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Abstract. Gassmann’s equations have long served as a cornerstone of geophysics and rock physics, widely regarded as exact

within their domain of applicability. However, recent studies have questioned their validity, arguing that Gassmann’s derivation

involves a logical error and that an additional solid modulus is needed even for monomineralic materials. In this work,

we present a general derivation of the Extended Biot poroelasticity equations, grounded in conservation laws and classical

irreversible thermodynamics. We show that the formulations of Gassmann (1951), Brown and Korringa (1975), Detournay and5

Cheng (1993) and Rice and Cleary (1976) emerge as special cases of this unified framework. While previous studies have

analyzed the thermodynamic admissibility of standard Biot and Gassmann models, we extend this analysis to the more general

theory by explicitly incorporating the off-diagonal terms arising from the second partial derivatives (Hessian) of internal energy.

A key finding is that Gassmann’s self-similarity condition—that porosity remains unchanged under equal changes in fluid and

total pressure—is a sufficient but not necessary condition for the derivation of Gassmann-type relationship between undrained10

and drained bulk moduli. It holds if and only if the matrix of the second partial derivatives of internal energy is diagonal. When

the off-diagonal terms in this matrix are retained, a generalized form of Gassmann’s equations is required, which we derive.

To promote transparency and support further research, we provide symbolic Maple routines with thermodynamic consistency

checks, ensuring full reproducibility and accessibility.

1 Introduction15

Gassmann’s equations (Gassmann, 1951), developed several decades ago, are fundamental in geophysics for analyzing the

elastic properties of fluid-saturated porous media. These equations provide a means to predict seismic velocities and mechanical

behavior in such materials. However, despite their widespread use, recent studies have questioned the logical consistency of

Gassmann’s derivation, suggesting that it contains a logical error (Thomsen, 2023a, b, 2024, 2025). This has highlighted the

need for an extended, transparent and thermodynamically consistent framework to ensure reliability in geophysical modeling20

and interpretation.

This paper presents a structured, transparent, and fully reproducible derivation of the Extended Biot poroelastic equations,

with the formulations of Gassmann (1951), Detournay and Cheng (1993), Brown and Korringa (1975) and Rice and Cleary

(1976) emerging as special cases. Our approach is rooted in fundamental conservation laws and classical irreversible thermodynamics
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(CIT) (Lebon et al., 2008). While earlier works have demonstrated the thermodynamic admissibility of the standard Biot and25

Gassmann models (Coussy et al., 1998; Yarushina and Podladchikov, 2015), we extend this analysis to a broader class of

models by evaluating the full Hessian matrix (i.e., matrix of second partial derivatives) of internal energy.

We respond directly to the critiques presented in Thomsen (2023a, b, 2024, 2025), adopting the CIT formalism as described

in Lebon et al. (2008) and extended to poromechanics by Yarushina and Podladchikov (2015). We demonstrate the thermodynamic

admissibility of the Extended Biot equations by incorporating entropy production constraints and the internal-variable formalism30

of CIT. Internal consistency is verified through both theoretical analysis and numerical evaluation. In particular, we emphasize

the interplay between thermodynamic forces and fluxes, entropy production, and the admissibility of constitutive laws.

The paper is structured as follows: we begin by reviewing the foundational equations of classical irreversible thermodynamics,

highlighting the roles of thermodynamic forces and fluxes. We then derive the evolution equations for the Extended Biot

poroelastic system, followed by formulations of the Detournay–Cheng, Brown–Korringa, and Gassmann models. After we35

revisit Gassmann’s assumptions and delineate the specific conditions under which they remain valid. We also directly address

the critiques raised in Thomsen (2023a, b, 2024, 2025) regarding the validity of Gassmann’s equations.

To ensure full reproducibility, we provide symbolic Maple routines with detailed line-by-line commentary, enabling transparent

derivation and verification. This framework also supports future extensions, including multiphase flow and viscous deformation

mechanisms. All Maple scripts are available in a symbolic archive via a permanent DOI on Zenodo: https://doi.org/10.5281/40

zenodo.15777522 (last access: June 30, 2025) (Alkhimenkov and Podladchikov, 2025).

2 Scope of the Manuscript

One can distinguish between two related but distinct tasks in the formulation of coupled (poroelastic) theories: (i) identifying

the appropriate set of state variables that fully describe the coupled mechanical behavior, and (ii) deriving the material

parameters that link these variables. Task (i) is particularly challenging and has been addressed by numerous researchers;45

a comprehensive review is beyond the scope of this manuscript. In this work, we build on those earlier studies and assume

from the outset that the correct variables have been identified.

Task (ii), while relatively more straightforward, remains essential: various modifications of poroelastic theory have been

proposed, often based on simplifying assumptions that affect how material parameters are defined and interpreted. The main

novelty of this manuscript is the consideration of the full Hessian matrix of second derivatives of internal energy — including50

the off-diagonal terms (which are often neglected in classical formulations) — which enables us to derive a generalized set

of Gassmann-type relations. Furthermore, we demonstrate that under appropriate mappings between poroelastic coefficients,

several classical poroelastic theories can be viewed as equivalent.
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3 Derivation of the Extended Biot’s Poroelastic Equations

3.1 General Pattern of the Derivation55

To derive the Extended Biot poroelastic equations, one typically combines the following components:

– Conservation laws:

– Conservation of linear momentum for the total stress,

– Conservation of mass for the solid phase,

– Conservation of mass for the fluid phase,60

– Fluid dynamics:

– Darcy’s law for the Darcy flux qD (assuming low-Reynolds-number flow),

– Isothermal constitutive relations:

– A solid density-pressure constitutive law (equation of state),

– A fluid density-pressure constitutive law (equation of state),65

– A porosity constitutive law (e.g., pore compressibility),

– Stress-strain relation for the deviatoric components of the stress and strain tensors.

By expressing the solid and fluid densities, as well as the medium’s porosity, in terms of pressures and fluxes via these

constitutive laws, one obtains the Extended Biot poroelastic equations. Under additional simplifying assumptions, the formulation

reduces to the classical Biot poroelastic equations (Biot, 1962), the Brown and Korringa equations (Brown and Korringa,70

1975), Rice and Cleary (1976) equations and Gassmann’s equations (Gassmann, 1951) as limiting cases. In the case of Biot

poro-visco-elasticity, viscous effects are incorporated through the specific choice of the porosity evolution law (Yarushina and

Podladchikov, 2015), which can include time-dependent or rate-sensitive terms. To ensure thermodynamic consistency, these

constitutive relations are derived within the framework of classical irreversible thermodynamics, which we describe in the

following section.75

4 Thermodynamic admissibility of the extended Biot poroelasticity framework

4.1 Local Entropy Production

In the context of Classical Irreversible Thermodynamics (CIT) (Lebon et al., 2008), the hyposesis of local thermodynamic

equilibrium implies that energy is well defined as a single value function at each state of the system. Moreover, for a unit mass

of a solid skeleton, in agreement with the main assumption of CIT, the infinitesimal change in internal energy Us follows its80
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equilibrium relationship via the corresponding changes in entropy Ss per unit mass, density ρs, and the elastic part of porosity

ϕe
s (Yarushina and Podladchikov, 2015):

dUs = TdSs − psd(1/ρs)+
τsϕ

ρsϕs
dϕe

s, (1)

where: T is the absolute temperature, ps is the solid pressure conjugated to solid density change, τsϕ is the thermodynamic

variable (pressure) conjugated to porosity change (to be defined), and ϕe
s = ϕs is the solid volume fraction, superscript “e"85

represents reversible (elastic) change (ϕf = 1−ϕs, with ϕf being the medium’s porosity). τsϕ can be viewed as analogy to

pressure as conjugate variable to volume change. The individual terms in this energy balance are interpreted as:

– TdSs: Heat stored in internal energy Us.

– psd(1/ρs): Energy change due to compressibility of solid grains (volumetric Hooke’s Law).

–
τsϕ

ρsϕs
dϕe

s: Poroelastic effects: reversible part of the energy change due to the changes in porosity.90

Note, that τsϕ is not defined yet.

4.2 Entropy Production for Poroelastic Loading

In the context of poroelasticity, the most important outcome from Appendix B is an expression for entropy production, Qporo
s ,

associated with elastic (reversible) porosity change:

TQporo
s =

[
(ps − τsϕ)− pf

] dϕe
s

dt
, (2)95

where ps is the solid pressure and pf is the fluid pressure. Entropy production must be zero for reversible poroelastic deformation;

therefore (ps − τsϕ)− pf = 0 (!). This implies that (Yarushina and Podladchikov, 2015):

τsϕ = ps − pf (3)

We also notice that τsϕ = pe/(1−ϕf ), where pe = p̄− pf represents the effective pressure (total pressure is defined as p̄=

(1−ϕf )ps +ϕf pf ). For an explanation of the Maple script used in the derivation and analysis of entropy production in a100

single-phase medium, see Appendix A. Appendix B provides a similar explanation for the entropy production derivation in a

two-phase porous medium.

