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Abstract. Ga

exaetnessGassmann’s equations have long served as a cornerstone of geophysics and rock physics, widely regarded as exact
within their domain of applicability. However, 4 i i tvati i i el

eemewaﬁea&aw%ha%beeﬂ—ﬁm%mg—ffemhﬁﬁef&&me%ddmeﬂa}}yrecent studies have peinted-out-potentialogical-inconsisteneies

arquestioned their validit ing that Gassmann’s

WMWWMWM
for monomineralic materials. In this work, we present a_general derivation of the Extended Biot poroelasticity equations,
grounded in conservation laws and it i i i i i i i
irreversible thermodynamics. We show that the formulations of Gassmann (1951), Brown and Korringa (1975), Detournay.

and Cheng (1993) and Rice and Cleary (1976) emerge as special cases of this unified framework. While previous studies have
analyzed the thermodynamic admissibility of standard Biot and Gassmann models, we extend the-disecussionto-inclade Biot’s

classical

to the more general theory by explicitly incorporating the off-diagonal terms arising from the second partial derivatives

is that Gassmann’s self-similarity condition—that porosity remains unchanged

under equal changes in fluid and total pressure—is a sufficient but not necessary condition for the derivation of Gassmann-type
relationship between undrained and drained bulk moduli. It holds if and only if the matrix of the second partial derivatives of
internal energy is diagonal. When the off-diagonal terms in this matrix are retained, a generalized form of Gassmann’s-theery;

A—s_equations is required, which we derive.
To promote transparency and support further research, we provide symbolic Maple routines are-providedfor-the-derivations
presented-in-thisstudywith thermodynamic consistency checks, ensuring full reproducibility and accessibility.

1 Introduction
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Gassmann”Gassmann’s equations (Gassmann, 1951), developed several decades ago, stand-as—fundamental-expressions-are

fundamental in geophysics for analyzing the elastic properties of fluid-saturated porous media. These equations provide a

means to predict the-seismic velocities and mechanical behavior of-in such materials. However, despite their widespread

use, recent studies have highlighted-coneerns—regarding-questioned the logical consistency in-the-derivation-of-Gassmann’s
equationsof Gassmann’s derivation, suggesting that it contains a logical error (Thomsen, 2023a, b, 2024, 2025). This has

fe}&&eﬂHeﬂﬁufe&eﬁfehabﬁ&yﬂﬂd—&ppheabﬁwhl hlighted the need for an extended, transparent and thermodynamicall

consistent framework to ensure reliability in geophy51cal modeling and explefaﬂefrm
ThlS 9 1 a1mQ P Q A < A an - o P

equations;-which-strietly-adheresto-paper presents a structured, transparent, and fully reproducible derivation of the Extended
Biot poroelastic equations, with the formulations of Gassmann (1951), Detournay and Cheng (1993), Brown and Korringa
1975) and Rice and Cle 1976) emerging as special cases. Our approach is rooted in fundamental conservation laws and

consistent-with-the-seeond-law-of thermedynamiesthe standard Biot and Gassmann models (Coussy et al., 1998; Yarushina and Podladchikc

we extend this analysis to a broader class of models by evaluating the full Hessian matrix (i.e., matrix of second partial
derivatives) of internal energy.
‘We respond directly to the critiques presented in Thomsen (2023a, b, 2024, 2025), adopting the CIT formalism as described

in Lebon et al. (2008) and extended to poromechanics by Yarushina and Podladchikov (2015). We demonstrate the thermodynamic

admissibility of the derived-equations-and-validate-their-integrity-threugh-Extended Biot equations by incorporating entro

roduction constraints and the internal-variable formalism of CIT. Internal consistency is verified through both theoretical
analysis and numerical sim

articular, we emphasize the interplay between thermodynamic forces and fluxes, entro roduction, and the admissibility of

The paper is organized-structured as follows: First-essential-we begin by reviewing the foundational equations of classical
irreversible thermodynamlcs&eﬁ%md—emphaa%ﬂ%gmm%etweew @M%Whemodynamlc forces
and fluxes. Ne
the-target Biots-poroelastic-We then derive the evolution equations for the Extended Biot poroelastic system, followed by
formulations of the Detournay—Cheng, Brown-Korringa, and Gassmann models. After we revisit Gassmann’s assumptions and
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delineate the specific conditions under which they remain valid. We also directly address the critiques raised in Thomsen (2023a, b, 2024, 2(

equations.
To ensure full reproducibility, we provide symbolic Maple routines are-provided-to-verify-the presented-results—Theroutines

at-with detailed line-by-line commentary, enabling
transparent derivation and verification. This framework also supports future extensions, including multiphase flow and viscous
deformation mechanisms. All Maple scripts are available in a symbolic archive via a_permanent DOL on Zenodo: https:
//doi.org/10.5281/zenodo.15777522 (last access: Oetober—17,2024)(Alkhimenkov-andPodladehikov;-2024)June 30, 2025)

Alkhimenkov and Podladchikov, 2025).

2 Assumptions-and-Scope of the StudyManuscript

One can distinguish between two related but distinct tasks in the formulation of coupled (poroelastic) theories: (i) identifyin,
the appropriate set of state variables that fully describe the coupled mechanical behavior, and (ii) deriving the material
arameters that link these variables. Task (i) is particularly challenging and has been addressed by numerous researchers;

a comprehensive review is beyond the scope of this manuscript. In this work, we build on those earlier studies and assume

from the outset that the correct variables have been identified.

Task (i), while relatively more straightforward,
remains essential; various modifications of poroelastic theory have been proposed, often based on simplifying assumptions that
affect how material parameters are defined and interpreted. The main novelty of this manuscript is the consideration of the
full Hessian matrix of second derivatives of internal energy — including the off-diagonal terms (which are often neglected
in_classical formulations) — which enables us to derive a generalized set of Gassmann-type relations. Furthermore, we
demonstrate that under appropriate mappings between poroelastic coefficients, several classical poroelastic theories can be
viewed as equivalent.


https://doi.org/10.5281/zenodo.15777522
https://doi.org/10.5281/zenodo.15777522
https://doi.org/10.5281/zenodo.15777522

3 Derivation of Gassmann’the Extended Biot’s Poroelastic Equations

3.1 General Representation-Pattern of ClassiealHlrreversible Thermodynamiesthe Derivation
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110 combines the following components:
— Conservation laws:

— Conservation of linear momentum for the total stress,
— Conservation of mass for the solid phase,
— Conservation of mass for the fluid phase,

115 — Fluid dynamics:
— Darcy’s law for the Darcy flux g (assuming low-Reynolds-number flow)

— Isothermal constitutive relations:

— A solid density-pressure constitutive law (equation of state),
— A fluid density-pressure constitutive law (equation of state),
120 — A porosity constitutive law (e.g., pore compressibility),
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— Stress-strain relation for the deviatoric components of the stress and strain tensors.

By expressing the solid and fluid densities, as well as the medium’s porosity, in terms of pressures and fluxes via these
constitutive laws, one obtains the Extended Biot poroelastic equations. Under additional simplifying assumptions, the formulation
reduces to the classical Biot poroelastic equations (Biot, 1962), the Brown and Korringa equations (Brown and Korringa, 1975

Rice and Cleary (1976) equations and Gassmann’s equations (Gassmann, 1951) as limiting cases.

viscous effects are incorporated through the specific choice of the porosity evolution law (Yarushina and Podladchikov, 2015
which can include time-dependent or rate-sensitive terms. To ensure thermodynamic consistency, these constitutive relations
are derived within the framework of classical irreversible thermodynamics, which we describe in the following section.

In the case of Biot poro-visco-elasticity,

FLocal Entropy Produetion

4 Thermodynamic admissibility of the extended Biot poroelasticity framework

4.1 Local Entropy Production

Classical Irreversible Thermodynamics
CIT) (Lebon et al., 2008), the hyposesis of local thermodynamic equilibrium implies that energy is well defined as a single
value function at each state of the system. Moreover, for a unit mass of a solid skeleton, in agreement with the main assumption

of CIT, the infinitesimal change in %peerﬁc—mtefﬂal—eﬂefgy—&fer—eaelfpha%eﬂnéﬁmternal energy U, follows its equilibrium
relationship via the correspondmg changes in i

elastic part of porosity ¢¢ (Yarushina and Podladchikov, 2015):

au s (1/p) dv ac de° TS
Vs =T S, A1 pe) vy 1t g 40t

s, ey

where—5-1s-the-where: T is the absolute temperature, is the solid pressure conjugated to solid density change, 75 is the
thermodynamic variable (pressure) conjugated to porosity change (to be defined)—-, and ¢ = ¢, is the solid volume fraction

wen

represents reversible (elastic) change

superscript

are interpreted as:

d
- %dSTdS Heat stored in internal energy HUs.

