1 Local Entropy Production

In the context of Classical Irreversible Thermodynamics (CIT) (Lebon et al., 2008), the hyposesis of local thermodynamic
equilibrium implies that energy is well defined as a single value function at each state of the system. Moreover, for a unit mass

80 of a solid skeleton, in agreement with the main assumption of CIT, the infinitesimal change in internal energy U, follows its
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equilibrium relationship via the corresponding changes in entropy S, per unit mass, density ps, and the elastic part of porosity
@< (Yarushina and Podladchikov, 2015):

m
Ps Ps

where: T' is the absolute temperature, p; is the solid pressure conjugated to solid density change, 77 is the thermodynamic

dUs =TdSs — psd(1/ps) +

des, ey

wen

variable (pressure) conjugated to porosity change (to be defined), and ¢¢ = ¢ is the solid volume fraction, superscript
represents reversible (elastic) change (¢ =1 — ¢, with ¢ being the medium’s porosity). 7; can be viewed as analogy to

pressure as conjugate variable to volume change. The individual terms in this energy balance are interpreted as:

— TdSs: Heat stored in internal energy Us.

— psd(1/ps): Energy change due to compressibility of solid grains (volumetric Hooke’s Law).

Ps bs
Note, that 77 is not defined yet.

d¢¢: Poroelastic effects: reversible part of the energy change due to the changes in porosity.

4.2 Entropy Production for Poroelastic Loading

In the context of poroelasticity, the most important outcome from Appendix B is an expression for entropy production, Q2°7°,

associated with elastic (reversible) porosity change:

dgg

dt’
where p; is the solid pressure and p is the fluid pressure. Entropy production must be zero for reversible poroelastic deformation;
therefore (ps — 7';) —py = 0(!). This implies that (Yarushina and Podladchikov, 2015):

TQY"™ = [(ps —73) — py] 2)

T;:Ps—Pf 3)

We also notice that 7; = p. /(1 —¢y), where p. = p— py represents the effective pressure (total pressure is defined as p =
(1—¢¢)ps+ &5py). For an explanation of the Maple script used in the derivation and analysis of entropy production in a
single-phase medium, see Appendix A. Appendix B provides a similar explanation for the entropy production derivation in a

two-phase porous medium.
4.3 Internal energy of the solid frame

We begin with the internal energy of representative infinitesimal solid skeleton (frame) linked to material points (grains) of the
solid skeleton in a Lagrangian fashion, U (V, ¢ ), per unit mass. Here, Vj is the (Lagrangian) solid volume and ¢, = V;/V;
is the solid volume fraction, V; is the (Lagrangian) total volume. A first-order Taylor expansion about an equilibrium state
(V0,60) yields:

oU,
oV

U,

0 40
(V2 B)AV. + 52

Us(Vay 0s) = Us (VY 00) + (V2 62)Ads +o(e), “)
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where AV, =V, — V0 and A¢, = ¢ — ¢2. The energy increment AUj is:

8U U,

D5

The internal energy Uj is a scalar potential defined on a smooth, convex state space, where the Hessian matrix is symmetric:

AU U ( 97¢5) ( S 7¢0) ( S 7¢0)AV + (V907¢(9))A¢9 (5)

oU, oU,

av( Vs, ¢s) | = (V2 909) m AV, ©
8U GU 0 Ad ’
8¢s( Saqss) a(bs( 57¢) s

where H is the Hessian matrix of second derivatives of the internal energy with respect to V; and ¢:

82U, 9%U,
6‘/2 ( sov(bg) 8‘/ 8@5 (‘/:907¢2)
H= 82 82 s . @)

The increment of the first derivatives of AU are:

oU,
INUTI R PO ®
a¢ ’ °

For isothermal processes and in agreement with CIT (equation (1)), AU, can be also expressed via mechanical variables only:

Vs
AU (Vs, ¢s) = —ps AV +T¢¢ Aps = —p AV + (ps — )¢ Ags. )
By comparing equations (8) and (9), we identify:
oU, oU, Vs Vs
V0,60 = —Ap,,  AZ (VO] D)~ - Alps—pe). 10
W(s,qﬁ) Ps) 6@( bs) = (@(pf ps)) 5= Aps = ps) (10)
Therefore, the following linear system holds:
—APs AV,
V. =H . (11)
——A(psr —ps) Ag,
Ps
We then use the following equation of state for the fluid for isothermal processes:
AV,
=By, (12)
f

where [ is the fluid compressibility. Equations (11) and (12) are used by Yarushina and Podladchikov (2015) (assuming

simplified diagonal Hessian matrix H) as a constitutive closure relationships (their equations 6-8).
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5 Derivation of the original Gassmann and Biot equations

We here provide a derivation which is similar to the one proposed by Yarushina and Podladchikov (2015) in terms of underlying
constitutive closer relationships. Unlike Yarushina and Podladchikov (2015), we start from the Hessian matrix H and provide

a detailed derivation, without skipping any intermediate steps
5.1 Derivation of the original Biot-Gassmann equations

We consider a simplified diagonal version of the full compliance matrix H (equation (11)):

_Aps H1 1 0 AV;
Vs - : (13)
_EA(pf _ps) 0 Hoo A¢5
We further use the following relation between density increments and solid volume change:
Aps AV
—_— = 14
o V. (14)
In addition, we use the following identity:
Ap, = —A¢y. (15)
Equation (13) can be now re-written as:
—Ap; Hy 0 V. Aps
V. A = Ps | . (16)
—m (pf —ps) 0 Ho —A¢y

We solve (16) with respect to Agy/¢r and Ap,/ps. The resulting expressions are cumbersome and can be directly accessed

via the provided Maple scripts:

?f:f(thA(pf_ps)a(bva(bfv‘/s)a 7
Aps
p :f(H227A<pf_p8)1¢f7A¢f7‘/S) (18)

5.2 The incremental formulation

. . . . A Aps . . . L
The next step is to substitute the resulting equations for B9y and 2Ps into the mass conservation equations, which is explored

f Ps
below. Now, we transition from differentials into the incremental formulation and use the following identity:

ds-
. (19)
. o o . Lodl .
where we adopt material (Lagrangian) time derivatives. We use the following notation: primien +v7V; denotes the Lagrangian
)
(material) derivative with respect to solid and — = — + vlf V,; denotes the Lagrangian (material) derivative with respect to

dt 0Ot
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fluid, where vf and v; are the fluid and solid velocities, respectively. The Einstein summation convention is used: summation
is applied over repeated indices.

