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Abstract. Gassmann’s equations , formulated several decades ago, remain a cornerstone in geophysics due to their perceived

exactness
:::::::::
Gassmann’s

:::::::::
equations

::::
have

::::
long

::::::
served

::
as

::
a

::::::::::
cornerstone

::
of

:::::::::
geophysics

::::
and

::::
rock

:::::::
physics,

::::::
widely

::::::::
regarded

::
as

:::::
exact

:::::
within

:::::
their

::::::
domain

:::
of

:::::::::::
applicability. However, a concise and rigorous derivation rooted in thermodynamic principles and

conservation laws has been missing from the literature. Additionally, recent studies have pointed out potential logical inconsistencies

in the original formulation. This paper introduces a derivation of Gassmann
::::::::
questioned

::::
their

:::::::
validity,

:::::::
arguing

:::
that

:::::::::
Gassmann’s5

equations, anchored in fundamental
:
s
:::::::::
derivation

:::::::
involves

::
a

::::::
logical

::::
error

::::
and

:::
that

:::
an

::::::::
additional

:::::
solid

:::::::
modulus

::
is
::::::
needed

:::::
even

::
for

:::::::::::::
monomineralic

:::::::::
materials.

::
In

::::
this

:::::
work,

:::
we

:::::::
present

::
a

::::::
general

:::::::::
derivation

::
of

::::
the

::::::::
Extended

::::
Biot

::::::::::::
poroelasticity

:::::::::
equations,

::::::::
grounded

::
in conservation laws and constitutive relations, ensuring their thermodynamic consistency. Alongside this

:::::::
classical

:::::::::
irreversible

:::::::::::::::
thermodynamics.

:::
We

:::::
show

:::
that

::::
the

:::::::::::
formulations

::
of

:::::::::
Gassmann

::::::
(1951),

:::::::
Brown

:::
and

::::::::
Korringa

:::::::
(1975),

:::::::::
Detournay

:::
and

::::::
Cheng

:::::
(1993)

::::
and

::::::::::::::::::::
Rice and Cleary (1976)

:::::
emerge

:::
as

::::::
special

::::
cases

:::
of

:::
this

::::::
unified

::::::::::
framework.

:::::
While

:::::::
previous

:::::::
studies

::::
have10

:::::::
analyzed

:::
the

:::::::::::::
thermodynamic

:::::::::::
admissibility

::
of

:::::::
standard

::::
Biot

::::
and

:::::::::
Gassmann

::::::
models, we extend the discussion to include Biot’s

poroelastic equations, which are widely used to describe the coupled behavior of fluid-saturated porous media under mechanical

deformation. By demonstrating that Gassmann’s equations are a specific case within the broader framework of Biot
:::
this

:::::::
analysis

::
to

:::
the

:::::
more

:::::::
general

:::::
theory

:::
by

:::::::::
explicitly

:::::::::::
incorporating

::::
the

::::::::::
off-diagonal

::::::
terms

::::::
arising

:::::
from

:::
the

::::::
second

::::::
partial

::::::::::
derivatives

::::::::
(Hessian)

::
of

:::::::
internal

::::::
energy.

:::
A

:::
key

:::::::
finding

::
is

:::
that

:::::::::::
Gassmann’s

::::::::::::
self-similarity

:::::::::::::
condition—that

:::::::
porosity

:::::::
remains

::::::::::
unchanged15

:::::
under

::::
equal

:::::::
changes

::
in

::::
fluid

::::
and

::::
total

::::::::::
pressure—is

::
a

:::::::
sufficient

:::
but

:::
not

:::::::::
necessary

::::::::
condition

::
for

:::
the

:::::::::
derivation

::
of

:::::::::::::
Gassmann-type

:::::::::
relationship

::::::::
between

::::::::
undrained

::::
and

::::::
drained

::::
bulk

:::::::
moduli.

::
It

:::::
holds

:
if
::::
and

::::
only

::
if

:::
the

:::::
matrix

:::
of

:::
the

::::::
second

:::::
partial

::::::::::
derivatives

::
of

::::::
internal

::::::
energy

::
is

::::::::
diagonal.

:::::
When

:::
the

::::::::::
off-diagonal

:::::
terms

::
in

::::
this

:::::
matrix

:::
are

::::::::
retained,

:
a
::::::::::
generalized

::::
form

::
of

:::::::::
Gassmann’s theory,

we further validate their relevance and applicability in geophysical contexts. Given the numerous independent rederivations

and numerical verifications of these equations for diverse pore geometries, we affirm their robustness, provided the underlying20

assumptions are respected. To facilitate reproducibility and further exploration,
:
s
:::::::::
equations

::
is

::::::::
required,

:::::
which

::::
we

::::::
derive.

::
To

:::::::
promote

:::::::::::
transparency

::::
and

::::::
support

::::::
further

::::::::
research,

:::
we

:::::::
provide symbolic Maple routines are provided for the derivations

presented in this study
:::
with

::::::::::::::
thermodynamic

:::::::::
consistency

:::::::
checks,

:::::::
ensuring

:::
full

:::::::::::::
reproducibility

:::
and

:::::::::::
accessibility.

1
:::::::::::
Introduction

1



Gassmann’
:::::::::
Gassmann’s equations (Gassmann, 1951), developed several decades ago, stand as fundamental expressions

:::
are25

::::::::::
fundamental

:
in geophysics for analyzing the elastic properties of fluid-saturated porous media. These equations provide a

means to predict the seismic velocities and mechanical behavior of
:
in
:

such materials. However, despite their widespread

use, recent studies have highlighted concerns regarding
:::::::::
questioned the logical consistency in the derivation of Gassmann’s

equations
:
of

:::::::::::
Gassmann’s

:::::::::
derivation,

::::::::::
suggesting

:::
that

::
it
::::::::

contains
::
a
::::::
logical

:::::
error

:::::::::::::::::::::::::::
(Thomsen, 2023a, b, 2024, 2025). This has

sparked a demand for a more rigorous thermodynamically admissible framework, rooted in conservation laws and constitutive30

relations, to ensure their reliability and applicability
:::::::::
highlighted

:::
the

::::
need

:::
for

:::
an

::::::::
extended,

:::::::::
transparent

::::
and

::::::::::::::::
thermodynamically

::::::::
consistent

:::::::::
framework

::
to

::::::
ensure

::::::::
reliability

:
in geophysical modeling and exploration.

:::::::::::
interpretation.

This article aims to address these concerns by presenting a novel derivation of Biot’s poroelastic equationsand Gassmann ’s

equations, which strictly adheres to
::::
paper

:::::::
presents

::
a
:::::::::
structured,

::::::::::
transparent,

:::
and

::::
fully

:::::::::::
reproducible

:::::::::
derivation

::
of

:::
the

::::::::
Extended

:::
Biot

::::::::::
poroelastic

:::::::::
equations,

::::
with

:::
the

:::::::::::
formulations

:::
of

:::::::::
Gassmann

::::::
(1951),

:::::::::::::::::::::::::
Detournay and Cheng (1993),

::::::
Brown

::::
and

::::::::
Korringa35

:::::
(1975)

::::
and

::::::::::::::::::::
Rice and Cleary (1976)

:::::::
emerging

::
as
:::::::

special
:::::
cases.

::::
Our

::::::::
approach

::
is

:::::
rooted

:::
in fundamental conservation laws and

thermodynamic principles. In particular, we leverage the formalism of classical non-equilibrium thermodynamics as described

in Lebon et al. (2008), focusing on the interrelation of fluxes and forces, entropy production, and the
:::::::
classical

::::::::::
irreversible

:::::::::::::
thermodynamics

:::::
(CIT)

::::::::::::::::
(Lebon et al., 2008)

:
.
:::::
While

::::::
earlier

:::::
works

::::
have

:::::::::::
demonstrated

:::
the thermodynamic admissibility of constitutive

equations. This approach allows us to systematically derive the targeted equations while ensuring that the derived models are40

consistent with the second law of thermodynamics
::
the

:::::::
standard

::::
Biot

:::
and

:::::::::
Gassmann

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::
(Coussy et al., 1998; Yarushina and Podladchikov, 2015)

:
,
:::
we

::::::
extend

:::
this

:::::::
analysis

:::
to

:
a
:::::::
broader

:::::
class

::
of

:::::::
models

::
by

:::::::::
evaluating

:::
the

::::
full

:::::::
Hessian

::::::
matrix

::::
(i.e.,

::::::
matrix

:::
of

::::::
second

::::::
partial

:::::::::
derivatives)

::
of

:::::::
internal

::::::
energy.

We
::::::
respond

:::::::
directly

::
to

:::
the

:::::::
critiques

::::::::
presented

:::
in

::::::::::::::::::::::::::
Thomsen (2023a, b, 2024, 2025)

:
,
:::::::
adopting

:::
the

::::
CIT

::::::::
formalism

:::
as

::::::::
described

::
in

::::::::::::::::
Lebon et al. (2008)

:::
and

:::::::
extended

::
to

:::::::::::::
poromechanics

::
by

:::::::::::::::::::::::::::::
Yarushina and Podladchikov (2015)

:
.
:::
We demonstrate the thermodynamic45

admissibility of the derived equations and validate their integrity through
::::::::
Extended

::::
Biot

::::::::
equations

:::
by

:::::::::::
incorporating

:::::::
entropy

:::::::::
production

:::::::::
constraints

::::
and

:::
the

::::::::::::::
internal-variable

:::::::::
formalism

::
of

::::
CIT.

:::::::
Internal

::::::::::
consistency

::
is
:::::::

verified
:::::::

through
:::::
both theoretical

analysis and numerical simulations. By incorporating the entropy production constraints and internal variables approach from

classical non-equilibrium thermodynamics, we ensure that the derived models not only describe the macroscopic behavior

accurately but also respect the microscopic interactions between phases in porous media. While the general methodology was50

outlined by Yarushina and Podladchikov (2015), this study specifically focuses on the rigorous derivation of Biot’s poroelastic,

Gassmann’s, and effective stress law equations, along with addressing concerns related to their physical validity
:::::::::
evaluation.

::
In

::::::::
particular,

:::
we

:::::::::
emphasize

:::
the

:::::::
interplay

::::::::
between

:::::::::::::
thermodynamic

:::::
forces

:::
and

::::::
fluxes,

:::::::
entropy

:::::::::
production,

::::
and

:::
the

:::::::::::
admissibility

::
of

:::::::::
constitutive

::::
laws.

The paper is organized
::::::::
structured

:
as follows: First, essential

::
we

:::::
begin

:::
by

::::::::
reviewing

:::
the

:::::::::::
foundational

:
equations of classical55

irreversible thermodynamicsare presented, emphasizing the link between ,
:::::::::::
highlighting

:::
the

::::
roles

:::
of

:
thermodynamic forces

and fluxes. Next, we introduce the resulting evolution equations applicable to poro-viscoelastoplastic media. Following this,

the target Biot ’s poroelastic ,
::
We

::::
then

::::::
derive

:::
the

::::::::
evolution

::::::::
equations

:::
for

:::
the

::::::::
Extended

::::
Biot

::::::::::
poroelastic

::::::
system,

::::::::
followed

:::
by

::::::::::
formulations

::
of

:::
the

::::::::::::::::
Detournay–Cheng,

::::::::::::::
Brown–Korringa,

::::
and

::::::::
Gassmann

:::::::
models.

:::::
After

:::
we

:::::
revisit

::::::::::
Gassmann’s

::::::::::
assumptions

::::
and

2



:::::::
delineate

:::
the

:::::::
specific

::::::::
conditions

:::::
under

:::::
which

::::
they

::::::
remain

:::::
valid.

:::
We

::::
also

::::::
directly

::::::
address

:::
the

::::::::
critiques

:::::
raised

::
in

:::::::::::::::::::::::::::
Thomsen (2023a, b, 2024, 2025)60

::::::::
regarding

:::
the

::::::
validity

::
of

:
Gassmann’s , and effective stress law equations are derived within this thermodynamically consistent

framework. In the discussion section, we provide a detailed analysis of the validity and applicability of Gassmann’s equations,

highlighting the importance of respecting thermodynamic principles in their derivation and use. To facilitate reproducibility,
::
’s

::::::::
equations.

:

::
To

::::::
ensure

:::
full

:::::::::::::
reproducibility,

:::
we

::::::
provide

:
symbolic Maple routines are provided to verify the presented results. The routines65

archive (v1.0) is available from a permanent DOI repository (Zenodo) at
::::
with

:::::::
detailed

::::::::::
line-by-line

:::::::::::
commentary,

::::::::
enabling

:::::::::
transparent

::::::::
derivation

::::
and

::::::::::
verification.

::::
This

:::::::::
framework

::::
also

:::::::
supports

:::::
future

::::::::::
extensions,

::::::::
including

:::::::::
multiphase

::::
flow

:::
and

:::::::
viscous

::::::::::
deformation

:::::::::::
mechanisms.

:::
All

::::::
Maple

::::::
scripts

::::
are

::::::::
available

::
in

::
a
::::::::
symbolic

::::::
archive

::::
via

:
a
::::::::::

permanent
::::
DOI

:::
on

:::::::
Zenodo:

:
https:

//doi.org/10.5281/zenodo.15777522 (last access: October 17, 2024) (Alkhimenkov and Podladchikov, 2024)
::::
June

:::
30,

::::::
2025)

::::::::::::::::::::::::::::::::
(Alkhimenkov and Podladchikov, 2025).70

2 Assumptions and Scope of the Study
::::::::::
Manuscript

The following assumptions are made throughout the derivation of Biot’s poroelasticand Gassmann’s equations to ensure the

validity of the results: The material is assumed to be linearly elastic, and the strains are small, implying small fluid pressure

perturbations relative to the confining stress. The porous medium is considered homogeneous and isotropic. The interactions

between the solid and fluid phases are governed by linear constitutive laws, and the fluid flow obeys Darcy’s law75

:::
One

::::
can

:::::::::
distinguish

:::::::
between

:::
two

::::::
related

:::
but

::::::
distinct

:::::
tasks

::
in

:::
the

::::::::::
formulation

::
of

::::::
coupled

:::::::::::
(poroelastic)

:::::::
theories:

:::
(i)

:::::::::
identifying

::
the

::::::::::
appropriate

::::
set

::
of

:::::
state

::::::::
variables

:::
that

:::::
fully

::::::::
describe

:::
the

:::::::
coupled

::::::::::
mechanical

::::::::
behavior,

::::
and

:::
(ii)

::::::::
deriving

:::
the

::::::::
material

:::::::::
parameters

::::
that

:::
link

:::::
these

:::::::::
variables.

::::
Task

:::
(i)

::
is

::::::::::
particularly

::::::::::
challenging

:::
and

::::
has

::::
been

:::::::::
addressed

:::
by

::::::::
numerous

:::::::::::
researchers;

:
a
:::::::::::::
comprehensive

::::::
review

::
is

::::::
beyond

:::
the

:::::
scope

:::
of

:::
this

::::::::::
manuscript.

:::
In

:::
this

:::::
work,

:::
we

:::::
build

:::
on

:::::
those

:::::
earlier

:::::::
studies

:::
and

:::::::
assume

::::
from

:::
the

:::::
outset

::::
that

:::
the

::::::
correct

:::::::
variables

::::
have

:::::
been

::::::::
identified.80

The constraint of zero dissipation (entropy production)during reversible poroelastic deformation provides an essentialconstraint

on the poroelastic constitutive equation for porosity evolution.

The derivation assumes a quasi-static process, meaning inertia effects are ignored. These assumptions provide a simplified

framework for the derivation and are crucial for ensuring the thermodynamic admissibility of the results. Future work may

extend these derivations to include non-linear elasticity, anisotropy, and dynamic effects
::::
Task

:::
(ii),

:::::
while

::::::::
relatively

::::
more

::::::::::::::
straightforward,85

::::::
remains

::::::::
essential:

::::::
various

::::::::::::
modifications

::
of

:::::::::
poroelastic

::::::
theory

::::
have

::::
been

::::::::
proposed,

:::::
often

:::::
based

::
on

::::::::::
simplifying

::::::::::
assumptions

::::
that

:::::
affect

::::
how

:::::::
material

:::::::::
parameters

:::
are

:::::::
defined

:::
and

::::::::::
interpreted.

::::
The

:::::
main

::::::
novelty

:::
of

:::
this

::::::::::
manuscript

::
is

:::
the

:::::::::::
consideration

:::
of

:::
the

:::
full

:::::::
Hessian

::::::
matrix

::
of

::::::
second

:::::::::
derivatives

:::
of

:::::::
internal

::::::
energy

::
—

:::::::::
including

:::
the

::::::::::
off-diagonal

:::::
terms

:::::::
(which

:::
are

::::
often

:::::::::
neglected

::
in

:::::::
classical

::::::::::::
formulations)

:::
—

::::::
which

::::::
enables

:::
us

::
to
::::::

derive
::

a
::::::::::
generalized

:::
set

:::
of

:::::::::::::
Gassmann-type

::::::::
relations.

::::::::::::
Furthermore,

:::
we

::::::::::
demonstrate

:::
that

::::::
under

::::::::::
appropriate

::::::::
mappings

:::::::
between

::::::::::
poroelastic

::::::::::
coefficients,

:::::::
several

:::::::
classical

::::::::::
poroelastic

:::::::
theories

:::
can

:::
be90

::::::
viewed

::
as

:::::::::
equivalent.

3
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3 Derivation of Gassmann’
:::
the

:::::::::
Extended

::::
Biot’s

:::::::::
Poroelastic

:
Equations

3.1 General Representation
:::::::
Pattern of Classical Irreversible Thermodynamics

:::
the

:::::::::
Derivation

Porous materials can be modeled as systems consisting of two interacting phases: a solid skeleton and a saturating fluid. These

phases can exchange heat, momentum, and matter, leading to complex interactions that must be captured within the framework95

of classical irreversible thermodynamics (Gyarmati et al., 1970; Jou et al., 1996; Lebon et al., 2008; Yarushina and Podladchikov, 2015)

. Using the principles of classical non-equilibrium thermodynamics, the conservation equations governing mass, momentum,

entropy, and energy for each phase are expressed in the Eulerian framework as follows:

∂(ρϕ)

∂t
+∇j

(
ρϕvvvj + qjρ

)
=Qp,

100
∂(ρϕvvvi)

∂t
+∇j

(
ρϕvvvivvvj + qijvvv

)
=Qvi ,

∂(ρϕsss)

∂t
+∇j

(
ρϕsssvvvj + qjsss

)
=Qs,

∂(ρϕeee)

∂t
+∇j

(
ρϕeeevvvj + qjeee

)
=Qe,105

where vvvj , sss, and eee denote the velocity, specific entropy, and specific total energy per unit mass, respectively. The terms ∇j

represents the partial derivative with respect to spatial coordinates, while qjρ, qijvvv , qjsss , and qjeee correspond to the fluxes of mass,

momentum, entropy, and energy, respectively. The termsQp, Qvi , Qs, and Qe represent the corresponding production rates due

to irreversible processes (Yarushina and Podladchikov, 2015)
::
To

::::::
derive

:::
the

::::::::
Extended

::::
Biot

:::::::::
poroelastic

:::::::::
equations,

:::
one

::::::::
typically

::::::::
combines

:::
the

::::::::
following

:::::::::::
components:110

–
:::::::::::
Conservation

:::::
laws:

–
:::::::::::
Conservation

::
of

:::::
linear

:::::::::
momentum

:::
for

:::
the

::::
total

::::::
stress,

–
:::::::::::
Conservation

::
of

::::
mass

:::
for

:::
the

::::
solid

::::::
phase,

:

–
:::::::::::
Conservation

::
of

::::
mass

:::
for

:::
the

::::
fluid

::::::
phase,

–
:::::
Fluid

:::::::::
dynamics:115

–
::::::
Darcy’s

::::
law

::
for

:::
the

::::::
Darcy

:::
flux

:::
qD

:::::::::
(assuming

:::::::::::::::::::
low-Reynolds-number

:::::
flow),

–
:::::::::
Isothermal

:::::::::::
constitutive

::::::::
relations:

–
:
A
:::::
solid

:::::::::::::
density-pressure

::::::::::
constitutive

::::
law

::::::::
(equation

::
of

:::::
state),

:

–
:
A
:::::
fluid

:::::::::::::
density-pressure

::::::::::
constitutive

:::
law

::::::::
(equation

:::
of

:::::
state),

–
:
A
::::::::
porosity

::::::::::
constitutive

::::
law

::::
(e.g.,

::::
pore

::::::::::::::
compressibility),

:
120
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–
::::::::::
Stress-strain

::::::
relation

:::
for

:::
the

:::::::::
deviatoric

::::::::::
components

::
of

:::
the

:::::
stress

:::
and

:::::
strain

:::::::
tensors.

::
By

::::::::::
expressing

:::
the

::::
solid

::::
and

::::
fluid

::::::::
densities,

:::
as

::::
well

::
as

::::
the

::::::::
medium’s

::::::::
porosity,

::
in

:::::
terms

:::
of

::::::::
pressures

:::
and

::::::
fluxes

:::
via

:::::
these

:::::::::
constitutive

:::::
laws,

:::
one

::::::
obtains

:::
the

::::::::
Extended

::::
Biot

:::::::::
poroelastic

::::::::
equations.

::::::
Under

::::::::
additional

::::::::::
simplifying

:::::::::::
assumptions,

::
the

::::::::::
formulation

::::::
reduces

::
to

:::
the

:::::::
classical

::::
Biot

:::::::::
poroelastic

::::::::
equations

::::::::::
(Biot, 1962)

:
,
:::
the

::::::
Brown

:::
and

:::::::
Korringa

:::::::::
equations

:::::::::::::::::::::::
(Brown and Korringa, 1975)

:
,
:::::::::::::::::::
Rice and Cleary (1976)

::::::::
equations

:::
and

::::::::::
Gassmann’s

::::::::
equations

::::::::::::::::
(Gassmann, 1951)

:
as

:::::::
limiting

:::::
cases.

::
In

:::
the

::::
case

::
of

::::
Biot

:::::::::::::::::
poro-visco-elasticity,125

::::::
viscous

::::::
effects

:::
are

::::::::::
incorporated

:::::::
through

:::
the

:::::::
specific

:::::
choice

:::
of

:::
the

:::::::
porosity

::::::::
evolution

:::
law

::::::::::::::::::::::::::::::
(Yarushina and Podladchikov, 2015)

:
,
:::::
which

:::
can

:::::::
include

:::::::::::::
time-dependent

::
or

:::::::::::
rate-sensitive

:::::
terms.

:::
To

::::::
ensure

:::::::::::::
thermodynamic

::::::::::
consistency,

:::::
these

:::::::::
constitutive

::::::::
relations

::
are

:::::::
derived

:::::
within

:::
the

::::::::::
framework

::
of

:::::::
classical

::::::::::
irreversible

::::::::::::::
thermodynamics,

:::::
which

:::
we

:::::::
describe

::
in
:::
the

:::::::::
following

::::::
section.

Local Entropy Production

4
::::::::::::::
Thermodynamic

::::::::::::
admissibility

::
of

:::
the

::::::::
extended

::::
Biot

::::::::::::
poroelasticity

::::::::::
framework130

4.1
::::

Local
::::::::
Entropy

::::::::::
Production

In the context of classical non-equilibrium thermodynamics (Lebon et al., 2008), each phase within the porous medium is

considered to be locally in thermodynamic equilibrium , which means that intensive variables such as temperature and chemical

potential are well-defined at each point. This leads to a fundamental relationship between the
:::::::
Classical

::::::::::
Irreversible

::::::::::::::
Thermodynamics

:::::
(CIT)

::::::::::::::::
(Lebon et al., 2008)

:
,
:::
the

::::::::
hyposesis

::
of

:::::
local

:::::::::::::
thermodynamic

::::::::::
equilibrium

::::::
implies

::::
that

::::::
energy

::
is

::::
well

:::::::
defined

::
as

:
a
::::::
single135

::::
value

:::::::
function

::
at
::::
each

::::
state

:::
of

::
the

:::::::
system.