2 7 QM Energy change due to velumetric-defermation{compressibility of solid grains (volumetric Hooke’s

Law)



155

160

165

170

175

dt

S

7o dO°, To 4

¢%: Poroelastic effects: reversible part of the energy change due to the changes in porosity.

T opo dt pay
Note, that ﬁb-is—ﬂe{—deﬁﬂed—yeﬁm

EntrepyPreduction (FQ5)

4.2 Entropy Production for Poroelastic Loadin

In the context of poroelasticity, the most important outcome from Appendix B is an expression for entro roduction, (QP°"°
associated with elastic (reversible) porosity change:

dps
TQY"™ = [(ps —73) — py] TR 2)

where p, is the solid pressure and p ¢ is the fluid pressure. Entro roduction must be zero for reversible poroelastic deformation;

). For an explanation of the

Maple script used in the derivation and analysis of entro roduction in a single-phase medium, see Appendix A. Appendix B
rovides a similar explanation for the entro roduction derivation in a two-phase system—in—the-linear-poroelastic—ease
Yarushina-and-Podladehikov;26145)-porous medium.

43 E ted-T} ! e Admissibili

4.3 Internal energy of the solid frame

S gaatio iy a Y O a
s

We begin with the internal energy of representative infinitesimal solid skeleton
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V. /V; is the solid volume fraction, V; is the (Lagrangian) total volume. A first-order

the (Lagrangian) solid volume and ¢ =

Taylor expansion about an equilibrium state (V.2, ¢9) yields:

U, U,

Us(Var6s) = UV, 02) + 77 (V2. 6D AVa £ 522 (V71 65) A+ 0(), “)
where AV, = V; = V2 and the eonstitutive-refati be-derive
thermodynamies-Ad, = @5 — ¢, The energy increment AU is:

AU, = Us(Va,6) ~Us(V2,60) = S0 (V0 60) AV, + gg (V0,6%) A, )

4.3.1 Thermodynamie-Constraints-onFluxes-andProduetions

The internal energy U, is a scalar potential defined on a smooth, convex state space, where the Hessian matrix is symmetric:
oU, oU,

s 0 40
aUz v = aUz V0 g0 + A ) (6)
%( sa¢s) 8¢s( E 7¢)5) s
where H is the Hessian matrix of second derivatives of the internal energy with respect to V and ¢:
9*Us 0 .0 0*Us 0 40
- av2 (VS ?d)s) a‘/vsaqss (VS' 7¢s)
H= 625’ 0 .0 aZU 0 .0 (7)
(V. (V.
a¢gavg< S7¢S) 8@5% ( S,QSS)
The increment of the first derivatives of AU, are:
oU
AW(V:SOv $9) AV,
A 8UZ . =H A . ()
a(bs (V K (ZSS) (z)s

For isothermal processes and in agreement with CIT (equation (1)), AU, can be also expressed via mechanical variables only:

Vs Vs
AUS(V€7¢3) = _psA‘/s + T(;SquAQbs = _psAVs + (ps _pf)dTAd)s- 9

By comparing equations (8) and (9), we identify:

oU, oU., V. V.
A—2(V9 %) = —Ap, A2V 9 = —A(=2(pr —ps)) ~ —=A(ps — ps). 10
aVs(swbs) Ps, ad)s(s,qbs) (¢s(pf Ps)) . (pf —ps) (10)
Therefore, the following linear system holds:
V. =H . (11)
_7A(pf _ps) Agbs

s
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We then use the following equation of state for the fluid for isothermal processes:
AV,
Vf :_5fAPfa (12)
f
where (3, is the fluid compressibility. Equations (11) and (12) are used by Yarushina and Podladchikov (2015) (assumin

simplified diagonal Hessian matrix H) as a constitutive closure relationships (their equations 6-8).

5 Derivation of the original Gassmann and Biot equations

We here provide a derivation which is similar to the one proposed by Yarushina and Podladchikov (2015) in terms of underlyin

constitutive closer relationships. Unlike Yarushina and Podladchikov (2015), we start from the Hessian matrix H and provide

a detailed derivation, without skipping any intermediate steps
5.1 Derivation of the original Biot-Gassmann equations

We consider a simplified diagonal version of the full compliance matrix H (equation (11)):

—Aps Hyq 0 AV,
= . (13)

Vs
—gA(pf—ps) 0 Hyl |Ads

We further use the following relation between density increments and solid volume change:
Aps AV

= 14
eV 4

In addition, we use the following identity:
A, = ZAd;. as)
Eguation (13) can be now re-written as:
—Ap; Hy 0 % Aps

V. = ° Ps | . (16)

We solve (16) with respect to A and A . The resulting expressions are cumbersome and can be directly accessed
via the provided Maple scripts:

Ag
5 A Ay =) 67, 801, Vo), a7

Aps
s (s, Mgy ) 61,501, 15) "
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5.2 The incremental formulation

. . . . . A Aps | ' . .
is-expressed-as:next step is to substitute the resulting equations for ﬂ and 2Ps into the mass conservation equations
f

S
which is explored below. Now, we transition from differentials into the incremental formulation and use the following identity:

S.

Z Qsé _ Z letra+Q21ter > 0. =

phases phases

19)

. . L. . . df 0
the Lagrangian (material) derivative with respect to solid and — = — +

v/ ¥, denotes the Lagrangian material) derivative

with respect to fluid, where v/ and v? are the fluid and solid velocities, respectively. The Einstein summation convention is
used: summation is applied over repeated indices.

E Produeti L ion-Meechan
We re-write equation (12) in a rate form:

dpr  dpy (5
dt dt *(”i ‘“i)vipf' (20)

We adopt the following approximate relations, which are strictly valid under small strains:

dpy ~ Tps

s @b
f s
oy b5 22)

St -t

dé doe de do*
TOPoT° — "7 _ _ o )
R A D (p at  at

phases

22) are implicitly assumed in Yarushina and Podladchikov (2015). For equation (21), this a

is valid when the relative velocity between fluid and solid phases is small, or when the fluid pressure gradient is negligible.
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5.3 Conservation of mass in a rate form

Conservation of mass for fluid phase in rate form is

0
2+ (oronf) =0 @

and conservation of mass for the solid phase in rate form is:

A((1—5)ps .
e (%) o= @

uations (23)-(24) can be

es!

reformulated for divergences V. v$ and V ;¢2:

_idsps 1 ds(bf
ps dt  1—¢y dt ’

(25)

Vg ==t ————~L — ¢,V (26)

2}-p, and the solid pressure, pg

are related via:

a’p d°ps
t

d°ps 1 d’p dspf dsqbf
—(1— — —
gt (

a Ta P T = T (pf_ps)> @7)

Equation 27 for solid pressure p, can be simplified by neglecting the porosity derivative term:
d°ps 1 d°p d°py
at "~ 1—¢y '

(28)

5.5 Resulting equations of Biot-Gassmann theor

in favor of p. B

We then adopt the relation (28) and replace

relation
d’p
Vkvz air a2 dp
= dst . (29)
by
\V4 D
k4, a21  A22 i

10



We note that a which is explicitly derived rather than imposed (this fact is explored in more details for the case of the

265 full matrix H and is provided below). Let us define the following compressibilities:

Ba=—an, (30)

(67 =295 +1)

Hy1=—-Hs> . 31
Vs <¢?H2,25d - 3¢?H2,25d +3¢rHs 284 — HopfBa+ Vs)
Then we introduce o as
a12
270 = — (32)
o Ba.
which gives.
Vs
Hy o= ; . 5 . (33)
(0% + 6% — 2005 —26% +a+ 65 fa
Finally, we introduce B as
o Pa =P . (34)
o 6B B H B B
275 By using the definitions (30)-(34), we can rewrite (29) in the following form:
d®p
) V,Ig’l)fC ) doe 1 —Q
TQrore = Z(pS—TI‘;)—(pf—T;:) (z & glt , (35)
\V4 D phusesi - —o g d Pf
i B dt

280 J-whichis the original Biot poroelastic equation (Biot, 1962), extended to an incremental large-strain formulation (Yarushina and Podladc

. Equation (35) reduces exactly to original Biot formulation (Biot, 1962) if we assume small strains. We also note that the
expression (32) for a can be written as

a:l—%. (36)

11
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5.6  Key observations

To derive the original Biot—Gassmann poroelasticity relations, one should use the proposed rheological relationshi

the two equalities (21) and (22). The relationship (13) implies the following identity:

ds¢e dsTs d°

f 1 ¢ 2 Pe
Y 31— 2

o P = e

(37

where the poroelastic constant (compressibility) 34 is defined that as linear rheological relationship during reversible poroelastic
part of deformation. _

Equality (1) in equation (37) is the primary assumption made by Biot (1962) and by Gassmann (1951) (also_used by
Yarushina and Podladchikov (2015)). It postulates that equal changes in total and fluid pressure leave porosity unchanged. This

derivatives of internal energy, H, is diagonal (see equation (13)). Equality (2) in equation (37) results from the thermodynamic

admissibility condition of Yarushina and Podladchikov (2015)

which leads to the relation 7 derived

2

in section 4.2.