4.3 Internal energy of the solid frame

We begin with the internal energy of representative infinitesimal solid skeleton (frame) linked to material points (grains) of the

solid skeleton in a Lagrangian fashion, Us(Vs,ϕs), per unit mass. Here, Vs is the (Lagrangian) solid volume and ϕs = Vs/Vt105

is the solid volume fraction, Vt is the (Lagrangian) total volume. A first-order Taylor expansion about an equilibrium state

(V 0
s ,ϕ0

s ) yields:

Us(Vs,ϕs) = Us(V
0
s ,ϕ

0
s)+

∂Us

∂Vs
(V 0

s ,ϕ
0
s)∆Vs +

∂Us

∂ϕs
(V 0

s ,ϕ
0
s)∆ϕs + o(ϵ), (4)
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where ∆Vs = Vs −V 0
s and ∆ϕs = ϕs −ϕ0

s. The energy increment ∆Us is:

∆Us = Us(Vs,ϕs)−Us(V
0
s ,ϕ

0
s) =

∂Us

∂Vs
(V 0

s ,ϕ
0
s)∆Vs +

∂Us

∂ϕs
(V 0

s ,ϕ
0
s)∆ϕs. (5)110

The internal energy Us is a scalar potential defined on a smooth, convex state space, where the Hessian matrix is symmetric:


∂Us

∂Vs
(Vs,ϕs)

∂Us

∂ϕs
(Vs,ϕs)

=


∂Us

∂Vs
(V 0

s ,ϕ
0
s)

∂Us

∂ϕs
(V 0

s ,ϕ
0
s)

+H

∆Vs

∆ϕs

 , (6)

where H is the Hessian matrix of second derivatives of the internal energy with respect to Vs and ϕs:

H=


∂2Us

∂V 2
s

(V 0
s ,ϕ

0
s)

∂2Us

∂Vs∂ϕs
(V 0

s ,ϕ
0
s)

∂2Us

∂ϕs∂Vs
(V 0

s ,ϕ
0
s)

∂2Us

∂ϕ2
s

(V 0
s ,ϕ

0
s)

 . (7)115

The increment of the first derivatives of ∆Us are:∆
∂Us

∂Vs
(V 0

s ,ϕ
0
s)

∆
∂Us

∂ϕs
(V 0

s ,ϕ
0
s)

=H

∆Vs

∆ϕs

 . (8)

For isothermal processes and in agreement with CIT (equation (1)), ∆Us can be also expressed via mechanical variables only:

∆Us(Vs,ϕs) =−ps∆Vs + τsϕ
Vs

ϕs
∆ϕs ≡−ps∆Vs +(ps − pf )

Vs

ϕs
∆ϕs. (9)

By comparing equations (8) and (9), we identify:120

∆
∂Us

∂Vs
(V 0

s ,ϕ
0
s) =−∆ps, ∆

∂Us

∂ϕs
(V 0

s ,ϕ
0
s) =−∆(

Vs

ϕs
(pf − ps))≈

Vs

ϕs
∆(pf − ps). (10)

Therefore, the following linear system holds: −∆ps

−Vs

ϕs
∆(pf − ps)

=H

∆Vs

∆ϕs

 . (11)

We then use the following equation of state for the fluid for isothermal processes:

∆Vf

Vf
=−βf∆pf , (12)125

where βf is the fluid compressibility. Equations (11) and (12) are used by Yarushina and Podladchikov (2015) (assuming

simplified diagonal Hessian matrix H) as a constitutive closure relationships (their equations 6-8).
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5 Derivation of the original Gassmann and Biot equations

We here provide a derivation which is similar to the one proposed by Yarushina and Podladchikov (2015) in terms of underlying

constitutive closer relationships. Unlike Yarushina and Podladchikov (2015), we start from the Hessian matrix H and provide130

a detailed derivation, without skipping any intermediate steps

5.1 Derivation of the original Biot-Gassmann equations

We consider a simplified diagonal version of the full compliance matrix H (equation (11)): −∆ps

−Vs

ϕs
∆(pf − ps)

=

H11 0

0 H22

∆Vs

∆ϕs

 . (13)

We further use the following relation between density increments and solid volume change:135

∆ρs
ρs

=−∆Vs

Vs
, (14)

In addition, we use the following identity:

∆ϕs =−∆ϕf . (15)

Equation (13) can be now re-written as: −∆ps

− Vs

(1−ϕf )
∆(pf − ps)

=

H11 0

0 H22

Vs
∆ρs
ρs

−∆ϕf

 . (16)140

We solve (16) with respect to ∆ϕf/ϕf and ∆ρs/ρs. The resulting expressions are cumbersome and can be directly accessed

via the provided Maple scripts:

∆ϕf

ϕf
= f(H11,∆(pf − ps),ϕf ,∆ϕf ,Vs), (17)

∆ρs
ρs

= f(H22,∆(pf − ps),ϕf ,∆ϕf ,Vs). (18)

5.2 The incremental formulation145

The next step is to substitute the resulting equations for
∆ϕf

ϕf
and

∆ρs
ρs

into the mass conservation equations, which is explored

below. Now, we transition from differentials into the incremental formulation and use the following identity:

∆=
ds·
dt

, (19)

where we adopt material (Lagrangian) time derivatives. We use the following notation:
ds

dt
=

∂

∂t
+vsi∇i denotes the Lagrangian

(material) derivative with respect to solid and
df

dt
=

∂

∂t
+ vfi ∇i denotes the Lagrangian (material) derivative with respect to150
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fluid, where vfi and vsi are the fluid and solid velocities, respectively. The Einstein summation convention is used: summation

is applied over repeated indices.

We re-write equation (12) in a rate form:

dfpf
dt

=
dspf
dt

+
(
vfi − vsi

)
∇ipf . (20)

We adopt the following approximate relations, which are strictly valid under small strains:155

dfpf
dt

≈ dspf
dt

, (21)

dfϕf

dt
≈ dsϕf

dt
. (22)

Approximations (21)-(22) are implicitly assumed in Yarushina and Podladchikov (2015). For equation (21), this approximation

is valid when the relative velocity between fluid and solid phases is small, or when the fluid pressure gradient is negligible.

5.3 Conservation of mass in a rate form160

Conservation of mass for fluid phase in rate form is

∂(ϕfρf )

∂t
+∇j

(
ϕfρfv

f
j

)
= 0, (23)

and conservation of mass for the solid phase in rate form is:

∂((1−ϕf )ρs)

∂t
+∇j

(
(1−ϕf )ρsv

s
j

)
= 0. (24)

Equations (23)-(24) can be reformulated for divergences ∇jv
s
j and ∇jq

D
j :165

∇jv
s
j =− 1

ρs

dsρs

dt
+

1

1−ϕf

dsϕf

dt
, (25)

∇jq
D
j =−ϕf

ρf

dfρf

dt
− dfϕf

dt
−ϕf∇jv

s
j , (26)

where qDi = ϕf (v
f
i − vsi ) is the Darcy flux.

5.4 Relations between total, solid and fluid pressures

Note that the material derivatives of the total pressure, p̄, and the solid pressure, ps, are related via:170

dsp̄

dt
= (1−ϕ)

dsps
dt

+ϕ
dspf
dt

+
dsϕ

dt
(pf − ps), ⇒ dsps

dt
=

1

1−ϕf

(
dsp̄

dt
−ϕf

dspf
dt

− dsϕf

dt
(pf − ps)

)
(27)

Equation 27 for solid pressure ps can be simplified by neglecting the porosity derivative term:

dsps
dt

≈ 1

1−ϕf

(
dsp̄

dt
−ϕf

dspf
dt

)
. (28)
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5.5 Resulting equations of Biot-Gassmann theory

We then adopt the relation (28) and replace ps in favor of p̄. By simplifying equations (25)-(26), we can write the following175

relation∇kv
s
k

∇kq
D
k

=

a11 a12

a21 a22




dsp̄

dt
dspf
dt

 . (29)

We note that a12 = a21, which is explicitly derived rather than imposed (this fact is explored in more details for the case of the

full matrix H and is provided below). Let us define the following compressibilities:

βd =−a11, (30)180

which gives:

H1,1 =−H2,2

(ϕ2
f − 2ϕf +1)

Vs

(
ϕ3
fH2,2βd − 3ϕ2

fH2,2βd +3ϕfH2,2βd −H2,2βd +Vs

) . (31)

Then we introduce α as

α=
a12
βd

, (32)

which gives185

H2,2 =
Vs(

αϕ2
f +ϕ3

f − 2αϕf − 2ϕ2
f +α+ϕf

)
βd

. (33)

Finally, we introduce B as

B =−αβd

a22
≡ βd −βs

ϕf (βf −βs)+βd −βs
. (34)

By using the definitions (30)-(34), we can rewrite (29) in the following form:∇kv
s
k

∇kq
D
k

=−βd

 1 −α

−α
α

B




dsp̄

dt
dspf
dt

 , (35)190

which is the original Biot poroelastic equation (Biot, 1962), extended to an incremental large-strain formulation (Yarushina

and Podladchikov, 2015). Equation (35) reduces exactly to original Biot formulation (Biot, 1962) if we assume small strains.