:::::::::
Moreover,

::
for

::
a
:::
unit

:::::
mass

::
of

:
a
:::::
solid

:::::::
skeleton,

::
in

:::::::::
agreement

::::
with

:::
the

::::
main

::::::::::
assumption

::
of

::::
CIT,

:::
the

:
infinitesimal change in specific internal energy U for each phase and

::::::
internal

::::::
energy

:::
Us ::::::

follows
:::
its

::::::::::
equilibrium

:::::::::
relationship

:::
via

:
the corresponding changes in specific entropy S, specific volume ρ, the elastic component of porosity ϕe. The

local entropy production is derived from the energy balance and is given by:
::::::
entropy

::
Ss::::

per
:::
unit

::::::
mass,

::::::
density

:::
ρs,

::::
and

:::
the

:::::
elastic

::::
part

::
of

:::::::
porosity

::
ϕe
s::::::::::::::::::::::::::::::

(Yarushina and Podladchikov, 2015)
:
:140

dU

dt
dUs
:::

= T
dS

dt
dSs
:::

− p
d(1/ρ)

dt
sd(1/ρs)
::::::

+ v
dv

dt
+µ

dC

dt
+
dϕe

dt

τsϕ
ρsϕs

dϕe
s

:::
, (1)

where τϕ is the
::::::
where:

::
T

::
is

:::
the

:::::::
absolute

:::::::::::
temperature,

:::
ps ::

is
:::
the

::::
solid

::::::::
pressure

:::::::::
conjugated

::
to

:::::
solid

::::::
density

:::::::
change,

:::
τsϕ ::

is
:::
the

thermodynamic variable (pressure) conjugated to porosity change (to be defined). τϕ:
,
:::
and

:::::::
ϕe
s = ϕs::

is
:::
the

::::
solid

:::::::
volume

:::::::
fraction,

:::::::::
superscript

:::
“e"

:::::::::
represents

::::::::
reversible

:::::::
(elastic)

::::::
change

::::::::::::
(ϕf = 1−ϕs,

::::
with

:::
ϕf:::::

being
:::
the

:::::::::
medium’s

::::::::
porosity).

:::
τsϕ can be viewed

as analogy to pressure as conjugate variable to volume change.
d

dt
=

∂

∂t
+ vi∇i denotes the Lagrangian (material) derivative145

with respect to a specific phase,
dϕe

dt
is the reversible part of the porosity change.

:::
The

:::::::::
individual

:::::
terms

::
in

:::
this

::::::
energy

:::::::
balance

::
are

::::::::::
interpreted

::
as:

:

– T
dS

dt:::::
TdSs: Heat stored in internal energy U

::
Us.

–
p

ρ2
dρ

dt ::::::::
psd(1/ρs): Energy change due to volumetric deformation (

::::::::::::
compressibility

::
of

:::::
solid

:::::
grains

::::::::::
(volumetric

:
Hooke’s

Law).150
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– v
dv

dt
: Newtonian mechanics (kinetic energy, e.g., v dv

dt =
1
2
dv2

dt ).

– µ
dC

dt
: Energy due to changes in composition (chemical potential), which is zero in the present derivation.

–
τϕ
ρϕ

dϕe

dt
:

::::::::

τsϕ
ρsϕs

dϕe
s: Poroelastic effects: reversible part of the energy change due to the changes in porosity.

Note, that τϕ is not defined yet.
::
τsϕ :

is
:::
not

:::::::
defined

:::
yet.

Entropy Production (TQs)155

4.2
:::::::

Entropy
::::::::::
Production

:::
for

:::::::::
Poroelastic

::::::::
Loading

Solving the local entropy productionequation for Qs and multiplying both sides by T , we have (for details see Appendix B):

::
In

:::
the

::::::
context

::
of

::::::::::::
poroelasticity,

:::
the

::::
most

:::::::::
important

:::::::
outcome

::::
from

:::::::::
Appendix

::
B

:
is
:::
an

:::::::::
expression

:::
for

::::::
entropy

::::::::::
production,

::::::
Qporo

s ,

::::::::
associated

::::
with

::::::
elastic

::::::::::
(reversible)

:::::::
porosity

::::::
change:

:

TQporo
s =

[
(ps − τsϕ)− pf

] dϕe
s

dt
,

::::::::::::::::::::::::::

(2)160

:::::
where

::
ps::

is
:::
the

::::
solid

:::::::
pressure

:::
and

:::
pf :

is
:::
the

::::
fluid

::::::::
pressure.

:::::::
Entropy

:::::::::
production

::::
must

::
be

::::
zero

:::
for

::::::::
reversible

:::::::::
poroelastic

:::::::::::
deformation;

:::::::
therefore

::::::::::::::::
(ps − τsϕ)− pf = 0

:::
(!).

::::
This

::::::
implies

::::
that

::::::::::::::::::::::::::::::
(Yarushina and Podladchikov, 2015):

:

TQsτ
s
ϕ
:

= ηϕ2+2+pv+µQρCs − vQv −QρGGibbs +Qu+p−τϕf
:

(3)

This expression represents the entropy production, which must be non-negative according to the second law of thermodynamics.

This formulation, which assumes local thermodynamic equilibrium for only the solid and fluid phases, is less strict than165

Biot’s classical assumption of a single internal energy potential for the entire
:::
We

:::
also

::::::
notice

::::
that

:::::::::::::::
τsϕ = pe/(1−ϕf ),::::::

where

::::::::::
pe = p̄− pf ::::::::

represents
:::
the

::::::::
effective

:::::::
pressure

:::::
(total

:::::::
pressure

::
is

::::::
defined

:::
as

:::::::::::::::::::::
p̄= (1−ϕf )ps +ϕf pf ).

:::
For

:::
an

:::::::::
explanation

:::
of

:::
the

:::::
Maple

:::::
script

::::
used

::
in

:::
the

:::::::::
derivation

:::
and

:::::::
analysis

::
of

::::::
entropy

::::::::::
production

::
in

:
a
::::::::::
single-phase

::::::::
medium,

:::
see

::::::::
Appendix

:::
A.

::::::::
Appendix

::
B

:::::::
provides

::
a

::::::
similar

::::::::::
explanation

:::
for

:::
the

:::::::
entropy

::::::::::
production

:::::::::
derivation

::
in

::
a two-phase system in the linear poroelastic case

(Yarushina and Podladchikov, 2015).
::::::
porous

:::::::
medium.

:
170

4.3 Extended Thermodynamic Admissibility

4.3
::::::

Internal
:::::::
energy

::
of

:::
the

:::::
solid

:::::
frame

Building upon the concepts from Lebon et al. (2008) and the nonlinear viscoelastoplastic framework developed by Yarushina and Podladchikov (2015)

, the derivation of Gassmann’s and Biot’s equations must satisfy the constraints of thermodynamic admissibility. Specifically,

the entropy production Qs must be non-negative,
:::
We

::::
begin

::::
with

:::
the

:::::::
internal

:::::
energy

::
of
::::::::::::
representative

::::::::::
infinitesimal

:::::
solid

:::::::
skeleton175

::::::
(frame)

::::::
linked

::
to

:::::::
material

:::::
points

:::::::
(grains)

::
of

:::
the

:::::
solid

:::::::
skeleton

::
in

:
a
::::::::::
Lagrangian

:::::::
fashion,

::::::::::
Us(Vs,ϕs), :::

per
:::
unit

:::::
mass.

:::::
Here,

:::
Vs::

is

6



::
the

:::::::::::
(Lagrangian)

:::::
solid

::::::
volume

::::
and

::::::::::
ϕs = Vs/Vt ::

is
:::
the

::::
solid

:::::::
volume

:::::::
fraction,

::
Vt::

is
:::
the

:::::::::::
(Lagrangian)

::::
total

:::::::
volume.

::
A

:::::::::
first-order

:::::
Taylor

:::::::::
expansion

:::::
about

::
an

::::::::::
equilibrium

::::
state

::::::::
(V 0

s ,ϕ0
s )::::::

yields:

Us(Vs,ϕs) = Us(V
0
s ,ϕ

0
s)+

∂Us

∂Vs
(V 0

s ,ϕ
0
s)∆Vs +

∂Us

∂ϕs
(V 0

s ,ϕ
0
s)∆ϕs + o(ϵ),

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(4)

:::::
where

:::::::::::::
∆Vs = Vs −V 0

s :
and the constitutive relations must be derived in a way that ensures compliance with the second law of180

thermodynamics.
:::::::::::::
∆ϕs = ϕs −ϕ0

s.
::::
The

::::::
energy

::::::::
increment

:::::
∆Us ::

is:
:

∆Us = Us(Vs,ϕs)−Us(V
0
s ,ϕ

0
s) =

∂Us

∂Vs
(V 0

s ,ϕ
0
s)∆Vs +

∂Us

∂ϕs
(V 0

s ,ϕ
0
s)∆ϕs.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(5)

4.3.1 Thermodynamic Constraints on Fluxes and Productions

:::
The

:::::::
internal

::::::
energy

::
Us::

is
::
a

:::::
scalar

:::::::
potential

:::::::
defined

::
on

::
a

::::::
smooth,

:::::::
convex

::::
state

:::::
space,

::::::
where

::
the

:::::::
Hessian

::::::
matrix

::
is

:::::::::
symmetric:

:
∂Us

∂Vs
(Vs,ϕs)

∂Us

∂ϕs
(Vs,ϕs)

=


∂Us

∂Vs
(V 0

s ,ϕ
0
s)

∂Us

∂ϕs
(V 0

s ,ϕ
0
s)

+H

∆Vs

∆ϕs

 ,
::::::::::::::::::::::::::::::::::::::::

(6)185

:::::
where

::
H

::
is

:::
the

:::::::
Hessian

::::::
matrix

::
of

::::::
second

:::::::::
derivatives

::
of

:::
the

:::::::
internal

:::::
energy

:::::
with

::::::
respect

::
to

::
Vs::::

and
:::
ϕs:

H=


∂2Us

∂V 2
s

(V 0
s ,ϕ

0
s)

∂2Us

∂Vs∂ϕs
(V 0

s ,ϕ
0
s)

∂2Us

∂ϕs∂Vs
(V 0

s ,ϕ
0
s)

∂2Us

∂ϕ2
s

(V 0
s ,ϕ

0
s)

 .
:::::::::::::::::::::::::::::::::::::

(7)

:::
The

:::::::::
increment

::
of

:::
the

:::
first

:::::::::
derivatives

:::
of

::::
∆Us:::

are:
:∆

∂Us

∂Vs
(V 0

s ,ϕ
0
s)

∆
∂Us

∂ϕs
(V 0

s ,ϕ
0
s)

=H

∆Vs

∆ϕs

 .
::::::::::::::::::::::::::

(8)

:::
For

:::::::::
isothermal

::::::::
processes

:::
and

::
in

:::::::::
agreement

::::
with

::::
CIT

::::::::
(equation

::::
(1)),

::::
∆Us:::

can
:::
be

:::
also

:::::::::
expressed

::
via

::::::::::
mechanical

::::::::
variables

::::
only:

:
190

∆Us(Vs,ϕs) =−ps∆Vs + τsϕ
Vs

ϕs
∆ϕs ≡−ps∆Vs +(ps − pf )

Vs

ϕs
∆ϕs.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(9)

::
By

:::::::::
comparing

:::::::::
equations

::
(8)

::::
and

:::
(9),

:::
we

:::::::
identify:

:

∆
∂Us

∂Vs
(V 0

s ,ϕ
0
s) =−∆ps, ∆

∂Us

∂ϕs
(V 0

s ,ϕ
0
s) =−∆(

Vs

ϕs
(pf − ps))≈

Vs

ϕs
∆(pf − ps).

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(10)

::::::::
Therefore,

:::
the

:::::::::
following

:::::
linear

::::::
system

:::::
holds:

: −∆ps

−Vs

ϕs
∆(pf − ps)

=H

∆Vs

∆ϕs

 .
:::::::::::::::::::::::::::

(11)195
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:::
We

::::
then

:::
use

:::
the

::::::::
following

:::::::
equation

::
of

:::::
state

::
for

:::
the

:::::
fluid

::
for

:::::::::
isothermal

:::::::::
processes:

:

∆Vf

Vf
=−βf∆pf ,

::::::::::::::

(12)

:::::
where

:::
βf ::

is
:::
the

:::::
fluid

:::::::::::::
compressibility.

:::::::::
Equations

::::
(11)

::::
and

::::
(12)

:::
are

:::::
used

:::
by

::::::::::::::::::::::::::::::
Yarushina and Podladchikov (2015)

::::::::
(assuming

::::::::
simplified

:::::::
diagonal

:::::::
Hessian

::::::
matrix

:::
H)

::
as

:
a
::::::::::
constitutive

::::::
closure

:::::::::::
relationships

:::::
(their

::::::::
equations

:::::
6-8).

5
:::::::::
Derivation

::
of

:::
the

::::::::
original

:::::::::
Gassmann

::::
and

::::
Biot

:::::::::
equations200

:::
We

:::
here

:::::::
provide

:
a
:::::::::
derivation

:::::
which

::
is

::::::
similar

:
to
:::
the

::::
one

:::::::
proposed

:::
by

:::::::::::::::::::::::::::::
Yarushina and Podladchikov (2015)

::
in

:::::
terms

::
of

:::::::::
underlying

:::::::::
constitutive

::::::
closer

:::::::::::
relationships.

::::::
Unlike

:::::::::::::::::::::::::::::
Yarushina and Podladchikov (2015),

:::
we

::::
start

:::::
from

:::
the

:::::::
Hessian

:::::
matrix

:::
H

:::
and

:::::::
provide

:
a
:::::::
detailed

:::::::::
derivation,

::::::
without

::::::::
skipping

:::
any

:::::::::::
intermediate

::::
steps

:

5.1
:::::::::

Derivation
::
of

:::
the

:::::::
original

::::::::::::::
Biot-Gassmann

:::::::::
equations

:::
We

:::::::
consider

:
a
:::::::::
simplified

:::::::
diagonal

:::::::
version

::
of

:::
the

:::
full

::::::::::
compliance

:::::
matrix

:::
H

::::::::
(equation

:::::
(11)):205  −∆ps

−Vs

ϕs
∆(pf − ps)

=

H11 0

0 H22

∆Vs

∆ϕs

 .
:::::::::::::::::::::::::::::::::::::

(13)

:::
We

::::::
further

:::
use

:::
the

::::::::
following

:::::::
relation

:::::::
between

::::::
density

:::::::::
increments

::::
and

::::
solid

::::::
volume

:::::::
change:

:

∆ρs
ρs

=−∆Vs

Vs
,

::::::::::::

(14)

::
In

:::::::
addition,

:::
we

:::
use

:::
the

::::::::
following

::::::::
identity:

∆ϕs =−∆ϕf .
::::::::::::

(15)210

:::::::
Equation

::::
(13)

:::
can

:::
be

::::
now

::::::::
re-written

:::
as: −∆ps

− Vs

(1−ϕf )
∆(pf − ps)

=

H11 0

0 H22

Vs
∆ρs
ρs

−∆ϕf

 .
::::::::::::::::::::::::::::::::::::::::::::

(16)

:::
We

::::
solve

::::
(16)

::::
with

:::::::
respect

::
to

:::::::
∆ϕf/ϕf::::

and
:::::::
∆ρs/ρs.

::::
The

::::::::
resulting

:::::::::
expressions

:::
are

:::::::::::
cumbersome

::::
and

:::
can

::
be

:::::::
directly

::::::::
accessed

::
via

:::
the

::::::::
provided

::::::
Maple

::::::
scripts:

∆ϕf

ϕf
::::

= f(H11,∆(pf − ps),ϕf ,∆ϕf ,Vs),
:::::::::::::::::::::::::::::

(17)215

∆ρs
ρs

::::

= f(H22,∆(pf − ps),ϕf ,∆ϕf ,Vs).
:::::::::::::::::::::::::::::

(18)
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5.2
:::

The
:::::::::::
incremental

::::::::::
formulation

The second law of thermodynamics requires that the total entropy production of the system remains non-negative. This

condition applies both to the intra-phase and inter-phase entropy production within a porous medium. Mathematically, this

is expressed as:
:::
next

::::
step

::
is

::
to

:::::::::
substitute

:::
the

:::::::
resulting

:::::::::
equations

:::
for

:::::

∆ϕf

ϕf
::::
and

::::

∆ρs
ρs ::::

into
:::
the

:::::
mass

:::::::::::
conservation

:::::::::
equations,220

:::::
which

::
is

:::::::
explored

::::::
below.

::::
Now,

:::
we

::::::::
transition

:::::
from

::::::::::
differentials

:::
into

:::
the

::::::::::
incremental

::::::::::
formulation

:::
and

:::
use

:::
the

:::::::::
following

:::::::
identity:

∑
phases

Qs∆: =
∑

phases

Qintra
s +Qinter

s ≥ 0.
ds·
dt

, (19)

Here, Qintra
s represents the intra-phase entropy production within each phase, while Qinter

s accounts for the inter-phase contributions

due to interactions between the solid skeleton and the fluid phase. To satisfy the second law, both components must be225

non-negative.
:::::
where

:::
we

:::::
adopt

:::::::
material

:::::::::::
(Lagrangian)

::::
time

:::::::::
derivatives.

:::
We

:::
use

:::
the

:::::::::
following

:::::::
notation:

::::::::::::::

ds

dt
=

∂

∂t
+ vsi∇i:::::::

denotes

::
the

::::::::::
Lagrangian

:::::::::
(material)

::::::::
derivative

::::
with

:::::::
respect

::
to

::::
solid

::::
and

::::::::::::::

df

dt
=

∂

∂t
+ vfi ∇i:::::::

denotes
:::
the

::::::::::
Lagrangian

::::::::
(material)

:::::::::
derivative

::::
with

::::::
respect

::
to

:::::
fluid,

:::::
where

:::
vfi ::::

and
::
vsi:::

are
:::
the

:::::
fluid

:::
and

:::::
solid

::::::::
velocities,

:::::::::::
respectively.

::::
The

:::::::
Einstein

:::::::::
summation

::::::::::
convention

::
is

::::
used:

::::::::::
summation

:
is
:::::::
applied

::::
over

:::::::
repeated

:::::::
indices.

Entropy Production and Compaction Mechanisms230

:::
We

::::::
re-write

::::::::
equation

::::
(12)

::
in

:
a
::::
rate

:::::
form:

dfpf
dt

=
dspf
dt

+
(
vfi − vsi

)
∇ipf .

:::::::::::::::::::::::::::

(20)

:::
We

:::::
adopt

:::
the

::::::::
following

::::::::::
approximate

::::::::
relations,

::::::
which

::
are

:::::::
strictly

::::
valid

:::::
under

:::::
small

::::::
strains:

:

dfpf
dt

::::

≈ dspf
dt

,
::::::

(21)

dfϕf

dt
::::

≈ dsϕf

dt
.

:::::::

(22)235

In the context of poroelasticity, the most important outcome from expression (B5) is in the two terms, which describe

porosity change:

TQporo
s = p

dϕ

dt
− τϕ

dϕe

dt
=
∑

phases

(
p
dϕ

dt
− τϕ

dϕe

dt

)
.

:::::::::::::
Approximations

::::::::
(21)-(22)

:::
are

::::::::
implicitly

:::::::
assumed

::
in

:::::::::::::::::::::::::::::
Yarushina and Podladchikov (2015)

:
.
:::
For

:::::::
equation

::::
(21),

::::
this

::::::::::::
approximation

:
is
:::::
valid

:::::
when

:::
the

::::::
relative

:::::::
velocity

:::::::
between

::::
fluid

::::
and

::::
solid

::::::
phases

::
is

:::::
small,

::
or

:::::
when

:::
the

::::
fluid

:::::::
pressure

:::::::
gradient

::
is
:::::::::
negligible.

:
240
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5.3
:::::::::::

Conservation
::
of

:::::
mass

::
in

:
a
::::
rate

:::::
form

:::::::::::
Conservation

::
of

::::
mass

:::
for

::::
fluid

:::::
phase

::
in
::::
rate

::::
form

::
is

:

∂(ϕfρf )

∂t
+∇j

(
ϕfρfv

f
j

)
= 0,

:::::::::::::::::::::::::

(23)

We assume that the porosity evolution can be decomposed into elastic and dissipative components, which together with the

negativity of entropy production requires that inelastic porosity equation takes the form (Yarushina and Podladchikov, 2015):245

:::
and

:::::::::::
conservation

::
of

::::
mass

:::
for

:::
the

::::
solid

:::::
phase

::
in
::::
rate

::::
form

:::
is:

−∂((1−ϕf )ρs)

∂t
+∇j
::::

(
(1−ϕf )ρsv

s
j

::::::::::

)
=−,0.

:
(24)

where ϕe denotes the elastic portion of porosity, pe = p̄− pf represents the effective pressure (
::::::::
Equations

::::::::
(23)-(24)

:::
can

:::
be

::::::::::
reformulated

:::
for

::::::::::
divergences

:::::
∇jv

s
j:::

and
::::::
∇jq

D
j :

:

∇jv
s
j

::::

=− 1

ρs

dsρs

dt
+

1

1−ϕf

dsϕf

dt
,

:::::::::::::::::::::::

(25)250

∇jq
D
j

::::

=−ϕf

ρf

dfρf

dt
− dfϕf

dt
−ϕf∇jv

s
j ,

:::::::::::::::::::::::::::

(26)

:::::
where

:::::::::::::::
qDi = ϕf (v

f
i − vsi )::

is
:::
the

:::::
Darcy

::::
flux.

:

5.4
::::::::

Relations
::::::::

between
:::::
total,

::::
solid

::::
and

:::::
fluid

::::::::
pressures

::::
Note

:::
that

::::
the

:::::::
material

:::::::::
derivatives

::
of

:::
the

:
total pressure, p̄= (1−ϕ)ps +ϕpf , minus fluid pressure, pf , respectively), and ηϕ

stands for the effective bulk viscosity. Using the definition (B8), we can rewrite expression (??)
:̄
p,

::::
and

:::
the

::::
solid

::::::::
pressure,

:::
ps,255

::
are

::::::
related

::::
via:

dsp̄

dt
= (1−ϕ)

dsps
dt

+ϕ
dspf
dt

+
dsϕ

dt
(pf − ps), ⇒ dsps

dt
=

1

1−ϕf

(
dsp̄

dt
−ϕf

dspf
dt

− dsϕf

dt
(pf − ps)

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(27)

:::::::
Equation

:::
27

:::
for

::::
solid

:::::::
pressure

::
ps::::

can
::
be

:::::::::
simplified

::
by

:::::::::
neglecting

:::
the

:::::::
porosity

::::::::
derivative

:::::
term:

dsps
dt

≈ 1

1−ϕf

(
dsp̄

dt
−ϕf

dspf
dt

)
.

::::::::::::::::::::::::::::

(28)

5.5
::::::::

Resulting
::::::::
equations

:::
of

:::::::::::::
Biot-Gassmann

::::::
theory260

:::
We

::::
then

:::::
adopt

:::
the

::::::
relation

::::
(28)

::::
and

::::::
replace

:::
ps ::

in
:::::
favor

::
of

::̄
p.

:::
By

::::::::::
simplifying

::::::::
equations

::::::::
(25)-(26),

:::
we

::::
can

::::
write

:::
the

:::::::::
following

::::::
relation

:∇kv
s
k

∇kq
D
k

=

a11 a12

a21 a22




dsp̄

dt
dspf
dt

 .

::::::::::::::::::::::::::::::

(29)
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:::
We

::::
note

:::
that

:::::::::
a12 = a21,

:::::
which

::
is
::::::::
explicitly

:::::::
derived

:::::
rather

::::
than

:::::::
imposed

::::
(this

:::
fact

::
is
::::::::
explored

::
in

::::
more

::::::
details

:::
for

:::
the

::::
case

::
of

:::
the

:::
full

:::::
matrix

:::
H

:::
and

::
is

::::::::
provided

::::::
below).