We can infer the expression for 3, introduced in equation (37), which directly follows from equation (13) once we substitute
expressions for Hy 1 and Hy o:

do® drg — dp.
B = Ball ~¢y) = B (38)

rheological relationship (13) and the equalities (17) and (18) inserted into the mass conservation equations (25) and
26) fully define the original Biot—Gassmann poroelasticity framework (Gassmann, 1951; Biot, 1962). As a consequence
the theory contains three exact constitutive laws: (i) the effective stress law (explored below), (ii) Gassmann relation for

, and (iii) the relation between the effective

frame compressibility 3,.

5.7 Effective stress law

Nur and Byerlee (1971) provided an exact expression for the effective stress law, which is widely regarded as a fundamental
result in poroelasticity. It is defined by the following relation:

dpesr =dp —adpy =dp— (1—22) dpy, (39)

12
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where the drained compressibilit can be measured experimentally as:

L1 dpe
B4 Vivy dt

(40)

undrained

The exact effective stress law given by equation (39) follows directly from the derived poroelastic expressions.

5.8 Resulting equations of Biot-Gassmann theory for bulk moduli

To derive the original Biot poroelastic equations (Biot, 1962) in stiffness form, we invert the coefficient matrix in equation

G5y
—1
1 —«a 1 B
S _ _HKa , @41)
Kd e 1-aB B
o 3 o

. The resulting expression for stiffness

db
L 1 B[ Vi
ddt =K, 5 : (42)
P D
— B — Viq:
dt « ki
where K,, = K (1 — aB)~'. The poroelastic constants used in equation (42) are:
Ky
=1-2 43
Q ~TK (43)
1/K;—-1/K
/Ka /K (44)

where the bulk moduli are defined as the reciprocals of the corresponding compliance parameters: 5, =

5.8.1 Original Gassmann’s equations

The relation between the undrained bulk modulus K, (see equation (42) under the constraint Vg2 = 0) and the drained bulk
modulus K ; is known as Gassmann’s equation (Gassmann, 1951):

Ky = Ka(l—oB) " @)

According to Gassmann’s theory, the shear modulus of a fluid-saturated rock (G,,, is equal to the shear modulus of the dr
drained) rock G:

Gu=Ga. (46)

13
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. Gassmann’s relation (45) can also be rewritten in terms of bulk modulus as:

(1-Kq/K,)*
oK+ (1—¢p) K — Ko/ K2

K,=Kq+ (47)

5.8.2 Assumptions behind the derivation of original Gassmann’s equations

The following assumptions are made throughout the derivation of Biot’s poroelastic and Gassmann’s equations to ensure the
validity of the results:

— The material is assumed to be linearly elastic, and the strains are small.
— The porous medium is considered homogeneous and isotropic and a fully interconnected pore network.

— The interactions between the solid and fluid phases are governed by linear constitutive laws, and the fluid flow obeys

Darcy’s law (or equivalently, the fluid is governed by the quasi-static Navier—Stokes equations for a compressible fluid).

— The self-similarity hypothesis: that equal changes in pore (fluid) pressure and confining (total) pressure leave-the-poresity

.......... < "o Q1. A 1

b anged assun

Any-diserepaney-in-result in no change in porosit . This is equivalent to assuming a diagonal compliance matrix H
see equation (6)).

— The derivation assumes a quasi-static process, such that inertial effects can be neglected.

These assumptions provide a simplified framework for the derivation and are thermodynamically admissible. One of the ke

assumptions in the original derivation of Gassmann’s equations hypothesis — equal

Gassmann, 1951) is the self-similari

6 Derivation of the Extended Biot’s poroelasticity formulation: General case

6.1 Goal

14




365

370

375

380

385

Recall the structure of the original Biot—Gassmann formulation (35):

d*p
Vs 1 —a dtp

=B NIFEaE (48)
Viai, B dtf

This relationship was originally derived under the assumption that the Hessian matrix H is diagonal. Here, we aim to extend
this result by retaining the full matrix H, including its off-diagonal terms, and derive an analogous relationship that preserves
the original structure and introduces generalized parameters. To this end, we follow the same steps as outlined in Section 5

with the goal of obtaining Gassmann-type relationships for the Extended Biot poroelastic theory.

6.2 Derivation

We now consider the full compliance matrix H (equation (6)):

(¢ )2nay AT, Hyy Hip AV,
¢ T ox> Hy  Hao| |—Agy

(49)

Pe o 52
TQs ol = + vt +
= Len gy | G0

production-derivation-in-a-two-phase-perous-medivm—off-diagonal component H;5 corresponds to the second mixed partial

derivative of internal energy, first with respect to V,, and then and must be equal to Hyq, which is the derivative taken in the

opposite order. This symmetry holds because the internal energy is assumed to be a smooth (twice continuously differentiable

15
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scalar function of its state variables. (This is also known as the symmetry of second derivatives). Then, we follow a the same
steps as in section 5 by using identities (14)-(15) and arrive to the following equations:

Aoy
5 =S Hiz Ay ARy =), 65,801, V), (50)
Aps

00— f(Haa Hro. Aps: A(py — p2).07, 807 V), 1)
which are cumbersome and can be found in the Maple script. We then use identities (21)-(22). Following the steps provided

A Aps . . .
in section 5, we substitute the resulting equations for i equation (50)) and P equation (51)), re-written in a rate form
f Ps

into the mass conservation equations (25)-(26).

6.3 Resulting equations of the Extended Biot poroelastic theor

We again adopt the relation (28) and express p in terms of p. Substituting equations (50)—(51) into the mass conservation
equations (25)—(26) yields

d*p

Vi | (B ) [ .
D B EB _EB d°py '

Viq, azp” Qg ar

We note that a’2 = 58 which is not imposed by symmetry but emerges naturally from the substitution of equation (49) into
the mass conservation equations (25)—(26). This symmetry is a direct consequence of the algebra.

6.4 Two-phasemedia:fluid-saturated-perous-material
Following the approach of Section 5, we now define the compressibilities. First, we define
By = —aiy, (53)

pe _  (Z140y)?Hap+ Vi (ViH1a —2H12(—1+¢y))

_ : (54
d (=14¢)3 (H1,1H272—H1272)Vs
Then we introduce o*® as_
WFB afy — —Vs¢3Hi 2+ ¢4 Hoo +VIH 1 — 205 Ho o + Vi1 o+ ¢y Ha o 55)
which gives
Vi (aFBgpHy 2855 — oFBH, 5858 — ¢p Hy 2855 + Hy 2855 +1)
Hyo = (56)

B8 (a¥Bg? — 9 —2aFBg; +26% +aPP — g, )

16
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Finally, we introduce BFE as

gEn__aPAEE (85" = BEP) (L+ Hio(1 = 67)°8i") (57)
ayy  (L—¢p)2 ((BFB)2 4 (¢s8; — 2BF8B) BFE + (BIEB)2) Hy o + BYE + (B — BIEB) ¢y — BIEB’
e

EB s defined by the following relation: oFB = 1 . By using the definitions (53

(57), we can rewrite (52) in

the following form:

Vivs 1 —aFEB &p
k'l .EB dt 58
- ﬁd EB s ) ( )
D EB @ d*ps
Vid ¢ pEB dt

which is the incremental form of the large strain Extended Biot poroelastic formulation. Note that we did not define a particular
expression for Hy 5 which can be set arbitrarily via introduction of a new parameter 3/,
and-constitutive-equations—for-both-fluid-and-solid-phasesTo derive the Extended Biot poroelasticity relations, we used onl
the proposed rheological relationship (49) and the two equalities (21) and (22). The relationship (49) denotes the followin
identity:

dop _ (1= ¢5)? BP0 Hio (1= ¢5)85° + BEF) dopy

/ d*(p—
dt L+ Hio(1—¢y)%B5" dt (ORI A T ro) (9

dt

where the poroelastic constant (compressibility) 3B can be defined as a coeficient in front of effective pressure d*

Be” =P (1= 9g) — B, (©0)

Therefore, equation (59) can be written now as:

d*¢r  (L—¢y)*BP Hio (1= 65)B5" + B5°) dopy
da 1+ Hio(1—¢p)2B58 dt

d®pe
P (61)

To further simplify the notation, we can introduce 3”8 and solve for H; 5 the following equation:

(1—¢5)? BEP Hyo (1 —¢5)B5° + BFP)

— B/EB _ gUEB, 62
14+ Hyo(1—¢7)2B855 S ©2)
which gives.
/EB _ prEB

2GR B 6r — DB £ BDAEP).