We also note that the expression (32) for α can be written as

α= 1− βs

βd
. (36)
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5.6 Key observations195

To derive the original Biot–Gassmann poroelasticity relations, one should use the proposed rheological relationship (13) and

the two equalities (21) and (22). The relationship (13) implies the following identity:

dsϕe
f

dt

1
=−βϕ(1−ϕf )

dsτsϕ
dt

2
=−βϕ

dspe
dt

, (37)

where the poroelastic constant (compressibility) βϕ is defined that as linear rheological relationship during reversible poroelastic

part of deformation.200

Equality (1) in equation (37) is the primary assumption made by Biot (1962) and by Gassmann (1951) (also used by

Yarushina and Podladchikov (2015)). It postulates that equal changes in total and fluid pressure leave porosity unchanged. This

assumption is often referred to as the self-similarity hypothesis and is equivalent to assuming that the matrix of second-order

derivatives of internal energy, H, is diagonal (see equation (13)). Equality (2) in equation (37) results from the thermodynamic

admissibility condition of Yarushina and Podladchikov (2015), which leads to the relation τ sϕ = ps−pf = pe/(1−ϕf ), derived205

in section 4.2.

We can infer the expression for βϕ introduced in equation (37), which directly follows from equation (13) once we substitute

expressions for H1,1 and H2,2:

βϕ = βd(1−ϕf )−βs. (38)

The proposed rheological relationship (13) and the equalities (17) and (18) inserted into the mass conservation210

equations (25) and (26) fully define the original Biot–Gassmann poroelasticity framework (Gassmann, 1951; Biot, 1962).

As a consequence, the theory contains three exact constitutive laws: (i) the effective stress law (explored below), (ii) Gassmann

relation for the undrained bulk modulus Ku = 1/βu (βu is the undrained compressibility), and (iii) the relation between the

effective compressibility βϕ, the solid grains’ compressibility βs, and the drained (or dry) frame compressibility βd.

5.7 Effective stress law215

Nur and Byerlee (1971) provided an exact expression for the effective stress law, which is widely regarded as a fundamental

result in poroelasticity. It is defined by the following relation:

dpeff = dp̄−αdpf ≡ dp̄−
(
1− βs

βd

)
dpf , (39)

where the drained compressibility, βd, can be measured experimentally as:

1

βd
=− 1

∇kvsk

dpeff

dt

∣∣∣∣
undrained

. (40)220

The exact effective stress law given by equation (39) follows directly from the derived poroelastic expressions.
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5.8 Resulting equations of Biot-Gassmann theory for bulk moduli

To derive the original Biot poroelastic equations (Biot, 1962) in stiffness form, we invert the coefficient matrix in equation

(35): 1

Kd

 1 −α

−α
α

B



−1

=
Kd

1−αB

 1 B

B
B

α

 , (41)225

where Kd = 1/βd is the drained bulk modulus (i.e., βd is the drained compressibility). The resulting expression for stiffness

is:
dp̄

dt
dpf
dt

=−Ku

 1 B

B
B

α


∇kv

s
k

∇kq
D
k

 , (42)

where Ku =Kd(1−αB)−1. The poroelastic constants used in equation (42) are:

α= 1− Kd

Ks
, (43)230

B =
1/Kd − 1/Ks

1/Kd − 1/Ks +ϕ(1/Kf − 1/Ks)
, (44)

where the bulk moduli are defined as the reciprocals of the corresponding compliance parameters: βs = 1/Ks, and βf = 1/Kf .

5.8.1 Original Gassmann’s equations

The relation between the undrained bulk modulus Ku (see equation (42) under the constraint ∇kq
D
k = 0) and the drained bulk

modulus Kd is known as Gassmann’s equation (Gassmann, 1951):235

Ku =Kd (1−αB)
−1

. (45)

According to Gassmann’s theory, the shear modulus of a fluid-saturated rock Gu, is equal to the shear modulus of the dry

(drained) rock Gd:

Gu =Gd. (46)

The expression (45) is obtained by inverting the coefficient matrix in equation (35), leading to the stiffness form given in240

equation (42). An English translation of the original German-language article by Gassmann (1951) is provided in Pelissier

et al. (2007). Gassmann’s relation (45) can also be rewritten in terms of bulk modulus as:

Ku =Kd +
(1−Kd/Ks)

2

ϕfK
−1
f +(1−ϕf )K

−1
s −Kd/K2

s

. (47)
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5.8.2 Assumptions behind the derivation of original Gassmann’s equations

The following assumptions are made throughout the derivation of Biot’s poroelastic and Gassmann’s equations to ensure the245

validity of the results:

– The material is assumed to be linearly elastic, and the strains are small.

– The porous medium is considered homogeneous and isotropic and a fully interconnected pore network.

– The interactions between the solid and fluid phases are governed by linear constitutive laws, and the fluid flow obeys

Darcy’s law (or equivalently, the fluid is governed by the quasi-static Navier–Stokes equations for a compressible fluid).250

– The self-similarity hypothesis: that equal changes in pore (fluid) pressure and confining (total) pressure result in no

change in porosity ϕf . This is equivalent to assuming a diagonal compliance matrix H (see equation (6)).

– The derivation assumes a quasi-static process, such that inertial effects can be neglected.

These assumptions provide a simplified framework for the derivation and are thermodynamically admissible. One of the key

assumptions in the original derivation of Gassmann’s equations (Gassmann, 1951) is the self-similarity hypothesis — equal255

changes in total and fluid pressure leave porosity unchanged — explicitly stated in the original manuscript.

6 Derivation of the Extended Biot’s poroelasticity formulation: General case

6.1 Goal

Recall the structure of the original Biot–Gassmann formulation (35):∇kv
s
k

∇kq
D
k

=−βd

 1 −α

−α
α

B




dsp̄

dt
dspf
dt

 , (48)260

This relationship was originally derived under the assumption that the Hessian matrix H is diagonal. Here, we aim to extend

this result by retaining the full matrix H, including its off-diagonal terms, and derive an analogous relationship that preserves

the original structure and introduces generalized parameters. To this end, we follow the same steps as outlined in Section 5,

with the goal of obtaining Gassmann-type relationships for the Extended Biot poroelastic theory.

6.2 Derivation265

We now consider the full compliance matrix H (equation (6)): −∆ps

−Vs

ϕs
∆(pf − ps)

=

H11 H12

H21 H22

 ∆Vs

−∆ϕf

 . (49)
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Note that H12 =H21 due to the structure of the matrix H: the off-diagonal component H12 corresponds to the second mixed

partial derivative of internal energy, first with respect to Vs and then ϕf , and must be equal to H21, which is the derivative

taken in the opposite order. This symmetry holds because the internal energy is assumed to be a smooth (twice continuously270

differentiable) scalar function of its state variables. (This is also known as the symmetry of second derivatives). Then, we

follow a the same steps as in section 5 by using identities (14)-(15) and arrive to the following equations:

∆ϕf

ϕf
= f(H11,H12,∆ps,∆(pf − ps),ϕf ,∆ϕf ,Vs), (50)

∆ρs
ρs

= f(H22,H12,∆ps,∆(pf − ps),ϕf ,∆ϕf ,Vs), (51)

which are cumbersome and can be found in the Maple script. We then use identities (21)-(22). Following the steps provided275

in section 5, we substitute the resulting equations for
∆ϕf

ϕf
(equation (50)) and

∆ρs
ρs

(equation (51)), re-written in a rate form,

into the mass conservation equations (25)-(26).

6.3 Resulting equations of the Extended Biot poroelastic theory

We again adopt the relation (28) and express ps in terms of p̄. Substituting equations (50)–(51) into the mass conservation

equations (25)–(26) yields280 ∇kv
s
k

∇kq
D
k

=

aEB
11 aEB

12

aEB
21 aEB

22




dsp̄

dt
dspf
dt

 . (52)

We note that aEB
12 = aEB

21 , which is not imposed by symmetry but emerges naturally from the substitution of equation (49) into

the mass conservation equations (25)–(26). This symmetry is a direct consequence of the algebra.