We re-write equation (12) in a rate form:

dips  dpy Fos
e dt +(”i ‘”i)vipf- (20)

We adopt the following approximate relations, which are strictly valid under small strains:

d'py  dpy

— 21
dt dt ’ @

dor  dooy

o 405 22
dt dt (22)

Approximations (21)-(22) are implicitly assumed in Yarushina and Podladchikov (2015). For equation (21), this approximation

is valid when the relative velocity between fluid and solid phases is small, or when the fluid pressure gradient is negligible.
5.3 Conservation of mass in a rate form

Conservation of mass for fluid phase in rate form is

0
7(%:” +V; (¢fﬂfvgf ) =0, 23)

and conservation of mass for the solid phase in rate form is:

o((1 - Qbf)Ps)

5 T Vi((l=6)psvj) =0. 24)

Equations (23)-(24) can be reformulated for divergences V; vj- and V; qu :

C1dep 1 d*¢y

Viv; = b dt 1=, dt (25)
p_ ¢pdipt Aoy s
Vg = Py T 7 ¢fVjv3, (26)

where ¢P = ¢ (v] — v$) is the Darcy flux.
5.4 Relations between total, solid and fluid pressures

Note that the material derivatives of the total pressure, p, and the solid pressure, ps, are related via:

d°p dps  dpy 0 dps 1 (dp dpr  d¢y
— 1_ —Ps), = — — — Ps 27
il Gl R Bl (U D =g, \at " a g \Pr—ps) 27

Equation 27 for solid pressure ps can be simplified by neglecting the porosity derivative term:

d®ps 1 d’p d°py
~ — — . 28
dt 1—¢f<dt o %)
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5.5 Resulting equations of Biot-Gassmann theory

We then adopt the relation (28) and replace p, in favor of p. By simplifying equations (25)-(26), we can write the following

relation
d*p
Vs ail a2 dp
= dst ) (29)
Dby
\v4 D
K4y a1  Aa22 i

We note that a2 = ao1, which is explicitly derived rather than imposed (this fact is explored in more details for the case of the

full matrix H and is provided below). Let us define the following compressibilities:

Ba = —a1, (30)
which gives:

(67 =205 +1)

Hyy=—Hsp - - (31)
Vs (¢>‘}H2,2/3d —3¢7Ha 280+ 3¢ Ha2a — Hz 284 + V5)
Then we introduce « as
@12
a=—_, (32)
Ba
which gives
Vs
Hy o= 5 . 5 . (33)
(0% + 6% — 2005 —26% +a+ 65 ba
Finally, we introduce B as
B Pa =B . (34)
as2 ¢f(ﬂf _ﬁs) +Bd_65
By using the definitions (30)-(34), we can rewrite (29) in the following form:
dsp
Vs 1 -« P
= —Ba . dgl; : (35)
f
Viai, ¢ B dt

which is the original Biot poroelastic equation (Biot, 1962), extended to an incremental large-strain formulation (Yarushina
and Podladchikov, 2015). Equation (35) reduces exactly to original Biot formulation (Biot, 1962) if we assume small strains.

We also note that the expression (32) for o can be written as

B,
=1-=2 36
“ Ba (36)
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5.6 Key observations

To derive the original Biot—Gassmann poroelasticity relations, one should use the proposed rheological relationship (13) and

the two equalities (21) and (22). The relationship (13) implies the following identity:

65 g s

d*pe
— 1L g(1-g)—L2-p, "0

dt’

! (37
dt dt
where the poroelastic constant (compressibility) 3, is defined that as linear rheological relationship during reversible poroelastic
part of deformation.

Equality (1) in equation (37) is the primary assumption made by Biot (1962) and by Gassmann (1951) (also used by
Yarushina and Podladchikov (2015)). It postulates that equal changes in total and fluid pressure leave porosity unchanged. This
assumption is often referred to as the self-similarity hypothesis and is equivalent to assuming that the matrix of second-order
derivatives of internal energy, H, is diagonal (see equation (13)). Equality (2) in equation (37) results from the thermodynamic
admissibility condition of Yarushina and Podladchikov (2015), which leads to the relation 75 = ps —py = p. /(1—¢y), derived
in section 4.2.

We can infer the expression for 34 introduced in equation (37), which directly follows from equation (13) once we substitute

expressions for H; ; and Hy o:

By = Ba(l—¢y) = Ps. (38)

The proposed rheological relationship (13) and the equalities (17) and (18) inserted into the mass conservation
equations (25) and (26) fully define the original Biot—Gassmann poroelasticity framework (Gassmann, 1951; Biot, 1962).
As a consequence, the theory contains three exact constitutive laws: (i) the effective stress law (explored below), (ii) Gassmann
relation for the undrained bulk modulus K, = 1/3, (8, is the undrained compressibility), and (iii) the relation between the

effective compressibility 34, the solid grains’ compressibility 3, and the drained (or dry) frame compressibility 3.
5.7 Effective stress law

Nur and Byerlee (1971) provided an exact expression for the effective stress law, which is widely regarded as a fundamental

result in poroelasticity. It is defined by the following relation:

dpet = dp —adpy =dp— (1—22) dpy, (39)

where the drained compressibility, 34, can be measured experimentally as:

L1 dper
B4 Vivy dt

(40)

undrained

The exact effective stress law given by equation (39) follows directly from the derived poroelastic expressions.
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5.8 Resulting equations of Biot-Gassmann theory for bulk moduli

To derive the original Biot poroelastic equations (Biot, 1962) in stiffness form, we invert the coefficient matrix in equation
(35):

-1

1 1 —Q B Kd 1 B (41)
Kd o - 1-aB B B ’
B «

where Kq =1/, is the drained bulk modulus (i.e., 8, is the drained compressibility). The resulting expression for stiffness

is:

dp 1 B Vivg
o B \Vea
where K, = K4(1 — aB)~!. The poroelastic constants used in equation (42) are:
K
a=1- fd (43)
1/Kq—1/K, (a4

B = R 1R, + oK, — 1K)

where the bulk moduli are defined as the reciprocals of the corresponding compliance parameters: 3; = 1/K, and 5y = 1/Kj.
5.8.1 Original Gassmann’s equations

The relation between the undrained bulk modulus K, (see equation (42) under the constraint qukD = () and the drained bulk

modulus K is known as Gassmann’s equation (Gassmann, 1951):
K,=Kq1—aB)™". (45)

According to Gassmann’s theory, the shear modulus of a fluid-saturated rock G, is equal to the shear modulus of the dry

(drained) rock Gg:
G.=Gq. (46)

The expression (45) is obtained by inverting the coefficient matrix in equation (35), leading to the stiffness form given in
equation (42). An English translation of the original German-language article by Gassmann (1951) is provided in Pelissier

et al. (2007). Gassmann’s relation (45) can also be rewritten in terms of bulk modulus as:

(1 _Kd/Ks)2

K,=K;+ — — .
' OrKpt+(1—op) Ky — Ka/K?

(47)

10



245

250

255

260

265

5.8.2 Assumptions behind the derivation of original Gassmann’s equations

The following assumptions are made throughout the derivation of Biot’s poroelastic and Gassmann’s equations to ensure the

validity of the results:

The material is assumed to be linearly elastic, and the strains are small.

The porous medium is considered homogeneous and isotropic and a fully interconnected pore network.

The interactions between the solid and fluid phases are governed by linear constitutive laws, and the fluid flow obeys

Darcy’s law (or equivalently, the fluid is governed by the quasi-static Navier—Stokes equations for a compressible fluid).

The self-similarity hypothesis: that equal changes in pore (fluid) pressure and confining (total) pressure result in no

change in porosity ¢ ¢. This is equivalent to assuming a diagonal compliance matrix H (see equation (6)).

The derivation assumes a quasi-static process, such that inertial effects can be neglected.