17
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Substituting equation (63) in the expression for B (equation (57)) gives simplified relation:

EB EB
EB ﬁd _ﬁ./s

= (Bf _ ,B/EB)¢f +/B(I:?B o ﬂ//EB' (64)
S S
We also note that the expression (55) for oFB can be written as
/EB
WFB 1 BSEB . (65)
d
Furthermore, the equation (62) can now be re-written as
d*¢y BB BB\ A°Pf B d°Pe
— _ _ . 66
6.4 Relations between poroelastic parameters and H
We can write the relations between poroelastic parameters and H as follows:
BEB _ (1—¢p)Hoo—ViHi o ©
B Vs(Hl,le,z—Hiz) (1—-9y)
and
Vs —2)H 1-— H
BIER _ (¢r —2)Hio+ (1 —df)Ha ©68)

Vs(Hi1Hop — H7 5)(1—¢y)

The relations between poroelastic parameters S52 (equation (54)), 5EB (equation (67)), 8”FB (equation (68)), B (equation
55)), and BE® (equation (57), in which 5P and B8’FP are substituted) are fully expressed in terms of the components of the

6.4.1 Ceonservation-oflinearmoementum-and Darey’slaw

6.5 Gassmann-type relation

The econservation-of-linear-momentam-isequations for the undrained compressibility in the framework of the Extended Biot
oroelastic formulation is:

Vi) ~ iP5 = 095° (1 5, ©9)
wherep={1+—e¢}p—+ep7-which has a structure similar to the original Gassmann equation (45).

7 Comparison against previous poroelasticity models

In this section, we assume small strains to enable a direct comparison with other classical poroelasticity models, which are
typically formulated within the infinitesimal deformation framework.
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7.1 Comparison against poroelasticity model of Detournay and Cheng (1993
7.1.1  Rheology

Detournay and Cheng (1993) postulate linear rheological relationships that connect the volumetric response of the porous
medium to increments in fluid and effective pressures:

AV,
= /DC DC d

Vi _ ﬂs /Bd Pr (70)
AV, | — BIpC - BDC dpe

v, ’ !

These expressions describe how the total volume V; and pore volume V,, deform in response to changes in fluid pressure
and effective pressure p, = p — where p is the total pressure. The mechanical interpretation of the four compressibilities
M, ’Lj ." o . . . . . o S . Lo o . s ot ) e . " " s o 4

'DC and 8”PC has been defined in Detournay and Cheng (1993). Note that by invoking the Betti-Maxwell reciprocal theorem
o]

Detournay and Cheng (1993) suggest that K/ = ——— and 3/°°€ = 1/K'P°.
d

7.1.2 Geometry and kinematics

Detournay and Cheng (1993) use exact relations that connect the total, solid, and pore volumetric responses with porosit
changes. Assuming control volumes and using finite changes, the following identities hold:
AV, AV oy Agy

=" + ; 71
Moo Mo 1295 05 o

AV, AV, 1 Agy )

Vo Ve 140y

7.1.3 Conservation of mass

7.1.3 Porosity evolution and solid-volume change

~ omof for-fluid-phase

¢ps)
atf +V; (¢,0.fvf) =0,
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490

495

variation and the solid-volume strain (Detournay and Cheng, 1993):

A (BR9)

5= 6 dpe + (BP° — B/PC) dpy, (73)
AV,

The resulting representation of Detournay and Cheng (1993) is:

dn
Vs 1 —aPC o
_ _BDC dt (75)
- DC
Y __pc “« dpy
i @ pBpc dt

The inverse form, expressing the time evolution of pressure fields in terms of mechanical and hydraulic divergence rates, reads:

db
o 1 B¢ [ v
dt | — _gDC : (76)
dpi BDC‘ BDC \v4 D
dt abC ki
The poroelastic constants used in equations (75
/DC
DC__ ﬁs
a_ = 1- (?C 3 (77)
DC _ a/DC
530»: DC gé & DC ’ (78)
BT B B B ) 6
/61]/,30: ﬂ(lijc (1 o aDC BDC)7 (79)
B 1—- K’ K/DC 2
KPC= K/ (1—aP°BPC) ' = K, + ( a/K:) (80)

6 (K7' = (KIPO)™) 4 (KPO) ™ = Ky (KP9) 2

This expression has a similar structure to the original Gassmann equation (45). We emphasize that these expressions arise
naturally as a special case of the present Extended Biot poroelastic formulation, which is shown below. In particular, the

Detournay—Cheng model assumes small strains and constant poroelastic parameters, whereas in our framework — large strain
incremental formulation is adopted, thus, porosity evolution is present and the coupling coefficient BEE vary with porosity.
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7.2 Comparison against the poroelasticity model of Brown and Korringa (1975) and Rice and Cleary (1976

The poroelasticity formulation of Brown and Korringa (1975) can be rewritten using the notation introduced by Thomsen (2025)
in terms of the drained bulk modulus KPX = 1/8PK  the “mean” grain modulus K 2K = 1/88K and the overall modulus of

the heterogeneous solid constituent of the rock K 2% = 1 QBK.

AV,
v, pEE BEEN [dpy
s0 | 1 |=- 81)
e \pps 5] \ane
Vp

The drained compressibility is defined as (Brown and Korringa, 1975; Thomsen, 2025):

1 o,
Jrvjﬁ(]igK = _Vt (1- gb)/)s?)j apt iOIZ\fIW (82)

;]
505
1 <8Vf )
BK ¢
=== . (83)
Ny
The undrained compressibility is (Brown and Korringa, 1975; Thomsen, 2025):
1 /0V,
B =—+ (apt> : (84)
¢
Brown and Korringa (1975); Thomsen (2025) introduce the following compressibilities for the pore volume:
1 [0V,
510 B/BK:_V(a ,,) 7 (85)
t Pe Py
1 /0V,
Bor=—— ( ”) : (86)
< Vi \ Ope Py
1 /0V,
Br=—— (p) . 87)
JM

Thus, the variation of pore volume can be written as (Brown and Korringa, 1975; Thomsen, 2025):

Oy frdny =077 Ape + 55 Ay (8)
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515 Finally, the undrained compressibility can be written as:

jBBK — gBK _ (BE" = B)* (89)

op (B — BE) + (BF™ — By)
Thomsen (2025) used the following identity:

= 9008 + (1908 0

Brown and Korringa (1975) also showed that 3/BK = pgBK _ 3BK Finally, the resulting expression of Brown and Korringa (1975
520 for the undrained compressibility 52X in the notation provided by Thomsen (2025):

(8% — B3y

ViviBer =83 —+ , 1)
I S (B = B0T) + (B - B —26FF)
and-or, in terms of bulk moduli, which can be explicitly written as (K 2K = 1/8BK gBK BK gBK _ 1/8BK [BK BK

Kr=1 Thomsen, 2025):

(1 - 3"/ K3)?

B = 5 1 v gl ) < = ks o

o7 (K7 — %)) o (8) — KDY/ (32

525

P =1 M (93)

and BPX can be calculated from the equality (92).
7.3 Equivalence of the Brown-Korringa (BK) model and Detournay—Cheng (DC) model

530 The Detournay—Cheng (DC) model is fully equivalent to the Brown—Korringa model if a proper mapping between the poroelastic
arameters is established (i.e., K'P€ and K"'P€ to KBK and KE¥). Using the assienments:

BK _ DC BK __ ¢8K;DCK2/DC
Ky =K%, Kg ~ K/DC _ 4, K/DC’ O

we find that the two models — the DC model and the Brown—Korringa model — are algebraically identical. When K’P¢ = K//PC
it immediately follows that K BK = KBX and the two models reduce to the classical Biot—-Gassmann formulation.
535 The algebraic equivalence between these formulations can be also established by the following exact relation:

| 1 4
¢ = % 95)
W K3E
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560

7.3.1 Constitutive relations

This analysis shows that the Brown—Korringa model is distinct from the Detournay—Cheng formulation in terms of the
arameter definitions and the physical interpretation and experimental measurability of the poroelastic coefficients.