Following the approach of Section 5, we now define the compressibilities. First, we define

βEB
d =−aEB

11 , (53)285

which gives:

βEB
d =− (−1+ϕf )

2H2,2 +Vs (VsH1,1 − 2H1,2(−1+ϕf ))

(−1+ϕf )3
(
H1,1H2,2 −H2

1,2

)
Vs

. (54)

Then we introduce αEB as

αEB =
aEB
12

βEB
d

≡
−Vsϕ

2
fH1,2 +ϕ3

fH2,2 +V 2
s H1,1 − 2ϕ2

fH2,2 +VsH1,2 +ϕfH2,2

(−1+ϕf )2H2,2 +(VsH1,1 − 2H1,2(−1+ϕf ))Vs
, (55)

which gives290

H2,2 =
Vs

(
αEBϕfH1,2β

EB
d −αEBH1,2β

EB
d −ϕfH1,2β

EB
d +H1,2β

EB
d +1

)
βEB
d

(
αEBϕ2

f −ϕ3
f − 2αEBϕf +2ϕ2

f +αEB −ϕf

) (56)
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Finally, we introduce BEB as

BEB =−αEBβEB
d

aEB
22

≡
(βEB

d −β′EB
s )

(
1+H1,2(1−ϕf )

2βEB
d

)
(1−ϕf )2

(
(βEB

d )2 +(ϕfβf − 2β′EB
s )βEB

d +(β′EB
s )2

)
H1,2 +βEB

d +(βf −β′EB
s )ϕf −β′EB

s

, (57)

where β′EB
s is defined by the following relation: αEB = 1− β′EB

s

βEB
d

. By using the definitions (53)-(57), we can rewrite (52) in

the following form:295 ∇kv
s
k

∇kq
D
k

=−βEB
d

 1 −αEB

−αEB αEB

BEB




dsp̄

dt
dspf
dt

 , (58)

which is the incremental form of the large strain Extended Biot poroelastic formulation. Note that we did not define a particular

expression for H1,2 which can be set arbitrarily via introduction of a new parameter β′′EB
s .

To derive the Extended Biot poroelasticity relations, we used only the proposed rheological relationship (49) and the two

equalities (21) and (22). The relationship (49) denotes the following identity:300

dsϕf

dt
=

(1−ϕf )
2β′EB

s H1,2

(
(1−ϕf )β

EB
d +β′EB

s

)
1+H1,2(1−ϕf )2βEB

d

dspf
dt

−
(
(1−ϕf )β

EB
d −β′EB

s

) ds(p̄− pf )

dt
(59)

where the poroelastic constant (compressibility) βEB
ϕ can be defined as a coeficient in front of effective pressure dspe =

ds(p̄− pf ):

βEB
ϕ = βEB

d (1−ϕf )−β′EB
s . (60)

Therefore, equation (59) can be written now as:305

dsϕf

dt
=

(1−ϕf )
2β′EB

s H1,2

(
(1−ϕf )β

EB
d +β′EB

s

)
1+H1,2(1−ϕf )2βEB

d

dspf
dt

−βEB
ϕ

dspe
dt

(61)

To further simplify the notation, we can introduce β′′EB
s and solve for H1,2 the following equation:

(1−ϕf )
2β′EB

s H1,2

(
(1−ϕf )β

EB
d +β′EB

s

)
1+H1,2(1−ϕf )2βEB

d

= β′EB
s −β′′EB

s , (62)

which gives

H1,2 =
β′EB
s −β′′EB

s

(1−ϕf )2
(
(β′EB

s )2 +βEB
d (ϕf − 2)β′EB

s +βEB
d β′′EB

s

) . (63)310

Substituting equation (63) in the expression for B (equation (57)) gives simplified relation:

BEB =
βEB
d −β′EB

s

(βf −β′EB
s )ϕf +βEB

d −β′′EB
s

. (64)

We also note that the expression (55) for αEB can be written as

αEB = 1− β′EB
s

βEB
d

. (65)

Furthermore, the equation (62) can now be re-written as315

dsϕf

dt
= (β′EB

s −β′′EB
s )

dspf
dt

−βEB
ϕ

dspe
dt

. (66)
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6.4 Relations between poroelastic parameters and H

We can write the relations between poroelastic parameters and H as follows:

β′EB
s =

(1−ϕf )H2,2 −VsH1,2

Vs

(
H1,1H2,2 −H2

1,2

)
(1−ϕf )

(67)

and320

β′′EB
s =

Vs(ϕf − 2)H1,2 +(1−ϕf )H2,2

Vs(H1,1H2,2 −H2
1,2)(1−ϕf )

. (68)

The relations between poroelastic parameters βEB
d (equation (54)), β′EB

s (equation (67)), β′′EB
s (equation (68)), αEB (equation

(55)), and BEB (equation (57), in which βEB
d and β′EB

s are substituted) are fully expressed in terms of the components of the

Hessian matrix H.

6.5 Gassmann-type relation325

The equations for the undrained compressibility in the framework of the Extended Biot poroelastic formulation is:

βEB
u = βEB

d

(
1−αEBBEB

)
, (69)

which has a structure similar to the original Gassmann equation (45).

7 Comparison against previous poroelasticity models

In this section, we assume small strains to enable a direct comparison with other classical poroelasticity models, which are330

typically formulated within the infinitesimal deformation framework.

7.1 Comparison against poroelasticity model of Detournay and Cheng (1993)

7.1.1 Rheology

Detournay and Cheng (1993) postulate linear rheological relationships that connect the volumetric response of the porous

medium to increments in fluid and effective pressures:335 
∆Vt

Vt
∆Vp

Vp

=−

β′DC
s βDC

d

β′′DC
s β′DC

p

dpf

dpe

 (70)

These expressions describe how the total volume Vt and pore volume Vp deform in response to changes in fluid pressure pf and

effective pressure pe = p̄− pf , where p̄ is the total pressure. The mechanical interpretation of the four compressibilities βDC
d ,

β′
p, β′DC

s , and β′′DC
s has been defined in Detournay and Cheng (1993). Note that by invoking the Betti-Maxwell reciprocal

theorem, Detournay and Cheng (1993) suggest that K ′
p =

ϕf

αDCβDC
d

, and β′DC
p = 1/K ′DC

p .340
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7.1.2 Geometry and kinematics

Detournay and Cheng (1993) use exact relations that connect the total, solid, and pore volumetric responses with porosity

changes. Assuming control volumes and using finite changes, the following identities hold:

∆Vt

Vt
=

∆Vs

Vs
+

ϕf

1−ϕf

∆ϕf

ϕf
, (71)

∆Vp

Vp
=

∆Vs

Vs
+

1

1−ϕf

∆ϕf

ϕf
. (72)345

7.1.3 Porosity evolution and solid-volume change

Combining the rheological relations (70) with the geometric identities (71)–(72) yields compact expressions for the porosity

variation and the solid-volume strain (Detournay and Cheng, 1993):

∆ϕf

ϕf
=−

(βDC
ϕ )

ϕf
dpe +(β′DC

s −β′′DC
s )dpf , (73)

ϕs
∆Vs

Vs
=−β′DC

s dpe −
(
β′DC
s −ϕf β

′′DC
s

)
dpf , (74)350

where (βDC
ϕ ) = βDC

d (1−ϕf )−β′DC
s .

The resulting representation of Detournay and Cheng (1993) is:∇kv
s
k

∇kq
D
k

=−βDC
d

 1 −αDC

−αDC αDC

BDC




dp̄

dt
dpf
dt

 (75)

The inverse form, expressing the time evolution of pressure fields in terms of mechanical and hydraulic divergence rates, reads:

355 
dp̄

dt
dpf
dt

=−KDC
u

 1 BDC

BDC BDC

αDC


∇kv

s
k

∇kq
D
k

 , (76)

The poroelastic constants used in equations (75)–(76) are (K ′
d = 1/βDC

d , K ′DC
s = 1/β′DC

s , K ′′DC
s = 1/β′′DC

s ):

αDC = 1− β′DC
s

βDC
d

, (77)

BDC =
βDC
d −β′DC

s

βDC
d −β′DC

s +(βf −β′′DC
s )ϕf

, (78)

βDC
u = βDC

d

(
1−αDCBDC

)
, (79)360

KDC
u =K ′

d

(
1−αDCBDC

)−1 ≡Kd +

(
1−K ′

d/K
′DC
s )2

ϕ
(
K−1

f − (K ′′DC
s )−1

)
+(K ′DC

s )−1 −K ′
d (K

′DC
s )−2

. (80)
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This expression has a similar structure to the original Gassmann equation (45). We emphasize that these expressions arise

naturally as a special case of the present Extended Biot poroelastic formulation, which is shown below. In particular, the

Detournay–Cheng model assumes small strains and constant poroelastic parameters, whereas in our framework — large strain

incremental formulation is adopted, thus, porosity evolution is present and the coupling coefficient BEB(ϕf ) vary with porosity.365

7.2 Comparison against the poroelasticity model of Brown and Korringa (1975) and Rice and Cleary (1976)

The poroelasticity formulation of Brown and Korringa (1975) can be rewritten using the notation introduced by Thomsen

(2025), in terms of the drained bulk modulus KBK
d = 1/βBK

d , the “mean" grain modulus KBK
M = 1/βBK

M and the overall

modulus of the heterogeneous solid constituent of the rock KBK
S = 1/βBK

S
.