These assumptions provide a simplified framework for the derivation and are thermodynamically admissible. One of the key
assumptions in the original derivation of Gassmann’s equations (Gassmann, 1951) is the self-similarity hypothesis — equal
changes in total and fluid pressure leave porosity unchanged — explicitly stated in the original manuscript.

6 Derivation of the Extended Biot’s poroelasticity formulation: General case

6.1 Goal

Recall the structure of the original Biot—Gassmann formulation (35):

dsp

Vs 1 -« dtp
= _Bd o dsp 9 (48)

Vidi, B dtf

This relationship was originally derived under the assumption that the Hessian matrix H is diagonal. Here, we aim to extend
this result by retaining the full matrix H, including its off-diagonal terms, and derive an analogous relationship that preserves
the original structure and introduces generalized parameters. To this end, we follow the same steps as outlined in Section 5,

with the goal of obtaining Gassmann-type relationships for the Extended Biot poroelastic theory.
6.2 Derivation

We now consider the full compliance matrix H (equation (6)):

—Aps Hyi Hyp AV,
Vs - : (49)
"% (pf —ps) Hy Hayo| |—Ady

11
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Note that H15 = Hs; due to the structure of the matrix H: the off-diagonal component H;5 corresponds to the second mixed
partial derivative of internal energy, first with respect to V, and then ¢, and must be equal to Hy;, which is the derivative
taken in the opposite order. This symmetry holds because the internal energy is assumed to be a smooth (twice continuously
differentiable) scalar function of its state variables. (This is also known as the symmetry of second derivatives). Then, we

follow a the same steps as in section 5 by using identities (14)-(15) and arrive to the following equations:

Ag

?ff:f(thHlQaApsaA(pf_ps)>¢faA¢faVS)7 (50)

Aps

7:f(H227H12aApSaA(pf_ps)>¢faA¢faVS)7 (51)

which are cumbersome and can be found in the Maple script. We then use identities (21)-(22). Following the steps provided
A Aps . o

in section 5, we substitute the resulting equations for i (equation (50)) and 2P (equation (51)), re-written in a rate form,

S
into the mass conservation equations (25)-(26).

6.3 Resulting equations of the Extended Biot poroelastic theory

We again adopt the relation (28) and express p; in terms of p. Substituting equations (50)—(51) into the mass conservation

equations (25)—(26) yields

d°p

Viop | [afP o [ .
_ 2L

viaP) \agP aip) \ =8

We note that al = aF'B, which is not imposed by symmetry but emerges naturally from the substitution of equation (49) into
the mass conservation equations (25)—(26). This symmetry is a direct consequence of the algebra.

Following the approach of Section 5, we now define the compressibilities. First, we define
i 9

which gives:

EB _ _ (=1+¢5)?Hao+ Vi (VsH1,1 — 2H 2(—1+ ¢y)) (54)
! (=1+¢p)3 (HinHzp — HE ) Vs

Then we introduce o8 as

o FB aBP  —VipiHi o+ ¢ Hoo + VPH1 1 —2¢5Ho o + ViH1 2+ ¢ Ha o

== = , 55
BB (—1+¢5)2Ho o+ (ViH1 1 —2H: o(—1+¢5)) Vs (53)

which gives
Vi (a®Bo s Hy 2858 — aPBH, o858 — ¢ Hy 2855 + Hy 2855 4+ 1)

Hs =
BB (o893 — ¢} — 20806, + 2% + PP — g )

(56)

12
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Finally, we introduce B®B as

e __ 0" _ (85" — 35 (1 + Hoal1 - 6y)205) o
ay (1= 6p)2 ((BF®)?+ (65 Br — 2BFB) B + (B1FB)?) Hy o + BFP + (By — BEB)py — BIER
/EB
where 3FB is defined by the following relation: o8B =1 — BfEB . By using the definitions (53)-(57), we can rewrite (52) in
d
the following form:
dp
Vs 1 —aFB i
_ _@?B . dt 7 (58)
VigP _oFB o d’ps
k BEB dt

which is the incremental form of the large strain Extended Biot poroelastic formulation. Note that we did not define a particular
expression for H » which can be set arbitrarily via introduction of a new parameter 3755,

To derive the Extended Biot poroelasticity relations, we used only the proposed rheological relationship (49) and the two
equalities (21) and (22). The relationship (49) denotes the following identity:

at 1+ Hyo(1 — ¢5)2858 dt JIPd s dt

(59)
where the poroelastic constant (compressibility) BEB can be defined as a coeficient in front of effective pressure d°p. =
d*(p—py):

B3 = Bi"(1—og) = BEP. (60)

Therefore, equation (59) can be written now as:

dpr  (1—¢s)? BB Hi o (1—95)BY° + BEP) dopy 7
dt 1+ Hpo(1—¢p)2B58 dt

d*pe
BEP— (61)

To further simplify the notation, we can introduce S/ EB and solve for H 1,2 the following equation:

(1—¢7)?BFP Hyo (1= 65)BE" + BFP)
14+ Hyip(1—¢p)2p58

which gives

_ BQEB _ BQIEB’ (62)

ﬁ;EB _ ﬂgEB

Hy o= . (63)
(1—¢7)2 ((BEB)2 + 85" (¢ — 2) B8 + By BLEE)
Substituting equation (63) in the expression for B (equation (57)) gives simplified relation:
EB _ o/EB
B = EBBd a8 EB EB (64)
(By = BEB) oy + 857 — B
We also note that the expression (55) for aFB can be written as
/EB
a1 s (65)
d
Furthermore, the equation (62) can now be re-written as
¢ d°p d°pe
f_ (B;EB . B;/EB) ;o BgB = (66)

dt dt

13
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6.4 Relations between poroelastic parameters and H

We can write the relations between poroelastic parameters and H as follows:

(1—¢p)Hoo—V,Hi 2

/EB _ 67
P Vi (Hi1Hap — HE o) (1-¢5) o
and
B;/EB _ VS((bf _2)H172+(1_¢f)H2,2 (68)

Vs(HiHz o — H? o) (1—f)

The relations between poroelastic parameters 357 (equation (54)), 3.FB (equation (67)), 82/FE (equation (68)), B (equation
(55)), and BEB (equation (57), in which 355 and BFB are substituted) are fully expressed in terms of the components of the

Hessian matrix H.
6.5 Gassmann-type relation

The equations for the undrained compressibility in the framework of the Extended Biot poroelastic formulation is:
By° = pi® (1-a"" B*P), (69)

which has a structure similar to the original Gassmann equation (45).

7 Comparison against previous poroelasticity models

In this section, we assume small strains to enable a direct comparison with other classical poroelasticity models, which are

typically formulated within the infinitesimal deformation framework.
7.1 Comparison against poroelasticity model of Detournay and Cheng (1993)
7.1.1 Rheology

Detournay and Cheng (1993) postulate linear rheological relationships that connect the volumetric response of the porous

medium to increments in fluid and effective pressures:

AV,
= /DC DC d

Vi | (5 Ba Df (70)
AVp o 6”DC ﬁ/DC dpe

v, ’ !