:::
Let

:::
us

:::::
define

:::
the

::::::::
following

:::::::::::::::
compressibilities:265

βd =−a11,
:::::::::

(30)

:::::
which

:::::
gives:

:

H1,1 =−H2,2

(ϕ2
f − 2ϕf +1)

Vs

(
ϕ3
fH2,2βd − 3ϕ2

fH2,2βd +3ϕfH2,2βd −H2,2βd +Vs

) .
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(31)

::::
Then

:::
we

::::::::
introduce

::
α

::
as

α=
a12
βd

,
:::::::

(32)270

:::::
which

:::::
gives

H2,2 =
Vs(

αϕ2
f +ϕ3

f − 2αϕf − 2ϕ2
f +α+ϕf

)
βd

.

::::::::::::::::::::::::::::::::::::::::

(33)

::::::
Finally,

:::
we

::::::::
introduce

::
B

::
as

:

B =−αβd

a22
≡ βd −βs

ϕf (βf −βs)+βd −βs
.

:::::::::::::::::::::::::::::::

(34)

::
By

:::::
using

:::
the

:::::::::
definitions

::::::::
(30)-(34),

:::
we

:::
can

:::::::
rewrite

:::
(29)

:
in the following form:275

TQporo
s

∇kv
s
k

∇kq
D
k

=
∑

phases

(ps − τsϕ)− (pf − τfϕ )
dϕe

dt
βd
::

 1 −α

−α
α

B




dsp̄

dt
dspf
dt

 , (35)

In equilibrium conditions, the entropy production tends to zero, which implies that the term
[
(ps − τsϕ)− (pf − τfϕ )

]
= 0 (!).

The fluid phase does not contain the porosity term, meaning that τfϕ = 0. It implies that
[
(ps − τsϕ)− (pf − τfϕ )

]
= 0 corresponds

to τsϕ = ps − pf (Yarushina and Podladchikov, 2015). We also notice that τsϕ = pe/(1−ϕ). By definition the poroelastic constant

Kϕ :::::
which

::
is

:::
the

::::::
original

::::
Biot

:::::::::
poroelastic

:::::::
equation

:::::::::::
(Biot, 1962),

::::::::
extended

::
to

::
an

::::::::::
incremental

:::::::::
large-strain

::::::::::
formulation

::::::::::::::::::::::::::::::
(Yarushina and Podladchikov, 2015)280

:
.
:::::::
Equation

::::
(35)

:::::::
reduces

:::::::
exactly

::
to

:::::::
original

::::
Biot

::::::::::
formulation

:::::::::::
(Biot, 1962)

:
if
:::

we
:::::::

assume
:::::
small

::::::
strains.

::::
We

::::
also

::::
note

::::
that

:::
the

:::::::::
expression

:::
(32)

:::
for

::
α

:::
can

:::
be

::::::
written

::
as

α= 1− βs

βd
.

::::::::::

(36)
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5.6
:::

Key
:::::::::::
observations

::
To

::::::
derive

:::
the

::::::
original

::::::::::::::
Biot–Gassmann

:::::::::::
poroelasticity

::::::::
relations,

::::
one

::::::
should

:::
use

:::
the

::::::::
proposed

:::::::::
rheological

::::::::::
relationship

::::
(13)

::::
and285

::
the

::::
two

::::::::
equalities

::::
(21)

:::
and

:::::
(22).

:::
The

::::::::::
relationship

::::
(13)

::::::
implies

:::
the

:::::::::
following

:::::::
identity:

dsϕe
f

dt

1
=−βϕ(1−ϕf )

dsτsϕ
dt

2
=−βϕ

dspe
dt

,
:::::::::::::::::::::::::::::::::

(37)

:::::
where

:::
the

:::::::::
poroelastic

:::::::
constant

::::::::::::::
(compressibility)

:::
βϕ is defined that as linear rheological relationship during reversible poroelastic

part of deformation.
:

:::::::
Equality

::::
(1)

::
in

::::::::
equation

::::
(37)

::
is

:::
the

::::::::
primary

::::::::::
assumption

:::::
made

:::
by

::::::::::
Biot (1962)

:::
and

:::
by

:::::::::::::::
Gassmann (1951)

::::
(also

:::::
used

:::
by290

:::::::::::::::::::::::::::::
Yarushina and Podladchikov (2015)

:
).

::
It

::::::::
postulates

:::
that

:::::
equal

:::::::
changes

::
in

::::
total

:::
and

::::
fluid

::::::::
pressure

::::
leave

:::::::
porosity

::::::::::
unchanged.

::::
This

:::::::::
assumption

::
is

:::::
often

:::::::
referred

::
to

::
as

:::
the

::::::::::::
self-similarity

:::::::::
hypothesis

:::
and

::
is

:::::::::
equivalent

::
to

::::::::
assuming

::::
that

:::
the

:::::
matrix

:::
of

:::::::::::
second-order

:::::::::
derivatives

::
of

::::::
internal

::::::
energy,

:::
H,

::
is

:::::::
diagonal

::::
(see

:::::::
equation

:::::
(13)).

::::::::
Equality

:::
(2)

::
in

:::::::
equation

::::
(37)

::::::
results

::::
from

:::
the

:::::::::::::
thermodynamic

::::::::::
admissibility

::::::::
condition

::
of

:::::::::::::::::::::::::::::
Yarushina and Podladchikov (2015)

:
,
:::::
which

:::::
leads

::
to

::
the

:::::::
relation

::::::::::::::::::::::::
τsϕ = ps − pf = pe/(1−ϕf ), ::::::

derived

::
in

::::::
section

:::
4.2.

:
295

:::
We

:::
can

::::
infer

:::
the

:::::::::
expression

:::
for

::
βϕ:::::::::

introduced
::
in

::::::::
equation

::::
(37),

:::::
which

:::::::
directly

::::::
follows

:::::
from

:::::::
equation

::::
(13)

::::
once

:::
we

::::::::
substitute

:::::::::
expressions

:::
for

::::
H1,1::::

and
::::
H2,2:

dϕe

dt
=Kϕ(1−ϕ)

dτsϕ
dt

=Kϕ
dpe
dt

,

βϕ = βd(1−ϕf )−βs.
::::::::::::::::::

(38)300

The statement (37) means that changes in porosity are proportional to changes via τsϕ, which is the pressure difference

pe/(1−ϕ). Due to the requirement of zero entropy production, this statement provides us with the definition that equal changes

in pressures leave porosity unchanged.

One of the key assumptions made during the original derivation of Gassmann’s equations (Gassmann, 1951) is
::::
The

::::::::
proposed

:::::::::
rheological

:::::::::::
relationship

::::
(13)

::::
and

::::
the

::::::::
equalities

::::
(17)

::::
and

::::
(18)

::::::::
inserted

::::
into

:::
the

:::::
mass

::::::::::::
conservation

:::::::::
equations

::::
(25)

::::
and305

:::
(26)

:::::
fully

:::::
define

:::
the

::::::::
original

::::::::::::::
Biot–Gassmann

::::::::::::
poroelasticity

:::::::::
framework

::::::::::::::::::::::::::
(Gassmann, 1951; Biot, 1962)

:
.
::
As

::
a

:::::::::::
consequence,

::
the

::::::
theory

::::::::
contains

:::::
three

:::::
exact

::::::::::
constitutive

:::::
laws:

::
(i)

::::
the

:::::::
effective

:::::
stress

::::
law

:::::::
(explored

:::::::
below),

:::
(ii)

::::::::::
Gassmann

:::::::
relation

:::
for

::
the

:::::::::
undrained

::::
bulk

::::::::
modulus

::::::::::
Ku = 1/βu::::

(βu::
is

:::
the

:::::::::
undrained

::::::::::::::
compressibility),

::::
and

::::
(iii)

:::
the

:::::::
relation

:::::::
between

:::
the

::::::::
effective

::::::::::::
compressibility

::
βϕ,

:::
the

:::::
solid

::::::
grains’

:::::::::::::
compressibility

:::
βs,

:::
and

:::
the

::::::
drained

:::
(or

::::
dry)

:::::
frame

:::::::::::::
compressibility

:::
βd.

:

5.7
:::::::

Effective
:::::
stress

::::
law310

::::::::::::::::::::
Nur and Byerlee (1971)

:::::::
provided

::
an

:::::
exact

:::::::::
expression

:::
for

:::
the

:::::::
effective

::::::
stress

:::
law,

::::::
which

::
is

::::::
widely

:::::::
regarded

:::
as

:
a
:::::::::::
fundamental

::::
result

::
in
::::::::::::

poroelasticity.
::
It

::
is

::::::
defined

:::
by

:::
the

::::::::
following

:::::::
relation:

:

dpeff = dp̄−αdpf ≡ dp̄−
(
1− βs

βd

)
dpf ,

:::::::::::::::::::::::::::::::::::

(39)
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:::::
where

:::
the

::::::
drained

::::::::::::::
compressibility,

:::
βd,

:::
can

::
be

::::::::
measured

:::::::::::::
experimentally

:::
as:

1

βd
=− 1

∇kvsk

dpeff

dt

∣∣∣∣
undrained

.

:::::::::::::::::::::::

(40)315

:::
The

:::::
exact

:::::::
effective

:::::
stress

:::
law

:::::
given

:::
by

:::::::
equation

::::
(39)

:::::::
follows

::::::
directly

::::
from

:::
the

:::::::
derived

:::::::::
poroelastic

::::::::::
expressions.

:

5.8
::::::::

Resulting
::::::::
equations

:::
of

:::::::::::::
Biot-Gassmann

::::::
theory

:::
for

:::::
bulk

::::::
moduli

::
To

::::::
derive

:::
the

:::::::
original

::::
Biot

:::::::::
poroelastic

:::::::::
equations

:::::::::::
(Biot, 1962)

:
in

:::::::
stiffness

::::::
form,

:::
we

:::::
invert

:::
the

:::::::::
coefficient

::::::
matrix

::
in

::::::::
equation

::::
(35): 1

Kd

 1 −α

−α
α

B



−1

=
Kd

1−αB

 1 B

B
B

α

 ,

::::::::::::::::::::::::::::::::::::::

(41)320

:::::
where

::::::::::
Kd = 1/βd ::

is
:::
the

::::::
drained

::::
bulk

::::::::
modulus

::::
(i.e.,

:::
βd ::

is
:::
the

::::::
drained

::::::::::::::
compressibility).

::::
The

:::::::
resulting

::::::::::
expression

:::
for

:::::::
stiffness

::
is:

dp̄

dt
dpf
dt

=−Ku

 1 B

B
B

α


∇kv

s
k

∇kq
D
k

 ,

::::::::::::::::::::::::::::::::

(42)

:::::
where

:::::::::::::::::::
Ku =Kd(1−αB)−1.

:::
The

:::::::::
poroelastic

::::::::
constants

:::::
used

::
in

:::::::
equation

::::
(42)

:::
are:

:

α
:
= 1− Kd

Ks
,

::::::::

(43)325

B
:
=

1/Kd − 1/Ks

1/Kd − 1/Ks +ϕ(1/Kf − 1/Ks)
,

::::::::::::::::::::::::::::::

(44)

:::::
where

:::
the

::::
bulk

::::::
moduli

:::
are

::::::
defined

::
as

:::
the

:::::::::
reciprocals

::
of

:::
the

::::::::::::
corresponding

::::::::::
compliance

:::::::::
parameters:

::::::::::
βs = 1/Ks,

:::
and

:::::::::::
βf = 1/Kf .

5.8.1
:::::::
Original

:::::::::::
Gassmann’s

:::::::::
equations

:::
The

:::::::
relation

:::::::
between

:::
the

::::::::
undrained

::::
bulk

::::::::
modulus

:::
Ku::::

(see
:::::::
equation

::::
(42)

:::::
under

:::
the

::::::::
constraint

::::::::::
∇kq

D
k = 0)

:::
and

:::
the

:::::::
drained

::::
bulk330

:::::::
modulus

:::
Kd::

is
::::::
known

::
as

::::::::::
Gassmann’s

:::::::
equation

::::::::::::::::
(Gassmann, 1951):

:

Ku =Kd (1−αB)
−1

.
::::::::::::::::::

(45)

::::::::
According

:::
to

::::::::::
Gassmann’s

::::::
theory,

:::
the

:::::
shear

::::::::
modulus

::
of

::
a
::::::::::::
fluid-saturated

::::
rock

::::
Gu,

::
is

:::::
equal

::
to

:::
the

:::::
shear

::::::::
modulus

::
of

:::
the

::::
dry

:::::::
(drained)

::::
rock

::::
Gd:

Gu =Gd.
::::::::

(46)335
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:::
The

:::::::::
expression

::::
(45)

::
is
::::::::

obtained
:::
by

::::::::
inverting

:::
the

:::::::::
coefficient

::::::
matrix

::
in

::::::::
equation

::::
(35),

:::::::
leading

::
to

:::
the

::::::::
stiffness

::::
form

:::::
given

:::
in

:::::::
equation

::::
(42).

:::
An

::::::
English

:::::::::
translation

::
of

:::
the

:::::::
original

::::::::::::::
German-language

::::::
article

::
by

:::::::::::::::
Gassmann (1951)

::
is

:::::::
provided

::
in

:::::::::::::::::
Pelissier et al. (2007)

:
.
::::::::::
Gassmann’s

::::::
relation

::::
(45)

:::
can

::::
also

::
be

::::::::
rewritten

::
in

:::::
terms

::
of

::::
bulk

::::::::
modulus

::
as:

:

Ku =Kd +
(1−Kd/Ks)

2

ϕfK
−1
f +(1−ϕf )K

−1
s −Kd/K2

s

.

:::::::::::::::::::::::::::::::::::::::

(47)

5.8.2
:::::::::::
Assumptions

::::::
behind

::::
the

:::::::::
derivation

::
of

:::::::
original

:::::::::::
Gassmann’s

:::::::::
equations340

:::
The

::::::::
following

:::::::::::
assumptions

:::
are

:::::
made

:::::::::
throughout

:::
the

:::::::::
derivation

::
of

:::::
Biot’s

::::::::::
poroelastic

:::
and

:::::::::::
Gassmann’s

::::::::
equations

::
to

::::::
ensure

:::
the

::::::
validity

::
of

:::
the

::::::
results:

:

–
:::
The

:::::::
material

::
is

:::::::
assumed

::
to
:::
be

::::::
linearly

:::::::
elastic,

:::
and

:::
the

::::::
strains

:::
are

:::::
small.

–
:::
The

::::::
porous

:::::::
medium

::
is

:::::::::
considered

::::::::::::
homogeneous

:::
and

::::::::
isotropic

:::
and

:
a
:::::
fully

::::::::::::
interconnected

::::
pore

::::::::
network.

–
:::
The

::::::::::
interactions

:::::::
between

:::
the

:::::
solid

::::
and

::::
fluid

::::::
phases

:::
are

::::::::
governed

:::
by

:::::
linear

::::::::::
constitutive

::::
laws,

::::
and

:::
the

::::
fluid

::::
flow

::::::
obeys345

::::::
Darcy’s

::::
law

::
(or

:::::::::::
equivalently,

:::
the

::::
fluid

::
is

::::::::
governed

::
by

:::
the

::::::::::
quasi-static

::::::::::::
Navier–Stokes

::::::::
equations

:::
for

:
a
:::::::::::
compressible

:::::
fluid).

:

–
:::
The

::::::::::::
self-similarity

:::::::::
hypothesis:

:
that equal changes in pore (fluid) pressure and confining (total) pressure leave the porosity

unchanged. This assumption holds when considering a homogeneous elastic frame material (Korringa, 1981; Alkhimenkov, 2024)

.Any discrepancy in
::::
result

::
in

:::
no

::::::
change

::
in

:::::::
porosity

:::
ϕf .

::::
This

::
is
:::::::::
equivalent

::
to

::::::::
assuming

:
a
::::::::

diagonal
::::::::::
compliance

:::::
matrix

:::
H

:::
(see

::::::::
equation

::::
(6)).350

–
:::
The

:::::::::
derivation

:::::::
assumes

:
a
::::::::::
quasi-static

:::::::
process,

::::
such

:::
that

:::::::
inertial

:::::
effects

::::
can

::
be

:::::::::
neglected.

:::::
These

::::::::::
assumptions

:::::::
provide

:
a
::::::::
simplified

::::::::::
framework

::
for

:::
the

:::::::::
derivation

:::
and

:::
are

::::::::::::::::
thermodynamically

::::::::::
admissible.

:::
One

:::
of

::
the

::::
key

::::::::::
assumptions

::
in

:::
the

:::::::
original

:::::::::
derivation

::
of

:::::::::::
Gassmann’s

::::::::
equations

::::::::::::::::
(Gassmann, 1951)

:
is

:::
the

::::::::::::
self-similarity

:::::::::
hypothesis

::
—

:::::
equal

::::::
changes

:::
in total and fluid pressure changes will lead to porosity changes as follows from equation (37). As highlighted by

Korringa (1981), applying confining (external) pressure to a homogeneous elastic frame material causes it to behave as a355

linear mapping. Note that in the present thermodynamically admissible model, this is not assumed, but derived as a

condition necessary to ensure zero entropy production during reversible poroelastic processes.
:::::
leave

:::::::
porosity

:::::::::
unchanged

::
—

::::::::
explicitly

:::::
stated

::
in

:::
the

:::::::
original

::::::::::
manuscript.

After simplifying and collecting terms (see Appendix B), the total entropy production becomes:

6
:::::::::
Derivation

::
of

:::
the

:::::::::
Extended

:::::
Biot’s

::::::::::::
poroelasticity

::::::::::::
formulation:

:::::::
General

::::
case360

6.1
::::

Goal
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:::::
Recall

:::
the

::::::::
structure

::
of

:::
the

::::::
original

::::::::::::::
Biot–Gassmann

::::::::::
formulation

::::
(35):∇kv

s
k

∇kq
D
k

=−βd

 1 −α

−α
α

B




dsp̄

dt
dspf
dt

 ,

::::::::::::::::::::::::::::::::::

(48)

::::
This

::::::::::
relationship

:::
was

:::::::::
originally

::::::
derived

:::::
under

:::
the

::::::::::
assumption

:::
that

:::
the

:::::::
Hessian

::::::
matrix

::
H

::
is
::::::::
diagonal.

:::::
Here,

:::
we

::::
aim

::
to

::::::
extend

:::
this

:::::
result

::
by

::::::::
retaining

:::
the

:::
full

::::::
matrix

:::
H,

::::::::
including

::
its

:::::::::::
off-diagonal

:::::
terms,

::::
and

:::::
derive

:::
an

::::::::
analogous

::::::::::
relationship

::::
that

::::::::
preserves365

::
the

:::::::
original

::::::::
structure

:::
and

:::::::::
introduces

::::::::::
generalized

::::::::::
parameters.

:::
To

:::
this

::::
end,

:::
we

::::::
follow

:::
the

:::::
same

::::
steps

:::
as

:::::::
outlined

::
in

:::::::
Section

::
5,

::::
with

::
the

::::
goal

:::
of

::::::::
obtaining

:::::::::::::
Gassmann-type

::::::::::
relationships

:::
for

:::
the

::::::::
Extended

::::
Biot

:::::::::
poroelastic

::::::
theory.

:

6.2
:::::::::

Derivation

:::
We

::::
now

:::::::
consider

:::
the

:::
full

::::::::::
compliance

:::::
matrix

:::
H

::::::::
(equation

::::
(6)):

TQs,total

 −∆ps

−Vs

ϕs
∆(pf − ps)

=
pe

(1−ϕ)
2 + ηtv

s2 +
(qD)2ηdV

ϕ
+

λt

T

∂T

∂x
2

H11 H12

H21 H22

 ∆Vs

−∆ϕf

 . (49)370

–
1

ηϕ

(
pe

(1−ϕ)

)2

: Entropy production due to poroelastic deformation (poroelastic coefficient ηϕ and pressure difference

pe).

– ηt (divv
s)

2: Entropy production due to viscous dissipation in the solid phase.

–
(qD)2ηdV

ϕ
: Entropy production due to viscous dissipation in fluid flow (Darcy flow) .

–
λt

T

(
∂T

∂x

)2

: Entropy production due to heat conduction (Fourier’s law).375

The non-negative nature of each term ensures the overall positivity of entropy production, thereby confirming the

thermodynamic validity of the system.

For detailed derivations and applications of these principles to specific pore geometries and boundary conditions, readers

are encouraged to refer to Appendix A, Appendix B, and
::::
Note

::::
that

::::::::::
H12 =H21::::

due
::
to

:::
the

::::::::
structure

::
of

:::
the

::::::
matrix

::::
H: the

discussions provided by Yarushina and Podladchikov (2015). Additionally, symbolic Maple routines used to reproduce and380

validate the theoretical results presented in this article are available in a permanent DOI repository (Zenodo) will be provide

after review, now see suppl. material. For a detailed explanation of the Maple script used in the derivation and analysis of

entropy production in a single-phase medium, see Appendix A. Appendix B provides a similar explanation for the entropy

production derivation in a two-phase porous medium.
::::::::::
off-diagonal

::::::::::
component

::::
H12 ::::::::::

corresponds
::
to

:::
the

::::::
second

::::::
mixed

::::::
partial

::::::::
derivative

::
of

:::::::
internal

::::::
energy,

:::
first

::::
with

::::::
respect

:::
to

::
Vs:::

and
::::
then

:::
ϕf ,

::::
and

::::
must

:::
be

::::
equal

::
to

:::::
H21,

:::::
which

::
is

:::
the

::::::::
derivative

:::::
taken

::
in

:::
the385

:::::::
opposite

:::::
order.

::::
This

::::::::
symmetry

:::::
holds

:::::::
because

:::
the

::::::
internal

::::::
energy

::
is
::::::::
assumed

::
to

::
be

:
a
:::::::
smooth

:::::
(twice

:::::::::::
continuously

::::::::::::
differentiable)
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:::::
scalar

:::::::
function

::
of

:::
its

::::
state

::::::::
variables.

:::::
(This

::
is

:::
also

::::::
known

:::
as

:::
the

::::::::
symmetry

::
of

:::::::
second

::::::::::
derivatives).

:::::
Then,

:::
we

::::::
follow

:
a
:::
the

:::::
same

::::
steps

::
as

::
in

::::::
section

::
5
::
by

:::::
using

::::::::
identities

::::::::
(14)-(15)

:::
and

:::::
arrive

::
to
:::
the

:::::::::
following

::::::::
equations:

:

∆ϕf

ϕf
::::

= f(H11,H12,∆ps,∆(pf − ps),ϕf ,∆ϕf ,Vs),
:::::::::::::::::::::::::::::::::::::

(50)

∆ρs
ρs

::::

= f(H22,H12,∆ps,∆(pf − ps),ϕf ,∆ϕf ,Vs),
:::::::::::::::::::::::::::::::::::::

(51)390

:::::
which

:::
are

:::::::::::
cumbersome

:::
and

::::
can

::
be

:::::
found

:::
in

:::
the

:::::
Maple

::::::
script.

:::
We

::::
then

:::
use

::::::::
identities

:::::::::
(21)-(22).

::::::::
Following

:::
the

:::::
steps

::::::::
provided

::
in

::::::
section

::
5,

:::
we

::::::::
substitute

:::
the

:::::::
resulting

::::::::
equations

:::
for

:::::

∆ϕf

ϕf
::::::::
(equation

:::::
(50))

:::
and

::::

∆ρs
ρs :::::::::

(equation
:::::
(51)),

::::::::
re-written

::
in

:
a
::::
rate

:::::
form,

:::
into

:::
the

:::::
mass

::::::::::
conservation

::::::::
equations

:::::::::
(25)-(26).

6.3
::::::::

Resulting
::::::::
equations

:::
of

:::
the

::::::::
Extended

::::
Biot

::::::::::
poroelastic

::::::
theory

:::
We

:::::
again

:::::
adopt

:::
the

:::::::
relation

::::
(28)

:::
and

:::::::
express

::
ps:::

in
:::::
terms

::
of

::̄
p.

:::::::::::
Substituting

::::::::
equations

::::::::
(50)–(51)

::::
into

:::
the

:::::
mass

:::::::::::
conservation395

::::::::
equations

::::::::
(25)–(26)

:::::
yields

:∇kv
s
k

∇kq
D
k

=

aEB
11 aEB

12

aEB
21 aEB

22




dsp̄

dt
dspf
dt

 .