∆Vt

Vt

∆Vp

Vp

=−

βBK
M βBK

d

βBK
ϕ β′BK

dpf

dpe

 (81)370

The drained compressibility is defined as (Brown and Korringa, 1975; Thomsen, 2025):

βBK
d =− 1

Vt

(
∂Vt

∂pe

)
pf

, (82)

where pe is the effective (or differential) pressure, pe = p̄− pf . The compressibility with respect to pore pressure at constant

total stress is (Brown and Korringa, 1975; Thomsen, 2025):

βBK
M =− 1

Vt

(
∂Vt

∂pf

)
pe

. (83)375

The undrained compressibility is (Brown and Korringa, 1975; Thomsen, 2025):

βBK
u =− 1

Vt

(
∂Vt

∂p̄

)
. (84)

Brown and Korringa (1975); Thomsen (2025) introduce the following compressibilities for the pore volume:

β′BK =− 1

Vt

(
∂Vp

∂pe

)
pf

, (85)

βBK
ϕ =− 1

Vp

(
∂Vp

∂pe

)
pf

, (86)380

βf =− 1

Vp

(
∂Vp

∂pf

)
pe

. (87)

Thus, the variation of pore volume can be written as (Brown and Korringa, 1975; Thomsen, 2025):

ϕfβfδpf = β′BK∆pe +βBK
ϕ ∆pf . (88)

Finally, the undrained compressibility can be written as:

βBK
u = βBK

d − (βBK
d −βBK

M )2

ϕf (βf −βBK
ϕ )+ (βBK

d −βBK
M )

. (89)385
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Thomsen (2025) used the following identity:

βBK
M = ϕfβ

BK
ϕ +(1−ϕf )β

BK

S
. (90)

Brown and Korringa (1975) also showed that β′BK = βBK
d −βBK

M . Finally, the resulting expression of Brown and Korringa

(1975) for the undrained compressibility βBK
u in the notation provided by Thomsen (2025):

βBK
u = βBK

d − (βBK
d −βBK

M )2

ϕf (βf −βBK

S
)+ (βBK

d −βBK

S
− 2βBK

M )
, (91)390

or, in terms of bulk moduli, which can be explicitly written as (KBK
u = 1/βBK

u , KBK
d = 1/βBK

d , KBK
S = 1/βBK

S
, KBK

M =

1/βBK
M , Kf = 1/βf ) (Thomsen, 2025):

KBK
u =K ′

d

(
1−αBKBBK

)−1 ≡KBK
d +

(1−KBK
d /KBK

M )2

ϕf

(
K−1

f − (KBK
S )−1

)
+(KBK

S )−1 −KBK
d /(KBK

M )2
, (92)

where

αBK = 1− βBK
M

βBK
d

(93)395

and BBK can be calculated from the equality (92).

7.3 Equivalence of the Brown–Korringa (BK) model and Detournay–Cheng (DC) model

The Detournay–Cheng (DC) model is fully equivalent to the Brown–Korringa model if a proper mapping between the poroelastic

parameters is established (i.e., K ′DC
s and K ′′DC

s to KBK
M and KBK

S ). Using the assignments:

KBK
M =K ′DC

s , KBK
S =

ϕsK
′DC
s K ′′DC

s

K ′DC
s −ϕf K ′DC

s

, (94)400

we find that the two models — the DC model and the Brown–Korringa model — are algebraically identical. When K ′DC
s =

K ′′DC
s , it immediately follows that KBK

M =KBK
S , and the two models reduce to the classical Biot–Gassmann formulation.

The algebraic equivalence between these formulations can be also established by the following exact relation:

1

K ′DC
s

−ϕf
1

K ′′DC
s

=
ϕs

KBK
S

. (95)

This analysis shows that the Brown–Korringa model is distinct from the Detournay–Cheng formulation in terms of the405

parameter definitions and the physical interpretation and experimental measurability of the poroelastic coefficients.

7.4 Equivalence of the present Extended Biot formulation and Detournay–Cheng (DC) model

Here we show that the present Extended Biot formulation contains the Detournay–Cheng (DC) model as a special case. Indeed,
if we set β′EB

s = β′DC
s , and choose

H1,2 =
ϕf

(
β′EB
s − β′′EB

s

)
ϕ3
fβ

EB
d β′′EB

s −ϕ2
fβ

EB
d β′EB

s − 2ϕ2
fβ

EB
d β′′EB

s +ϕ2
f (β

′EB
s )2 +2ϕfβEB

d β′EB
s +ϕfβEB

d β′′EB
s − 2ϕf (β′EB

s )2 − βEB
d β′EB

s +(β′EB
s )2

, (96)410

the present Extended Biot formulation will be exactly equivalent to the Detournay–Cheng (DC) model in the small strain

regime. We refer to the provided Maple script for more details.
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7.5 Equivalence of the present Extended Biot formulation and Brown–Korringa (BK) model

Here we show that the present Extended Biot formulation contains the Brown–Korringa (BK) model as a special case. Indeed,

if we set β′EB
s = βBK

M , use identity (94), and choose415

H1,2 =
βBK
M −βBK

S

ϕ2
fβ

EB
d βBK

S
− 2ϕfβEB

d βBK

S
+ϕf

(
βBK
M

)2
+βEB

d βBK

S
−
(
βBK
M

)2 , (97)

the present Extended Biot formulation will be exactly equivalent to the Brown–Korringa (BK) model in the small strain regime.

We refer to the provided Maple script for more details.

8 A closed system of equations of the extended Biot poroelastic framework

The conservation of linear momentum is given by:420

∇j(−p̄δij + τ̄ij)− giρ̄= 0, (98)

where τ̄ij is the deviatoric stress tensor, δij is the Kronecker delta, and i, j = 1,2,3. The total density is given by ρ̄= ϕsρ
s +

ϕfρ
f , where ρs and ρf are the solid and fluid densities, respectively. The vector gi denotes the components of gravitational

acceleration.

Viscous fluid flow through the porous medium is governed by Darcy’s law:425

qDi =− k

ηf
(∇ipf + giρ

f ), (99)

where k is the permeability of the medium, and ηf is the fluid shear viscosity

The matrix of coefficients in equation (58) can be inverted, yielding:
dsp̄

dt
dfpf
dt

=− 1

βEB
u (ϕf )

 1 BEB(ϕf )

BEB(ϕf )
BEB(ϕf )

αEB


∇kv

s
k

∇kq
D
k

 , (100)

where the abbreviated definition βEB
u = βEB

u (ϕf ) = βEB
d

(
1−αEBBEB

)
is used, and the parameters are functions of porosity430

ϕf , meaning that BEB =BEB(ϕf ).

Deviatoric stresses are related to solid velocity gradients through the following relationship:

1

Gu

d∇τ̄ij
dt

=
1

2
(∇jv

s
i +∇iv

s
j )−

1

3
(∇kv

s
k)δij , (101)

where Gu is the undrained shear modulus of the saturated porous medium (it is assumed that the dry or drained shear modulus

is equivalent to Gu, i.e., Gd =Gu), and435

d∇τ̄ij
dt

=
dsτ̄ij
dt

− τ̄ikωkj − τ̄jkωki (102)
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is the Jaumann objective stress rate. The tensor ωki =
1

2
(∇kv

s
i −∇iv

s
k) denotes the antisymmetric part of the solid velocity

gradient.

The poroelastic constants in expression (100) can be defined in terms of compliance parameters as:

αEB ≡ αEB = 1− β′EB
s

βEB
d

, (103)440

BEB ≡BEB(ϕf ) =
βEB
d −β′EB

s

(βf −β′EB
s )ϕf +βEB

d −β′′EB
s

. , (104)

βEB
u ≡ βEB

u (ϕf ) = βd

(
1−αEBBEB(ϕf )

)
, (105)

where βEB
d corresponds to the drained (or dry) compressibility and βEB

u denotes the undrained compressibility. Note that the

porosity ϕf evolves according to the evolution equation (66), which in turn affects the poroelastic parameter BEB =BEB(ϕf )

at each loading increment. Finally, we can use the Carman–Kozeny relationship to model permeability evolution as a function445

of porosity (where ϕ0 is the reference porosity of the medium and k0 is the reference permeability), given by:

k = k0

(
ϕf

ϕ0

)nk

, where, e.g., nk = 3. (106)

Equations (98)–(106) fully represent the quasi-static Extended Biot poroelasticity formulation.