These expressions describe how the total volume V; and pore volume V), deform in response to changes in fluid pressure p; and
effective pressure p. = p — py, where P is the total pressure. The mechanical interpretation of the four compressibilities B?C,
7. B, and 8P has been defined in Detournay and Cheng (1993). Note that by invoking the Betti-Maxwell reciprocal
b5 DC DC
theorem, Detournay and Cheng (1993) suggest that K, = W, and 3,°% =1/K°%.
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7.1.2 Geometry and kinematics

Detournay and Cheng (1993) use exact relations that connect the total, solid, and pore volumetric responses with porosity
changes. Assuming control volumes and using finite changes, the following identities hold:
AVi AV, ¢r Ay

Vi Ve " 1-¢p o5’
AV, _ AV n 1 A¢ ;-

Vb Vs 1—9¢5 o5

7.1.3 Porosity evolution and solid-volume change

(71)

(72)

Combining the rheological relations (70) with the geometric identities (71)—(72) yields compact expressions for the porosity

variation and the solid-volume strain (Detournay and Cheng, 1993):

DC
% _ (ﬂ¢ ) dpe + (B;DC N Bngc)dpfv (73)
Of Or
A s , ’ "
bs VV = _55DC dpe — (55DC — oy By DC) dpy, "

where (89¢) = B7°(1— ¢y) — B
The resulting representation of Detournay and Cheng (1993) is:

s
Vivs 1 —aPC ap
= dt 75)
- aPC d
VoD _aPC Dy
Kl BPC ) \'dr

The inverse form, expressing the time evolution of pressure fields in terms of mechanical and hydraulic divergence rates, reads:

p.
di’ ol v B [
L =-K. be , (76)
dpi BDC‘ B \v4 qD
dt aPC kK
The poroelastic constants used in equations (75)—(76) are (K, = 1/,85)0, K'P€ =1/p/PC K!"PC = 1/5"PCy;
/DC
aDczl—ﬁsDc, (77)
d
BDC _ 5EC — B;DC (78)
FPC = BPC+ (5 — A7) oy
550 _ ﬁ(li)c (1 _ OéDc BDC) , (79)
_ 1- K’ K/DC 2
KPC = i/ (1 _aDCBDC) 1 =K, + ( A/ K7) (80)

6 (K7! = (BP9 ) + (KPO) ™ — Ky (KDY ™2
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This expression has a similar structure to the original Gassmann equation (45). We emphasize that these expressions arise
naturally as a special case of the present Extended Biot poroelastic formulation, which is shown below. In particular, the
Detournay—Cheng model assumes small strains and constant poroelastic parameters, whereas in our framework — large strain

incremental formulation is adopted, thus, porosity evolution is present and the coupling coefficient BB (¢ ) vary with porosity.
7.2 Comparison against the poroelasticity model of Brown and Korringa (1975) and Rice and Cleary (1976)

The poroelasticity formulation of Brown and Korringa (1975) can be rewritten using the notation introduced by Thomsen
(2025), in terms of the drained bulk modulus KP¥ =1/8%X, the “mean" grain modulus KPK =1/5K and the overall

modulus of the heterogeneous solid constituent of the rock K5 =1/ B8 EK.

AV,
v, st BEE\ [dps
AV, | T (81)
- g g ) \dp
Vb
The drained compressibility is defined as (Brown and Korringa, 1975; Thomsen, 2025):
1
§K<mﬂ , (82)
Vi \Ope /,,

where p, is the effective (or differential) pressure, p. = p — py. The compressibility with respect to pore pressure at constant

total stress is (Brown and Korringa, 1975; Thomsen, 2025):

1 [/ oV,
BK t
= =— . (83)
M Vi <3pf ) pe
The undrained compressibility is (Brown and Korringa, 1975; Thomsen, 2025):
1 [0V
BK t
=—— (=] 84
=7 (%) Y
Brown and Korringa (1975); Thomsen (2025) introduce the following compressibilities for the pore volume:
1 [0V,
/BK p
_ ! , (85)
’ Vi ( Ope )m
1 [oV,
/B(I;K:_( p> , (86)
Vo \9pe /),
1 [0V
m:_(p). (87)
’ Vp 8pf Pe

Thus, the variation of pore volume can be written as (Brown and Korringa, 1975; Thomsen, 2025):

o5 Brops = BN Ape + BN Apy. (88)
Finally, the undrained compressibility can be written as:

(38" - 5B

o5 (Br = BGS) + (B = Byr*)

BEK = poK — (89)
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Thomsen (2025) used the following identity:

Bt = orByS +(1—¢p) 8o (90)

Brown and Korringa (1975) also showed that 35K = ﬂgK — BBK. Finally, the resulting expression of Brown and Korringa
(1975) for the undrained compressibility 32X in the notation provided by Thomsen (2025):
BBK — gBK _ BISB(]?K - 511?4K)2BK :

¢r(Br—Bg )+ (B =By —28y°)
or, in terms of bulk moduli, which can be explicitly written as (K£SK = 1/BE‘K, KCI?K = 1/6§K, KE’K = 1/§2K, K}@K =

1/B8E, Ky =1/By) (Thomsen, 2025):

oD

-~ 1—KBK KBK 2
KB¥ = K (1—aPX BBK) ™' = KK 4 — Bé 4 /Bff) e — (92)
b (K7' = (KES)=1) + (KE¥) =1 — KBR/(KBK)?
where
BK BK
o —% (93)

and BB¥ can be calculated from the equality (92).
7.3 Equivalence of the Brown-Korringa (BK) model and Detournay—Cheng (DC) model

The Detournay—Cheng (DC) model is fully equivalent to the Brown—Korringa model if a proper mapping between the poroelastic
parameters is established (i.e., K/P¢ and KP€ to KPK and K g’K). Using the assignments:

SK/DC K//DC
KBK — ¢ s s ; (94)
S K'DC _ ¢f K'DC

KBK = [/PC
we find that the two models — the DC model and the Brown—Korringa model — are algebraically identical. When K'P€ =
K!PC_ it immediately follows that KBK = K55 and the two models reduce to the classical Biot-Gassmann formulation.

The algebraic equivalence between these formulations can be also established by the following exact relation:

L L _ o
PR S/ (95)
K;DC Ké/DC P(],;)K

This analysis shows that the Brown—Korringa model is distinct from the Detournay—Cheng formulation in terms of the

parameter definitions and the physical interpretation and experimental measurability of the poroelastic coefficients.

7.4 Equivalence of the present Extended Biot formulation and Detournay—Cheng (DC) model

Here we show that the present Extended Biot formulation contains the Detournay—Cheng (DC) model as a special case. Indeed,
if we set BEB = B/P€ "and choose

or (lB;EB _ ﬁ;/EB)

Hy o=
1,2 d)?}ﬁzzBﬂ!EB _ ¢?35BﬁéEB _ 2¢?ﬁg}Bﬁ;/EB ¥ ¢?([32EB)2 +2¢;BEBRIER ¢ GEBGIER ¢ (3/EB)2 _ GEEG/EB | (3/EB)2 )

(96)

the present Extended Biot formulation will be exactly equivalent to the Detournay—Cheng (DC) model in the small strain

regime. We refer to the provided Maple script for more details.
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7.5 Equivalence of the present Extended Biot formulation and Brown—Korringa (BK) model

Here we show that the present Extended Biot formulation contains the Brown—Korringa (BK) model as a special case. Indeed,

if we set 8758 = BBK use identity (94), and choose
_ Bar —Bg"
2= BK BK 2 BK 2’
O3BI° B —205B5° By + 5 (ByF) + B Bg — (BYF)

the present Extended Biot formulation will be exactly equivalent to the Brown—Korringa (BK) model in the small strain regime.