7.4 Equivalence of the present Extended Biot formulation and Detournay—Cheng (DC) model

Here we show that the present Extended Biot formulation contains the Detournay—Cheng (DC) model as a special case. Indeed
if we set /B = 3/PC and choose

s b (IB;EB - B;IEB)

, 96
HL2 = 3 57e0 — g2 pEB gD — 252 EDALED 4 g2 (BEP)? + 20, ATP BB 1 6, B0 BLE  — 26, (BP0 — BEPAEB 1 (Be O

K, d°ps 1 (d"‘ﬁ d’pr)

= —¢
ps dt 1—¢ dt dt

the present Extended Biot formulation will be exactly equivalent to the Detournay—Cheng (DC) model in the small strain
regime. We refer to the provided Maple script for more details.

7.5 Equivalence of the present Extended Biot formulation and Brown—Korringa (BK) model

Here we show that the present Extended Biot formulation contains the Brown—Korringa (BK) model as a special case. Indeed
if we set 5/FB = BBK, use identity (94), and choose

BK _ 4BK
Byt —Bg

,2

H =
BK BK 2 BK 27
LGP B T 200 B 01 (Ba) + BB~ (B

peresityevelution(Maxwel-viseoelastie- volumetrie respense)--the present Extended Biot formulation will be exactly equivalent
to the Brown—Korringa (BK) model in the small strain regime. We refer to the provided Maple script for more details.

8 A closed system of equations of the extended Biot poroelastic framework

The conservation of linear momentum is given by:

=4V, (ps = POy +715)—9iP=0, (98)

where /c5-is- the poroelastic constant defined by-equation-(37)-7; is the deviatoric stress tensor, 9; is the Kronecker delta, and

., 7 =1,2,3. The total density is given b p° + /., where p® and p/ are the solid and fluid densities, respectively. The

vector g; denotes the components of gravitational acceleration.
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Viscous fluid flow through the porous medium is governed by Darcy’s law:

k
a = —nff(Vipf +gip"), (99)

where £k is the permeability of the medium, and 7 is the fluid shear viscosit

The matrix of coefficients in equation (58) can be inverted, yielding:

a5p ,

a | _ 1 ! BE(@p) | [ Vevi (100)
dfpf 55B(¢f) BEB<¢> BEB(¢f) V,.aP -

dt f oEB Wi

where the abbreviated definition

meaning that BEB — BEB

Deviatoric stresses are related to solid velocity gradients through the
+following relationship:

1 dVT”
G, dt

is used, and the parameters are functions of porosit

1 1
= Q(Vjvf +Vivj) — g(Vka)&j, (101)

v7 —
d¥ 7 B dsle

where Gsgris-the-G,, is the undrained shear modulus of the

dt ‘ i
eorrespond-te-saturated porous medium (it is assumed that the dry or drained shear modulus is e ulvalent to Gy, le. G = G

and
dV’T” ds7_'7;j

g di — TikWkj — TjkWki (102)

» ) denotes the antisymmetric

. o 1
is the Jaumann objective stress rateaﬂd—wm%?%@f—v—m;z—}. The tensor wy; =
part of the solid velocity gradient. The-

The poroelastic constants in expression (100) can be defined in terms of compliance parameters as:

6/EB
o= =1-2 (103)
d
EB /EB
BEBE BEB — ﬁd _55 . 104
R (@r) (Bf — BEB) oy + B> — BUEB oy
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585 where 35B corresponds to the drained (or dry) compressibility and Y2 denotes the undrained compressibility. Note that the
0rosit evolves according to the evolution equation (66), which in turn affects the poroelastic parameter BEB = BEB

at each loading increment. Finally, we can use the Carman—Kozeny relationship forpermiability-to model permeability evolution
as a function of porosity is-

(b )nk
k= kO ( ’
o
590 wherenr—3—(where ¢ is the reference porosity of the medium and k is the reference permeabilit iven by:

Nk
k=ko <z£) ,  Wwhere, e.g., np = 3. (106)

81 Li Jastie limit{ ) Biot? lasti .

Equations (98)—(106) fully represent the quasi-static Extended Biot poroelasticity formulation.

9 Numerical studies supporting Gassmann’s equations for monomineralic frame

dp

Vkvz B 1 1 —Q 7
D 7Kd — g Pr
Vi “ B \a

o Wlo
1l
ol

600

1/Kq—1/K,

605 B =

1/Kd - I/KS + ¢(1/Kf B I/KS) .
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rAlkhimenkov (2023) performed a numerical validation of Gassmann’s
610  equations considering a 3D numerical setup and relatively complex pore geometry that included narrow regions (cracks) and
large pore space (Figure 1a-b). The numerical model consisted of a solid phase representing the grain matrix and a pore space.
The model was cubic, with dimensions of 0.44 x 0.44 x 0.44m. The pore space comprised cracks, modeled as flat cylinders,
connected to an internal cubic cavity, as illustrated in Figure 1a-b. The material properties used in the simulations are listed in

Table 1, while the geometrical characteristics of the pore space are provided in Table 2.

615 9.1 Gassmann’s-equations

Table 1. Material properties used in all simulations.

Material parameter | Solid grains | Fluid
Bulk modulus K | 36 GPa 43GPa_
Shearmodulus | 44 GPa = GPa_
Shearviscosityn, | —Pas 1414 Pas

Table 2. Geometrical properties of the model.

Geometrical parameter Value

Flat cylinder (crack) thickness, i (m) | 0.016

Crack aspect ratio, @ = h/(20) 0.04.
Volume of the pore space (m?)_ 0.01854
Total porosity 02176465

Alkhimenkov (2023) applied a 3D finite-element method to resolve the conservation of linear momentum coupled with the
stress-strain relations for the solid phase and the quasi-static linearized compressible Navier-Stokes momentum equation for
620 the fluid phase. The resulting system of equations was solved using a direct PARDISO solver (Schenk and Girtner, 2004).

Alkhimenkov (2023) conducted a convergence study showing that, for finer resolution, the result of the numerical solution
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630

635

640

645

converges towards the result obtained from the original Gassmann’s equation{Gassmann;, 1951

K,=Kys(1-aB)™".

Aeeordingte-. Such a convergence analysis validates the accuracy of Gassmann’s equations;-shear-medulus-of-a-fluid-saturated

for a particular (but arbitrary) pore geometry. Furthermore, the pore geometry that was used did not contain any special features
(among all possible geometries) that were tailored to make it consistent with Gassmann’s equations (Alkhimenkoy, 2024).
There are also other 3D numerical studies that consider different geometries of the pore space and that are consistent with
Gassmann’s equations (Alkhimenkoy et al., 2020a, b; Alkhimenkov and Quintal, 2022a, b).

where A\ can-be measured-as-
1 dpest
Ka=—g = ur
kU " lundrained

7)We here extend the
results of Alkhimenkov (2023) for a denser finite element mesh (achieving 2,025,916 elements)) and report the convergence

study showing that, for finer resolution, the result of the numerical solution converges towards the result obtained from the
original Gassmann’s equation (Figure 1¢-d).

10 Discussion

10.1 Physical Interpretation-interpretation of the Derived-EquationsThe-derived-present Extended Biot’s poroelastic

framework

The derived Extended Biot’s poroelastic equations describe the coupled mechanical and fluid flow behavior of a fluid-saturated

porous medium under general conditions. Specifically, they account for the interaction between the-solid matrix deformation
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a) Full model b) Pore space
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Figure 1. Panels (a)-(b) show sketch illustrating the model geometry. Panel (c) shows the numerical solution of K,,, the analytical solution
via Gassmann’s equations (47), and the analytical solution via equation (92) as a function of the numerical resolution. Panel (d) shows
the error magnitudes between (i) the numerically evaluated bulk modulus K, and the analytically evaluated bulk modulus via Gassmann’s

equations (47) and (ii) the numerically evaluated bulk modulus and the analytically evaluated bulk modulus via equation (92).
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650 deformation-of-the-porous-meditm—
. Classical Biot’s equations (Biot, 1962) and Gassmann’s equations (Gassmann, 1951) are special cases of the presented

theory. Gassmann’s equations provide a relation between the bulk moduli of the dry-and-drained (or dry) and undrained fluid-
saturated rock, offering insights-insight into how fluid properties and porosity a#eeﬁh&sammpggp@v

response of the material.