::::::::::::::::::::::::::::::::

(52)

:::
We

::::
note

:::
that

::::::::::
aEB
12 = aEB

21 ,
::::::
which

:
is
:::
not

::::::::
imposed

::
by

:::::::::
symmetry

:::
but

:::::::
emerges

::::::::
naturally

::::
from

:::
the

::::::::::
substitution

::
of

:::::::
equation

::::
(49)

::::
into

::
the

:::::
mass

:::::::::::
conservation

::::::::
equations

::::::::
(25)–(26).

::::
This

:::::::::
symmetry

::
is

:
a
:::::
direct

:::::::::::
consequence

::
of

:::
the

:::::::
algebra.

6.4 Two-phase media: fluid-saturated porous material400

::::::::
Following

:::
the

::::::::
approach

::
of

:::::::
Section

::
5,

::
we

::::
now

::::::
define

:::
the

::::::::::::::
compressibilities.

:::::
First,

:::
we

:::::
define

:

βEB
d =−aEB

11 ,
:::::::::::

(53)

:::::
which

:::::
gives:

:

βEB
d =− (−1+ϕf )

2H2,2 +Vs (VsH1,1 − 2H1,2(−1+ϕf ))

(−1+ϕf )3
(
H1,1H2,2 −H2

1,2

)
Vs

.

:::::::::::::::::::::::::::::::::::::::::::::::::

(54)

::::
Then

:::
we

::::::::
introduce

::::
αEB

::
as

:
405

αEB =
aEB
12

βEB
d

≡
−Vsϕ

2
fH1,2 +ϕ3

fH2,2 +V 2
s H1,1 − 2ϕ2

fH2,2 +VsH1,2 +ϕfH2,2

(−1+ϕf )2H2,2 +(VsH1,1 − 2H1,2(−1+ϕf ))Vs
,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(55)

:::::
which

:::::
gives

H2,2 =
Vs

(
αEBϕfH1,2β

EB
d −αEBH1,2β

EB
d −ϕfH1,2β

EB
d +H1,2β

EB
d +1

)
βEB
d

(
αEBϕ2

f −ϕ3
f − 2αEBϕf +2ϕ2

f +αEB −ϕf

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(56)
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::::::
Finally,

:::
we

::::::::
introduce

::::
BEB

:::
as

BEB =−αEBβEB
d

aEB
22

≡
(βEB

d −β′EB
s )

(
1+H1,2(1−ϕf )

2βEB
d

)
(1−ϕf )2

(
(βEB

d )2 +(ϕfβf − 2β′EB
s )βEB

d +(β′EB
s )2

)
H1,2 +βEB

d +(βf −β′EB
s )ϕf −β′EB

s

,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(57)410

:::::
where

::::
β′EB
s ::

is
:::::::
defined

::
by

:::
the

:::::::::
following

:::::::
relation:

:::::::::::::::
αEB = 1− β′EB

s

βEB
d

.
:::
By

:::::
using

:::
the

:::::::::
definitions

::::::::
(53)-(57),

:::
we

:::
can

:::::::
rewrite

::::
(52)

::
in

::
the

:::::::::
following

:::::
form:∇kv

s
k

∇kq
D
k

=−βEB
d

 1 −αEB

−αEB αEB

BEB




dsp̄

dt
dspf
dt

 ,

:::::::::::::::::::::::::::::::::::::::::

(58)

:::::
which

::
is

:::
the

:::::::::
incremental

:::::
form

::
of

:::
the

::::
large

:::::
strain

::::::::
Extended

::::
Biot

:::::::::
poroelastic

::::::::::
formulation.

:::::
Note

:::
that

:::
we

:::
did

:::
not

:::::
define

::
a

::::::::
particular

:::::::::
expression

::
for

:::::
H1,2 :::::

which
:::
can

:::
be

::
set

:::::::::
arbitrarily

:::
via

::::::::::
introduction

::
of

::
a
::::
new

::::::::
parameter

:::::
β′′EB
s .

:
415

The equations governing fluid flow in poro-viscoelastoplastic media can be formulated based on the conservation laws

and constitutive equations for both fluid and solid phases
::
To

:::::
derive

:::
the

:::::::::
Extended

::::
Biot

:::::::::::
poroelasticity

::::::::
relations,

:::
we

:::::
used

::::
only

::
the

::::::::
proposed

::::::::::
rheological

::::::::::
relationship

::::
(49)

::::
and

:::
the

:::
two

:::::::::
equalities

::::
(21)

:::
and

:::::
(22).

:::
The

:::::::::::
relationship

::::
(49)

::::::
denotes

:::
the

:::::::::
following

:::::::
identity:

dsϕf

dt
=

(1−ϕf )
2β′EB

s H1,2

(
(1−ϕf )β

EB
d +β′EB

s

)
1+H1,2(1−ϕf )2βEB

d

dspf
dt

−
(
(1−ϕf )β

EB
d −β′EB

s

) ds(p̄− pf )

dt
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(59)420

:::::
where

:::
the

:::::::::
poroelastic

:::::::
constant

::::::::::::::
(compressibility)

::::
βEB
ϕ :::

can
::
be

:::::::
defined

::
as

:
a
::::::::
coeficient

::
in

::::
front

::
of

::::::::
effective

:::::::
pressure

:::::::::::::::
dspe = ds(p̄− pf ):

βEB
ϕ = βEB

d (1−ϕf )−β′EB
s .

:::::::::::::::::::::::

(60)

::::::::
Therefore,

::::::::
equation

::::
(59)

:::
can

::
be

::::::
written

::::
now

:::
as:

:

dsϕf

dt
=

(1−ϕf )
2β′EB

s H1,2

(
(1−ϕf )β

EB
d +β′EB

s

)
1+H1,2(1−ϕf )2βEB

d

dspf
dt

−βEB
ϕ

dspe
dt

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(61)425

::
To

::::::
further

:::::::
simplify

:::
the

::::::::
notation,

:::
we

:::
can

::::::::
introduce

:::::
β′′EB
s :::

and
:::::
solve

:::
for

::::
H1,2:::

the
::::::::
following

::::::::
equation:

:

(1−ϕf )
2β′EB

s H1,2

(
(1−ϕf )β

EB
d +β′EB

s

)
1+H1,2(1−ϕf )2βEB

d

= β′EB
s −β′′EB

s ,

:::::::::::::::::::::::::::::::::::::::::::::::::

(62)

:::::
which

:::::
gives

H1,2 =
β′EB
s −β′′EB

s

(1−ϕf )2
(
(β′EB

s )2 +βEB
d (ϕf − 2)β′EB

s +βEB
d β′′EB

s

) .
::::::::::::::::::::::::::::::::::::::::::::::::::

(63)
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::::::::::
Substituting

:::::::
equation

::::
(63)

::
in

:::
the

:::::::::
expression

:::
for

::
B

::::::::
(equation

::::
(57))

:::::
gives

:::::::::
simplified

:::::::
relation:430

BEB =
βEB
d −β′EB

s

(βf −β′EB
s )ϕf +βEB

d −β′′EB
s

.

:::::::::::::::::::::::::::::::

(64)

:::
We

:::
also

::::
note

::::
that

:::
the

:::::::::
expression

::::
(55)

::
for

::::
αEB

::::
can

::
be

::::::
written

::
as
:

αEB = 1− β′EB
s

βEB
d

.

::::::::::::::

(65)

::::::::::
Furthermore,

:::
the

::::::::
equation

::::
(62)

:::
can

::::
now

::
be

:::::::::
re-written

::
as

dsϕf

dt
= (β′EB

s −β′′EB
s )

dspf
dt

−βEB
ϕ

dspe
dt

.
::::::::::::::::::::::::::::::::::

(66)435

6.4
::::::::

Relations
::::::::

between
::::::::::
poroelastic

::::::::::
parameters

::::
and

::
H

:::
We

:::
can

:::::
write

::
the

::::::::
relations

:::::::
between

:::::::::
poroelastic

::::::::::
parameters

:::
and

::
H

::
as

:::::::
follows:

:

β′EB
s =

(1−ϕf )H2,2 −VsH1,2

Vs

(
H1,1H2,2 −H2

1,2

)
(1−ϕf )

:::::::::::::::::::::::::::::::

(67)

:::
and

β′′EB
s =

Vs(ϕf − 2)H1,2 +(1−ϕf )H2,2

Vs(H1,1H2,2 −H2
1,2)(1−ϕf )

.

:::::::::::::::::::::::::::::::::

(68)440

:::
The

:::::::
relations

:::::::
between

::::::::::
poroelastic

:::::::::
parameters

::::
βEB
d ::::::::

(equation
::::
(54)),

:::::
β′EB
s ::::::::

(equation
:::::
(67)),

::::
β′′EB
s ::::::::

(equation
:::::
(68)),

::::
αEB

::::::::
(equation

::::
(55)),

::::
and

::::
BEB

::::::::
(equation

:::::
(57),

::
in

:::::
which

::::
βEB
d ::::

and
::::
β′EB
s :::

are
::::::::::
substituted)

:::
are

:::::
fully

::::::::
expressed

::
in

:::::
terms

::
of

:::
the

:::::::::::
components

::
of

:::
the

::::::
Hessian

::::::
matrix

::
H.

6.4.1 Conservation of linear momentum and Darcy’s law

6.5
:::::::::::::

Gassmann-type
:::::::
relation445

The conservation of linear momentum is
::::::::
equations

:::
for

:::
the

::::::::
undrained

:::::::::::::
compressibility

:::
in

:::
the

:::::::::
framework

::
of

:::
the

:::::::::
Extended

::::
Biot

:::::::::
poroelastic

::::::::::
formulation

::
is:

:

∇j(−δij+ij)− giβ
EB
u

:::
= 0βEB

d
:::

(
1−αEBBEB
::::::::::

)
, (69)

where p̄= (1−ϕ)ps +ϕpf :::::
which

:::
has

:
a
::::::::
structure

::::::
similar

::
to

:::
the

::::::
original

:::::::::
Gassmann

::::::::
equation

::::
(45).

7
:::::::::::
Comparison

::::::
against

::::::::
previous

::::::::::::
poroelasticity

::::::
models

:
450

::
In

:::
this

:::::::
section,

:::
we

:::::::
assume

:::::
small

:::::
strains

:::
to

:::::
enable

::
a
:::::
direct

::::::::::
comparison

::::
with

:::::
other

::::::::
classical

:::::::::::
poroelasticity

:::::::
models,

::::::
which

:::
are

:::::::
typically

:::::::::
formulated

::::::
within

:::
the

::::::::::
infinitesimal

:::::::::::
deformation

:::::::::
framework.

:
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7.1
::::::::::

Comparison
:::::::
against

::::::::::::
poroelasticity

:::::
model

:::
of

:::::::::::::::::::::::::
Detournay and Cheng (1993)

7.1.1
::::::::
Rheology

::::::::::::::::::::::::
Detournay and Cheng (1993)

:::::::
postulate

:::::
linear

::::::::::
rheological

:::::::::::
relationships

::::
that

:::::::
connect

:::
the

::::::::::
volumetric

::::::::
response

::
of

:::
the

:::::::
porous455

:::::::
medium

::
to

:::::::::
increments

::
in

::::
fluid

:::
and

::::::::
effective

::::::::
pressures:

:
∆Vt

Vt
∆Vp

Vp

=−

β′DC
s βDC

d

β′′DC
s β′DC

p

dpf

dpe


:::::::::::::::::::::::::::::::::

(70)

:::::
These

::::::::::
expressions

:::::::
describe

::::
how

:::
the

::::
total

:::::::
volume

::
Vt::::

and
::::
pore

::::::
volume

:::
Vp::::::

deform
:::

in
:::::::
response

::
to

:::::::
changes

:::
in

::::
fluid

:::::::
pressure

:::
pf

:::
and

:::::::
effective

::::::::
pressure

::::::::::
pe = p̄− pf ,

::::::
where

:̄
p
:

is the total pressure.
::::

The
::::::::::
mechanical

:::::::::::
interpretation

:::
of

:::
the

::::
four

::::::::::::::
compressibilities

::::
βDC
d ,

:::
β′
p, τ̄ij is the deviatoric stress tensor, δij is the Kronecker delta, i, j = 1..3 and Einstein summation convention isused460

(summation is applied over repeated indexes). Viscous fluid flow through porous media is governed by Darcy’s law:

qDi =− k

ηf
(∇ip

f + giρ
f ),

:::::
β′DC
s ,

:::
and

:::::
β′′DC
s :::

has
::::
been

::::::
defined

::
in

::::::::::::::::::::::::
Detournay and Cheng (1993)

:
.
::::
Note

:::
that

:::
by

:::::::
invoking

:::
the

::::::::::::
Betti-Maxwell

::::::::
reciprocal

::::::::
theorem,

::::::::::::::::::::::::
Detournay and Cheng (1993)

::::::
suggest

:::
that

::::::::::::::
K ′

p =
ϕf

αDCβDC
d

,
::::
and

::::::::::::::
β′DC
p = 1/K ′DC

p .
:

7.1.2
:::::::::
Geometry

:::
and

::::::::::
kinematics465

::::::::::::::::::::::::
Detournay and Cheng (1993)

:::
use

:::::
exact

:::::::
relations

::::
that

:::::::
connect

:::
the

:::::
total,

:::::
solid,

::::
and

::::
pore

::::::::::
volumetric

::::::::
responses

::::
with

::::::::
porosity

:::::::
changes.

:::::::::
Assuming

::::::
control

:::::::
volumes

:::
and

:::::
using

:::::
finite

:::::::
changes,

:::
the

::::::::
following

::::::::
identities

:::::
hold:

∆Vt

Vt
::::

=
∆Vs

Vs
+

ϕf

1−ϕf

∆ϕf

ϕf
,

:::::::::::::::::::

(71)

∆Vp

Vp
::::

=
∆Vs

Vs
+

1

1−ϕf

∆ϕf

ϕf
.

:::::::::::::::::::

(72)

where qDi = ϕ(vfi − vsi ) denotes Darcy’s flux, vfi denotes the fluid velocity, vsi denotes the solid velocity, k is permeability, ηf470

is fluid shear viscosity.

7.1.3 Conservation of mass

7.1.3
:::::::
Porosity

::::::::
evolution

::::
and

:::::::::::
solid-volume

:::::::
change

Conservation of mass for fluid phase is

∂(ϕρf )

∂t
+∇j

(
ϕρfv

f
j

)
= 0,475
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:::::::::
Combining

:::
the

::::::::::
rheological

:::::::
relations

::::
(70)

::::
with

:::
the

:::::::::
geometric

::::::::
identities

::::::::
(71)–(72)

:::::
yields

::::::::
compact

::::::::::
expressions

:::
for

:::
the

:::::::
porosity

:::::::
variation

:::
and

:::
the

:::::::::::
solid-volume

:::::
strain

:::::::::::::::::::::::::
(Detournay and Cheng, 1993):

:

∆ϕf

ϕf
::::

=−
(βDC

ϕ )

ϕf
dpe +(β′DC

s −β′′DC
s )dpf ,

:::::::::::::::::::::::::::::::

(73)

ϕs
∆Vs

Vs
::::::

=−β′DC
s dpe −

(
β′DC
s −ϕf β

′′DC
s

)
dpf ,

::::::::::::::::::::::::::::::::
(74)

where ρf denotes fluid density and conservation of mass for solid phase is
:::::::::::::::::::::::::
(βDC

ϕ ) = βDC
d (1−ϕf )−β′DC

s .
:

480

:::
The

::::::::
resulting

:::::::::::
representation

:::
of

::::::::::::::::::::::::
Detournay and Cheng (1993)

::
is:∇kv

s
k

∇kq
D
k

=−βDC
d

 1 −αDC

−αDC αDC

BDC




dp̄

dt
dpf
dt


:::::::::::::::::::::::::::::::::::::::

(75)

:::
The

::::::
inverse

:::::
form,

:::::::::
expressing

:::
the

::::
time

::::::::
evolution

::
of

:::::::
pressure

:::::
fields

::
in

:::::
terms

::
of

:::::::::
mechanical

::::
and

::::::::
hydraulic

:::::::::
divergence

:::::
rates,

:::::
reads:


dp̄

dt
dpf
dt

=−KDC
u

 1 BDC

BDC BDC

αDC


∇kv

s
k

∇kq
D
k

 ,

:::::::::::::::::::::::::::::::::::::::

(76)485

:::
The

:::::::::
poroelastic

::::::::
constants

::::
used

:::
in

::::::::
equations

::::::::
(75)–(76)

:::
are

::::::::::::
(K ′

d = 1/βDC
d ,

:::::::::::::::
K ′DC

s = 1/β′DC
s ,

::::::::::::::
K ′′DC

s = 1/β′′DC
s ::

):
:

αDC
:::

= 1− β′DC
s

βDC
d

,

::::::::::

(77)

BDC
::::

=
βDC
d −β′DC

s

βDC
d −β′DC

s +(βf −β′′DC
s )ϕf

,

::::::::::::::::::::::::::::

(78)

βDC
u

:::
= βDC

d

(
1−αDCBDC

)
,

:::::::::::::::::::
(79)

KDC
u

::::
=K ′

d

(
1−αDCBDC

)−1 ≡Kd +

(
1−K ′

d/K
′DC
s )2

ϕ
(
K−1

f − (K ′′DC
s )−1

)
+(K ′DC

s )−1 −K ′
d (K

′DC
s )−2

.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(80)490

::::
This

:::::::::
expression

:::
has

::
a
::::::
similar

::::::::
structure

::
to

:::
the

:::::::
original

:::::::::
Gassmann

::::::::
equation

::::
(45).

::::
We

:::::::::
emphasize

:::
that

:::::
these

::::::::::
expressions

:::::
arise

:::::::
naturally

:::
as

:
a
::::::
special

:::::
case

::
of

:::
the

:::::::
present

::::::::
Extended

::::
Biot

::::::::::
poroelastic

:::::::::::
formulation,

:::::
which

::
is
::::::

shown
::::::

below.
:::

In
:::::::::
particular,

:::
the

:::::::::::::::
Detournay–Cheng

:::::
model

:::::::
assumes

:::::
small

::::::
strains

:::
and

:::::::
constant

::::::::::
poroelastic

:::::::::
parameters,

:::::::
whereas

::
in
::::
our

:::::::::
framework

::
—

:::::
large

:::::
strain

:::::::::
incremental

::::::::::
formulation

::
is

:::::::
adopted,

::::
thus,

:::::::
porosity

::::::::
evolution

::
is

::::::
present

:::
and

:::
the

::::::::
coupling

::::::::
coefficient

:::::::::
BEB(ϕf ) :::

vary
::::
with

::::::::
porosity.

495
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7.2
::::::::::

Comparison
:::::::
against

:::
the

::::::::::::
poroelasticity

::::::
model

::
of

::::::::::::::::::::::::
Brown and Korringa (1975)

::::
and

::::::::::::::::::::
Rice and Cleary (1976)

:::
The

:::::::::::
poroelasticity

::::::::::
formulation

::
of

:::::::::::::::::::::::
Brown and Korringa (1975)

:::
can

::
be

::::::::
rewritten

:::::
using

:::
the

::::::
notation

:::::::::
introduced

:::
by

:::::::::::::
Thomsen (2025)

:
,
::
in

:::::
terms

::
of

:::
the

::::::
drained

::::
bulk

::::::::
modulus

:::::::::::::
KBK

d = 1/βBK
d ,

:::
the

:::::::
“mean"

::::
grain

::::::::
modulus

:::::::::::::
KBK

M = 1/βBK
M :::

and
:::
the

::::::
overall

::::::::
modulus

::
of

::
the

::::::::::::
heterogeneous

:::::
solid

:::::::::
constituent

::
of

:::
the

::::
rock

::::::::::::::
KBK

S = 1/βBK

S
.

∆Vt

Vt

∆Vp

Vp

=−

βBK
M βBK

d

βBK
ϕ β′BK

dpf

dpe


::::::::::::::::::::::::::::::::

(81)500

:::
The

:::::::
drained

::::::::::::
compressibility

::
is
:::::::
defined

::
as

:::::::::::::::::::::::::::::::::::::
(Brown and Korringa, 1975; Thomsen, 2025):

:

+∇jβ
BK
d =− 1

Vt
::::::::::

(1−ϕ)ρsv
s
j

∂Vt

∂pe
:::

= 0pf
:
, (82)

where ρs denotes solid density. Equations (23)-(24) can be reformulated for divergences ∇jv
s
j and ∇jq

D
j :

::
pe::

is
:::
the

:::::::
effective

:::
(or

::::::::::
differential)

:::::::
pressure,

:::::::::::
pe = p̄− pf .

:::
The

:::::::::::::
compressibility

::::
with

::::::
respect

::
to

::::
pore

:::::::
pressure

:
at
:::::::
constant

::::
total

:::::
stress

::
is

:::::::::::::::::::::::::::::::::::::
(Brown and Korringa, 1975; Thomsen, 2025)

:
:505

βBK
M =− 1

Vt

(
∂Vt

∂pf

)
pe

.

:::::::::::::::::::

(83)

:::
The

:::::::::
undrained

::::::::::::
compressibility

::
is
:::::::::::::::::::::::::::::::::::::
(Brown and Korringa, 1975; Thomsen, 2025)

:
:

βBK
u =− 1

Vt

(
∂Vt

∂p̄

)
.

:::::::::::::::::

(84)

:::::::::::::::::::::::::::::::::::::
Brown and Korringa (1975); Thomsen (2025)

::::::::
introduce

:::
the

::::::::
following

::::::::::::::
compressibilities

:::
for

:::
the

::::
pore

:::::::
volume:

β′BK

::::
=− 1

Vt

(
∂Vp

∂pe

)
pf

,

:::::::::::::::

(85)510

βBK
ϕ

:::

=− 1

Vp

(
∂Vp

∂pe

)
pf

,

:::::::::::::::

(86)

βf
::

=− 1

Vp

(
∂Vp

∂pf

)
pe

.

:::::::::::::::

(87)

:::::
Thus,

::
the

::::::::
variation

::
of

::::
pore

:::::::
volume

:::
can

::
be

:::::::
written

::
as

::::::::::::::::::::::::::::::::::::
(Brown and Korringa, 1975; Thomsen, 2025)

:
:

ϕfβfδpf = β′BK∆pe +βBK
ϕ ∆pf .

:::::::::::::::::::::::::::

(88)
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::::::
Finally,

:::
the

::::::::
undrained

:::::::::::::
compressibility

::::
can

::
be

::::::
written

:::
as:515

βBK
u = βBK

d − (βBK
d −βBK

M )2

ϕf (βf −βBK
ϕ )+ (βBK

d −βBK
M )

.

::::::::::::::::::::::::::::::::::::::

(89)

::::::::::::::
Thomsen (2025)

:::
used

:::
the

:::::::::
following

:::::::
identity:

βBK
M = ϕfβ

BK
ϕ +(1−ϕf )β

BK

S
.

:::::::::::::::::::::::::

(90)

:::::::::::::::::::::::
Brown and Korringa (1975)

:::
also

::::::
showed

::::
that

:::::::::::::::::
β′BK = βBK

d −βBK
M .