H,

o7

We refer to the provided Maple script for more details.

8 A closed system of equations of the extended Biot poroelastic framework
The conservation of linear momentum is given by:
Vi (=pdij +Tij) — gip =0, (98)

where 7;; is the deviatoric stress tensor, d;; is the Kronecker delta, and 4, j = 1,2, 3. The total density is given by p = ¢sp° +
oy pf, where p* and p/ are the solid and fluid densities, respectively. The vector g; denotes the components of gravitational
acceleration.

Viscous fluid flow through the porous medium is governed by Darcy’s law:

k
@ = —;f(vipf +gip”), (99)

where £ is the permeability of the medium, and 7y is the fluid shear viscosity

The matrix of coefficients in equation (58) can be inverted, yielding:

d’p

prll 1 BPP(¢5) | | Vivi (100)
dfpf BEB(¢f) EB BEB(¢f) D 7
= B*¢s) g5 ) \Vit

where the abbreviated definition S5® = BEB (¢ ) = B (1 — oB BEB) is used, and the parameters are functions of porosity
¢, meaning that BEB = BEB(¢ ).

Deviatoric stresses are related to solid velocity gradients through the following relationship:

1 avVs; 1 L1 .

where G, is the undrained shear modulus of the saturated porous medium (it is assumed that the dry or drained shear modulus

is equivalent to G, i.e., G4 = G,,), and

d¥7; &Py _
G dr TRk T Tk (102)
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is the Jaumann objective stress rate. The tensor wy; = = (Vv{ — V,v7) denotes the antisymmetric part of the solid velocity

|~

gradient.

The poroelastic constants in expression (100) can be defined in terms of compliance parameters as:

B/EB
PP =P =122 (103)
d
EB /EB
BEB — gEB _ Ba~ —Bs . 104
((bf) (Bf — 5;EB)¢j I 5(]13B _ BgEB ¢ )
G5B = BEB(p7) = fa (1 P2 BB (gy)), (109

where B;IEB corresponds to the drained (or dry) compressibility and BEE denotes the undrained compressibility. Note that the
porosity ¢ evolves according to the evolution equation (66), which in turn affects the poroelastic parameter BFB = BEB(¢ 7)
at each loading increment. Finally, we can use the Carman—Kozeny relationship to model permeability evolution as a function
of porosity (where ¢ is the reference porosity of the medium and k is the reference permeability), given by:

(e _
k=ko| — , where, e.g., ni = 3. (106)

b0
Equations (98)—(106) fully represent the quasi-static Extended Biot poroelasticity formulation.

9 Numerical studies supporting Gassmann’s equations for monomineralic frame

Alkhimenkov (2023) performed a numerical validation of Gassmann’s equations considering a 3D numerical setup and relatively
complex pore geometry that included narrow regions (cracks) and large pore space (Figure la-b). The numerical model
consisted of a solid phase representing the grain matrix and a pore space. The model was cubic, with dimensions of 0.44 x
0.44 x 0.44m. The pore space comprised cracks, modeled as flat cylinders, connected to an internal cubic cavity, as illustrated
in Figure 1a-b. The material properties used in the simulations are listed in Table 1, while the geometrical characteristics of the

pore space are provided in Table 2.

Table 1. Material properties used in all simulations.

Material parameter | Solid grains | Fluid
Bulk modulus K 36 GPa 4.3 GPa
Shear modulus p 44 GPa — GPa
Shear viscosity 7 — Pa-s 1.414 Pa-s

Alkhimenkov (2023) applied a 3D finite-element method to resolve the conservation of linear momentum coupled with the
stress-strain relations for the solid phase and the quasi-static linearized compressible Navier-Stokes momentum equation for
the fluid phase. The resulting system of equations was solved using a direct PARDISO solver (Schenk and Girtner, 2004).

Alkhimenkov (2023) conducted a convergence study showing that, for finer resolution, the result of the numerical solution
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Table 2. Geometrical properties of the model.

Geometrical parameter Value

Flat cylinder (crack) radius, b (m) 0.2

Flat cylinder (crack) thickness, A (m) | 0.016

Crack aspect ratio, a« = h/(2b) 0.04

Side of internal cubic pore (m) 0.25

Volume of the pore space (m®) 0.01854
Total porosity ~ (0.2176465

converges towards the result obtained from the original Gassmann’s equation. Such a convergence analysis validates the
accuracy of Gassmann’s equation for a particular (but arbitrary) pore geometry. Furthermore, the pore geometry that was used
did not contain any special features (among all possible geometries) that were tailored to make it consistent with Gassmann’s
equations (Alkhimenkov, 2024). There are also other 3D numerical studies that consider different geometries of the pore space
and that are consistent with Gassmann’s equations (Alkhimenkov et al., 2020a, b; Alkhimenkov and Quintal, 2022a, b).

We here extend the results of Alkhimenkov (2023) for a denser finite element mesh (achieving 2,025,916 elements)) and
report the convergence study showing that, for finer resolution, the result of the numerical solution converges towards the result

obtained from the original Gassmann’s equation (Figure 1c-d).

10 Discussion
10.1 Physical interpretation of the present Extended Biot’s poroelastic framework

The derived Extended Biot’s poroelastic equations describe the coupled mechanical and fluid flow behavior of a fluid-saturated
porous medium under general conditions. Specifically, they account for the interaction between solid matrix deformation and
changes in pore fluid pressure. Classical Biot’s equations (Biot, 1962) and Gassmann’s equations (Gassmann, 1951) are special
cases of the presented theory. Gassmann’s equations provide a relation between the bulk moduli of the drained (or dry) and
undrained fluid-saturated rock, offering insight into how fluid properties and porosity influence the mechanical response of the

material.
10.2 Other derivations of Gassmann’s equations

Gassmann’s equations are directly related to the quasi-static formulation of poroelasticity developed by Biot (1941), and later
extended to dynamic settings by Biot (1956, 1962). While the conceptual foundation of elastodynamic poroelasticity—such
as the presence of the fast P-wave, slow P-wave and shear wave in fluid-saturated porous media—was introduced by Frenkel
(1944) (see also Pride and Garambois (2005)), rigorous derivations of the poroelastic parameters were provided subsequently
by Biot (1941); Biot and Willis (1957); Biot (1962).
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Figure 1. Panels (a)-(b) show sketch illustrating the model geometry. Panel (c) shows the numerical solution of K, the analytical solution
via Gassmann’s equations (47), and the analytical solution via equation (92) as a function of the numerical resolution. Panel (d) shows
the error magnitudes between (i) the numerically evaluated bulk modulus K, and the analytically evaluated bulk modulus via Gassmann’s

equations (47) and (ii) the numerically evaluated bulk modulus and the analytically evaluated bulk modulus via equation (92).
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Numerous researchers have rederived Gassmann’s equations using various approaches or examined specific aspects of these
equations within the poroelasticity framework (Brown and Korringa, 1975; Rice and Cleary, 1976; Korringa, 1981; Burridge
and Keller, 1981; Bourbié et al., 1987; Zimmerman, 1990; Berryman and Milton, 1991; Detournay and Cheng, 1993; Berryman,
1999; Smith et al., 2003; Lopatnikov and Cheng, 2004; Gurevich, 2007; Fortin and Guéguen, 2021). Some modifications of
small-strain poroelasticity to include non-reciprocal effects are given by Sahay (2013); Miiller and Sahay (2019). While the
full list of contributors to the field is extensive and beyond the scope of this paper, we acknowledge their foundational work.

