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Abstract. This study explores stress drops and earthquake sequences in the simplest pressure-sensitive elasto-plastic media

using two-dimensional simulations, emphasizing the critical role of temporal and spatial resolution in accurately capturing

stress evolution and strain localization during seismic cycles. Our analysis reveals that stress drops—triggered by plastic

deformation once local stresses reach the yield criterion—resemble fault rupture mechanics, where accumulated strain energy

is suddenly released, simulating earthquake-like behavior. Finer temporal and spatial discretization leads to sharper stress drops5

and lower minimum stress values. Displacement accumulates gradually during interseismic periods and intensifies during

major stress drops, capturing key features of natural earthquake cycles. The histogram of stress drop amplitudes exhibits a non-

Gaussian distribution. This "solid turbulence" behavior suggests that stress is redistributed across spatial and temporal scales,

with implications for understanding the variability of stress drop magnitudes. Our results demonstrate that high-resolution

elasto-plastic models can reproduce essential features of earthquake nucleation and stress drop behavior without relying on10

complex friction laws or velocity-dependent weakening mechanisms. These findings emphasize the necessity of incorporating

plasticity into fault slip models to better understand the mechanisms of fault weakening and rupture. Furthermore, our work

suggests that extending these models to three-dimensional fault systems and incorporating material heterogeneity and fluid

interactions could offer deeper insights into seismic hazard assessment and earthquake mechanics.

1 Introduction15

Understanding earthquake triggering remains a significant challenge in geophysics, as it directly influences our ability to predict

and mitigate seismic hazards. Earthquake nucleation is often conceptualized through the study of sliding behavior along fault

surfaces, with models traditionally describing the interseismic period as one of near-elastic deformation in the surrounding

crust, interrupted by phases of anelastic slip that eventually result in seismic rupture (Pranger et al., 2022). Such models

typically rely on phenomenological rate- and state-dependent friction laws (Dieterich, 1978, 1979; Ruina, 1983), which have20

been highly successful in describing various aspects of the seismic cycle. However, these friction-based models may overlook

critical physical processes that govern the transition from aseismic slip to seismic rupture, particularly when plastic deformation

and off-fault processes are involved.
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Numerical modeling of elasto-plastic strain localization in pressure-sensetive geo-materials has a long history, with early

contributions from Cundall (1989, 1990); Poliakov et al. (1993, 1994); Poliakov and Herrmann (1994). Regularization of25

strain localization thickness was addressed by Duretz et al. (2019) and de Borst and Duretz (2020). A single-phase (visco)-

hypoelastic-perfectly plastic medium was modeled in both 2D and 3D domains by Alkhimenkov et al. (2024b), while compaction-

driven fluid flow and shear bands in porous media were numerically modeled in 3D by Alkhimenkov et al. (2024a).

One of the first computational earthquake dynamics models with slip-weakening rupture simulations was introduced by

Andrews (1976). Recent studies have suggested that plasticity plays a crucial role in the triggering of earthquakes, particularly30

through off-fault plasticity mechanisms (e.g., Andrews (2005)). Off-fault plasticity refers to the deformation that occurs away

from the main fault plane and can significantly influence the dynamics of rupture propagation. Ma (2008); Ma and Andrews

(2010) conducted some of the earliest studies on dynamic rupture with plasticity. Previous works have explored the effects of

off-fault plasticity in two-dimensional (2-D) in-plane dynamic rupture simulations (Templeton and Rice, 2008; Kaneko and

Fialko, 2011; Gabriel et al., 2013; Tong and Lavier, 2018; Allison and Dunham, 2018). For instance, Dal Zilio et al. (2022)35

presented a 2-D thermomechanical computational framework for simulating earthquake sequences in a nonlinear visco-elasto-

plastic compressible medium, highlighting the importance of including viscoelastic and plastic behavior in realistic models.

Other studies highlighting the importance of plasticity in earthquake physics modeling include Erickson et al. (2017), Preuss

et al. (2020), and Simpson (2023).

In addition to 2-D studies, three-dimensional (3-D) dynamic rupture simulations incorporating off-fault plasticity have40

provided deeper insights into the complexity of earthquake mechanics (Wollherr et al., 2018). Another significant advancement

was made by Uphoff et al. (2023), who utilized a discontinuous Galerkin method to model earthquake sequences and aseismic

slip on multiple faults, demonstrating the versatility of numerical approaches in capturing the nuances of seismic phenomena.