::::::
Finally,

:::
the

:::::::
resulting

:::::::::
expression

::
of

::::::::::::::::::::::::
Brown and Korringa (1975)

::
for

:::
the

:::::::::
undrained

:::::::::::::
compressibility

::::
βBK
u ::

in
:::
the

:::::::
notation

:::::::
provided

:::
by

::::::::::::::
Thomsen (2025):

:
520

∇jv
s
jβ

BK
u

:::
= βBK

d
:::

−+
(βBK

d −βBK
M )2

ϕf (βf −βBK

S
)+ (βBK

d −βBK

S
− 2βBK

M )
,

:::::::::::::::::::::::::::::::::

(91)

and
::
or,

::
in

:::::
terms

::
of

::::
bulk

:::::::
moduli,

:::::
which

:::
can

::
be

::::::::
explicitly

::::::
written

::
as

::::::::::::::
(KBK

u = 1/βBK
u ,

::::::::::::::
KBK

d = 1/βBK
d ,

:::::::::::::
KBK

S = 1/βBK

S
,
:::::::::::::
KBK

M = 1/βBK
M ,

::::::::::
Kf = 1/βf )

::::::::::::::
(Thomsen, 2025)

:
:

∇jq
D
j KBK

u
::::

=K ′
d

::

(
1
:
−−−ϕ∇jv

s
jα

BKBBK
::::::::

)
−1 ≡KBK

d +
(1−KBK

d /KBK
M )2

ϕf

(
K−1

f − (KBK
S )−1

)
+(KBK

S )−1 −KBK
d /(KBK

M )2

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

, (92)

where
ds

dt
=

∂

∂t
+ vsi∇i denotes the Lagrangian (material) derivative with respect to solid and

df

dt
=

∂

∂t
+ vfi ∇i denotes the525

Lagrangian (material)derivative with respect to fluid
:::::
where

αBK = 1− βBK
M

βBK
d

:::::::::::::

(93)

:::
and

::::
BBK

::::
can

::
be

:::::::::
calculated

::::
from

:::
the

:::::::
equality

::::
(92).

:

7.3
::::::::::

Equivalence
::
of

:::
the

:::::::::::::::
Brown–Korringa

:::::
(BK)

::::::
model

::::
and

::::::::::::::::
Detournay–Cheng

::::
(DC)

::::::
model

:::
The

:::::::::::::::
Detournay–Cheng

:::::
(DC)

:::::
model

::
is

::::
fully

:::::::::
equivalent

:
to
:::
the

::::::::::::::
Brown–Korringa

::::::
model

:
if
:
a
::::::
proper

:::::::
mapping

:::::::
between

:::
the

:::::::::
poroelastic530

:::::::::
parameters

::
is

:::::::::
established

::::
(i.e.,

:::::
K ′DC

s ::::
and

:::::
K ′′DC

s :::
to

::::
KBK

M ::::
and

::::::
KBK

S ).
:::::
Using

:::
the

:::::::::::
assignments:

KBK
M =K ′DC

s , KBK
S =

ϕsK
′DC
s K ′′DC

s

K ′DC
s −ϕf K ′DC

s

,

::::::::::::::::::::::::::::::::::::::

(94)

::
we

::::
find

:::
that

:::
the

:::
two

:::::::
models

::
—

:::
the

:::
DC

:::::
model

::::
and

::
the

::::::::::::::
Brown–Korringa

::::::
model

::
—

:::
are

:::::::::::
algebraically

:::::::
identical.

::::::
When

:::::::::::::
K ′DC

s =K ′′DC
s ,

:
it
:::::::::::
immediately

::::::
follows

::::
that

::::::::::::
KBK

M =KBK
S ,

:::
and

:::
the

:::
two

:::::::
models

:::::
reduce

:::
to

::
the

::::::::
classical

:::::::::::::
Biot–Gassmann

::::::::::
formulation.

:::
The

::::::::
algebraic

::::::::::
equivalence

:::::::
between

:::::
these

::::::::::
formulations

::::
can

::
be

::::
also

:::::::::
established

:::
by

:::
the

::::::::
following

:::::
exact

:::::::
relation:535

1

K ′DC
s

−ϕf
1

K ′′DC
s

=
ϕs

KBK
S

.

:::::::::::::::::::::::

(95)
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7.3.1 Constitutive relations

::::
This

:::::::
analysis

::::::
shows

::::
that

:::
the

::::::::::::::
Brown–Korringa

::::::
model

::
is
:::::::

distinct
:::::

from
:::
the

::::::::::::::::
Detournay–Cheng

::::::::::
formulation

:::
in

:::::
terms

::
of

::::
the

::::::::
parameter

:::::::::
definitions

:::
and

:::
the

:::::::
physical

::::::::::::
interpretation

:::
and

:::::::::::
experimental

:::::::::::
measurability

:::
of

:::
the

:::::::::
poroelastic

::::::::::
coefficients.

Elastic compressibility for fluid and solid densities is formulated as (Yarushina and Podladchikov, 2015):540

7.4
::::::::::

Equivalence
::
of

:::
the

:::::::
present

:::::::::
Extended

::::
Biot

::::::::::
formulation

::::
and

::::::::::::::::
Detournay–Cheng

:::::
(DC)

::::::
model

::::
Here

:::
we

::::
show

::::
that

:::
the

::::::
present

::::::::
Extended

::::
Biot

::::::::::
formulation

:::::::
contains

::
the

::::::::::::::::
Detournay–Cheng

::::
(DC)

::::::
model

::
as

:
a
::::::
special

::::
case.

:::::::
Indeed,

:
if
:::
we

:::
set

:::::::::::
β′EB
s = β′DC

s ,
::::
and

::::::
choose

H1,2
:::

=
ϕf

(
β′EB
s − β′′EB

s

)
ϕ3
fβ

EB
d β′′EB

s −ϕ2
fβ

EB
d β′EB

s − 2ϕ2
fβ

EB
d β′′EB

s +ϕ2
f (β

′EB
s )2 +2ϕfβEB

d β′EB
s +ϕfβEB

d β′′EB
s − 2ϕf (β′EB

s )2 − βEB
d β′EB

s +(β′EB
s )2

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

, (96)

545
Ks

ρs

dsρs

dt
=

1

1−ϕ

(
dsp̄

dt
−ϕ

dfpf

dt

)
,

::
the

:::::::
present

::::::::
Extended

::::
Biot

::::::::::
formulation

::::
will

:::
be

::::::
exactly

:::::::::
equivalent

::
to

:::
the

::::::::::::::::
Detournay–Cheng

::::
(DC)

::::::
model

::
in
::::

the
:::::
small

:::::
strain

::::::
regime.

:::
We

::::
refer

::
to
:::
the

::::::::
provided

::::::
Maple

:::::
script

::
for

:::::
more

::::::
details.

:

7.5
::::::::::

Equivalence
::
of

:::
the

:::::::
present

:::::::::
Extended

::::
Biot

::::::::::
formulation

::::
and

:::::::::::::::
Brown–Korringa

:::::
(BK)

::::::
model

::::
Here

:::
we

::::
show

::::
that

:::
the

::::::
present

::::::::
Extended

::::
Biot

::::::::::
formulation

:::::::
contains

:::
the

::::::::::::::
Brown–Korringa

:::::
(BK)

:::::
model

::
as

::
a
::::::
special

::::
case.

:::::::
Indeed,550

:
if
:::
we

:::
set

:::::::::::
β′EB
s = βBK

M ,
:::
use

:::::::
identity

::::
(94),

:::
and

::::::
choose

:

H1,2 =
βBK
M −βBK

S

ϕ2
fβ

EB
d βBK

S
− 2ϕfβEB

d βBK

S
+ϕf

(
βBK
M

)2
+βEB

d βBK

S
−
(
βBK
M

)2 ,
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(97)

where Kf denotes the fluid bulk modulus and Ks denotes the solid bulk modulus. A closing relation is the equation governing

porosity evolution (Maxwell viscoelastic volumetric response) :
::
the

::::::
present

::::::::
Extended

::::
Biot

::::::::::
formulation

:::
will

:::
be

::::::
exactly

::::::::
equivalent

::
to

:::
the

:::::::::::::::
Brown–Korringa

::::
(BK)

::::::
model

::
in

:::
the

::::
small

:::::
strain

:::::::
regime.

:::
We

::::
refer

::
to
:::
the

::::::::
provided

::::::
Maple

::::
script

:::
for

:::::
more

::::::
details.

:
555

8
:
A
::::::
closed

::::::
system

:::
of

::::::::
equations

::
of
::::
the

::::::::
extended

::::
Biot

::::::::::
poroelastic

::::::::::
framework

:::
The

:::::::::::
conservation

::
of

:::::
linear

::::::::::
momentum

:
is
:::::
given

:::
by:

:

=−+∇j
::

(pf − p̄δij+
:::

τ̄ ij
:
)−gi
:::

ρ̄= 0
:::

, (98)

where Kϕ is the poroelastic constant defined by equation (37).
::̄
τij::

is
:::
the

::::::::
deviatoric

:::::
stress

::::::
tensor,

:::
δij::

is
:::
the

:::::::::
Kronecker

::::
delta,

::::
and

::::::::::
i, j = 1,2,3.

:::
The

::::
total

:::::::
density

:
is
:::::
given

:::
by

:::::::::::::::
ρ̄= ϕsρ

s +ϕfρ
f ,

:::::
where

::
ρs

::::
and

::
ρf

:::
are

:::
the

::::
solid

::::
and

::::
fluid

::::::::
densities,

::::::::::
respectively.

::::
The560

:::::
vector

::
gi:::::::

denotes
:::
the

::::::::::
components

::
of

:::::::::::
gravitational

::::::::::
acceleration.

:
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8.0.1 Resulting evolution equations for poro-viscoelastoplastic media

::::::
Viscous

::::
fluid

::::
flow

:::::::
through

:::
the

::::::
porous

:::::::
medium

::
is

::::::::
governed

::
by

:::::::
Darcy’s

::::
law:

qDi =− k

ηf
(∇ipf + giρ

f ),

:::::::::::::::::::::

(99)

:::::
where

:
k
::
is
:::
the

:::::::::::
permeability

::
of

:::
the

::::::::
medium,

:::
and

::
ηf::

is
:::
the

::::
fluid

:::::
shear

::::::::
viscosity565

By eliminating the time derivatives of densities and porosity in equations (25)-(??) using expressions (??)-(??), the following

system of equations for compressibilities is obtained (Yarushina and Podladchikov, 2015):

:::
The

::::::
matrix

::
of

::::::::::
coefficients

::
in

:::::::
equation

::::
(58)

:::
can

:::
be

:::::::
inverted,

::::::::
yielding:

dsp̄

dt
dfpf
dt

=− 1

βEB
u (ϕf )

 1 BEB(ϕf )

BEB(ϕf )
BEB(ϕf )

αEB


∇kv

s
k

∇kq
D
k

−., (100)

:::::
where

:::
the

::::::::::
abbreviated

::::::::
definition

:::::::::::::::::::::::::::::::::
βEB
u = βEB

u (ϕf ) = βEB
d

(
1−αEBBEB

)
:
is
:::::
used,

:::
and

:::
the

::::::::::
parameters

:::
are

::::::::
functions

::
of

:::::::
porosity570

:::
ϕf ,

:::::::
meaning

::::
that

:::::::::::::::
BEB =BEB(ϕf ).

Deviatoric stresses are related to solid velocity gradients through the Maxwell viscoelastic relationship(Beuchert and Podladchikov, 2010)

:
::::::::
following

::::::::::
relationship:

:

1

Gu

d∇τ̄ij
dt

+=
1

2
(∇jv

s
i +∇iv

s
j )−

1

3
(∇kv

s
k)δij , (101)

where Gsat is the
:::
Gu::

is
:::
the

::::::::
undrained

:
shear modulus of the fluid-saturated porous material,

d∇τ̄ij
dt

=
dsτ̄ij
dt

− τ̄ikωkj − τ̄jkωki575

correspond to
:::::::
saturated

::::::
porous

:::::::
medium

:::
(it

:
is
::::::::
assumed

:::
that

:::
the

:::
dry

::
or

::::::
drained

:::::
shear

:::::::
modulus

::
is

:::::::::
equivalent

::
to

:::
Gu,

::::
i.e.,

:::::::::
Gd =Gu),

:::
and

d∇τ̄ij
dt

=
dsτ̄ij
dt

− τ̄ikωkj − τ̄jkωki
:::::::::::::::::::::::::::

(102)

:
is
:::
the

:
Jaumann objective stress rateand ωki =

1

2
(∇kv

s
i −∇iv

s
k) .

::::
The

:::::
tensor

::::::::::::::::::::
ωki =

1

2
(∇kv

s
i −∇iv

s
k) denotes the antisymmetric

part of the solid velocity gradient. The580

:::
The

:::::::::
poroelastic

::::::::
constants

::
in
:::::::::
expression

:::::
(100)

::::
can

::
be

::::::
defined

::
in

:::::
terms

::
of

::::::::::
compliance

:::::::::
parameters

:::
as:

:

αEB
:::

≡ αEB = 1− β′EB
s

βEB
d

,

::::::::::::::::

(103)

BEB
:::

≡BEB(ϕf ) =
βEB
d −β′EB

s

(βf −β′EB
s )ϕf +βEB

d −β′′EB
s

. ,

::::::::::::::::::::::::::::::::::::::

(104)

βEB
u

:::
≡ βEB

u (ϕf ) = βd

(
1−αEBBEB(ϕf )

)
,

:::::::::::::::::::::::::::::::
(105)
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:::::
where

::::
βEB
d ::::::::::

corresponds
::
to

:::
the

:::::::
drained

:::
(or

::::
dry)

:::::::::::::
compressibility

:::
and

::::
βEB
u :::::::

denotes
:::
the

::::::::
undrained

::::::::::::::
compressibility.

::::
Note

::::
that

:::
the585

:::::::
porosity

::
ϕf:::::::

evolves
::::::::
according

::
to

:::
the

::::::::
evolution

:::::::
equation

:::::
(66),

:::::
which

::
in

::::
turn

::::::
affects

::
the

::::::::::
poroelastic

::::::::
parameter

:::::::::::::::
BEB =BEB(ϕf )

:
at
::::
each

:::::::
loading

:::::::::
increment.

::::::
Finally,

:::
we

:::
can

:::
use

:::
the Carman–Kozeny relationship for permiability

:
to
::::::
model

::::::::::
permeability

:
evolution

as a function of porosity is

k = k0

(
ϕ

ϕ0

)nk

,

where nk = 3.
::::::
(where

::
ϕ0::

is
:::
the

::::::::
reference

:::::::
porosity

::
of

:::
the

:::::::
medium

:::
and

:::
k0::

is
:::
the

::::::::
reference

:::::::::::
permeability),

:::::
given

:::
by:

:
590

k = k0

(
ϕf

ϕ0

)nk

, where, e.g., nk = 3.

::::::::::::::::::::::::::::::::

(106)

8.1 Linear elastic limit (ηϕ → +∞): Biot’s poroelastic equations

:::::::::
Equations

:::::::::
(98)–(106)

::::
fully

:::::::::
represent

:::
the

::::::::::
quasi-static

:::::::::
Extended

::::
Biot

::::::::::::
poroelasticity

:::::::::::
formulation.

Under the small strain approximation and infinite ηϕ, a linear elastic limit of expression (35) can be derived which is know

as Biot’s poroelastic equations (Biot, 1962):595

9
:::::::::
Numerical

::::::
studies

::::::::::
supporting

:::::::::::
Gassmann’s

:::::::::
equations

:::
for

:::::::::::::
monomineralic

::::::
frame∇kv

s
k

∇kq
D
k

=− 1

Kd

 1 −α

−α
α

B


 dp̄

dt
dpf
dt

 .

The system of equations (??) can be rewritten for stiffness. For that let us invert the matrix of coefficients: 1

Kd

 1 −α

−α
α

B

−1

=
Kd

α/B−α2

 α

B
α

α 1

≡ Kd

1−αB

 1 B

B
B

α

 .

The resulting expression for stiffness is:600  dp̄

dt
dpf
dt

=−Ku

 1 B

B
B

α

∇kv
s
k

∇kq
D
k

 ,

where Ku =Kd (1−αB)
−1. Poroelastic constants in the expressions (35)-(42) are the following:

α= 1− Kd

Ks

and

B =
1/Kd − 1/Ks

1/Kd − 1/Ks +ϕ(1/Kf − 1/Ks)
.605
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The relation between Kd, Ks and Kϕ (defined by equation (37)) is

1

Kϕ
=

1−ϕ

Kd
− 1

Ks
.

Various poroelastic constants can be calculated numerically (Alkhimenkov, 2023) or measured using physical experimentation

in a laboratory (Makhnenko and Podladchikov, 2018)
::::::::::::::::::
Alkhimenkov (2023)

::::::::
performed

::
a

::::::::
numerical

:::::::::
validation

::
of

:::::::::::
Gassmann’s

::::::::
equations

::::::::::
considering

:
a
:::
3D

:::::::::
numerical

::::
setup

::::
and

::::::::
relatively

:::::::
complex

::::
pore

:::::::::
geometry

:::
that

::::::::
included

::::::
narrow

::::::
regions

:::::::
(cracks)

::::
and610

::::
large

::::
pore

:::::
space

::::::
(Figure

::::::
1a-b).

:::
The

:::::::::
numerical

:::::
model

::::::::
consisted

::
of

::
a

::::
solid

:::::
phase

::::::::::
representing

:::
the

:::::
grain

::::::
matrix

:::
and

:
a
::::
pore

::::::
space.

:::
The

::::::
model

:::
was

::::::
cubic,

::::
with

:::::::::
dimensions

:::
of

::::::::::::::::::
0.44× 0.44× 0.44m.

:::
The

:::::
pore

:::::
space

::::::::
comprised

:::::::
cracks,

:::::::
modeled

::
as

:::
flat

:::::::::
cylinders,

::::::::
connected

::
to

:::
an

::::::
internal

:::::
cubic

::::::
cavity,

::
as

::::::::
illustrated

:::
in

:::::
Figure

:::::
1a-b.

:::
The

:::::::
material

:::::::::
properties

::::
used

::
in

:::
the

::::::::::
simulations

:::
are

:::::
listed

::
in

::::
Table

::
1,
:::::
while

:::
the

::::::::::
geometrical

::::::::::::
characteristics

::
of

:::
the

::::
pore

:::::
space

:::
are

::::::::
provided

::
in

:::::
Table

:
2.

9.1 Gassmann’s equations615

Table 1.
:::::::
Material

:::::::
properties

::::
used

::
in

::
all

:::::::::
simulations.

:::::::
Material

:::::::::
parameter

::::
Solid

:::::
grains

::::
Fluid

::::
Bulk

::::::
modulus

:::
K

::
36

::::
GPa

:::
4.3

:::
GPa

:

::::
Shear

:::::::
modulus

::
µ

::
44

::::
GPa

::
−

:::
GPa

:

::::
Shear

:::::::
viscosity

::
η

::
−

:::
Pa·s

: ::::
1.414

::::
Pa·s

The relation between undrained response, Ku (see expression (42) under ∇kq
D
k = 0) , and drained response, Kd, is known

as

Table 2.
:::::::::
Geometrical

::::::::
properties

::
of

:::
the

:::::
model.

::::::::::
Geometrical

::::::::
parameter

:::::
Value

:::
Flat

::::::
cylinder

::::::
(crack)

:::::
radius,

:
b
::::

(m)
:::
0.2

:::
Flat

::::::
cylinder

::::::
(crack)

::::::::
thickness,

:
h
:::
(m)

: ::::
0.016

:

:::::
Crack

:::::
aspect

::::
ratio,

:::::::::
α= h/(2b)

:::
0.04

:

:::
Side

::
of
::::::
internal

:::::
cubic

:::
pore

:::
(m)

: :::
0.25

:

::::::
Volume

::
of

::
the

::::
pore

:::::
space

::::
(m3)

::::::
0.01854

:

::::
Total

::::::
porosity

: ::::::::::
≈ 0.2176465

:::::::::::::::::
Alkhimenkov (2023)

::::::
applied

::
a

:::
3D

:::::::::::
finite-element

:::::::
method

::
to

::::::
resolve

:::
the

:::::::::::
conservation

::
of

:::::
linear

::::::::::
momentum

:::::::
coupled

::::
with

:::
the

::::::::::
stress-strain

:::::::
relations

:::
for

:::
the

:::::
solid

:::::
phase

:::
and

:::
the

::::::::::
quasi-static

::::::::
linearized

::::::::::::
compressible

::::::::::::
Navier-Stokes

:::::::::
momentum

::::::::
equation

:::
for

::
the

:::::
fluid

::::::
phase.

:::
The

::::::::
resulting

::::::
system

:::
of

::::::::
equations

::::
was

::::::
solved

:::::
using

:
a
::::::

direct
:::::::::
PARDISO

:::::
solver

:::::::::::::::::::::::
(Schenk and Gärtner, 2004)

:
.620

:::::::::::::::::
Alkhimenkov (2023)

:::::::::
conducted

:
a
:::::::::::
convergence

:::::
study

:::::::
showing

::::
that,

:::
for

:::::
finer

:::::::::
resolution,

:::
the

:::::
result

:::
of

:::
the

:::::::::
numerical

:::::::
solution
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::::::::
converges

:::::::
towards

:::
the

:::::
result

:::::::
obtained

::::
from

:::
the

:::::::
original

:
Gassmann’s equation(Gassmann, 1951):

Ku =Kd (1−αB)
−1

.

According to .
:::::
Such

:
a
:::::::::::
convergence

::::::
analysis

::::::::
validates

:::
the

:::::::
accuracy

:::
of Gassmann’s equations, shear modulus of a fluid-saturated

rock, Gsat, is equivalent to the shear modulus of a dry rock, Gd (equivalent to a drained response) :625

Gsat =Gd.

The expression (??) is derived from the equation (??) via inversion of matrix of coefficients leading to the expression (42). Note

that English translation of the the original paper by Gassmann(Gassmann, 1951) is presented by Pelissier et al. (2007)
:::::::
equation

::
for

::
a

::::::::
particular

:::
(but

::::::::
arbitrary)

::::
pore

:::::::::
geometry.

:::::::::::
Furthermore,

::
the

::::
pore

::::::::
geometry

::::
that

:::
was

::::
used

:::
did

:::
not

:::::::
contain

:::
any

::::::
special

:::::::
features

::::::
(among

:::
all

:::::::
possible

::::::::::
geometries)

::::
that

:::::
were

::::::
tailored

:::
to

:::::
make

:
it
:::::::::

consistent
::::
with

:::::::::::
Gassmann’s

::::::::
equations

::::::::::::::::::
(Alkhimenkov, 2024)

:
.630

:::::
There

:::
are

::::
also

::::
other

::::
3D

::::::::
numerical

:::::::
studies

:::
that

::::::::
consider

:::::::
different

::::::::::
geometries

::
of

:::
the

::::
pore

:::::
space

::::
and

::::
that

:::
are

::::::::
consistent

:::::
with

::::::::::
Gassmann’s

::::::::
equations

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Alkhimenkov et al., 2020a, b; Alkhimenkov and Quintal, 2022a, b).

9.1 Effective stress law

Nur and Byerlee (1971) provided the exact expressions for the effective stress law, which can be treated as an exact result in

poroelasticity. It is defined by the following expression (Yarushina and Podladchikov, 2015):635

dpeff = dp̄−αdpf ≡ dp̄−
(
1− Kd

Ks

)
dpf ,

where Kd can be measured as

Kd =− 1

∇kvsk

dpeff

dt

∣∣∣∣
undrained

.

The exact effective stress law given by the formula (39) strictly follows from the derived expression (??)
:::
We

::::
here

::::::
extend

:::
the

:::::
results

::
of

::::::::::::::::::
Alkhimenkov (2023)

:::
for

:
a
::::::
denser

:::::
finite

::::::
element

:::::
mesh

:::::::::
(achieving

:::::::::
2,025,916

:::::::::
elements))

::::
and

:::::
report

:::
the

:::::::::::
convergence640

::::
study

::::::::
showing

::::
that,

:::
for

::::
finer

:::::::::
resolution,

:::
the

::::::
result

::
of

:::
the

:::::::::
numerical

:::::::
solution

::::::::
converges

:::::::
towards

:::
the

::::::
result

:::::::
obtained

:::::
from

:::
the

::::::
original

::::::::::
Gassmann’s

::::::::
equation

::::::
(Figure

:::::
1c-d).

10 Discussion

10.1 Physical Interpretation
::::::::::::
interpretation of the Derived EquationsThe derived

::::::
present

:::::::::
Extended

:
Biot

:
’s
::::::::::
poroelastic

::::::::::
framework645

:::
The

::::::
derived

::::::::
Extended

::::
Biot’s poroelastic equations describe the coupled mechanical and fluid flow behavior of a fluid-saturated

porous medium
:::::
under

::::::
general

:::::::::
conditions. Specifically, they account for the interaction between the solid matrix deformation
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Figure 1.
:::::
Panels

:::::
(a)-(b)

:::::
show

:::::
sketch

::::::::
illustrating

:::
the

:::::
model

:::::::
geometry.