We refer the reader to Sevostianov (2020), which presents a comprehensive overview of Gassmann’s equations. In addition,
several books may be useful for readers interested in poroelasticity and its applications, including: Bourbié et al. (1987),
Zimmerman (1990), Wang (2000), Ulm and Coussy (2003), Coussy (2004, 2011), Guéguen and Boutéca (2004), Dormieux
et al. (2006), Cheng (2016), and Mavko et al. (2020).

10.2.1 Thermodynamically admissible conditions for the diagonal structure of matrix H

The main assumptions behind the applicability of Gassmann’s equations (45)—(47) are: (i) linear elasticity, (ii) small strains, (iii)
an isotropic, homogeneous frame material and isotropic, homogeneous solid grains, (iv) an isotropic dry response (although
Gassmann’s original publication includes an extension to anisotropy), and (v) self-similarity hypothesis: the assumption
that equal changes in pore (fluid) pressure and confining (total) pressure leave the porosity unchanged (Korringa, 1981;
Alkhimenkov, 2024).

Assumption (v) may hold for isotropic homogeneous frame materials (Korringa, 1981), but it must be derived rigorously. In
the framework of the present study, this condition is satisfied when the compliance matrix H is diagonal, and it is required for
the thermodynamic admissibility of the model (see Appendix B). As stated there: “The constraint of zero dissipation (entropy
production) during reversible poroelastic deformation provides an essential constraint on the poroelastic constitutive equation

for porosity evolution.”

10.2.2  When the solid compressibilities coincide 3’FB = g//EB = g, = g/PC = g’DC = gBK — EEK)

Strictly speaking, the most general model should always use the full matrix H (equation (6)). However, in certain special
cases—such as isotropic and homogeneous rock frames—additional constraints may hold. Several researchers have pointed
out that for monomineralic, isotropic materials, the self-similarity hypothesis is valid, and therefore Gassmann’s equations
apply and are exact (Brown and Korringa, 1975; Korringa, 1981).

In general, various poroelastic constants can be computed numerically (Alkhimenkov, 2023), derived analytically using
effective medium theory (Yarushina and Podladchikov, 2015), or measured experimentally in laboratory settings (Makhnenko
and Podladchikov, 2018).

The distinction between the solid compressibilities lies in the structure of the matrix H, which depends on the particular

choice of rheological relationships. The definitions (Detournay and Cheng, 1993):

1 1
— /DC __ //DC _
/BS - - Bs - K‘gDC, /Bs - K‘g/DC (107)
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are only necessary when the rock microstructure allows the bulk frame, solid grains, and pore space to deform differently under
unjacketed loading (Makhnenko and Podladchikov, 2018) (K is the bulk modulus of solid grains). Note that the rheological
assumptions in the Brown—Korringa (BK) model differ from those in the Detournay—Cheng (DC) and the presented Extended

Biot formulations. As a result, the interpretation and estimation of the parameters in (107) differ between models.

— The poroelastic parameters (107) can be computed numerically with arbitrary precision. Numerical studies conducted
in 3D confirm that for isotropic (or cubic), monomineralic rock frames with isotropic grains and a fully interconnected

pore space, the three parameters in equation (107) are equal (Alkhimenkov, 2023, 2024).

— These parameters can also be measured experimentally in laboratory settings, enabling practical application. In many
practical situations, the differences between these parameters (107) are small, and one can safely adopt a single solid
modulus K. The condition 85 = ﬁ;DC = B;’DC typically holds when the rock has a monomineralic, isotropic, and
uniform skeleton; a fully interconnected pore network; and is subjected to pressures below the onset of micro-fracturing
or mineral phase transitions. Under such assumptions, the unjacketed compression test measures the intrinsic mineral
bulk modulus, and both the whole-specimen (K’P€) and pore-volume (K”P€) moduli may collapse (as suggested
by several studies) to K = 1//3;, reducing the DC model to the original Biot-Gassmann formulation. That is, under
unjacketed conditions, the entire solid surface is subjected to a uniform pressure increment Ap, and if the rock is
microscopically isotropic and homogeneous, both the solid grains and bulk framework undergo uniform volumetric
strain, resulting in no change in porosity (Tarokh and Makhnenko, 2019). Typical examples include dense quartz sands,

clean limestones below micro-crack initiation stress, and synthetic rock samples.

— Even for multi-mineral skeleton, the differences between these parameters (107) are small, which is shown in the 3D

numerical study by Alkhimenkov (2025) and in laboratory settings (Makhnenko and Podladchikov, 2018).

— Finally, these parameters can also be derived using effective medium theory. This is the most rigorous way to establish
under which conditions the three poroelastic parameters are equivalent. The application of effective medium theory is

outside the scope of the present study but remains an important direction for future work.

We note that when a rock frame consists of two or more minerals with different elastic properties (e.g., shales, poorly
consolidated sandstones, or cracked carbonates), the distinction B]]\BJK % égK in the BK framework is present. In such cases,
the assumptions underlying the self-similarity hypothesis break down, and Gassmann’s equations serve only as an (very good)
approximation within the framework of the Extended Biot formulation (Alkhimenkov, 2025).

To further assess the magnitude of the off-diagonal components of the matrix H, we perform a Taylor expansion of ﬁ(;EB =
BEB — B7EB (without imposing any assumption on mono- or multi-mineral composition of the frame):

1
Hio=
Y27 (1= ¢7)? ((BFB)2 4 BEB (¢ — 2)BFB + SEBBEB)

which demonstrates that the off-diagonal terms of H are small.

¥B1+0(83) (108)
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10.3 Comparison of Gassmann’s equations and Thomsen’s alternative formulation

Thomsen (2023b) argued that the original derivation of Gassmann’s equations contains a logical error — namely, an incorrect
application of Love’s theorem to hydraulically open and closed systems. In the present derivation, we rely on classical
irreversible thermodynamics and not rely on any assumptions regarding whether the porous material system is open or closed.

Thomsen (2023b) provided an updated version of these relations (see also Brown and Korringa (1975)):

(1- Kq(KB))?

K,=Ki+ — — )
GrK; (1= ) K71 — KJ5 /(K5f)?