9 Numerical studies supporting Gassmann’s equations for monomineralic frame

Alkhimenkov (2023) performed a numerical validation of Gassmann’s equations considering a 3D numerical setup and relatively450

complex pore geometry that included narrow regions (cracks) and large pore space (Figure 1a-b). The numerical model

consisted of a solid phase representing the grain matrix and a pore space. The model was cubic, with dimensions of 0.44×
0.44×0.44m. The pore space comprised cracks, modeled as flat cylinders, connected to an internal cubic cavity, as illustrated

in Figure 1a-b. The material properties used in the simulations are listed in Table 1, while the geometrical characteristics of the

pore space are provided in Table 2.455

Table 1. Material properties used in all simulations.

Material parameter Solid grains Fluid

Bulk modulus K 36 GPa 4.3 GPa

Shear modulus µ 44 GPa − GPa

Shear viscosity η − Pa·s 1.414 Pa·s

Alkhimenkov (2023) applied a 3D finite-element method to resolve the conservation of linear momentum coupled with the

stress-strain relations for the solid phase and the quasi-static linearized compressible Navier-Stokes momentum equation for

the fluid phase. The resulting system of equations was solved using a direct PARDISO solver (Schenk and Gärtner, 2004).

Alkhimenkov (2023) conducted a convergence study showing that, for finer resolution, the result of the numerical solution
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Table 2. Geometrical properties of the model.

Geometrical parameter Value

Flat cylinder (crack) radius, b (m) 0.2

Flat cylinder (crack) thickness, h (m) 0.016

Crack aspect ratio, α= h/(2b) 0.04

Side of internal cubic pore (m) 0.25

Volume of the pore space (m3) 0.01854

Total porosity ≈ 0.2176465

converges towards the result obtained from the original Gassmann’s equation. Such a convergence analysis validates the460

accuracy of Gassmann’s equation for a particular (but arbitrary) pore geometry. Furthermore, the pore geometry that was used

did not contain any special features (among all possible geometries) that were tailored to make it consistent with Gassmann’s

equations (Alkhimenkov, 2024). There are also other 3D numerical studies that consider different geometries of the pore space

and that are consistent with Gassmann’s equations (Alkhimenkov et al., 2020a, b; Alkhimenkov and Quintal, 2022a, b).

We here extend the results of Alkhimenkov (2023) for a denser finite element mesh (achieving 2,025,916 elements)) and465

report the convergence study showing that, for finer resolution, the result of the numerical solution converges towards the result

obtained from the original Gassmann’s equation (Figure 1c-d).

10 Discussion

10.1 Physical interpretation of the present Extended Biot’s poroelastic framework

The derived Extended Biot’s poroelastic equations describe the coupled mechanical and fluid flow behavior of a fluid-saturated470

porous medium under general conditions. Specifically, they account for the interaction between solid matrix deformation and

changes in pore fluid pressure. Classical Biot’s equations (Biot, 1962) and Gassmann’s equations (Gassmann, 1951) are special

cases of the presented theory. Gassmann’s equations provide a relation between the bulk moduli of the drained (or dry) and

undrained fluid-saturated rock, offering insight into how fluid properties and porosity influence the mechanical response of the

material.475

10.2 Other derivations of Gassmann’s equations

Gassmann’s equations are directly related to the quasi-static formulation of poroelasticity developed by Biot (1941), and later

extended to dynamic settings by Biot (1956, 1962). While the conceptual foundation of elastodynamic poroelasticity—such

as the presence of the fast P-wave, slow P-wave and shear wave in fluid-saturated porous media—was introduced by Frenkel

(1944) (see also Pride and Garambois (2005)), rigorous derivations of the poroelastic parameters were provided subsequently480

by Biot (1941); Biot and Willis (1957); Biot (1962).
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Figure 1. Panels (a)-(b) show sketch illustrating the model geometry. Panel (c) shows the numerical solution of Ku, the analytical solution

via Gassmann’s equations (47), and the analytical solution via equation (92) as a function of the numerical resolution. Panel (d) shows

the error magnitudes between (i) the numerically evaluated bulk modulus Ku and the analytically evaluated bulk modulus via Gassmann’s

equations (47) and (ii) the numerically evaluated bulk modulus and the analytically evaluated bulk modulus via equation (92).
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Numerous researchers have rederived Gassmann’s equations using various approaches or examined specific aspects of these

equations within the poroelasticity framework (Brown and Korringa, 1975; Rice and Cleary, 1976; Korringa, 1981; Burridge

and Keller, 1981; Bourbié et al., 1987; Zimmerman, 1990; Berryman and Milton, 1991; Detournay and Cheng, 1993; Berryman,

1999; Smith et al., 2003; Lopatnikov and Cheng, 2004; Gurevich, 2007; Fortin and Guéguen, 2021). Some modifications of485

small-strain poroelasticity to include non-reciprocal effects are given by Sahay (2013); Müller and Sahay (2019). While the

full list of contributors to the field is extensive and beyond the scope of this paper, we acknowledge their foundational work.

We refer the reader to Sevostianov (2020), which presents a comprehensive overview of Gassmann’s equations. In addition,

several books may be useful for readers interested in poroelasticity and its applications, including: Bourbié et al. (1987),

Zimmerman (1990), Wang (2000), Ulm and Coussy (2003), Coussy (2004, 2011), Guéguen and Boutéca (2004), Dormieux490

et al. (2006), Cheng (2016), and Mavko et al. (2020).

10.2.1 Thermodynamically admissible conditions for the diagonal structure of matrix H

The main assumptions behind the applicability of Gassmann’s equations (45)–(47) are: (i) linear elasticity, (ii) small strains, (iii)

an isotropic, homogeneous frame material and isotropic, homogeneous solid grains, (iv) an isotropic dry response (although

Gassmann’s original publication includes an extension to anisotropy), and (v) self-similarity hypothesis: the assumption495

that equal changes in pore (fluid) pressure and confining (total) pressure leave the porosity unchanged (Korringa, 1981;

Alkhimenkov, 2024).

Assumption (v) may hold for isotropic homogeneous frame materials (Korringa, 1981), but it must be derived rigorously. In

the framework of the present study, this condition is satisfied when the compliance matrix H is diagonal, and it is required for

the thermodynamic admissibility of the model (see Appendix B). As stated there: “The constraint of zero dissipation (entropy500

production) during reversible poroelastic deformation provides an essential constraint on the poroelastic constitutive equation

for porosity evolution.”

10.2.2 When the solid compressibilities coincide β′EB
s = β′′EB

s = βs = β′DC
s = β′′DC

s = βBK
M = βBK

S

)
Strictly speaking, the most general model should always use the full matrix H (equation (6)). However, in certain special

cases—such as isotropic and homogeneous rock frames—additional constraints may hold. Several researchers have pointed505

out that for monomineralic, isotropic materials, the self-similarity hypothesis is valid, and therefore Gassmann’s equations

apply and are exact (Brown and Korringa, 1975; Korringa, 1981).

In general, various poroelastic constants can be computed numerically (Alkhimenkov, 2023), derived analytically using

effective medium theory (Yarushina and Podladchikov, 2015), or measured experimentally in laboratory settings (Makhnenko

and Podladchikov, 2018).510

The distinction between the solid compressibilities lies in the structure of the matrix H, which depends on the particular

choice of rheological relationships. The definitions (Detournay and Cheng, 1993):

βs =
1

Ks
, β′DC

s =
1

K ′DC
s

, β′′DC
s =

1

K ′′DC
s

(107)
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are only necessary when the rock microstructure allows the bulk frame, solid grains, and pore space to deform differently under

unjacketed loading (Makhnenko and Podladchikov, 2018) (Ks is the bulk modulus of solid grains). Note that the rheological515

assumptions in the Brown–Korringa (BK) model differ from those in the Detournay–Cheng (DC) and the presented Extended

Biot formulations. As a result, the interpretation and estimation of the parameters in (107) differ between models.

– The poroelastic parameters (107) can be computed numerically with arbitrary precision. Numerical studies conducted

in 3D confirm that for isotropic (or cubic), monomineralic rock frames with isotropic grains and a fully interconnected

pore space, the three parameters in equation (107) are equal (Alkhimenkov, 2023, 2024).520

– These parameters can also be measured experimentally in laboratory settings, enabling practical application. In many

practical situations, the differences between these parameters (107) are small, and one can safely adopt a single solid

modulus Ks. The condition βs = β′DC
s = β′′DC

s typically holds when the rock has a monomineralic, isotropic, and

uniform skeleton; a fully interconnected pore network; and is subjected to pressures below the onset of micro-fracturing

or mineral phase transitions. Under such assumptions, the unjacketed compression test measures the intrinsic mineral525

bulk modulus, and both the whole-specimen (K ′DC
s ) and pore-volume (K ′′DC

s ) moduli may collapse (as suggested

by several studies) to Ks = 1/βs, reducing the DC model to the original Biot–Gassmann formulation. That is, under

unjacketed conditions, the entire solid surface is subjected to a uniform pressure increment ∆p, and if the rock is

microscopically isotropic and homogeneous, both the solid grains and bulk framework undergo uniform volumetric

strain, resulting in no change in porosity (Tarokh and Makhnenko, 2019). Typical examples include dense quartz sands,530

clean limestones below micro-crack initiation stress, and synthetic rock samples.