The role of plasticity in earthquake triggering has also been emphasized in laboratory experiments. Studies have shown that

plastic deformation can precede seismic slip, indicating that the onset of plastic yielding may be a precursor to earthquake45

initiation (Johnson et al., 2008; Scuderi et al., 2016). These experimental findings support the incorporation of plasticity in

numerical models to enhance the understanding of the triggering process.

Despite these advancements, there remains a need for simplified models that can effectively capture the essential features

of earthquake triggering and stress drops while being computationally efficient. The simplest elasto-plastic models offer a

promising avenue for such investigations. By focusing on basic physical principles, these models can provide insights into the50

fundamental mechanisms of earthquake triggering, such as the role of stress accumulation and release, the interaction between

elastic and plastic deformation, and the influence of material heterogeneity on seismic behavior.

In this study, we employ a two-dimensional elasto-plastic model to investigate stress drops and earthquake triggering. The

friction coefficient is assumed to be constant in all simulations, with no hardening or softening, which corresponds to an ideal

plasticity model. We conduct a series of numerical simulations to explore the effects of temporal and spatial resolutions on55

the accuracy of stress and strain predictions. Our goal is to understand how these resolutions impact the modeled behavior of

stress evolution, strain accumulation, and the nucleation of seismic events. Our approach involves detailed convergence tests

for temporal and spatial discretizations, analysis of stress drop sequences, and examination of interseismic periods. We also
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investigate the initial wave field patterns during earthquake nucleation to gain insights into the complex interplay between

quasi-static and elasto-dynamic mechanics. Through this comprehensive study, we aim to highlight the critical role of high-60

resolution modeling in capturing the intricate dynamics of earthquake triggering and stress drops, providing a foundation for

future research and practical applications in seismic hazard assessment.

The novelty of the present study is highlighted by the following contributions:

1. We employ the simplest pressure-sensitive ideal plasticity model, characterized by a spatially and temporally constant friction

coefficient.65

2. We propose a physics-based explanation for spontaneous stress drops in deforming rocks, offering potential applications for

modeling earthquake sequences.

3. We do not prescribe any pre-existing faults; instead, new faults emerge spontaneously from the stress field.

4. We achieve high-resolution simulations with fast computational performance by leveraging GPU-based parallel computing.

70

2 Mathematical formulation

2.1 Quasi-statics

The conservation of linear momentum is expressed as:

∇jσij + fi = 0, (1)

where σij is the stress tensor, fi is the body force, ∇ is a dell operator, j = 1..3 and Einstein summation convention is applied75

(summation over repeated indices). The stress tensor is decomposed into bulk (volumetric) and deviatoric components

σij =−pδij + τij , (2)

where p is pressure, τij is the deviatoric stress tensor, δij is the Kronecker delta. The strain rate is defined as

ε̇ij =
1

2
(∇ivj +∇jvi) (3)

The rheology is elasto-plastic, which is characterized by an additive decomposition of the strain rate into an elastic (volumetric80

and deviatoric) and plastic components

ε̇ij = ε̇ebij + ε̇edij + ε̇plij , (4)

where the superscripts ·eb, ·ed, ·pl denote elastic volumetric (bulk), elastic deviatoric and plastic parts, respectively. The

volumetric (bulk) elastic strain rate is

ε̇ebij =
1

3
∇kvkδij =− 1

K

Dp

Dt
, (5)85
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where Dp/Dt is the material derivative (provided in the following section), the deviatoric elastic strain rate is

ε̇edij =
1

2G

Dτij
Dt

, (6)

where the Jaumann rate of deviator of Cauchy stress tensor, represented as Dτij/Dt, is provided in the following section and

the plastic strain rate is

ε̇plij = λ̇
∂Q

∂σij
, (7)90

where λ̇ is the plastic multiplier rate and Q is the plastic flow potential. Combining equations (4)-(7), the total strain rate can

be reformulated as

ε̇ij =
1

2
(∇ivj +∇jvi) =− 1

K

Dp

Dt
+

1

2G

Dτij
Dt

+ λ̇
∂Q

∂σij
. (8)

This the system of equation is the static elasto-plastic model routinely used in solid mechanics (Zienkiewicz and Taylor,

2005).95

2.1.1 Large strain formulation

The inelastic response is described using hypoelastic constitutive theory. Hypoelasticity involves formulating the constitutive

equations for stress in terms of objective (frame-invariant) stress rates (de Souza Neto et al., 2011).