(109)

where KPK is a new parameter referred to as the "mean" bulk modulus (Thomsen, 2023b). Note the similarity between
expressions (47) and (109). Thomsen’s relation introduces one additional parameter, K 2K, beyond the original Gassmann

equation (47). Thomsen (2023b) also provided ways to evaluate K K, including:

1 1 1 1 -1
BK __
58 = (e 7) | o

where BBX (Skempton coefficient) is directly observable in quasi-static experiments. Alternatively, expression (110) can be

rewritten as:

B (6K (1— ) (KP) ) = (1= Bo) (k51|

2BBK —1

Ky = (111)
Importantly, Thomsen’s formulation reduces to Gassmann’s when K 3K = K E’K.

Thomsen (2023b) argued that this additional parameter K}/ must be independently measured, even for mono-mineralic
rocks, and that equation (109) should be used instead of the original Gassmann relation (47). As follows from equation (111),
evaluating K EIK requires an independent measurement of the Skempton coefficient BBX. Thomsen (2023b) further noted that
the porosity ¢ is not constant under equal changes in fluid pressure p¢ and total pressure p, and argued that for mono-mineralic
rocks, KBK generally differs from K E’K. This implies a sensitivity of porosity variation—either increasing or decreasing —
depending on the sign of KPKX — K5¥.

We note the following:

— Gassmann explicitly stated the self-similarity hypothesis in his original manuscript (Gassmann, 1951). Therefore, claims

of a logical error (Thomsen, 2023b) in the derivation are unfounded.

— The claims made by Thomsen (2023b) are not supported by rigorous theoretical developments (e.g., exact solutions in

effective medium theory) that explicitly demonstrate that K 2K £ K EK for mono-mineralic rocks.

— Several 3D numerical studies confirm that the self-similarity hypothesis holds for homogeneous, isotropic (or cubic) dry
responses and isotropic solid grain materials. This has been verified numerically for both cubic and transversely isotropic

symmetries (Alkhimenkov et al., 2020a, b; Alkhimenkov and Quintal, 2022a, b; Alkhimenkov, 2023, 2024).

24



575

580

585

590

595

600

— A recent 3D numerical study of a heterogeneous frame material composed of two solids with different bulk and shear

moduli (Alkhimenkov, 2025) showed that the difference K ]]\3}( - K EK is below 0.11 GPa — practically insignificant.

— Laboratory experimentations show that even for multi-mineral skeleton, the differences between K }\3}{ and K E’K is small
(Makhnenko and Podladchikov, 2018).

— This all suggests that, in relatively homogeneous rock samples, the distinction between different solid grain moduli has

negligible practical impact.

— The mechanics of rocks includes additional important aspects such as nonlinearity in their mechanical response; differences
in mechanical properties under extension versus compression (which can differ by several percent); intrinsic anisotropy
of the solid grains; effective anisotropy of the rock sample; and irreversible damage under applied loads. All of these
factors contribute to a much more complex mechanical behavior of rocks. These additional constraints may have a

significantly greater impact on rock response than potential deviations from the self-similarity hypothesis.

Alkhimenkov (2023) conducted a numerical convergence study demonstrating that KX — K, (where K is the solid
bulk modulus) for monomineralic rock as the resolution increases. In this study, K5X was computed independently using
equation (111), with the Skempton coefficient BBX also calculated. Consequently, the result of expression (109) converges
to the original Gassmann relation (47) in the mono-mineralic, isotropic (or cubic symmetry) case where K EK = K, (within
numerical precision), thereby validating the original Gassmann formulation for a particular pore-space and solid material

geometry.
10.4 Limitations

Often, natural rocks are composed of multiple minerals that are anisotropic, and typically exhibit some degree of intrinsic
anisotropy. They may also contain a combination of compliant cracks (e.g., grain contacts) and stiff pores, which respond
differently under mechanical loading. Additionally, a rock’s heterogeneity can violate the assumptions of a representative
volume element. It is also well established that elastic moduli can vary by several percent under compression versus extension.
These deviations from ideal small-strain elasticity suggest the need for additional effective parameters, and thus more experimental

(or numerical) measurements, to accurately characterize fully saturated and realistic rock samples.

11 Conclusions

This study has presented a structured, transparent, and thermodynamically admissible derivation of the quasi-static Extended
Biot’s poroelasticity framework. The well-known classical Gassmann equations and Biot poroelastic formulation — fundamental
tools for characterizing the poroelastic mechanical behavior of fluid-saturated porous media—are derived here as special cases
of the general theory. While the thermodynamic admissibility of the original Biot equations has been previously demonstrated,

the present work extends this admissibility to a more general model using the framework of classical irreversible thermodynamics.
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We emphasize clarity, accessibility, and full reproducibility throughout the derivation. The main novelty of this study is the
development of the Extended Biot’s poroelasticity framework, which incorporates off-diagonal components of the Hessian
matrix. The relations between the new set of poroelastic parameters are fully expressed in terms of the components of the
Hessian matrix H.

By strictly adhering to conservation laws and thermodynamic principles, we have also addressed recent claims by Leon
Thomsen regarding the validity of Gassmann’s formulation. In particular, we have shown that the key self-similarity assumption
— that porosity remains unchanged under equal changes in fluid and total pressure — is a sufficient but not necessary condition
for the derivation of Gassmann-type relationship between undrained and drained bulk moduli. Indeed the Extended Gassmann
poroelastic equation (69) is derived in this contribution without relying on the Gassmann’s assumption of self-similarity.

To promote transparency and support future developments, we provide symbolic Maple routines. These materials ensure
full reproducibility of the derivations and offer a practical foundation for extending the framework to more complex scenarios,

such as multiphase fluid systems and related phenomena.

Code availability

The software developed and used in this study is licensed under the MIT License. The latest version of the symbolic Maple
routines is available from a permanent DOI repository (Zenodo) at: https://doi.org/10.5281/zenodo.15777522 (last accessed:
30 June 2025) (Alkhimenkov and Podladchikov, 2025). The repository contains code examples and can be readily used to

reproduce the results presented in the manuscript. The codes are written in the Maple programming language.
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620 Appendix A: Explanation of the Maple Script for a single phase media

The following Maple script provides a step-by-step derivation of the entropy production for a one-dimensional system using
the principles of Classical Irreversible Thermodynamics. It uses the volume-specific formulation for mass conservation and the
principles of local thermodynamic equilibrium (LTE) to establish the relationship between different thermodynamic fluxes and
forces. The script calculates the entropy production, @[s], and demonstrates the impact of various choices for flux definitions.

625 Below is a detailed explanation of each step in the script.

restart;
2 V := 1/rho:
dvdt := -diff (q[V] (x), x)/rho(x): # mass balance (using volume and not density)
630 4 dudt := -diff(gl[e] (x), x)/rho(x): # conservation of energy
5 dsdt := -diff(g[s] (x), x)/rho(x) + Q[s]/rho(x): # balance of entropy
6 LTE := dUdt = T(x)=*dsdt + P(x)xdvdt: # local thermodynamic equilibrium
7 Ql[s] = solve (LTE, Q[s]); # solving for entropy production
8
635 | o qlel(x) := T(x)*qls](x); # choice for energy flux
10 qlV] (x) = v: # Galileo's principle for volume flux
11 gls] (x) := —-lambda*diff (T (x), x): # Fourier's law for entropy flux
12 Q[s] := simplify(eval(Q[s])); # final expression for entropy production

Listing 1. Maple Script for Entropy Production

640 Below, we provide a detailed explanation of each line in the script.

Initialization and Mass Conservation

restart;

645 22V := 1/rho:

Here, V is defined as the specific volume, which is the inverse of density, p.

dvdt := -diff (q[V] (%), x)/rho(x):

650 This line represents the mass conservation equation using the volume-specific formulation. It calculates the time derivative of

the specific volume as the negative divergence of the volume flux g [V] (x) divided by the local density.