– Even for multi-mineral skeleton, the differences between these parameters (107) are small, which is shown in the 3D

numerical study by Alkhimenkov (2025) and in laboratory settings (Makhnenko and Podladchikov, 2018).

– Finally, these parameters can also be derived using effective medium theory. This is the most rigorous way to establish

under which conditions the three poroelastic parameters are equivalent. The application of effective medium theory is535

outside the scope of the present study but remains an important direction for future work.

We note that when a rock frame consists of two or more minerals with different elastic properties (e.g., shales, poorly

consolidated sandstones, or cracked carbonates), the distinction βBK
M ̸= βBK

S
in the BK framework is present. In such cases,

the assumptions underlying the self-similarity hypothesis break down, and Gassmann’s equations serve only as an (very good)

approximation within the framework of the Extended Biot formulation (Alkhimenkov, 2025).540

To further assess the magnitude of the off-diagonal components of the matrix H, we perform a Taylor expansion of βEB
δ =

β′EB
s −β′′EB

s (without imposing any assumption on mono- or multi-mineral composition of the frame):

H1,2 =
1

(1−ϕf )2
(
(β′EB

s )2 +βEB
d (ϕf − 2)β′EB

s +βEB
d β′EB

s

) βEB
δ +O

(
β2
δ

)
(108)

which demonstrates that the off-diagonal terms of H are small.
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10.3 Comparison of Gassmann’s equations and Thomsen’s alternative formulation545

Thomsen (2023b) argued that the original derivation of Gassmann’s equations contains a logical error — namely, an incorrect

application of Love’s theorem to hydraulically open and closed systems. In the present derivation, we rely on classical

irreversible thermodynamics and not rely on any assumptions regarding whether the porous material system is open or closed.

Thomsen (2023b) provided an updated version of these relations (see also Brown and Korringa (1975)):

Ku =Kd +

(
1−Kd (K

BK
M )−1

)2
ϕfK

−1
f +(1−ϕf )K

−1
s −KBK

d /(KBK
M )2

, (109)550

where KBK
M is a new parameter referred to as the "mean" bulk modulus (Thomsen, 2023b). Note the similarity between

expressions (47) and (109). Thomsen’s relation introduces one additional parameter, KBK
M , beyond the original Gassmann

equation (47). Thomsen (2023b) also provided ways to evaluate KBK
M , including:

KBK
M =

[
1

KBK
d

− 1

BBK

(
1

KBK
d

− 1

KBK
u

)]−1

, (110)

where BBK (Skempton coefficient) is directly observable in quasi-static experiments. Alternatively, expression (110) can be555

rewritten as:

KBK
M =

BBK
(
ϕfK

−1
f +(1−ϕf )(K

BK
s )−1

)
− (1−BBK)(KBK

d )−1

2BBK − 1

−1

. (111)

Importantly, Thomsen’s formulation reduces to Gassmann’s when KBK
M =KBK

S .

Thomsen (2023b) argued that this additional parameter KBK
M must be independently measured, even for mono-mineralic

rocks, and that equation (109) should be used instead of the original Gassmann relation (47). As follows from equation (111),560

evaluating KBK
M requires an independent measurement of the Skempton coefficient BBK. Thomsen (2023b) further noted that

the porosity ϕf is not constant under equal changes in fluid pressure pf and total pressure p̄, and argued that for mono-mineralic

rocks, KBK
M generally differs from KBK

S . This implies a sensitivity of porosity variation—either increasing or decreasing —

depending on the sign of KBK
M −KBK

S .

We note the following:565

– Gassmann explicitly stated the self-similarity hypothesis in his original manuscript (Gassmann, 1951). Therefore, claims

of a logical error (Thomsen, 2023b) in the derivation are unfounded.

– The claims made by Thomsen (2023b) are not supported by rigorous theoretical developments (e.g., exact solutions in

effective medium theory) that explicitly demonstrate that KBK
M ̸=KBK

S for mono-mineralic rocks.

– Several 3D numerical studies confirm that the self-similarity hypothesis holds for homogeneous, isotropic (or cubic) dry570

responses and isotropic solid grain materials. This has been verified numerically for both cubic and transversely isotropic

symmetries (Alkhimenkov et al., 2020a, b; Alkhimenkov and Quintal, 2022a, b; Alkhimenkov, 2023, 2024).
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– A recent 3D numerical study of a heterogeneous frame material composed of two solids with different bulk and shear

moduli (Alkhimenkov, 2025) showed that the difference KBK
M −KBK

S is below 0.11 GPa — practically insignificant.

– Laboratory experimentations show that even for multi-mineral skeleton, the differences between KBK
M and KBK

S is small575

(Makhnenko and Podladchikov, 2018).

– This all suggests that, in relatively homogeneous rock samples, the distinction between different solid grain moduli has

negligible practical impact.

– The mechanics of rocks includes additional important aspects such as nonlinearity in their mechanical response; differences

in mechanical properties under extension versus compression (which can differ by several percent); intrinsic anisotropy580

of the solid grains; effective anisotropy of the rock sample; and irreversible damage under applied loads. All of these

factors contribute to a much more complex mechanical behavior of rocks. These additional constraints may have a

significantly greater impact on rock response than potential deviations from the self-similarity hypothesis.

Alkhimenkov (2023) conducted a numerical convergence study demonstrating that KBK
M →Ks (where Ks is the solid

bulk modulus) for monomineralic rock as the resolution increases. In this study, KBK
M was computed independently using585

equation (111), with the Skempton coefficient BBK also calculated. Consequently, the result of expression (109) converges

to the original Gassmann relation (47) in the mono-mineralic, isotropic (or cubic symmetry) case where KBK
M ≡Ks (within

numerical precision), thereby validating the original Gassmann formulation for a particular pore-space and solid material

geometry.

10.4 Limitations590

Often, natural rocks are composed of multiple minerals that are anisotropic, and typically exhibit some degree of intrinsic

anisotropy. They may also contain a combination of compliant cracks (e.g., grain contacts) and stiff pores, which respond

differently under mechanical loading. Additionally, a rock’s heterogeneity can violate the assumptions of a representative

volume element. It is also well established that elastic moduli can vary by several percent under compression versus extension.

These deviations from ideal small-strain elasticity suggest the need for additional effective parameters, and thus more experimental595

(or numerical) measurements, to accurately characterize fully saturated and realistic rock samples.

11 Conclusions

This study has presented a structured, transparent, and thermodynamically admissible derivation of the quasi-static Extended

Biot’s poroelasticity framework. The well-known classical Gassmann equations and Biot poroelastic formulation — fundamental

tools for characterizing the poroelastic mechanical behavior of fluid-saturated porous media—are derived here as special cases600

of the general theory. While the thermodynamic admissibility of the original Biot equations has been previously demonstrated,

the present work extends this admissibility to a more general model using the framework of classical irreversible thermodynamics.
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We emphasize clarity, accessibility, and full reproducibility throughout the derivation. The main novelty of this study is the

development of the Extended Biot’s poroelasticity framework, which incorporates off-diagonal components of the Hessian

matrix. The relations between the new set of poroelastic parameters are fully expressed in terms of the components of the605

Hessian matrix H.

By strictly adhering to conservation laws and thermodynamic principles, we have also addressed recent claims by Leon

Thomsen regarding the validity of Gassmann’s formulation. In particular, we have shown that the key self-similarity assumption

— that porosity remains unchanged under equal changes in fluid and total pressure — is a sufficient but not necessary condition

for the derivation of Gassmann-type relationship between undrained and drained bulk moduli. Indeed the Extended Gassmann610

poroelastic equation (69) is derived in this contribution without relying on the Gassmann’s assumption of self-similarity.

To promote transparency and support future developments, we provide symbolic Maple routines. These materials ensure

full reproducibility of the derivations and offer a practical foundation for extending the framework to more complex scenarios,

such as multiphase fluid systems and related phenomena.

Code availability615

The software developed and used in this study is licensed under the MIT License. The latest version of the symbolic Maple

routines is available from a permanent DOI repository (Zenodo) at: https://doi.org/10.5281/zenodo.15777522 (last accessed:

30 June 2025) (Alkhimenkov and Podladchikov, 2025). The repository contains code examples and can be readily used to

reproduce the results presented in the manuscript. The codes are written in the Maple programming language.
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Appendix A: Explanation of the Maple Script for a single phase media620

The following Maple script provides a step-by-step derivation of the entropy production for a one-dimensional system using

the principles of Classical Irreversible Thermodynamics. It uses the volume-specific formulation for mass conservation and the

principles of local thermodynamic equilibrium (LTE) to establish the relationship between different thermodynamic fluxes and

forces. The script calculates the entropy production, Q[s], and demonstrates the impact of various choices for flux definitions.