:::::
Panel

::
(c)

:::::
shows

:::
the

:::::::
numerical

:::::::
solution

::
of

:::
Ku,

:::
the

:::::::
analytical

:::::::
solution

::
via

::::::::::
Gassmann’s

:::::::
equations

::::
(47),

:::
and

:::
the

::::::::
analytical

::::::
solution

:::
via

:::::::
equation

::::
(92)

::
as

:
a
:::::::

function
::
of

:::
the

::::::::
numerical

::::::::
resolution.

:::::
Panel

:::
(d)

:::::
shows

::
the

::::
error

:::::::::
magnitudes

:::::::
between

::
(i)

::
the

::::::::::
numerically

:::::::
evaluated

::::
bulk

::::::
modulus

:::
Ku:::

and
:::

the
:::::::::
analytically

:::::::
evaluated

::::
bulk

:::::::
modulus

:::
via

:::::::::
Gassmann’s

:::::::
equations

:::
(47)

:::
and

:::
(ii)

:::
the

:::::::::
numerically

:::::::
evaluated

::::
bulk

::::::
modulus

:::
and

:::
the

:::::::::
analytically

:::::::
evaluated

::::
bulk

::::::
modulus

:::
via

:::::::
equation

::::
(92).
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and the
:::::::
changes

:
in
:
pore fluid pressurechanges. The effective stress law, which modifies the classical elastic stress by incorporating

fluid pressure, plays a key role in understanding how external loads and fluid injection or extraction influence the stability and

deformation of the porous medium.650

:
.
:::::::
Classical

::::::
Biot’s

::::::::
equations

:::::::::::
(Biot, 1962)

:::
and

:
Gassmann’

:
s
::::::::
equations

::::::::::::::::
(Gassmann, 1951)

:::
are

::::::
special

:::::
cases

::
of

:::
the

:::::::::
presented

:::::
theory.

::::::::::
Gassmann’s equations provide a relation between the bulk moduli of the dry and

::::::
drained

:::
(or

::::
dry)

:::
and

:::::::::
undrained fluid-

saturated rock, offering insights
:::::
insight

:
into how fluid properties and porosity affect the seismic

::::::::
influence

:::
the

::::::::::
mechanical

response of the material. The results show that under the assumption of quasi-static conditions and small perturbations, the

derived equations capture the essential physics of wave propagation and attenuation in fluid-saturated media.655

10.2 Derivation
:::::
Other

::::::::::
derivations

:
of Gassmann’s equationsand relation to poroelasticity

Gassmann’s equations are directly related to the quasi-static (Biot, 1941) and dynamic poroelasticity (Biot, 1956, 1962)
::::::::::
formulation

::
of

:::::::::::
poroelasticity

:::::::::
developed

:::
by

::::::::::
Biot (1941),

::::
and

::::
later

::::::::
extended

::
to

:::::::
dynamic

:::::::
settings

:::
by

:::::::::::::::
Biot (1956, 1962). While the roots of

the elastodynamic poroelasticity(e.g.,
:::::::::
conceptual

:::::::::
foundation

::
of
:::::::::::::
elastodynamic

:::::::::::::::::
poroelasticity—such

::
as the presence of the

:::
fast

::::::
P-wave,

:
slow P-wave

:::
and

:::::
shear

:::::
wave in fluid-saturated porous media) were provided

:::::
—was

:::::::::
introduced

:
by Frenkel (1944) (see660

also Pride and Garambois (2005)), a rigorous derivation of poroelastic equations and parameters were presented a few years

later
:::::::
rigorous

:::::::::
derivations

:::
of

:::
the

:::::::::
poroelastic

::::::::::
parameters

::::
were

::::::::
provided

:::::::::::
subsequently

:
by Biot (1941); Biot and Willis (1957);

Biot (1962). Many researchers have fully

::::::::
Numerous

::::::::::
researchers

::::
have rederived Gassmann’s equations relying on different methods (or explored

::::
using

:::::::
various

:::::::::
approaches

::
or

::::::::
examined specific aspects of Gassmann’s equations in the framework of poroelasticity) (Brown and Korringa, 1975; Korringa, 1981; Burridge and Keller, 1981; Zimmerman, 1990; Berryman and Milton, 1991; Berryman, 1999; Smith et al., 2003; Lopatnikov and Cheng, 2004; Gurevich, 2007; Fortin and Guéguen, 2021)665

. Of course, a
::::
these

::::::::
equations

:::::
within

:::
the

:::::::::::
poroelasticity

::::::::::
framework

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Brown and Korringa, 1975; Rice and Cleary, 1976; Korringa, 1981; Burridge and Keller, 1981; Bourbié et al., 1987; Zimmerman, 1990; Berryman and Milton, 1991; Detournay and Cheng, 1993; Berryman, 1999; Smith et al., 2003; Lopatnikov and Cheng, 2004; Gurevich, 2007; Fortin and Guéguen, 2021)

:
.
::::
Some

::::::::::::
modifications

::
of

::::::::::
small-strain

:::::::::::
poroelasticity

::
to

::::::
include

::::::::::::
non-reciprocal

::::::
effects

:::
are

::::
given

:::
by

::::::::::::::::::::::::::::::::
Sahay (2013); Müller and Sahay (2019)

:
.
:::::
While

:::
the

:
full list of scientist who contributed to poroelasticity is large, and while

::::::::::
contributors

::
to

:::
the

::::
field

::
is
::::::::
extensive

::::
and

::::::
beyond

:::
the

:::::
scope

::
of

:::
this

:::::
paper,

:
we acknowledge their extensive contributions, our intention in this short article is not to provide

an exhaustive list. An interested reader is referred
::::::::::
foundational

:::::
work.

:
670

:::
We

::::
refer

:::
the

::::::
reader

:
to Sevostianov (2020), which provides an extensive review of Gassmann’

::::::
presents

::
a
:::::::::::::
comprehensive

:::::::
overview

:::
of

:::::::::
Gassmann’s equations. There are several books that also might be useful , e.g.,

:
In

::::::::
addition,

::::::
several

:::::
books

::::
may

:::
be

:::::
useful

:::
for

::::::
readers

::::::::
interested

::
in
::::::::::::
poroelasticity

:::
and

:::
its

::::::::::
applications,

:::::::::
including:

:
Bourbié et al. (1987), Zimmerman (1990), Wang

(2000), Ulm and Coussy (2003), Coussy (2004, 2011), Guéguen and Boutéca (2004)
:
,
:
Dormieux et al. (2006), Cheng (2016),

:::
and Mavko et al. (2020).675

10.2.1 Thermodynamically admissible conditions
::
for

:::
the

::::::::
diagonal

::::::::
structure

:::
of

::::::
matrix

::
H

The main assumptions behind the applicability of Gassmann’s equations (??)-(46)
::::::::
(45)–(47)

:
are: (i) Linear elasticity;

:::::
linear

::::::::
elasticity, (ii) Small strains;

::::
small

:::::::
strains, (iii) Isotropic

::
an

::::::::
isotropic, homogeneous frame material ;

:::
and

::::::::
isotropic,

::::::::::::
homogeneous

::::
solid

::::::
grains, (iv) Isotropic

::
an

::::::::
isotropic dry response (note that

:::::::
although

:
Gassmann’s original publication contains

::::::
includes

:
an
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extension to anisotropy); ,
::::

and
:
(v) Assumption

:::::::::::
self-similarity

::::::::::
hypothesis:

:::
the

::::::::::
assumption that equal changes in pore (fluid)680

pressure and confining (total) pressure leave the porosity unchanged (Korringa, 1981; Alkhimenkov, 2024).

Assumption (v) holds
:::
may

::::
hold

:
for isotropic homogeneous frame material (Korringa, 1981)

:::::::
materials

::::::::::::::
(Korringa, 1981)

:
,
:::
but

:
it
::::
must

:::
be

::::::
derived

:::::::::
rigorously. In the framework of the present study, this condition is satisfied and

::::
when

:::
the

::::::::::
compliance

::::::
matrix

::
H

::
is

:::::::
diagonal,

::::
and

:
it
:
is required for thermodynamic admissibility (see expressions (??)-(37) and the explanation therein): "The

constraint of zero dissipation (entropy production)during reversible poroelastic deformation provides an essential constraint685

on the poroelastic constitutive equation for porosity evolution. " In other words, in the present thermodynamically admissible

model , (v) is not an assumption but a strict requirement for zero entropy production during reversible poroelastic processes.

::
the

::::::::::::::
thermodynamic

::::::::::
admissibility

:::
of

::
the

::::::
model

::::
(see

::::::::
Appendix

:::
B).

:::
As

:::::
stated

:::::
there:

:::::
“The

::::::::
constraint

::
of
::::
zero

::::::::::
dissipation

:::::::
(entropy

:::::::::
production)

::::::
during

::::::::
reversible

::::::::::
poroelastic

::::::::::
deformation

:::::::
provides

:::
an

:::::::
essential

:::::::::
constraint

::
on

:::
the

::::::::::
poroelastic

:::::::::
constitutive

::::::::
equation

::
for

:::::::
porosity

::::::::::
evolution.”690

10.3 Numerical validation of Gassmann’s equations

10.2.1
:::::
When

:::
the

:::::
solid

::::::::::::::
compressibilities

::::::::
coincide

::::::::::::::::::::::::::::::::::::::::::::::::
β′EB
s = β′′EB

s = βs = β′DC
s = β′′DC

s = βBK
M = βBK

S

)
Alkhimenkov (2023) performed a numerical validation of Gassmann’s equations considering a

:::::
Strictly

:::::::::
speaking,

:::
the

:::::
most

::::::
general

::::::
model

:::::
should

:::::::
always

:::
use

:::
the

:::
full

::::::
matrix

:::
H

::::::::
(equation

::::
(6)).

::::::::
However,

::
in
:::::::

certain
::::::
special

::::::::::
cases—such

:::
as

:::::::
isotropic

::::
and

:::::::::::
homogeneous

::::
rock

:::::::::::::::::
frames—additional

:::::::::
constraints

::::
may

:::::
hold.

::::::
Several

::::::::::
researchers

:::::
have

::::::
pointed

::::
out

:::
that

:::
for

::::::::::::::
monomineralic,695

:::::::
isotropic

::::::::
materials,

:::
the

::::::::::::
self-similarity

:::::::::
hypothesis

:
is
:::::
valid,

:::
and

::::::::
therefore

::::::::::
Gassmann’s

::::::::
equations

:::::
apply

:::
and

:::
are

:::::
exact

::::::::::::::::::::::::::::::::::::
(Brown and Korringa, 1975; Korringa, 1981)

:
.

::
In

:::::::
general,

::::::
various

::::::::::
poroelastic

::::::::
constants

::::
can

::
be

:::::::::
computed

::::::::::
numerically

::::::::::::::::::
(Alkhimenkov, 2023)

:
,
:::::::
derived

::::::::::
analytically

:::::
using

:::::::
effective

:::::::
medium

:::::
theory

::::::::::::::::::::::::::::::
(Yarushina and Podladchikov, 2015),

::
or

::::::::
measured

:::::::::::::
experimentally

::
in

::::::::
laboratory

:::::::
settings

:::::::::::::::::::::::::::::::
(Makhnenko and Podladchikov, 2018)

:
.700

:::
The

:::::::::
distinction

::::::::
between

:::
the

::::
solid

::::::::::::::
compressibilities

::::
lies

::
in

:::
the

::::::::
structure

::
of

:::
the

::::::
matrix

:::
H,

:::::
which

::::::::
depends

::
on

:::
the

:::::::::
particular

:::::
choice

::
of

::::::::::
rheological

:::::::::::
relationships.

::::
The

:::::::::
definitions

::::::::::::::::::::::::
(Detournay and Cheng, 1993)

:
:

βs =
1

Ks
, β′DC

s =
1

K ′DC
s

, β′′DC
s =

1

K ′′DC
s

:::::::::::::::::::::::::::::::::::::::::

(107)

::
are

::::
only

:::::::::
necessary

::::
when

:::
the

::::
rock

::::::::::::
microstructure

::::::
allows

:::
the

::::
bulk

:::::
frame,

:::::
solid

::::::
grains,

:::
and

::::
pore

:::::
space

::
to

::::::
deform

:::::::::
differently

:::::
under

:::::::::
unjacketed

::::::
loading

::::::::::::::::::::::::::::::::
(Makhnenko and Podladchikov, 2018)

:::
(Ks::

is
:::
the

::::
bulk

::::::::
modulus

::
of

::::
solid

:::::::
grains).

:::::
Note

:::
that

:::
the

::::::::::
rheological705

::::::::::
assumptions

::
in

:::
the

::::::::::::::
Brown–Korringa

:::::
(BK)

:::::
model

:::::
differ

::::
from

:::::
those

::
in

:::
the

:::::::::::::::
Detournay–Cheng

:::::
(DC)

:::
and

:::
the

:::::::::
presented

::::::::
Extended

:::
Biot

::::::::::::
formulations.

::
As

::
a
:::::
result,

:::
the

:::::::::::
interpretation

::::
and

:::::::::
estimation

::
of

:::
the

:::::::::
parameters

::
in

:::::
(107)

:::::
differ

:::::::
between

:::::::
models.

–
:::
The

::::::::::
poroelastic

:::::::::
parameters

:::::
(107)

:::
can

:::
be

::::::::
computed

::::::::::
numerically

:::::
with

:::::::
arbitrary

:::::::::
precision.

:::::::::
Numerical

::::::
studies

:::::::::
conducted

::
in 3D numerical setup and relatively complex pore geometry that includes narrow regions (cracks)and large pore space.

Numerical calculations were performed using a finite element method and the resulting system of equations was solved710
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using a robust direct PARDISO solver (Schenk and Gärtner, 2004). Alkhimenkov (2023) conducted a convergence study

showing that, for finer resolution, the result of the numerical solution converges towards the result obtained from the

original Gassmann’s equation. Such a converges analysis validates the accuracy of Gassmann’s equation for a particular

(but arbitrary)pore geometry. Furthermore, the pore geometry that was used did not contain any special features (among

all possible geometries) that were tailored to make it consistent with Gassmann’s equations (Alkhimenkov, 2024).715

There are also other
::::::
confirm

::::
that

:::
for

:::::::
isotropic

:::
(or

::::::
cubic),

:::::::::::::
monomineralic

::::
rock

::::::
frames

::::
with

::::::::
isotropic

:::::
grains

::::
and

:
a
:::::
fully

::::::::::::
interconnected

::::
pore

:::::
space,

:::
the

:::::
three

:::::::::
parameters

::
in

:::::::
equation

:::::
(107)

:::
are

:::::
equal

:::::::::::::::::::::::
(Alkhimenkov, 2023, 2024).

:

–
:::::
These

:::::::::
parameters

::::
can

:::
also

:::
be

::::::::
measured

:::::::::::::
experimentally

::
in

:::::::::
laboratory

:::::::
settings,

::::::::
enabling

:::::::
practical

::::::::::
application.

:::
In

:::::
many

:::::::
practical

:::::::::
situations,

:::
the

:::::::::
differences

::::::::
between

::::
these

::::::::::
parameters

:::::
(107)

:::
are

:::::
small,

::::
and

:::
one

::::
can

:::::
safely

:::::
adopt

::
a
:::::
single

:::::
solid

:::::::
modulus

::::
Ks.

::::
The

::::::::
condition

::::::::::::::::
βs = β′DC

s = β′′DC
s ::::::::

typically
:::::

holds
::::::

when
:::
the

::::
rock

::::
has

:
a
::::::::::::::

monomineralic,
::::::::
isotropic,

::::
and720

::::::
uniform

::::::::
skeleton;

::
a

::::
fully

::::::::::::
interconnected

::::
pore

::::::::
network;

:::
and

::
is

::::::::
subjected

::
to

::::::::
pressures

:::::
below

:::
the

:::::
onset

::
of

::::::::::::::
micro-fracturing

::
or

::::::
mineral

::::::
phase

:::::::::
transitions.

::::::
Under

::::
such

:::::::::::
assumptions,

:::
the

:::::::::
unjacketed

:::::::::::
compression

::::
test

::::::::
measures

:::
the

:::::::
intrinsic

:::::::
mineral

::::
bulk

::::::::
modulus,

:::
and

:::::
both

:::
the

::::::::::::::
whole-specimen

:::::::
(K ′DC

s )
:::
and

:::::::::::
pore-volume

::::::::
(K ′′DC

s )
::::::
moduli

:::::
may

:::::::
collapse

:::
(as

:::::::::
suggested

::
by

::::::
several

:::::::
studies)

::
to
:::::::::::
Ks = 1/βs,

:::::::
reducing

:::
the

::::
DC

:::::
model

:::
to

:::
the

:::::::
original

:::::::::::::
Biot–Gassmann

:::::::::::
formulation.

::::
That

:::
is,

:::::
under

:::::::::
unjacketed

:::::::::
conditions,

::::
the

:::::
entire

:::::
solid

::::::
surface

::
is
:::::::::

subjected
::
to

::
a
:::::::
uniform

:::::::
pressure

:::::::::
increment

::::
∆p,

::::
and

::
if

:::
the

:::::
rock

::
is725

:::::::::::::
microscopically

::::::::
isotropic

:::
and

:::::::::::::
homogeneous,

::::
both

:::
the

:::::
solid

:::::
grains

::::
and

::::
bulk

::::::::::
framework

:::::::
undergo

:::::::
uniform

::::::::::
volumetric

:::::
strain,

:::::::
resulting

:::
in

::
no

::::::
change

::
in

:::::::
porosity

::::::::::::::::::::::::::
(Tarokh and Makhnenko, 2019)

:
.
::::::
Typical

::::::::
examples

:::::::
include

:::::
dense

:::::
quartz

::::::
sands,

::::
clean

:::::::::
limestones

::::::
below

::::::::::
micro-crack

:::::::
initiation

::::::
stress,

:::
and

::::::::
synthetic

::::
rock

::::::::
samples.

–
::::
Even

:::
for

::::::::::::
multi-mineral

:::::::
skeleton,

::::
the

:::::::::
differences

:::::::
between

:::::
these

::::::::::
parameters

::::
(107)

::::
are

:::::
small,

::::::
which

::
is

:::::
shown

:::
in

:::
the 3D

numerical studies that consider different geometries of the pore space and are consistent with Gassmann’s equations730

(Alkhimenkov et al., 2020a, b; Alkhimenkov and Quintal, 2022a, b)
::::::::
numerical

:::::
study

::
by

::::::::::::::::::
Alkhimenkov (2025)

:::
and

::
in

:::::::::
laboratory

::::::
settings

:::::::::::::::::::::::::::::::
(Makhnenko and Podladchikov, 2018)

:
.

–
::::::
Finally,

:::::
these

:::::::::
parameters

:::
can

::::
also

:::
be

::::::
derived

:::::
using

:::::::
effective

:::::::
medium

:::::::
theory.

::::
This

::
is

:::
the

::::
most

:::::::
rigorous

::::
way

::
to

::::::::
establish

:::::
under

:::::
which

:::::::::
conditions

:::
the

:::::
three

:::::::::
poroelastic

:::::::::
parameters

::::
are

:::::::::
equivalent.

::::
The

:::::::::
application

::
of

::::::::
effective

:::::::
medium

::::::
theory

::
is

::::::
outside

:::
the

:::::
scope

::
of

:::
the

::::::
present

:::::
study

:::
but

:::::::
remains

::
an

:::::::::
important

:::::::
direction

:::
for

:::::
future

:::::
work.

:
735

:::
We

::::
note

::::
that

:::::
when

:
a
:::::

rock
:::::
frame

:::::::
consists

:::
of

:::
two

:::
or

:::::
more

:::::::
minerals

:::::
with

:::::::
different

::::::
elastic

:::::::::
properties

:::::
(e.g.,

::::::
shales,

::::::
poorly

::::::::::
consolidated

::::::::::
sandstones,

::
or

:::::::
cracked

::::::::::
carbonates),

:::
the

::::::::::
distinction

::::::::::
βBK
M ̸= βBK

S ::
in

:::
the

::::
BK

:::::::::
framework

::
is

:::::::
present.

::
In

::::
such

::::::
cases,

::
the

:::::::::::
assumptions

:::::::::
underlying

:::
the

::::::::::::
self-similarity

:::::::::
hypothesis

:::::
break

:::::
down,

:::
and

::::::::::
Gassmann’s

:::::::::
equations

::::
serve

::::
only

:::
as

::
an

:::::
(very

:::::
good)

::::::::::::
approximation

:::::
within

:::
the

:::::::::
framework

:::
of

:::
the

::::::::
Extended

::::
Biot

:::::::::
formulation

::::::::::::::::::
(Alkhimenkov, 2025)

:
.

::
To

::::::
further

::::::
assess

:::
the

::::::::::
magnitude

::
of

::::
the

::::::::::
off-diagonal

:::::::::::
components

::
of

::::
the

::::::
matrix

:::
H,

:::
we

:::::::
perform

::
a
::::::

Taylor
:::::::::

expansion
:::

of740

:::::::::::::::::
βEB
δ = β′EB

s −β′′EB
s :::::::

(without
::::::::
imposing

:::
any

::::::::::
assumption

::
on

::::::
mono-

::
or

::::::::::::
multi-mineral

::::::::::
composition

::
of

:::
the

:::::::
frame):

H1,2 =
1

(1−ϕf )2
(
(β′EB

s )2 +βEB
d (ϕf − 2)β′EB

s +βEB
d β′EB

s

) βEB
δ +O

(
β2
δ

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(108)
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:::::
which

:::::::::::
demonstrates

:::
that

:::
the

:::::::::::
off-diagonal

:::::
terms

::
of

::
H

:::
are

:::::
small.

10.3 Applicability
:::::::::::
Comparison of Gassmann’s equations

:::
and

::::::::::
Thomsen’s

::::::::::
alternative

::::::::::
formulation

Gassmann’s equation (Gassmann, 1951) represented by expression (??) can be rewritten in the following form:745

Ku =Kd +

(
1−KdK

−1
s

)2
ϕK−1

f +(1−ϕ)K−1
s −Kd /K2

s

.

Thomsen (2023b) argued that the original derivation of Gassmann’s equations contains a logical error and
::
—

:::::::
namely,

:::
an

:::::::
incorrect

:::::::::
application

:::
of

:::::
Love’s

:::::::
theorem

::
to

:::::::::::
hydraulically

:::::
open

:::
and

:::::
closed

::::::::
systems.

::
In

:::
the

::::::
present

:::::::::
derivation,

:::
we

:::
rely

:::
on

:::::::
classical

:::::::::
irreversible

::::::::::::::
thermodynamics

:::
and

:::
not

::::
rely

::
on

::::
any

::::::::::
assumptions

::::::::
regarding

:::::::
whether

:::
the

::::::
porous

:::::::
material

::::::
system

::
is

::::
open

::
or

::::::
closed.

:

:::::::::::::::
Thomsen (2023b) provided an updated version of these relations (see also Brown and Korringa (1975)):750

Ku =Kd +

(
1−KdK

−1
M

)2
ϕK−1

f +(1−ϕ)K−1
s −Kd /K2

M

(
1−Kd (K

BK
M )−1

)2
ϕfK

−1
f +(1−ϕf )K

−1
s −KBK

d /(KBK
M )2

::::::::::::::::::::::::::::::::::

, (109)

where KM ::::
KBK

M :
is a new parameter , so-called “mean

::::::
referred

:::
to

::
as

:::
the

:
"incompressibility (or “mean" bulk modulus )

(Thomsen, 2023b). Note the similarity between expressions (??)
::::
(47) and (109). Relation (109) contains one more parameter,

KM , compared to
:::::::::
Thomsen’s

:::::::
relation

:::::::::
introduces

:::
one

:::::::::
additional

:::::::::
parameter,

:::::
KBK

M ,
:::::::
beyond the original Gassmann ’s equation

(??)
:::::::
equation

::::
(47). Thomsen (2023b) also provided ways to evaluate KM by using the following expressions:

:::::
KBK

M ,
:::::::::
including:755

KM
BK
::

=

1/Kd
1

KBK
d

::::

− 1

BBK
::::

 1

KBK
d

− 1

KBK
u

:::::::::::

−1

, (110)

where B
:::::
BBK

:::::::::
(Skempton

:::::::::
coefficient)

:
is directly observable in a quasi-static experiment

::::::::::
experiments. Alternatively, expression

(110) for KM can be exactly reformulated as:
:::
can

::
be

::::::::
rewritten

:::
as:

KM
BK
M
::

=

B (ϕK−1
f +(1−ϕ)K−1

s )− (1−B)K−1
d

2B− 1

BBK
(
ϕfK

−1
f +(1−ϕf )(K

BK
s )−1

)
− (1−BBK)(KBK

d )−1

2BBK − 1
::::::::::::::::::::::::::::::::::::::::::::::::::

−1

.