655

10.2 Derivation-Other derivations of Gassmann’s equationsand-relation-to-poroelastieity

Gassmann’s equations are directly related to the quasi-static (Biot1941)-and-dynamic-poroelasticity-(Biot 1956, 196 2)formulation
of poroelasticity developed by Biot (1941), and later extended to dynamic settings by Biot (1956, 1962). While the reots-of

the-elastodynamic-poroelastieity(e-g--conceptual foundation of elastodynamic poroelasticity—such as the presence of the fast
660 P-wave, slow P-wave and shear wave in fluid-saturated porous medla}—wefe—pfewdedTNW by Frenkel (1944) (see

also Pride and Garambois (2005)), a
tater-rigorous derivations of the poroelastic parameters were provided subsequently by Biot (1941); Biot and Willis (1957);
Biot (1962). Many-researchers-havefully-

Numerous researchers have rederived Gassmann’s equatlons fewﬂgeﬁd#ﬂeﬂﬂmmed&(ere*p}efﬁkwm

665 or examined specific aspects of Gassmans

—~Ofeourserathese equations within the poroelasticity framework (Brown and Korringa, 1975; Rice and Cleary, 1976; Korringa, 1981; Bur
2013); Miiller and Sahay (2019

. Some modifications of small-strain poroelasticity to include non-reciprocal effects are given by Saha
. While the full list of sei

beyond the scope of this paper, we acknowledge their
670 an-exhaustive-list-An-interested-reader-isreferred-foundational work.

We refer the reader to Sevostianov (2020), which prevides-an-extensive-review—of-Gassmann’presents a comprehensive
overview of Gassmann’s equations. There-are-several-books-that-also-might-be-useful-e-g-In addition, several books may be

useful for readers interested in poroelasticity and its applications, including: Bourbié et al. (1987), Zimmerman (1990), Wang
(2000), Ulm and Coussy (2003), Coussy (2004, 2011), Guéguen and Boutéca (2004), Dormieux et al. (2006), Cheng (2016),

675 and Mavko et al. (2020).

contributors to the field is extensive and

10.2.1 Thermodynamically admissible conditions for the diagonal structure of matrix H

The main assumptions behind the applicability of Gassmann’s equations (22)-(46)-(45)—(47) are: (i) Linear-elastieity;linear

elasticity, (ii) Smattstrains;small strains, (iif) fsotropie-an isotropic, homogeneous frame material ;and isotropic, homogeneous
solid grains, (iv) Isetrepie-an isotropic dry response (rete-that-although Gassmann’s original publication eentains-includes an
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680 extension to anisotropy);-, and (v) Assumption-self-similarity hypothesis: the assumption that equal changes in pore (fluid)
pressure and confining (total) pressure leave the porosity unchanged (Korringa, 1981; Alkhimenkov, 2024).

Assumption (v) hetds-may hold for isotropic homogeneous frame matertal-lerringa;+98Hmaterials (Korringa, 1981), but
it must be derived rigorously. In the framework of the present study, this condition is satisfied and-when the compliance matrix

H is diagonal, and it is required for thermodynamic-admissibility-(see-expressions<(2? and-the-explanation-therein):"The
685 eonstraint-of zero-dissipation—(en i

the thermodynamic admissibility of the model (see Appendix B). As stated there: “The constraint of zero dissipation (entro,

roduction) during reversible poroelastic deformation provides an essential constraint on the poroelastic constitutive equation
690 for porosity evolution.”

10.3

10.2.1

trictly speaking, the most
eneral model should always use the full matrix H (equation (6)). However, in certain special cases—such as isotropic and

695 homogeneous rock frames—additional constraints may hold. Several researchers have pointed out that for monomineralic

isotropic materials, the self-similarity hypothesis is valid, and therefore Gassmann’s equations apply and are exact (Brown and Korringa, 19

In general, various poroelastic constants can be computed numerically (Alkhimenkov, 2023), derived analytically usin
effective medium theory (Yarushina and Podladchikov, 2015), or measured experimentally in laboratory settings (Makhnenko and Podladcl

~

700

The distinction between the solid compressibilities lies in the structure of the matrix H, which depends on the particular
choice of rheological relationships. The definitions (Detournay and Cheng, 1993):

1 /DC 1 /1DC 1
/BS = 7 ﬂs = K;DC? Bs = K;/DC (107)

are only necessary when the rock microstructure allows the bulk frame, solid grains, and pore space to deform differently under

705 unjacketed loading (Makhnenko and Podladchikov, 2018) (K is the bulk modulus of solid grains). Note that the rheological
assumptions in the Brown-Korringa (BK) model differ from those in the Detournay-Cheng (DC) and the presented Extended
Biot formulations. As a result, the interpretation and estimation of the parameters in (107) differ between models.

— The poroelastic parameters (107) can be computed numerically with arbitrary precision. Numerical studies conducted

710
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715 nossible ceome < . n Qi . Ao n’Q 3 i1 o .
TFhere-are-also-otherconfirm that for isotropic (or cubic), monomineralic rock frames with isotropic grains and a full
interconnected pore space, the three parameters in equation (107) are equal (Alkhimenkov, 2023, 2024).

— These parameters can also be measured experimentally in laboratory settings, enabling practical application. In man
ractical situations, the differences between these parameters (107) are small, and one can safely adopt a single solid

720 /DC _ pnDC t

modulus K. The condition holds when the rock has a monomineralic, isotropic, and

uniform skeleton; a fully interconnected pore network; and is subjected to pressures below the onset of micro-fracturin
or mineral phase transitions. Under such assumptions, the unjacketed compression test measures the intrinsic mineral
bulk modulus, and both the whole-specimen (KX’PC) and pore-volume (JX”P°) moduli may collapse (as suggested

by several studies) to K, = ., reducing the DC model to the original Biot—Gassmann formulation. That is, under

725 unjacketed conditions, the entire solid surface is subjected to a uniform pressure increment Ap, and if the rock is
microscopically isotropic_and homogeneous. both the solid grains and bulk framework undergo uniform volumetric
strain, resulting in no change in porosity (Tarokh and Makhnenko, 2019). Typical examples include dense quartz sands,
clean limestones below micro-crack initiation stress, and synthetic rock samples._

— Even for multi-mineral skeleton, the differences between these parameters (107) are small, which is shown in the 3D

730 namerteal-stadies—that-constderdifferent-geometries—ofthe-pore—spe e 3 FHE—W anh :
Alkhimenkev-etal;2020a; br-Adkhimenkov-and-Quintal; 2022a-bnumerical study by Alkhimenkov (2025) and in laborator
settings (Makhnenko and Podladchikov, 2018).

— Finally, these parameters can also be derived using effective medium theory. This is the most rigorous way to establish
under which conditions the three poroelastic parameters are equivalent. The application of effective medium theory is
735 outside the scope of the present study but remains an important direction for future work,

We note that when a rock frame consists of two or more minerals with different elastic properties (e.g., shales, poorl
consolidated sandstones, or cracked carbonates), the distinction 85K 7BK in the BK framework is present. In such cases

the assumptions underlying the self-similarity hypothesis break down, and Gassmann’s equations serve only as an (very good
approximation within the framework of the Extended Biot formulation (Alkhimenkov, 2025).

740 To further assess the magnitude of the off-diagonal components of the matrix H, we perform a Taylor expansion of

BB (without imposing any assumption on mono- or multi-mineral composition of the frame):

1
Hip=

EB o) 2 108
2= T o (P s Btes 2 s g O (1o
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765

which demonstrates that the off-diagonal terms of H are small.

10.3  Applieability Comparison of Gassmann’s equations and Thomsen’s alternative formulation

(1-K4K 1)

K’u:Kf + '
"R T (1- @)K - Ka/K?

Thomsen (2023b) argued that the original derivation of Gassmann’s equations contains a logical error and—— namely, an

incorrect application of Love’s theorem to hydraulically open and closed systems. In the present derivation, we rely on classical

irreversible thermodynamics and not rely on any assumptions regarding whether the porous material system is open or closed.
Thomsen (2023b) provided an updated version of these relations (see also Brown and Korringa (1975)):

(1= KoKy’ (1 - Ka (K™Y

Ku:Kd+ — — — — y
OF ;! + (1= )K" — Ko /K3, p K+ (1 6p) KT — KX/ (K)?