The scalar pressure material derivative is represented by the following equation:

Dp

Dt
=
∂p

∂t
+ vk

∂p

∂xk
. (9)100

The Jaumann rate of deviator of Cauchy stress tensor, represented as Dτij/Dt, is defined by (de Souza Neto et al., 2011):

Dτij
Dt

=
∂τij
∂t

+ vk
∂τij
∂xk

−ẇikτjk − ẇjkτik, (10)

where ẇij is the vorticity tensor defined as: ẇij = (∇ivj −∇jvi)/2.

2.2 Elasto-dynamics

The conservation of linear momentum is extended by addition of inertia:105

∇jσij + fi = ρ
∂vi
∂t
, (11)

where v is the velocity and ρ is the density.

2.3 Plasticity

Plasticity is implemented using a non-associated, pressure-dependent Drucker–Prager criterion (Drucker and Prager, 1952;

de Souza Neto et al., 2011; De Borst et al., 2012). According to this criterion, plastic yielding begins when the second invariant110

of the deviatoric stress, J2, and the pressure (minus the mean stress), p, meet the following condition:√
J2 − sin(φ)p= cos(φ)c, (12)
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where c is the cohesion and φ is the angle of internal friction. In terms of the stress tensor, plastic deformations occur when the

stresses reach the yield surface. The yield function F and the plastic potential Q for the Drucker–Prager criterion are defined

as:115

F (τ,p) =
√
J2 − sin(φ)p− cos(φ)c, (13)

where φ is the internal friction angle.

Q(τ,p) =
√
J2 − sin(ψ)p, (14)

where ψ ≤ φ is the dilation angle. In two dimensions under plane strain conditions, with ϵ̇zz = 0, the Drucker–Prager criterion

is equivalent to the Mohr-Coulomb criterion (Templeton and Rice, 2008). In 2-D, the second invariant of the deviatoric stress,120

J2, is expressed as:

J2 =
1

2
τijτji =

1

2
(τ2xx + τ2yy ++τ2zz)+ τ2xy. (15)

As long as F ≤ 0, the material remains in the elastic regime. Once F reaches zero (F = 0), plasticity is activated. If the

material remains in a plastic state (∂F/∂t= 0), plastic yielding continues. The current implementation of perfect plasticity

requires small time increments and is computationally expensive. To ensure spontaneous strain localization, strain softening is125

often introduced, which promotes the formation of shear bands (Lavier et al., 1999; Moresi et al., 2007; Popov and Sobolev,

2008; Lemiale et al., 2008). However, there are concerns about the thermodynamic admissibility of such solutions (Duretz

et al., 2019). Additionally, the softening or hardening moduli are small compared to the shear modulus and can be neglected as

a first-order approximation (Vermeer, 1990), leading to the ideal plasticity model used in the present study.

For the case of regularized plasticity, the the yield function is defined as (Heeres et al., 2002):130

F (τ,p) =
√
J2 − sin(φ)p− cos(φ)c− ηvpλ̇. (16)

3 Numerical implementation

3.1 Discretization

The numerical domain is discretized using a staggered grid in both space and time (Virieux, 1986). This method provides a

variant of the conservative finite volume approach (Dormy and Tarantola, 1995). For the elasto-dynamic equations, an explicit135

time integration method is employed, offering second-order accuracy in both space and time. Detailed representations of the

discrete equations are available in Alkhimenkov et al. (2021). For the quasi-static equations, the discrete scheme achieves

second-order accuracy in space. Advection is carried out using an upwind scheme, which is first-order. Consequently, due

to the application of the pseudo-transient method, the solution demonstrates first-order accuracy in time (Alkhimenkov and

Podladchikov, 2025).140
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3.2 Accelerated pseudo transient method

The solution of the quasi-static equations is achieved using the matrix-free accelerated pseudo-transient (APT) method (Frankel,

1950; Räss et al., 2022; Alkhimenkov and Podladchikov, 2025). The core concept of this method involves solving dynamic

equations with appropriate attenuation of the dynamic fields instead of directly solving inertialess equations. To achieve this,

the equations are written in their non-dimensional residual form and iterated over "pseudo-time" until convergence is reached.145

Once the dynamic fields attenuate to a specific precision (e.g., to 10−12), the solution of the quasi-static equations is attained.