Below is a detailed explanation of each step in the script.625

1: restart;

2: V := 1/rho:

3: dVdt := -diff(q[V](x), x)/rho(x): # mass balance (using volume and not density)

4: dUdt := -diff(q[e](x), x)/rho(x): # conservation of energy630
5: dsdt := -diff(q[s](x), x)/rho(x) + Q[s]/rho(x): # balance of entropy

6: LTE := dUdt = T(x)*dsdt + P(x)*dVdt: # local thermodynamic equilibrium

7: Q[s] := solve(LTE, Q[s]); # solving for entropy production

8:

9: q[e](x) := T(x)*q[s](x); # choice for energy flux635
10: q[V](x) := v: # Galileo's principle for volume flux

11: q[s](x) := -lambda*diff(T(x), x): # Fourier's law for entropy flux

12: Q[s] := simplify(eval(Q[s])); # final expression for entropy production

Listing 1. Maple Script for Entropy Production

Below, we provide a detailed explanation of each line in the script.640

Initialization and Mass Conservation

1: restart;

2: V := 1/rho:645

Here, V is defined as the specific volume, which is the inverse of density, ρ.

1: dVdt := -diff(q[V](x), x)/rho(x):

This line represents the mass conservation equation using the volume-specific formulation. It calculates the time derivative of650

the specific volume as the negative divergence of the volume flux q[V](x) divided by the local density.

Conservation of Energy

1: dUdt := -diff(q[e](x), x)/rho(x):655

This represents the conservation of energy, where dUdt is the time derivative of the specific internal energy, q[e](x) is the

energy flux, and the equation states that the change in internal energy is equal to the negative divergence of the energy flux

divided by the density.

Entropy Balance
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660
1: dsdt := -diff(q[s](x), x)/rho(x) + Q[s]/rho(x):

This line represents the entropy balance. Here, dsdt is the time derivative of specific entropy, q[s](x) is the entropy flux,

and Q[s] is the entropy production rate per unit volume. This equation states that the change in entropy is equal to the negative

divergence of the entropy flux plus the entropy production term.665

Local Thermodynamic Equilibrium (LTE)

1: LTE := dUdt = T(x)*dsdt + P(x)*dVdt:

This equation expresses the principle of local thermodynamic equilibrium (LTE). It relates the internal energy change dUdt to670

the product of temperature T(x) and entropy change dsdt, plus the product of pressure P(x) and the volume change dVdt.

Solving for Entropy Production

1: Q[s] := solve(LTE, Q[s]);675

The script solves the LTE equation for the entropy production term Q[s].

Choice for Energy Flux

1: q[e](x) := T(x)*q[s](x);680

The energy flux q[e](x) is chosen as the product of temperature T(x) and the entropy flux q[s](x). This is a common

assumption based on the linear coupling between the energy and entropy fluxes.

Flux Definitions

1: q[V](x) := v: # Galileo's principle for volume flux685
2: q[s](x) := -lambda*diff(T(x), x): # Fourier's law for entropy flux

The volume flux q[V](x) is represented by velocity v following Galileo’s principle. The entropy flux q[s](x) is defined

according to Fourier’s law, where it is proportional to the temperature gradient diff(T(x), x) with thermal conductivity

lambda.690

Final Expression for Entropy Production

1: Q[s] := simplify(eval(Q[s]));

The final expression for entropy production Q[s] is simplified to:695
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Q[s] =
λ

T (x)

(
dT (x)

dx

)2

, (A1)

This result shows that the entropy production is non-negative and is proportional to the square of the temperature gradient,

divided by temperature, which is a classical result in non-equilibrium thermodynamics.

Appendix B: Explanation of the Maple Script for Two-Phase Fluid-Saturated Media

B1 General Representation of Classical Irreversible Thermodynamics700

Porous materials can be modeled as two-phase systems composed of a solid skeleton and a saturating fluid. These phases

exchange mass, momentum, and energy, leading to complex coupled processes that are naturally described using the framework

of classical irreversible thermodynamics (CIT) (Gyarmati et al., 1970; Jou et al., 1996; Lebon et al., 2008; Yarushina and

Podladchikov, 2015). In this formulation, conservation equations for mass, momentum, entropy, and energy are expressed in

the Eulerian frame as follows:705

∂(ρϕ)

∂t
+∇j

(
ρϕvvvj + qjρ

)
=Qp, (B1)

∂(ρϕvvvi)

∂t
+∇j

(
ρϕvvvivvvj + qijvvv

)
=Qvi , (B2)

∂(ρϕsss)

∂t
+∇j

(
ρϕsssvvvj + qjsss

)
=Qs, (B3)710

∂(ρϕeee)

∂t
+∇j

(
ρϕeeevvvj + qjeee

)
=Qe, (B4)

where vvvj , sss, and eee denote the velocity, specific entropy, and specific total energy per unit mass, respectively. The term ρ

denotes (phase-specific) density, ϕ the phase volume fraction (e.g., porosity for the fluid). The terms ∇j represents the partial

derivative with respect to spatial coordinates, while qjρ, qijvvv , qjsss , and qjeee correspond to the fluxes of mass, momentum, entropy,715

and energy, respectively. The terms Qp, Qvi , Qs, and Qe represent the corresponding production rates due to irreversible

processes (Yarushina and Podladchikov, 2015).

B1.1 Entropy Production (TQs)

Solving the local entropy production equation for Qs and multiplying both sides by the absolute temperature T , we obtain:

TQs = ηϕ

(
dv

dx

)2

+
λϕ

T

(
dT

dx

)2

+ pv
dϕ

dx
− vQv −QρGGibbs +Qu + p

dϕ

dt
− τϕ

dϕe

dt
(B5)720
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This expression represents the entropy production, which must be non-negative according to the second law of thermodynamics.

Notably, this formulation assumes local thermodynamic equilibrium separately for the solid and fluid phases. This is a weaker

assumption than Biot’s original model (Biot, 1962), which postulated a single internal energy potential for the entire two-phase

system in the linear poroelastic regime (Yarushina and Podladchikov, 2015).

B2 Thermodynamic Constraints on Fluxes and Productions725

CIT requires that the total entropy production of the system remains non-negative. This condition applies both to the intra-phase

and inter-phase entropy production within a porous medium. Mathematically, this is expressed as:∑
phases

Qs =
∑

phases

Qintra
s +Qinter

s ≥ 0. (B6)

Here, Qintra
s represents the intra-phase entropy production within each phase (e.g., due to viscosity, heat conduction, or internal

diffusion), while Qinter
s represents the entropy production arising from inter-phase interactions (e.g., interactions between the730

solid skeleton and the fluid phase). To satisfy CIT, each contribution must be non-negative:

Qintra
s ≥ 0, Qinter

s ≥ 0. (B7)

B3 Extended Thermodynamic Admissibility

Building on the principles of Classical Irreversible Thermodynamics (CIT) (Lebon et al., 2008) and the nonlinear viscoelastoplastic

framework of Yarushina and Podladchikov (2015), the derivation of the extended Biot poroelastic equations must satisfy735

the conditions of thermodynamic admissibility. Specifically, the entropy production Qs must remain non-negative, and the

constitutive relations must be formulated such that they are consistent with the second law of thermodynamics for all admissible

thermodynamic paths.

From equation 37, and taking into account the requirement that entropy production must be non-negative, the inelastic

porosity equation takes the form (Yarushina and Podladchikov, 2015):740

dsϕf

dt
−

dsϕe
f

dt
=− pe

ηϕ
, (B8)

where ηϕ stands for the effective bulk viscosity. After simplifying and collecting terms (see Appendix B), the total entropy

production becomes:

TQs,total =
1

ηϕ

(
pe

(1−ϕf )

)2

+ ηt (∇· vs)2 + (qD)2ηdV

ϕf
+

λt

T

(
∂T

∂x

)2

(B9)

–
1

ηϕ

(
pe

(1−ϕf )

)2

: Entropy production due to poroviscous deformation (effective viscosity ηϕ and effective pressure745

pe = p̄− pf ).

– ηt (∇· vs)2: Entropy production due to viscous dissipation in the solid phase.
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–
(qD)2ηdV

ϕf
: Entropy production due to viscous dissipation in fluid flow (Darcy flow).

–
λt

T

(
∂T

∂x

)2

: Entropy production due to heat conduction (Fourier’s law).

The non-negative nature of each term ensures the overall positivity of entropy production, thereby confirming the750

thermodynamic validity of the system of extended Biot’s poroviscoelastic equations.

A more detailed derivation is given below (see also the discussions provided by Yarushina and Podladchikov (2015)).

Additionally, symbolic Maple routines used to reproduce and validate the theoretical results presented in this article are

available in a permanent DOI repository (Zenodo) (Alkhimenkov and Podladchikov, 2024).
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