(109)

where Mgfﬁxis a new parameter ;—so-calted—meanreferred to as the "incompressibitity fer—mean" bulk modulus }

(Thomsen, 2023b). Note the similarity between expressions 22)-(47) and (109). Relation(109)-contains-one-more-parameter;
I yr-eompared-to-Thomsen’s relation introduces one additional parameter, X PX_ beyond the original Gassmann *s-equation
€22jequation (47). Thomsen (2023b) also provided ways to evaluate A 7-by-tsing-thefollowingexpressions- K PF, including:

—-1
1 1 1 1
BK _
Kn 2= ﬁK(]?K ~ BPK | KPK T KBK ’

A~

(110)

where B-BBX (Skempton coefficient) is directly observable in a-quasi-static experimentexperiments. Alternatively, expression
(110) for-Jspr-ean-be-exactly reformulated-as-can be rewritten as:

B(¢K;' +(1-¢) K1) —(1- B K, B*X (fbef_l +(1-¢y) (KEK)‘l) — (1= BPS) (K )~

S

2B -1 2BBK 1

BK
Ky =

(111)

Importantly, Thomsen’s formulation reduces to Gassmann’s when K3/ = K3¥.

Thomsen (2023b) argued that this additional parameter % must be independently measured, even for mono-mineralic
rocks, and that equation (109) should be used instead of the original Gassmann relation (47). As follows from equation (111),
evaluating /(¢ requires an independent measurement of the Skempton coefficient B, Thomsen (2023b) further noted that
the porosit is not constant under equal changes in fluid pressure p ¢ and total pressure p, and argued that for mono-mineralic
rocks, K¢ generally differs from ™. This implies a sensitivity of porosity variation—either increasing or decreasing —
depending on the sign of K¢ — K.
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— Gassmann explicitly stated the self-similarity hypothesis in his original manuscript (Gassmann, 1951). Therefore, claims

770 of a logical error (Thomsen, 2023b) in the derivation are unfounded.

— The claims made by Thomsen (2023b) are not supported by rigorous theoretical developments (e.g., exact solutions in
effective medium theory) that explicitly demonstrate that KX BK £ K BK for mono-mineralic rocks.

— Several 3D numerical studies confirm that the self-similarity hypothesis holds for homogeneous, isotropic (or cubic) d.
responses and isotropic solid grain materials. This has been verified numerically for both cubic and transversely isotropic
775 symmetries (Alkhimenkov et al., 2020a, b; Alkhimenkov and Quintal, 2022a, b; Alkhimenkov, 2023, 2024).

— A recent 3D numerical study of a heterogeneous frame material composed of two solids with different bulk and shear
moduli showed that the difference KBX — KBX is below 0.11 GPa — practically insignificant.

— Laboratory experimentations show that even for multi-mineral skeleton, the differences between KX and K BK is small
Makhnenko and Podladchikov, 2018).

780 — This all suggests that, in relatively homogeneous rock samples, the distinction between different solid grain moduli has
negligible practical impact.

— The mechanics of rocks includes additional important aspects such as nonlinearity in their mechanical response; differences

in mechanical properties under extension versus compression (which can differ by several percent); intrinsic anisotro
of the solid grains; effective anisotropy of the rock sample; and irreversible damage under applied loads. All of these

785 factors contribute to a much more complex mechanical behavior of rocks. These additional constraints may have a
significantly greater impact on rock response than potential deviations from the self-similarity hypothesis.

Alkhimenkov (2023) conducted a numerical convergence study shewing—that-Kpy—is—converging—to—f<s—demonstrating
that KK — K. (where K, is the solid bulk modulus) for monomineralic rock as the resolution 1ncreases€m4h&ﬂumeﬂea}

790 In this study, K B¥ was computed independently using equation (111), with the Skempton coefficient BE¥ also calculated.
Consequently, the result of W@WWWWW@QO the original Gassmann “s-fermulation

sinee =7 that-validates—relation (47) in the mono-mineralic, isotropic (or cubic symmetry) case where K BK =
within numerical precision), thereby validating the original Gassmann “sfermulation-formulation for a particular pore-space
795 and solid material geometry.
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104 Limitations

Often, natural rocks are composed of multiple minerals that are anisotropic, and typically exhibit some degree of anisotropy;
WWWWWMMQOWMM cracks (%gﬂﬂw
contacts) and stiff poresth
represented-via—, which respond differently under mechanical loading. Additionally, a rock’s heterogeneity can violate the

assumptions of a representative volume element. Mme%eh%m&&m&g&%&dﬁfefﬁm
that elastic moduli can vary by several percent under compression

enees-versus extension. These deviations from ideal small-strain

elasticity suggest the need for additional effective parameters, and thus more experimental (or numerical) measurementsatre
needed—to—fullycharacterize-the fully satarated-realisticrocks, to accurately characterize fully saturated and realistic rock
samples.

11 Conclusions

This study has presented a nevel-structured, transparent, and thermodynamically admissible derivation of beth-Gassmann’s

and-Biot's-poroelastic equations; which-are-eruetal the quasi-static Extended Biot’s poroelasticity framework. The well-known
classical Gassmann equations and Biot poroelastic formulation — fundamental tools for characterizing the efastie-and-coupled
poroelastic mechanical behavior of fluid-saturated porous mediain-geophysies—By—are derived here as special cases of the
general theory. While the thermodynamic admissibility of the original Biot equations has been previously demonstrated, the
present work extends this admissibility to a more general model using the framework of classical irreversible thermodynamics.
We emphasize clarity, accessibility, and full reproducibility throughout the derivation. The main novelty of this study is the
development of the Extended Biot’s poroelasticity framework, which incorporates off-diagonal components of the Hessian

matrix. The relations between the new set of poroelastic parameters are fully expressed in terms of the components of the

By strictly adhering to conservation laws and eenstitativerelationsthermodynamic principles, we have addressed-concerns
abe&HegieaHﬂeeﬂﬂs{eﬂekes—ﬂHh&eﬂgma%defwaﬁeﬁalso addressed recent claims by Leon Thomsen regarding the validit

of Gassmann’

within—theseientifie-communityformulation. In particular, we have shown that the key self-similarity assumption — that
orosity remains unchanged under equal changes in fluid and total pressure — is a sufficient but not necessary condition
for the derivation of Gassmann-type relationship between undrained and drained bulk moduli. Indeed the Extended Gassmann

oroelastic equation (69) is derived in this contribution without relying on the Gassmann’s assumption of self-similarity.
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830 To promote transparency and support future developments, we provide symbolic Maple routines. These materials ensure
full reproducibility of the derivations and offer a practical foundation for extending the framework to more complex scenarios
such as multiphase fluid systems and related phenomena.

Code availabilit

The software developed and used in this study is licensed under the MIT License. The latest version of the symbolic Maple
Zenodo) at: https://doi.org/10.5281/zenodo.15777522 (last accessed:

30 June 2025) (Alkhimenkov and Podladchikov, 2025). The repository contains code examples and can be readily used to
reproduce the results presented in the manuscript. The codes are written in the Maple programming language.

835 routines is available from a permanent DOI repositor
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Appendix A: Explanation of the Maple Script for a single phase media

The following Maple script provides a step-by-step derivation of the entropy production for a one-dimensional system using
the principles of elassical-non-equilibrium-thermodynamiesClassical Irreversible Thermodynamics. It uses the volume-specific
formulation for mass conservation and the principles of local thermodynamic equilibrium (LTE) to establish the relationship
between different thermodynamic fluxes and forces. The script calculates the entropy production, Q[s], and demonstrates the

impact of various choices for flux definitions. Below is a detailed explanation of each step in the script.

restart;
2 V := 1/rho:
dvdt := -diff (q[V] (x), x)/rho(x): # mass balance (using volume and not density)
4 dudt := -diff(gl[e] (x), x)/rho(x): # conservation of energy
5 dsdt := -diff(g[s] (x), x)/rho(x) + Q[s]/rho(x): # balance of entropy
6 LTE := dUdt = T(x)=*dsdt + P(x)xdvdt: # local thermodynamic equilibrium
7 Ql[s] = solve (LTE, Q[s]); # solving for entropy production
3
9. glel(x) := T(x)=*ql[s] (x); # choice for energy flux
10 qlV] (x) = v: # Galileo's principle for volume flux
11 gls] (x) := —-lambda*diff (T (x), x): # Fourier's law for entropy flux
12 Q[s] := simplify(eval(Q[s])); # final expression for entropy production

Listing 1. Maple Script for Entropy Production

Below, we provide a detailed explanation of each line in the script.