(111)760

::::::::::
Importantly,

:::::::::
Thomsen’s

::::::::::
formulation

:::::::
reduces

::
to

::::::::::
Gassmann’s

:::::
when

::::::::::::
KBK

M =KBK
S .

:::::::::::::::
Thomsen (2023b)

:::::
argued

::::
that

:::
this

:::::::::
additional

:::::::::
parameter

:::::
KBK

M ::::
must

:::
be

::::::::::::
independently

:::::::::
measured,

::::
even

:::
for

::::::::::::::
mono-mineralic

:::::
rocks,

:::
and

::::
that

:::::::
equation

:::::
(109)

::::::
should

::
be

::::
used

:::::::
instead

::
of

:::
the

:::::::
original

::::::::
Gassmann

:::::::
relation

::::
(47).

:::
As

:::::::
follows

::::
from

:::::::
equation

::::::
(111),

::::::::
evaluating

:::::
KBK

M :::::::
requires

::
an

:::::::::::
independent

:::::::::::
measurement

::
of

:::
the

:::::::::
Skempton

::::::::
coefficient

::::::
BBK.

:::::::::::::::
Thomsen (2023b)

:::::
further

:::::
noted

::::
that

::
the

:::::::
porosity

:::
ϕf::

is
:::
not

:::::::
constant

:::::
under

:::::
equal

::::::
changes

::
in
::::
fluid

::::::::
pressure

::
pf:::

and
::::
total

:::::::
pressure

::̄
p,

::::
and

:::::
argued

::::
that

:::
for

:::::::::::::
mono-mineralic765

:::::
rocks,

:::::
KBK

M ::::::::
generally

::::::
differs

::::
from

:::::
KBK

S .
:::::
This

::::::
implies

::
a

::::::::
sensitivity

:::
of

:::::::
porosity

::::::::::::::
variation—either

:::::::::
increasing

::
or

:::::::::
decreasing

:::
—

::::::::
depending

:::
on

:::
the

::::
sign

::
of

::::::::::::
KBK

M −KBK
S .

:::
We

::::
note

:::
the

::::::::
following:

:
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–
::::::::
Gassmann

::::::::
explicitly

:::::
stated

:::
the

::::::::::::
self-similarity

:::::::::
hypothesis

::
in

:::
his

::::::
original

::::::::::
manuscript

:::::::::::::::
(Gassmann, 1951).

:::::::::
Therefore,

::::::
claims

::
of

:
a
::::::
logical

::::
error

::::::::::::::::
(Thomsen, 2023b)

::
in

:::
the

::::::::
derivation

:::
are

::::::::::
unfounded.770

–
:::
The

::::::
claims

:::::
made

::
by

::::::::::::::::
Thomsen (2023b)

::
are

:::
not

:::::::::
supported

::
by

::::::::
rigorous

:::::::::
theoretical

:::::::::::
developments

:::::
(e.g.,

:::::
exact

::::::::
solutions

::
in

:::::::
effective

:::::::
medium

::::::
theory)

::::
that

::::::::
explicitly

::::::::::
demonstrate

:::
that

::::::::::::
KBK

M ̸=KBK
S :::

for
:::::::::::::
mono-mineralic

:::::
rocks.

:

–
::::::
Several

:::
3D

::::::::
numerical

::::::
studies

:::::::
confirm

::::
that

::
the

::::::::::::
self-similarity

:::::::::
hypothesis

:::::
holds

:::
for

::::::::::::
homogeneous,

:::::::
isotropic

:::
(or

::::::
cubic)

:::
dry

::::::::
responses

:::
and

::::::::
isotropic

::::
solid

::::
grain

:::::::::
materials.

::::
This

:::
has

::::
been

::::::
verified

::::::::::
numerically

:::
for

::::
both

:::::
cubic

:::
and

::::::::::
transversely

::::::::
isotropic

:::::::::
symmetries

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Alkhimenkov et al., 2020a, b; Alkhimenkov and Quintal, 2022a, b; Alkhimenkov, 2023, 2024)

:
.775

–
:
A
::::::

recent
:::
3D

:::::::::
numerical

:::::
study

::
of

:
a
::::::::::::
heterogeneous

::::::
frame

:::::::
material

:::::::::
composed

::
of

:::
two

::::::
solids

::::
with

:::::::
different

::::
bulk

::::
and

:::::
shear

::::::
moduli

::::::
showed

::::
that

:::
the

::::::::
difference

::::::::::::
KBK

M −KBK
S :

is
::::::
below

::::
0.11

::::
GPa

::
—

:::::::::
practically

:::::::::::
insignificant.

–
:::::::::
Laboratory

::::::::::::::
experimentations

:::::
show

:::
that

::::
even

:::
for

::::::::::::
multi-mineral

:::::::
skeleton,

:::
the

:::::::::
differences

:::::::
between

:::::
KBK

M :::
and

:::::
KBK

S ::
is

:::::
small

:::::::::::::::::::::::::::::::
(Makhnenko and Podladchikov, 2018).

:

–
::::
This

::
all

:::::::
suggests

::::
that,

:::
in

::::::::
relatively

:::::::::::
homogeneous

::::
rock

::::::::
samples,

:::
the

:::::::::
distinction

:::::::
between

:::::::
different

:::::
solid

::::
grain

:::::::
moduli

:::
has780

::::::::
negligible

:::::::
practical

:::::::
impact.

–
:::
The

:::::::::
mechanics

::
of

:::::
rocks

:::::::
includes

::::::::
additional

::::::::
important

::::::
aspects

::::
such

:::
as

::::::::::
nonlinearity

::
in

::::
their

:::::::::
mechanical

::::::::
response;

:::::::::
differences

::
in

:::::::::
mechanical

:::::::::
properties

:::::
under

::::::::
extension

::::::
versus

::::::::::
compression

::::::
(which

::::
can

::::
differ

:::
by

::::::
several

::::::::
percent);

:::::::
intrinsic

:::::::::
anisotropy

::
of

:::
the

::::
solid

::::::
grains;

::::::::
effective

:::::::::
anisotropy

::
of

:::
the

::::
rock

:::::::
sample;

::::
and

::::::::::
irreversible

::::::
damage

::::::
under

::::::
applied

:::::
loads.

::::
All

::
of

:::::
these

:::::
factors

:::::::::
contribute

:::
to

:
a
:::::

much
:::::

more
::::::::

complex
::::::::::
mechanical

::::::::
behavior

::
of

::::::
rocks.

:::::
These

:::::::::
additional

:::::::::
constraints

:::::
may

::::
have

::
a785

::::::::::
significantly

::::::
greater

::::::
impact

::
on

::::
rock

::::::::
response

::::
than

:::::::
potential

:::::::::
deviations

::::
from

:::
the

::::::::::::
self-similarity

::::::::::
hypothesis.

Alkhimenkov (2023) conducted a numerical convergence study showing that KM is converging to Ks ::::::::::::
demonstrating

:::
that

::::::::::
KBK

M →Ks:::::::
(where

:::
Ks ::

is
:::
the

::::
solid

:::::
bulk

::::::::
modulus)

:::
for

:::::::::::::
monomineralic

::::
rock as the resolution increases(in the numerical

experiment KM was calculated independently using expression (110), so B was calculatedin addition to other parameters)
:
.

::
In

:::
this

::::::
study,

:::::
KBK

M :::
was

:::::::::
computed

::::::::::::
independently

:::::
using

:::::::
equation

::::::
(111),

::::
with

:::
the

:::::::::
Skempton

:::::::::
coefficient

:::::
BBK

:::
also

:::::::::
calculated.790

Consequently, the result of the expression (109) is converging
::::::::
expression

:::::
(109)

::::::::
converges

:
to the original Gassmann ’s formulation

(??) as the resolution increases. As a result, there is no difference between the two formulations (equations (??) and (109))

since KM ≡Ks, that validates
::::::
relation

::::
(47)

:::
in

:::
the

::::::::::::::
mono-mineralic,

:::::::
isotropic

:::
(or

::::::
cubic

:::::::::
symmetry)

::::
case

::::::
where

::::::::::
KBK

M ≡Ks

::::::
(within

::::::::
numerical

:::::::::
precision),

:::::::
thereby

::::::::
validating

:
the original Gassmann ’s formulation

:::::::::
formulation

:::
for

:
a
:::::::::
particular

:::::::::
pore-space

:::
and

::::
solid

:::::::
material

::::::::
geometry.795

We fully agree with the proposal by Thomsen (2023b) that an additional measurement (or an additional parameter) can

significantly improve the characterization of fluid-saturated rocks. Indeed, rocks are usually composed by several anisotropic

minerals ; rocks have
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10.4
:::::::::

Limitations

:::::
Often,

::::::
natural

:::::
rocks

:::
are

:::::::::
composed

::
of

:::::::
multiple

::::::::
minerals

:::
that

:::
are

::::::::::
anisotropic,

::::
and

:::::::
typically

::::::
exhibit

:
some degree of anisotropy;800

rocks contain
::::::
intrinsic

::::::::::
anisotropy.

:::::
They

::::
may

::::
also

::::::
contain

::
a
:::::::::::
combination

::
of

:
compliant cracks (or grain-to-grain

::::
e.g.,

:::::
grain

contacts) and stiff poresthat behave differently under loading; rocks may have some degree of heterogeneity that cannot be

represented via
:
,
:::::
which

:::::::
respond

:::::::::
differently

::::::
under

::::::::::
mechanical

:::::::
loading.

:::::::::::
Additionally,

::
a

:::::
rock’s

::::::::::::
heterogeneity

:::
can

:::::::
violate

:::
the

::::::::::
assumptions

::
of

:
a representative volume element. Furthermore, the elastic moduli might be different

::
It

::
is

:::
also

::::
well

::::::::::
established

:::
that

::::::
elastic

::::::
moduli

::::
can

::::
vary by several percent under compression or extension. All these divergences of ideal small strain805

elasticity suggest more degrees of freedom and, as a consequence,
:::::
versus

:::::::::
extension.

:::::
These

:::::::::
deviations

::::
from

:::::
ideal

::::::::::
small-strain

:::::::
elasticity

:::::::
suggest

:::
the

::::
need

:::
for

:::::::::
additional

::::::::
effective

::::::::::
parameters,

:::
and

::::
thus

:
more experimental (or numerical) measurementsare

needed to fully characterize the fully saturated realistic rocks,
:::

to
:::::::::
accurately

::::::::::
characterize

:::::
fully

::::::::
saturated

:::
and

:::::::
realistic

:::::
rock

::::::
samples.

11
::::::::::
Conclusions810

This study has presented a novel
::::::::
structured,

::::::::::
transparent,

:
and thermodynamically admissible derivation of both Gassmann’s

and Biot’s poroelastic equations, which are crucial
::
the

::::::::::
quasi-static

::::::::
Extended

:::::
Biot’s

:::::::::::
poroelasticity

::::::::::
framework.

::::
The

::::::::::
well-known

:::::::
classical

:::::::::
Gassmann

::::::::
equations

:::
and

::::
Biot

:::::::::
poroelastic

::::::::::
formulation

:::
—

::::::::::
fundamental

::::
tools

:
for characterizing the elastic and coupled

:::::::::
poroelastic mechanical behavior of fluid-saturated porous mediain geophysics. By

:::::
—are

::::::
derived

::::
here

::
as

:::::::
special

::::
cases

:::
of

:::
the

::::::
general

::::::
theory.

:::::
While

::::
the

:::::::::::::
thermodynamic

:::::::::::
admissibility

::
of

:::
the

:::::::
original

::::
Biot

::::::::
equations

:::
has

:::::
been

:::::::::
previously

::::::::::::
demonstrated,

:::
the815

::::::
present

::::
work

:::::::
extends

:::
this

:::::::::::
admissibility

::
to

:
a
:::::
more

::::::
general

::::::
model

:::::
using

::
the

::::::::::
framework

::
of

:::::::
classical

:::::::::
irreversible

:::::::::::::::
thermodynamics.

:::
We

:::::::::
emphasize

::::::
clarity,

:::::::::::
accessibility,

:::
and

::::
full

::::::::::::
reproducibility

::::::::::
throughout

:::
the

:::::::::
derivation.

::::
The

::::
main

:::::::
novelty

::
of

::::
this

:::::
study

::
is

:::
the

::::::::::
development

:::
of

:::
the

::::::::
Extended

::::::
Biot’s

:::::::::::
poroelasticity

::::::::::
framework,

::::::
which

::::::::::
incorporates

:::::::::::
off-diagonal

::::::::::
components

:::
of

:::
the

:::::::
Hessian

::::::
matrix.

::::
The

:::::::
relations

:::::::
between

::::
the

::::
new

:::
set

::
of

:::::::::
poroelastic

::::::::::
parameters

:::
are

::::
fully

:::::::::
expressed

::
in

:::::
terms

:::
of

:::
the

::::::::::
components

:::
of

:::
the

::::::
Hessian

::::::
matrix

:::
H.820

::
By

::::::
strictly

:
adhering to conservation laws and constitutive relations

::::::::::::
thermodynamic

:::::::::
principles, we have addressed concerns

about logical inconsistencies in the original derivation
::::
also

::::::::
addressed

::::::
recent

:::::
claims

:::
by

:::::
Leon

::::::::
Thomsen

::::::::
regarding

:::
the

:::::::
validity

of Gassmann’s equations and extended the theoretical framework to include Biot’s equations, which describe the interaction

between solid deformation and pore fluid pressure. These results provide a robust foundation for future research and applications.

The inclusion of Symbolic Maple routinesfacilitates the reproducibility of our findings, enhancing accessibility and verification825

within the scientific community
::::::::::
formulation.

:::
In

:::::::::
particular,

:::
we

::::
have

::::::
shown

::::
that

:::
the

::::
key

::::::::::::
self-similarity

::::::::::
assumption

:::
—

::::
that

:::::::
porosity

:::::::
remains

:::::::::
unchanged

:::::
under

:::::
equal

::::::::
changes

::
in

::::
fluid

::::
and

::::
total

::::::::
pressure

::
—

:::
is

:
a
::::::::
sufficient

::::
but

:::
not

::::::::
necessary

:::::::::
condition

::
for

:::
the

:::::::::
derivation

::
of

:::::::::::::
Gassmann-type

::::::::::
relationship

:::::::
between

::::::::
undrained

::::
and

::::::
drained

::::
bulk

:::::::
moduli.

::::::
Indeed

:::
the

::::::::
Extended

:::::::::
Gassmann

:::::::::
poroelastic

:::::::
equation

::::
(69)

::
is

::::::
derived

::
in

::::
this

::::::::::
contribution

:::::::
without

::::::
relying

::
on

:::
the

::::::::::
Gassmann’s

::::::::::
assumption

::
of

::::::::::::
self-similarity.
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::
To

:::::::
promote

:::::::::::
transparency

::::
and

:::::::
support

:::::
future

::::::::::::
developments,

:::
we

:::::::
provide

::::::::
symbolic

::::::
Maple

:::::::
routines.

::::::
These

::::::::
materials

::::::
ensure830

:::
full

::::::::::::
reproducibility

::
of

:::
the

:::::::::
derivations

::::
and

::::
offer

::
a

:::::::
practical

:::::::::
foundation

:::
for

::::::::
extending

:::
the

:::::::::
framework

::
to
:::::
more

:::::::
complex

:::::::::
scenarios,

::::
such

::
as

:::::::::
multiphase

::::
fluid

:::::::
systems

:::
and

::::::
related

:::::::::::
phenomena.

::::
Code

::::::::::
availability

:::
The

::::::::
software

::::::::
developed

::::
and

::::
used

::
in

::::
this

:::::
study

::
is

:::::::
licensed

:::::
under

:::
the

::::
MIT

::::::::
License.

:::
The

:::::
latest

:::::::
version

::
of

:::
the

::::::::
symbolic

::::::
Maple

::::::
routines

::
is
::::::::

available
:::::
from

:
a
:::::::::
permanent

::::
DOI

:::::::::
repository

::::::::
(Zenodo)

:::
at:

::::::::::::::::::::::::::::::::::
https://doi.org/10.5281/zenodo.15777522

::::
(last

::::::::
accessed:835

::
30

::::
June

::::::
2025)

:::::::::::::::::::::::::::::::::
(Alkhimenkov and Podladchikov, 2025).

::::
The

:::::::::
repository

:::::::
contains

:::::
code

::::::::
examples

::::
and

:::
can

:::
be

::::::
readily

::::
used

:::
to

::::::::
reproduce

:::
the

::::::
results

::::::::
presented

::
in

:::
the

::::::::::
manuscript.

:::
The

:::::
codes

:::
are

::::::
written

:::
in

::
the

::::::
Maple

:::::::::::
programming

:::::::::
language.
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Appendix A: Explanation of the Maple Script for a single phase media

The following Maple script provides a step-by-step derivation of the entropy production for a one-dimensional system using

the principles of classical non-equilibrium thermodynamics
::::::::
Classical

:::::::::
Irreversible

:::::::::::::::
Thermodynamics. It uses the volume-specific840

formulation for mass conservation and the principles of local thermodynamic equilibrium (LTE) to establish the relationship

between different thermodynamic fluxes and forces. The script calculates the entropy production, Q[s], and demonstrates the

impact of various choices for flux definitions. Below is a detailed explanation of each step in the script.

1: restart;845
2: V := 1/rho:

3: dVdt := -diff(q[V](x), x)/rho(x): # mass balance (using volume and not density)

4: dUdt := -diff(q[e](x), x)/rho(x): # conservation of energy

5: dsdt := -diff(q[s](x), x)/rho(x) + Q[s]/rho(x): # balance of entropy

6: LTE := dUdt = T(x)*dsdt + P(x)*dVdt: # local thermodynamic equilibrium850
7: Q[s] := solve(LTE, Q[s]); # solving for entropy production

8:

9: q[e](x) := T(x)*q[s](x); # choice for energy flux

10: q[V](x) := v: # Galileo's principle for volume flux

11: q[s](x) := -lambda*diff(T(x), x): # Fourier's law for entropy flux855
12: Q[s] := simplify(eval(Q[s])); # final expression for entropy production

Listing 1. Maple Script for Entropy Production

Below, we provide a detailed explanation of each line in the script.

Initialization and Mass Conservation

860
1: restart;

2: V := 1/rho:

Here, V is defined as the specific volume, which is the inverse of density, ρ.
865

1: dVdt := -diff(q[V](x), x)/rho(x):

This line represents the mass conservation equation using the volume-specific formulation. It calculates the time derivative of

the specific volume as the negative divergence of the volume flux q[V](x) divided by the local density.

Conservation of Energy870

1: dUdt := -diff(q[e](x), x)/rho(x):

This represents the conservation of energy, where dUdt is the time derivative of the specific internal energy, q[e](x) is the

energy flux, and the equation states that the change in internal energy is equal to the negative divergence of
:::
the

:
energy flux875

divided by the density.

Entropy Balance
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1: dsdt := -diff(q[s](x), x)/rho(x) + Q[s]/rho(x):880

The equation
::::
This

:::
line

:
represents the entropy balance. Here, dsdt is the time derivative of specific entropy, q[s](x) is the

entropy flux, and Q[s] is the entropy production rate per unit volume. This equation states that the change in entropy is equal

to the
:::::::
negative divergence of the entropy flux plus the entropy production term.

Local Thermodynamic Equilibrium (LTE)

885
1: LTE := dUdt = T(x)*dsdt + P(x)*dVdt:

This equation expresses the principle of local thermodynamic equilibrium (LTE). It relates the internal energy change dUdt to

the product of temperature T(x) and entropy change dsdt, plus the product of pressure P(x) and the volume change dVdt.

Solving for Entropy Production890

1: Q[s] := solve(LTE, Q[s]);

The script solves the LTE equation for the entropy production term Q[s].

Choice for Energy Flux895

1: q[e](x) := T(x)*q[s](x);

The energy flux q[e](x) is chosen as the product of temperature T(x) and the entropy flux q[s](x). This is a common

assumption based on the linear coupling between the energy and entropy fluxes.900

Flux Definitions

1: q[V](x) := v: # Galileo's principle for volume flux

2: q[s](x) := -lambda*diff(T(x), x): # Fourier's law for entropy flux905

The volume flux q[V](x) is represented by velocity v following Galileo’s principle. The entropy flux q[s](x) is defined

according to Fourier’s law, where it is proportional to the temperature gradient diff(T(x), x) with thermal conductivity

lambda.

Final Expression for Entropy Production

910
1: Q[s] := simplify(eval(Q[s]));

The final expression for entropy production Q[s] is simplified to:
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Q[s] =
λ

T (x)

(
dT (x)

dx

)2

, (A1)

This result shows that the entropy production is non-negative and is proportional to the square of the temperature gradient,915

divided by temperature, which is a classical result in non-equilibrium thermodynamics.

Appendix B: Explanation of the Maple Script for Two-Phase Fluid-Saturated Media

This appendix provides a detailed explanation of the Maple script used to derive the governing equations and analyze the

behavior of a two-phase fluid-saturated medium. The script covers the conservation laws, flux definitions, and the derivation of

entropy production for the coupled fluid and solid phases, using principles from classical non-equilibrium thermodynamics .920

B1
:::::::
General

::::::::::::::
Representation

::
of

::::::::
Classical

::::::::::
Irreversible

::::::::::::::::
Thermodynamics

General Conservation Equations

First, we define the
:::::
Porous

::::::::
materials

:::
can

:::
be

:::::::
modeled

::
as

:::::::::
two-phase

:::::::
systems

::::::::
composed

::
of

::
a

::::
solid

:::::::
skeleton

:::
and

::
a
::::::::
saturating

:::::
fluid.