Conservation of Energy

655 dudt := -diff (g[e] (x), x)/rho(x):

This represents the conservation of energy, where dUdt is the time derivative of the specific internal energy, g[e] (x) is the
energy flux, and the equation states that the change in internal energy is equal to the negative divergence of the energy flux

divided by the density.

Entropy Balance
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695

1 dsdt := -diff(gq[s] (x), x)/rho(x) + Q[s]/rho(x):

This line represents the entropy balance. Here, dsdt is the time derivative of specific entropy, g[s] (x) is the entropy flux,
and Q[ s] is the entropy production rate per unit volume. This equation states that the change in entropy is equal to the negative

divergence of the entropy flux plus the entropy production term.

Local Thermodynamic Equilibrium (LTE)

1 LTE := dUdt = T (x)=*dsdt + P (x)=*dvdt:

This equation expresses the principle of local thermodynamic equilibrium (LTE). It relates the internal energy change dUdt to

the product of temperature T (x) and entropy change dsdt, plus the product of pressure P (x) and the volume change dvdt.

Solving for Entropy Production

Q[s] := solve(LTE, Q[s]);

The script solves the LTE equation for the entropy production term Q [s].

Choice for Energy Flux

ooglel(x) = T(x)xqls](x);

The energy flux g[e] (x) is chosen as the product of temperature T (x) and the entropy flux g [s] (x). This is a common

assumption based on the linear coupling between the energy and entropy fluxes.

Flux Definitions

g[V] (x) := v: # Galileo's principle for volume flux

gls] (x) := —-lambda*diff (T (x), x): # Fourier's law for entropy flux

The volume flux g [V] (x) is represented by velocity v following Galileo’s principle. The entropy flux g[s] (x) is defined
according to Fourier’s law, where it is proportional to the temperature gradient diff (T (x), x) with thermal conductivity

lambda.

Final Expression for Entropy Production

Q[s] := simplify(eval(Q[s]));

The final expression for entropy production Q [s] is simplified to:
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This result shows that the entropy production is non-negative and is proportional to the square of the temperature gradient,

divided by temperature, which is a classical result in non-equilibrium thermodynamics.

Appendix B: Explanation of the Maple Script for Two-Phase Fluid-Saturated Media
B1 General Representation of Classical Irreversible Thermodynamics

Porous materials can be modeled as two-phase systems composed of a solid skeleton and a saturating fluid. These phases
exchange mass, momentum, and energy, leading to complex coupled processes that are naturally described using the framework
of classical irreversible thermodynamics (CIT) (Gyarmati et al., 1970; Jou et al., 1996; Lebon et al., 2008; Yarushina and
Podladchikov, 2015). In this formulation, conservation equations for mass, momentum, entropy, and energy are expressed in

the Eulerian frame as follows:

9 s+ "
8(,08¢;vi) +V; (pgvivj + ) = Qu,, (B2)
% +V; (pdsv; +4f) = Qs (B3)
8(’;?6) +V, (pdev; +a2) = Qe 59

where v;, s, and e denote the velocity, specific entropy, and specific total energy per unit mass, respectively. The term p
denotes (phase-specific) density, ¢ the phase volume fraction (e.g., porosity for the fluid). The terms V; represents the partial
derivative with respect to spatial coordinates, while qg, qf,j s qﬁ, and qg correspond to the fluxes of mass, momentum, entropy,
and energy, respectively. The terms Q,, Qy,, s, and . represent the corresponding production rates due to irreversible

processes (Yarushina and Podladchikov, 2015).
B1.1 Entropy Production (T'Q;)

Solving the local entropy production equation for (s and multiplying both sides by the absolute temperature 7', we obtain:

¢ do°
i ar

B dv\> Ao [(dT\*? do
TQs=n¢ <dm> 7 <dx> +PU@*0QU*QpGGibbs+Qu+p (B5)
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This expression represents the entropy production, which must be non-negative according to the second law of thermodynamics.
Notably, this formulation assumes local thermodynamic equilibrium separately for the solid and fluid phases. This is a weaker
assumption than Biot’s original model (Biot, 1962), which postulated a single internal energy potential for the entire two-phase

system in the linear poroelastic regime (Yarushina and Podladchikov, 2015).
725 B2 Thermodynamic Constraints on Fluxes and Productions

CIT requires that the total entropy production of the system remains non-negative. This condition applies both to the intra-phase

and inter-phase entropy production within a porous medium. Mathematically, this is expressed as:

Z Qs — Z Qisntra + Qisnter > 0. (B6)

phases phases

Here, Q"™ represents the intra-phase entropy production within each phase (e.g., due to viscosity, heat conduction, or internal
730 diffusion), while Q™" represents the entropy production arising from inter-phase interactions (e.g., interactions between the

solid skeleton and the fluid phase). To satisfy CIT, each contribution must be non-negative:
antra Z O7 Qisnter Z 0 (B7)
B3 Extended Thermodynamic Admissibility

Building on the principles of Classical Irreversible Thermodynamics (CIT) (Lebon et al., 2008) and the nonlinear viscoelastoplastic
735 framework of Yarushina and Podladchikov (2015), the derivation of the extended Biot poroelastic equations must satisfy
the conditions of thermodynamic admissibility. Specifically, the entropy production (), must remain non-negative, and the
constitutive relations must be formulated such that they are consistent with the second law of thermodynamics for all admissible
thermodynamic paths.
From equation 37, and taking into account the requirement that entropy production must be non-negative, the inelastic
740 porosity equation takes the form (Yarushina and Podladchikov, 2015):

A

B3
dt dt N’ ®B8)

where 74 stands for the effective bulk viscosity. After simplifying and collecting terms (see Appendix B), the total entropy

production becomes:

2 2
1 Pe 2 (QD)277dv At (0T
TQstota=— | ——— V-v® —t — | = B9
Q Jtotal o ((1_¢f)> +77t( v ) + ¢f + T\ or (B9)
1 2

745 - — ((1]);)) : Entropy production due to poroviscous deformation (effective viscosity 74 and effective pressure

Mg —of

Pe =D —Df)-

- n (V- ’US)22 Entropy production due to viscous dissipation in the solid phase.
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_ (@”)?nav
Or

aT\>
(8) : Entropy production due to heat conduction (Fourier’s law).
X

The non-negative nature of each term ensures the overall positivity of entropy production, thereby confirming the

: Entropy production due to viscous dissipation in fluid flow (Darcy flow).

A
T

thermodynamic validity of the system of extended Biot’s poroviscoelastic equations.
A more detailed derivation is given below (see also the discussions provided by Yarushina and Podladchikov (2015)).
Additionally, symbolic Maple routines used to reproduce and validate the theoretical results presented in this article are

available in a permanent DOI repository (Zenodo) (Alkhimenkov and Podladchikov, 2024).
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