Initialization and Mass Conservation

restart;
22V := 1/rho:

Here, V is defined as the specific volume, which is the inverse of density, p.

dvdt := -diff (q[V] (%), x)/rho(x):

This line represents the mass conservation equation using the volume-specific formulation. It calculates the time derivative of

the specific volume as the negative divergence of the volume flux g [V] (x) divided by the local density.

Conservation of Energy

dudt := -diff (g[e] (x), x)/rho(x):

This represents the conservation of energy, where dUdt is the time derivative of the specific internal energy, g[e] (x) is the
energy flux, and the equation states that the change in internal energy is equal to the negative divergence of the energy flux

divided by the density.

Entropy Balance
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1 dsdt := -diff(gq[s] (x), x)/rho(x) + Q[s]/rho(x):

The-equation-This line represents the entropy balance. Here, dsdt is the time derivative of specific entropy, g[s] (x) is the
entropy flux, and Q[ s] is the entropy production rate per unit volume. This equation states that the change in entropy is equal

to the negative divergence of the entropy flux plus the entropy production term.

Local Thermodynamic Equilibrium (LTE)

1 LTE := dUdt = T (x)=*dsdt + P (x)=*dvdt:

This equation expresses the principle of local thermodynamic equilibrium (LTE). It relates the internal energy change dUdt to

the product of temperature T (x) and entropy change dsdt, plus the product of pressure P (x) and the volume change dvdt.

Solving for Entropy Production

Q[s] := solve(LTE, Q[s]);

The script solves the LTE equation for the entropy production term Q [s].

Choice for Energy Flux

ooglel(x) = T(x)xqls](x);

The energy flux g[e] (x) is chosen as the product of temperature T (x) and the entropy flux g [s] (x). This is a common

assumption based on the linear coupling between the energy and entropy fluxes.

Flux Definitions

g[V] (x) := v: # Galileo's principle for volume flux

gls] (x) := —-lambda*diff (T (x), x): # Fourier's law for entropy flux

The volume flux g [V] (x) is represented by velocity v following Galileo’s principle. The entropy flux g[s] (x) is defined
according to Fourier’s law, where it is proportional to the temperature gradient diff (T (x), x) with thermal conductivity

lambda.

Final Expression for Entropy Production

Q[s] := simplify(eval(Q[s]));

The final expression for entropy production Q [s] is simplified to:
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Qls| = T(Ax) <d§f))2, (A1)

915 This result shows that the entropy production is non-negative and is proportional to the square of the temperature gradient,

divided by temperature, which is a classical result in non-equilibrium thermodynamics.

Appendix B: Explanation of the Maple Script for Two-Phase Fluid-Saturated Media

920

B1 General Representation of Classical Irreversible Thermodynamics
G Lc ionE .

Firstwe-define-the-Porous materials can be modeled as two-phase systems composed of a solid skeleton and a saturating fluid.
These phases exchange mass, momentum, and energy, leading to complex coupled processes that are naturally described usin

925 the framework of classical irreversible thermodynamics (CIT) (Gyarmati et al., 1970; Jou et al., 1996; Lebon et al., 2008; Yarushina and P«

. In this formulation, conservation equations for
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mass, momentum, entropy, and energy are expressed in the Eulerian frame as follows:

4 _A(t. aqr(tz)
pa 29, a‘(%"a‘jﬁé)zz (t,2)Q, ~ FQag, B

B2

1 e -0 4 a7 ‘ q ‘
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975 Therate-of-change-of porosity-¢-is-givenby:-

dp _0¢ 99
— = 4 v—=
dt 0Ot Ox
whem*v—is—fhe—ve}eeifyg—aﬂd—%i"where v, 8, and e denote the velocity, specific entropy, and specific total ener er unit mass

respectively. The term p denotes (phase-specific) density, ¢ the phase volume fraction (e.g., porosity for the fluid). The terms

YV represents the

980 ol =5+ 1.
¢
artial derivative with respect to spatial coordinates, while ¢/ ij, ﬁ, and ¢ correspond to the fluxes of mass, momentum
entropy, and energy, respectively. The terms (),,, (),,., Q., and (). represent the corresponding production rates due to irreversible

rocesses (Yarushina and Podladchikov, 2015).

_ .
! 7 7 i
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995 - i ter” :
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1000 where-npris-the-phase-dependent-visecosity—
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— EnergyFlax{(gy)—Combining-the-above fluxes:-

qu = qu +vqy + pqe
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EntropyProduetion (@5

B1.1 Entropy Production (7T'Q

Solving the local entropy production equation for () and multiplying both sides by the absolute temperature 7', we have:

obtain:.
dv\> Ao [(dT\? do do dg°
TQs =ng¢ <dl‘> +? <dl‘> +p0%+/u@pc*v@v 7QpGGibbs+Qu +pa 77’4)% (B5)

This expression represents the entropy production, which must be non-negative according to the second law of thermodynamics.

Notably, this formulation assumes local thermodynamic equilibrium separately for the solid and fluid phases. This is a weaker
assumption than Biot’s original model (Biot, 1962), which postulated a single internal ener: otential for the entire two-phase
system in the linear poroelastic regime (Yarushina and Podladchikov, 2015).

Phase P . 1Ki e Substituti

B2 Thermodynamic Constraints on Fluxes and Productions

hr

dt
. . :
Ops _dps _ Ops
ot dt ox
 sen N
%% = divo?®
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in-CIT requires that the total

entropy production :-

TQs,lotal = Tng) + TQS)

=—of the system remains non-negative. This
1095 condition applies both to the intra-phase and inter-phase entro roduction within a porous medium. Mathematically, this is
expressed as:.

7o) Qu=Ap=p ) Qups " H QI 20, (B6)

phases phases

99
100 Quy = ——py —ava”

gy _ dp'
dt ~ dt

+kyAP

GibbsFree-Enerey-Change (AG)—With-Por—==0-Here, Q™ represents the intra-phase entro roduction within each

1105
must be non-negative:

vl ¢P
AGgipbs = AG)2Gibbs —

Q;ntra Z 0, anter Z 0. (B7)
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B3 Extended Thermodynamic Admissibilit

1110 Building on the principles of Classical Irreversible Thermodynamics (CIT) (Lebon et al., 2008) and the nonlinear viscoelastoplastic
framework of Yarushina and Podladchikov (2015), the derivation of the extended Biot poroelastic equations must satisf’

the conditions of thermodynamic admissibility. Specificall must remain non-negative, and the

constitutive relations must be formulated such that they are consistent with the second law of thermodynamics for all admissible
thermodynamic paths. Given-by:-

115 Q,5 = —k,AGagibs

T ot 1 — 13 4 =i 3 13 £ =N J (T ot 1 Lk 3 PESE
1120 FOs— at— Heet pana{simptit o s a+F totat - —tdphie—at)~

From equation 37, and taking into account the requirement that entro roduction must be non-negative, the inelastic
orosity equation takes the form (Yarushina and Podladchikov, 2015):

T N

B3
dt dt N (B8)

where 7, stands for the effective bulk viscosity. After simplifying and collecting terms (see Appendix B), the total entropy
1125 production becomes:

1 p.  pe 2 (") ey (@) nav | N <8T>2
T s,total — — e~ + V-v? + + = = . B9
el N (1_¢)w Ut(m’l)) 0] WW(?Af,M T \0zx ) ~ (B9)

2

1130 - L[ p

\ P
e \(1—9) )
pressure-differenee

1 . . . . .
= : Entropy production due to pereelastie-deformation{(poroelastic-coefficienttfand
@ i
oroviscous deformation (effective viscosit and effective pressure p. =p — pr).
- W{W%M Entropy production due to viscous dissipation in the solid phase.
D2 D2
- (7) mav (a7) Tldv: Entropy production due to viscous dissipation in fluid flow (Darcy flow).

¢ TTHFTT

X (OTN?
- ?t (8) : Entropy production due to heat conduction (Fourier’s law).
xXr
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1135 B4 Darey’slaw-andFluid Flew
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1155 Expanding-the-derivatives;we-obtain—
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d®ps do o
(1-9) pra saﬂ)s( ?) o -
- . L :

1 dps 1 d¢¢  Ap

»The non-negative nature of each term
ensures the overall positivity of entropy production, thereby confirming the thermodynamic validity of the system of
extended Biot’s poroviscoelastic equations.

A more detailed derivation is given below (see also the discussions provided by Yarushina and Podladchikov (2015)).
Additionally, symbolic Maple routines used to reproduce and validate the theoretical results presented in this article are
available in a permanent DOI repository (Zenodo) (Alkhimenkov and Podladchikov, 2024).
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