:::::
These

::::::
phases

::::::::
exchange

:::::
mass,

::::::::::
momentum,

:::
and

::::::
energy,

:::::::
leading

::
to

:::::::
complex

:::::::
coupled

::::::::
processes

:::
that

:::
are

::::::::
naturally

::::::::
described

:::::
using

::
the

::::::::::
framework

::
of

:::::::
classical

:::::::::
irreversible

::::::::::::::
thermodynamics

:::::
(CIT)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gyarmati et al., 1970; Jou et al., 1996; Lebon et al., 2008; Yarushina and Podladchikov, 2015)925

:
.
::
In

:::
this

::::::::::
formulation,

:
conservation equations for a general quantity A(t,x) and massconservation for density ρ(t,x):

1: restart; #some useful relations

2: eqA := diff(rho(t, x)*A(t, x), t) + diff(rho(t, x)*A(t, x)*Vx(t, x) + qx(t, x), x) - QA;

3: eqM := diff(rho(t, x), t) + diff(rho(t, x) * Vx(t, x), x) - Qrho;930

- eqA represents the conservation of a general quantity A(t,x), incorporating the advective term ρ(t,x)A(t,x)vx(t,x) and an

additional flux qx(t,x). - eqM is the mass conservation equation for density ρ(t,x) with velocity vx(t,x) and a source term

Qρ. The difference between these equations is simplified to derive a general expression for the time derivative of A(t,x).
935

1: eq := simplify(eqA - eqM * A(t, x));

2: dA_dt := solve(eq, diff(A(t, x), t));

The equation eq is derived by subtracting the mass conservation equation, multiplied by A(t,x), from eqA. This results in an

equation for the time derivative of A(t,x), which is then solved to obtain dA_dt. Next, we calculate the total derivative of940

A(t,x), including the convective term:

1: DA_dt := collect(simplify(dA_dt + diff(A(t, x), x)*Vx(t, x)), Q);

The variable DA_dt represents the total (material) derivative of A(t,x), which includes both the time derivative and the945

convective term ∂A
∂x · vx(t,x). The resulting expression is then collected and simplified with respect to the source terms Q:
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::::
mass,

:::::::::::
momentum,

:::::::
entropy,

:::
and

::::::
energy

:::
are

::::::::
expressed

::
in

:::
the

:::::::
Eulerian

::::::
frame

::
as

:::::::
follows:

DA_dt
∂(ρϕ)

∂t
+∇j
::::

(
ρϕ
::

vvvj + qjρ
::::

)
==

−A(t,x)Qρ − ∂qx(t,x)
∂x +QA

ρ(t,x)
Qp,
:::

(B1)

B2 Thermodynamic Admissibility in Fluid-Saturated Porous Media

Simplifying Assumptions950

To simplify the model under specific assumptions, we set several parameters to zero:

1: Qrhof := 0; # No mass source or sink in the fluid phase

2: RDarcy := 0; # Removes contribution of Qrhof from fluid momentum balance

3: Pcor := 0; # Allows reaction to change porosity955
4: Dc[ph] := 0; # Turns off intraphase mass diffusion

5: eta[f] := 0; # if=0 then no full Stokes for pore scale fluid flow = only Darcy's law

6: lam[ph]:= 0; # Turns off intraphase heat diffusion

Flux Definitions and Constitutive Relations960

Effective properties

We define the effective properties of the solid phase using mixture rules: Effective Thermal Conductivity: Starting from the

total thermal conductivity:

λt = (1−ϕ)λs
∂(ρϕvvvi)

∂t
+∇j

::

(
ρ
:
ϕλfvvvivvvj + qijvvv

:::::

)
=Qvi ,
:::::

(B2)

Solving for λs:965

λs
∂(ρϕsss)

∂t
+∇j
::::

(
ρϕ
::

sssvvvj + qjsss
::::

)
=

λt −λfϕ

1−ϕ
Qs,
::

(B3)

Effective Mass Diffusion Coefficient:

D(s)
c

∂(ρϕeee)

∂t
+∇j
::::

(
ρϕ
::

eeevvvj + qjeee
::::

)
=

D
(t)
c −D

(f)
c ϕ

1−ϕ
Qe,
::

(B4)

Effective Viscosity:

ηs =
ηt − ηfϕ

1−ϕ
970

Kinematic Relations

1: dphi_dt := diff(phi(t, x), t) + V(x) * diff(phi(t, x), x);
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The rate of change of porosity ϕ is given by:975

dϕ

dt
=

∂ϕ

∂t
+ v

∂ϕ

∂x

where v is the velocity, and dϕ
dt :::::

where
:::
vvvj ,

::
sss,

:::
and

::
eee

:::::
denote

:::
the

::::::::
velocity,

::::::
specific

:::::::
entropy,

::::
and

::::::
specific

::::
total

::::::
energy

:::
per

::::
unit

:::::
mass,

::::::::::
respectively.

::::
The

::::
term

:
ρ
:::::::
denotes

:::::::::::::
(phase-specific)

:::::::
density,

::
ϕ

:::
the

:::::
phase

::::::
volume

:::::::
fraction

:::::
(e.g.,

:::::::
porosity

:::
for

:::
the

:::::
fluid).

::::
The

:::::
terms

:::
∇j represents the material derivative of porosity. The fluid velocityvf relates to the solid velocity vs and the Darcy flux qD:

vf = vs +
qD

ϕ
.980

:::::
partial

:::::::::
derivative

::::
with

::::::
respect

::
to

::::::
spatial

::::::::::
coordinates,

::::::
while

::
qjρ,

::::
qijvvv ,

:::
qjsss ,

:::
and

:::
qjeee:::::::::

correspond
:::

to
:::
the

:::::
fluxes

::
of

:::::
mass,

:::::::::::
momentum,

::::::
entropy,

::::
and

::::::
energy,

::::::::::
respectively.

::::
The

:::::
terms

:::
Qp,

::::
Qvi ,:::

Qs,
:::
and

:::
Qe::::::::

represent
:::
the

::::::::::::
corresponding

:::::::::
production

::::
rates

:::
due

::
to

:::::::::
irreversible

::::::::
processes

:::::::::::::::::::::::::::::
(Yarushina and Podladchikov, 2015)

:
.

Fluxes and Source Terms

Here we define fluxes for heat, momentum, and solute transport based on non-equilibrium thermodynamics:985

1: qs := -lam[ph]*phi(t, x)*diff(T(x), x) / T(x); # Fourier's law for heat flux

2: qv := -eta[ph]*phi(t, x)*diff(V(x), x) + phi(t, x)*P(x); # Stokes' law for viscosity

3: qc := -Dc[ph]*phi(t, x)*diff(mu(x), x); # Fick's law for diffusion

4: qu := T(x)*qs + V(x)*qv + mu(x)*qc; # Energy flux990

- ‘qs‘: Heat flux defined according to Fourier’s law, with thermal conductivity λ[ph].- ‘qv‘: Viscous flux based on Newtonian

viscosity, incorporating pressure P (x).- ‘qc‘: Solute flux following Fick’s law of diffusion, with chemical potential gradient

µ(x).- ‘qu‘: Total energy flux, a combination of heat, mechanical, and chemical contributions.

– Heat Flux (qs) . According to Fourier’s law:995

qs =−λphϕ
∂T

∂x
· 1
T
,

where λph is the phase-dependent thermal conductivity.

– Momentum Flux (qv). Using Newtonian viscosity (Stokes flow approximation):

qv =−ηphϕ
∂V

∂x
+ϕP,

where ηph is the phase-dependent viscosity.1000

– Mass Flux (qc). Following Fick’s law for diffusion:

qc =−D(ph)
c ϕ

∂µ

∂x
,

where D
(ph)
c is the phase-dependent mass diffusion coefficient.
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– Energy Flux (qu). Combining the above fluxes:

qu = Tqs + vqv +µqc1005

Balance Equations

1: qdrho_dt := (-(diff(V(x),x)*phi(t,x)+dphi_dt)*rho(t,x) # conservation law in non-divergent form

2: +Qrho)/phi(t,x):

3: dU_dt := (-diff(qu,x) + Qu - U *Qrho)/rho(t,x)/phi(t,x): # Energy - eq balance energy1010
4: dV_dt := (-diff(qv,x) + Qv - V(x)*Qrho)/rho(t,x)/phi(t,x): # Newton 2nd law

5: dC_dt := (-diff(qc,x) + Qc - C(x)*Qrho)/rho(t,x)/phi(t,x): # balance mass of solute

6: dS_dt := (-diff(qs,x) + Qs - S(x)*Qrho)/rho(t,x)/phi(t,x): # balance of entropy - increasing

– Mass Balance (Non-Divergent Form). The rate of change of density ρ is:1015

dρ

dt
=

−
(
ϕ
∂v

∂x
+

∂ϕ

∂t
+ v

∂ϕ

∂x

)
ρ+Qρ

ϕ
,

where Qρ is the mass source term.

– Energy Balance

dU

dt
=

−∂qu
∂x

+Qu −UQρ

ρϕ
,

where Qu is the energy source term.1020

– Momentum Balance (Newton’s Second Law)

dv

dt
=

−∂qv
∂x

+Qv − vQρ

ρϕ
,

where Qv is the momentum source term.

– Concentration Balance

dC

dt
=

−∂qc
∂x

+Qc −CQρ

ρϕ
,1025

where Qc is the concentration source term.

– Entropy Balance

dS

dt
=

−∂qs
∂x

+Qs −SQρ

ρϕ
,

where Qs is the entropy source term.
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Deriving Entropy Production1030

1: LET := dU_dt = T(x)*dS_dt

2: + P(x)*drho_dt/rho(t, x)^2

3: + V(x)*dV_dt

4: + mu(x)*dC_dt1035
5: + tau[phi]*dphie_dt/rho[ph](t,x)/(phi(t,x));

6: TQs := simplify(T(x)*solve(LET, Qs));

- ‘LET‘: The local thermodynamic equilibrium condition, which includes terms for internal energy, entropy, volume, kinetic

energy, chemical potential, and porosity change.- ‘TQs‘: The entropy production term, simplified from the LTE condition to1040

ensure non-negative production.

Local Entropy Production

The local entropy production is derived from the energy balance and is given by:

dU

dt
= T

dS

dt
+

p

ρ2
dρ

dt
+ v

dv

dt
+µ

dC

dt
+

τϕ
ρϕ

dϕe

dt
,

where:1045

– τϕ is the thermodynamic variable (pressure) conjugated to porosity change. Note, that τϕ is not defined yet.

–
dϕe

dt
is the reversible part of the porosity rate change.

Physical Interpretation of Terms:

– T
dS

dt
: Heat stored in internal energy U .

–
p

ρ2
dρ

dt
=−p

d(1/ρ)

dt
: Work stored in elastic energy (Hooke’s Law). Note that

dp

K
=

dρ

ρ
, where K is the bulk modulus,1050

dp= p− pref, and pref is the reference pressure.

– v
dv

dt
: Newtonian mechanics (kinetic energy, e.g., v dv

dt =
1
2
dv2

dt ).

– µ
dC

dt
: Energy due to changes in composition (chemical potential), which is zero in the present derivation.

–
τϕ
ρϕ

dϕe

dt
: Poroelastic effects: reversible part of the energy change due to the changes in porosity.
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Entropy Production (TQs)1055

B1.1
:::::::
Entropy

::::::::::
Production

::::::
(TQs)

Solving the local entropy production equation for Qs and multiplying both sides by
::
the

::::::::
absolute

::::::::::
temperature

:
T , we have:

::::::
obtain:

TQs = ηϕ

(
dv

dx

)2

+
λϕ

T

(
dT

dx

)2

+ pv
dϕ

dx
+µQρC − vQv −QρGGibbs +Qu + p

dϕ

dt
− τϕ

dϕe

dt
(B5)

This expression represents the entropy production, which must be non-negative according to the second law of thermodynamics.1060

:::::::
Notably,

:::
this

::::::::::
formulation

:::::::
assumes

:::::
local

:::::::::::::
thermodynamic

::::::::::
equilibrium

::::::::
separately

:::
for

:::
the

::::
solid

::::
and

::::
fluid

::::::
phases.

::::
This

::
is

:
a
:::::::
weaker

:::::::::
assumption

::::
than

:::::
Biot’s

:::::::
original

:::::
model

:::::::::::
(Biot, 1962),

:::::
which

:::::::::
postulated

:
a
::::::
single

::::::
internal

::::::
energy

:::::::
potential

:::
for

:::
the

:::::
entire

:::::::::
two-phase

::::::
system

::
in

:::
the

:::::
linear

:::::::::
poroelastic

::::::
regime

::::::::::::::::::::::::::::::
(Yarushina and Podladchikov, 2015).

:

Phase Properties and Kinematic Substitutions

B2
:::::::::::::::
Thermodynamic

::::::::::
Constraints

:::
on

::::::
Fluxes

:::
and

:::::::::::
Productions1065

We consider both fluid and solid phases, assigning specific properties to each.

1: Fluid := {ph=f,rho(t,x)=rho[f](t,x),V(x)=Vf ,P(x)=Pf(x) ,G(x)=Gf ,Qv= Qvf,Qrho= Qrhof,Qc= Qcf,Qu= Quf,tau[phi]=0 }:

2: Solid := {ph=s,rho(t,x)=rho[s](t,x),V(x)=Vs(x),P(x)=Pf(x)-dP(x),G(x)=Gf-dG,Qv=-Qvf,

3: Qrho=-Qrhof,Qc=-Qcf,Qu=-Quf,phi(t,x)=1-phi(t,x)}:1070
4: sbs:={diff( phi(t,x),t) = dphife_dt+dphifvis_dt - Vs(x)*diff( phi(t,x),x)

5: ,diff(rho[s](t,x),t) = drhos_dt - Vs(x)*diff(rho[s](t,x),x)

6: ,diff(rho[f](t,x),t) = drhof_dt - Vf*diff(rho[f](t,x),x)

7: ,diff(Vs(x),x) = divVs};1075

We introduce substitutions for derivatives to simplify the expressions:

– Porosity Rate Change (note that porosity is divided into reversible (elastic) and irreversible (viscous) parts)

∂ϕ

∂t
=

dϕ

dt
− vs

∂ϕ

∂x

– Solid Density Rate Change

∂ρs
∂t

=
dρs
dt

− vs
∂ρs
∂x

1080

– Fluid Density Rate Change

∂ρf
∂t

=
dρf
dt

− vf
∂ρf
∂x

– Solid Velocity Divergence

∂vs

∂x
= divvs
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Total Entropy Production1085

The entropy production for both fluid and solid phasesis computed:

1: TQs_total := subs(Fluid, TQs) + subs(Solid, TQs);

Substituting the phase properties and kinematic relations into the expression for TQs, we obtain
::::
CIT

:::::::
requires

:::
that

:
the total1090

entropy production :

TQs,total = TQ(f)
s +TQ(s)

s

Thermodynamic Variable Conjugated to Porosity Changes:

The thermodynamic variable τϕ conjugated to porosity changes is now defined as:
::
of

:::
the

::::::
system

:::::::
remains

::::::::::::
non-negative.

::::
This

::::::::
condition

::::::
applies

::::
both

::
to

:::
the

:::::::::
intra-phase

::::
and

:::::::::
inter-phase

:::::::
entropy

:::::::::
production

::::::
within

:
a
::::::
porous

::::::::
medium.

:::::::::::::
Mathematically,

::::
this

::
is1095

::::::::
expressed

:::
as:

τϕ
∑

phases

Qs

::::::

=∆p≡ p
∑

phases

Q

:::::

s−pf .
intra +Qinter

s ≥ 0.
:::::::::::::

(B6)

Additional Relations:

Fluid Momentum Flux (Qvf ). Given that Qρf = 0 and RDarcy = 0:

Qvf =
∂ϕ

∂x
pf − ηdVq

D1100

Porosity Rate Change in Fluid Phase (
dϕf

dt
) Since Qρf = 0 and Pcor = 0:

dϕf

dt
=

dϕ(e)

dt
+ kϕ∆P

Gibbs Free Energy Change (∆G). With Pcor = 0:
:::::
Here,

:::::
Qintra

s :::::::::
represents

:::
the

:::::::::
intra-phase

:::::::
entropy

::::::::::
production

:::::
within

:::::
each

:::::
phase

::::
(e.g.,

:::
due

::
to
::::::::
viscosity,

::::
heat

::::::::::
conduction,

::
or

:::::::
internal

:::::::::
diffusion),

:::::
while

::::
Qinter

s :::::::::
represents

:::
the

::::::
entropy

:::::::::
production

::::::
arising

:::::
from

:::::::::
inter-phase

::::::::::
interactions

:::::
(e.g.,

::::::::::
interactions

:::::::
between

:::
the

:::::
solid

:::::::
skeleton

:::
and

:::
the

:::::
fluid

::::::
phase).

:::
To

::::::
satisfy

::::
CIT,

::::
each

:::::::::::
contribution1105

::::
must

::
be

::::::::::::
non-negative:

∆GGibbs =∆G2Gibbs −
vf qD

ϕ
Qintra

s ≥ 0, Qinter
s ≥ 0.

::::::::::::::::::
(B7)

Mass Source Term in Fluid Phase (Qρf )
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B3
::::::::
Extended

:::::::::::::::
Thermodynamic

::::::::::::
Admissibility

:::::::
Building

::
on

:::
the

::::::::
principles

:::
of

:::::::
Classical

::::::::::
Irreversible

::::::::::::::
Thermodynamics

:::::
(CIT)

:::::::::::::::::
(Lebon et al., 2008)

:::
and

::
the

::::::::
nonlinear

:::::::::::::::
viscoelastoplastic1110

:::::::::
framework

::
of

::::::::::::::::::::::::::::::
Yarushina and Podladchikov (2015),

::::
the

::::::::
derivation

:::
of

:::
the

::::::::
extended

:::::
Biot

:::::::::
poroelastic

:::::::::
equations

:::::
must

::::::
satisfy

::
the

:::::::::
conditions

:::
of

:::::::::::::
thermodynamic

::::::::::::
admissibility.

::::::::::
Specifically,

:::
the

:::::::
entropy

:::::::::
production

::::
Qs ::::

must
::::::
remain

::::::::::::
non-negative,

::::
and

:::
the

:::::::::
constitutive

::::::::
relations

::::
must

::
be

:::::::::
formulated

::::
such

::::
that

::::
they

::
are

:::::::::
consistent

::::
with

:::
the

::::::
second

:::
law

::
of

::::::::::::::
thermodynamics

::
for

:::
all

:::::::::
admissible

:::::::::::::
thermodynamic

::::
paths. Given by:

Qρf =−kρ∆G2Gibbs1115

But since Qρf = 0, it implies ∆G2Gibbs = 0 or kρ = 0.

Total Entropy Production

1: TQs_total := collect(expand(simplify(subs(sbs, eval(TQs_total)))), {dphie_dt});1120

::::
From

::::::::
equation

:::
37,

::::
and

::::::
taking

::::
into

:::::::
account

:::
the

::::::::::
requirement

::::
that

:::::::
entropy

:::::::::
production

:::::
must

:::
be

:::::::::::
non-negative,

:::
the

::::::::
inelastic

:::::::
porosity

:::::::
equation

:::::
takes

::
the

:::::
form

::::::::::::::::::::::::::::::
(Yarushina and Podladchikov, 2015):

:

dsϕf

dt
−

dsϕe
f

dt
=− pe

ηϕ
,

::::::::::::::::::

(B8)

:::::
where

:::
ηϕ :::::

stands
:::
for

:::
the

::::::::
effective

::::
bulk

::::::::
viscosity.

:
After simplifying and collecting terms

:::
(see

:::::::::
Appendix

::
B), the total entropy

production becomes:1125

TQs,total =
1

ηϕ

 pe
(1−ϕ)

pe
(1−ϕf )
:::::::

2

+ ηt

(
∇·
::
vs
)2

+
(qD)2ηdV

ϕ

(qD)2ηdV

ϕf
::::::::

+
λt

T

(
∂T

∂x

)2

. (B9)

As a result, entropy production is non-negative if material parameters are non-negative, which proves the thermodynamic

admissibility of the two-phase system.

Explanation of Terms:

–
1

ηϕ

(
pe

(1−ϕ)

)2

::::::::::::::

1

ηϕ

(
pe

(1−ϕf )

)2

: Entropy production due to poroelastic deformation (poroelastic coefficient kϕ and1130

pressure difference
::::::::::
poroviscous

::::::::::
deformation

::::::::
(effective

::::::::
viscosity

::
ηϕ::::

and
:::::::
effective

:::::::
pressure

::::::::::
pe = p̄− pf ).

– ηt (divv
s)

2
:::::::::
ηt (∇· vs)2: Entropy production due to viscous dissipation in the solid phase.

–
(qD)2ηdV

ϕ ::::::::

(qD)2ηdV

ϕf
: Entropy production due to viscous dissipation in fluid flow (Darcy flow).

–
λt

T

(
∂T

∂x

)2

: Entropy production due to heat conduction (Fourier’s law).
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B4 Darcy’s Law and Fluid Flow1135

Darcy’s law is derived for fluid flow and evaluated for the fluid phase:

1: Mom_f := 0 = subs(Fluid, dV_dt):

2: Mom_s := 0 = subs(Solid, dV_dt):

3: qDx := simplify(solve(Mom_f, qD(x)));1140

- ‘qDx‘: Expression for Darcy’s flux, relating it to the pressure gradient. From the fluid momentum balance
dvf

dt
= 0, we derive

Darcy’s law for the fluid flux qD. Starting from the momentum balance for the fluid phase:

0 =
−∂qv

∂x
+Qvf

ρfϕ

Using the expression for qv and substituting Qvf :1145

0 =

− ∂

∂x

(
−ηphϕ

∂vf

∂x
+ϕpf

)
+

(
∂ϕ

∂x
pf − ηdv q

D

)
ρfϕ

Simplifying and solving for qD:

qD =− 1

ηdv

∂pf
∂x

This indicates that the fluid flux is driven by the pressure gradient and is proportional to the permeability (inverse of viscosity),

which is Darcy’s law.1150

Solid Velocity Divergence

Using the mass balance equations and the substitutions, we derive the divergence of the solid velocity. The mass conservation

for the solid, accounting for porosity changes, is given by:

∂

∂t
(ρs(1−ϕ))+

∂

∂x
(ρs(1−ϕ)vs) = 0.

Expanding the derivatives, we obtain:1155

(1−ϕ)
∂ρs
∂t

− ρs
∂ϕ

∂t
+ ρs(1−ϕ)

∂vs

∂x
+ vs

∂

∂x
(ρs(1−ϕ)) = 0.

We further expand the derivative of the last term:

(1−ϕ)
∂ρs
∂t

− ρs
∂ϕ

∂t
+ ρs(1−ϕ)

∂vs

∂x
+ vs(1−ϕ)

∂ρs
∂x

− vsρs
∂ϕ

∂x
= 0.
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Grouping terms and recognizing the material derivative ds

dt =
∂
∂t + vs ∂

∂x :

(1−ϕ)

(
∂ρs
∂t

+ vs
∂ρs
∂x

)
− ρs

(
∂ϕ

∂t
+ vs

∂ϕ

∂x

)
+ ρs(1−ϕ)

∂vs

∂x
= 0.1160

Using the material derivatives:

(1−ϕ)
dsρs
dt

− ρs
dϕ

dt
+ ρs(1−ϕ)

∂vs

∂x
= 0.

We can infer the solid velocity divergence:

divvs ≡ ∂vs

∂x
=− 1

ρs

dsρs
dt

+
1

1−ϕ

dsϕ

dt
.

By using equation (B8) we can further simplify the expression:1165

divvs =− 1

ρs

dρs
dt

− 1

1−ϕ

dϕe

dt
− ∆p

ηϕ(1−ϕ)
.

Each term in the expression (??) for divvs has a physical interpretation:

Solid Density Changes:

− 1

ρs

dsρs
dt

This term accounts for the volumetric changes due to variations in the solid density, such as thermal expansion or compression1170

under pressure.

Reversible Porosity Changes:

− 1

1−ϕ

dϕe

dt

Accounts for the reversible part of the porosity change.

Irreversible Porosity Changes:1175

− ∆p

ηϕ(1−ϕ)

Incorporates the effect of pressure changes through the poroelastic coefficient ηϕ::::
The

:::::::::::
non-negative

:::::::
nature

::
of

:::::
each

:::::
term

::::::
ensures

::::
the

::::::
overall

:::::::::
positivity

::
of

:::::::
entropy

:::::::::::
production,

:::::::
thereby

::::::::::
confirming

:::
the

::::::::::::::
thermodynamic

:::::::
validity

:::
of

:::
the

::::::
system

:::
of

::::::::
extended

:::::
Biot’s

::::::::::::::
poroviscoelastic

:::::::::
equations.

:
A
:::::

more
::::::::

detailed
:::::::::
derivation

::
is

:::::
given

::::::
below

::::
(see

::::
also

:::
the

::::::::::
discussions

::::::::
provided

:::
by

::::::::::::::::::::::::::::::
Yarushina and Podladchikov (2015)

:
).1180

::::::::::
Additionally,

:::::::::
symbolic

::::::
Maple

:::::::
routines

::::
used

:::
to

:::::::::
reproduce

:::
and

:::::::
validate

::::
the

:::::::::
theoretical

::::::
results

:::::::::
presented

::
in

::::
this

:::::
article

::::
are

:::::::
available

::
in

::
a

:::::::::
permanent

::::
DOI

::::::::
repository

::::::::
(Zenodo)

:::::::::::::::::::::::::::::::::
(Alkhimenkov and Podladchikov, 2024).

:
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Summary

The derived expressions ensure thermodynamic admissibility by demonstrating that the total entropy production TQs,total

is non-negative, satisfying the second law of thermodynamics. Each term in the entropy production has a clear physical1185

interpretation, representing the irreversible processes contributing to entropy increase in the system.
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