In other words, the quasi-static problem serves as an attractor for the dynamic problem with damping. The APT method is

capable of handling numerical domains with more than a billion grid cells. Additionally, since all operations are local, this

method can be naturally parallelized using GPUs, which is the approach taken in this study.

3.3 Implementation of plasticity150

In the return mapping algorithm, the following steps are performed:

1. Calculate the components of the trial deviatoric stresses, τ trialij . 2. Compute the trial second invariant of the deviatoric

stresses, J trial
2 , using τ trialij . 3. Determine F trial using the equation:

F trial =
√
J trial
2 − (sin(φ)p+cos(φ)c) . (17)

When the material is in the plastic state, the trial deviatoric stress components, τ trialij , are re-scaled according to:155

τnewij = τ trialij

(
1− F trial√

J trial
2

)
≡ τ trialij λ̃, (18)

where λ̃= 1− F trial√
Jtrial
2

is the scaling parameter. This re-scaling process is iterated over "pseudo-time" until the updated

trial deviatoric stresses, τnewij , satisfy the plasticity criterion, ensuring F trial = 0 (thus, λ̃= 1 and no re-scaling occurs). A

regularized version of this procedure modifies formula (18) to (assuming non-zero dilatation angle ψ):

λ̃= 1− F trial∆tGe

√
J2(Ge∆t+K∆tsinφsinψ+ ηvp)

. (19)160

where ηvp is the regularization parameter having units of viscosity, [Pa·s]. The numerical viscosity ηvp is usually set to a small

value. If this value is too high, the shear bands become very thick; conversely, if the value is too small, the thickness of the shear

band is just one pixel. The correct value of the viscosity damper lies between these limits. In the following section, we examine

how the choice of viscosity damper affects the solution. This implementation of plasticity through re-scaling deviatoric stress

components is equivalent to the standard procedure using the plastic multiplier rate, λ̇, which is defined as165

λ̇=
F trial

∆tGe +K∆tsinφsinψ+ ηvp
. (20)

For a more detailed explanation of how plasticity with regularization is implemented in single-phase media, refer to Duretz

et al. (2018, 2019, 2021).
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3.4 Model configuration, boundary conditions, and non-dimensionalization

The computational domain is a square with dimensions x,y ∈ [−Lx/2,Lx/2]× [−Ly/2,Ly/2]. All simulations in this study170

are performed using a simple initial model configuration and non-dimensional equations. To ensure a consistent dimensionless

framework, we define the following characteristic scales: length l∗ = Lx and time t∗ = 1/a. Here, Lx represents the domain

size in the x-direction, Lx = Ly = 1 and a denotes the background strain rate. Deformation evolves over timescales inversely

proportional to the initial background strain rate a0 at t= 0. The ratio of cohesion c to the pressure scale p∗ is defined as

r = c0
G0

, G0 = 1 and c0 = 10−2.175

For all computations, we set the coefficient of internal friction to µ= 0.5. Pure shear boundary conditions are applied by

prescribing normal velocities at the left and right boundaries:

vx = ax (21)

and at top and bottom boundaries

vy =−ay, (22)180

which corresponds to the extension in x-dimension and compression in y- dimension. At all boundaries, free-slip boundary

conditions are implemented. The following initial condition is implemented: p= 0,

τxx = c0, (23)

τyy =−c0. (24)185

We introduce a circular inclusion in the non-dimensional cohesion c, representing a localized stiff inclusion. The expression in

the dimensionless framework is as follows:

c=

2c0, if
√
(x+Lx/10)2 +(y+Ly/5)2 < 0.06252,

c0, otherwise.
(25)

We impose loading increments applied to the strain components.

4 Results190

4.1 Integrated stress σINT
xx

To analyze the evolution of the simulated system, we evaluate the integrated axial stress σINT
xx along a vertical line segment

using the following expression:

σINT
xx =

1

Ly

Ly∫
0

(−p(x0,y)+ τxx(x0,y)) dy, (26)
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Figure 1. Heterogeneous initial setup of cohesion c. The arrows indicate the pure shear boundary condition which is applied at the model

boundaries.

where x0 is a fixed coordinate in the x-direction (x0 = Lx/4).195

4.1.1 Convergence study

To determine the necessary spatial and temporal resolutions (i.e., the resolution with respect to loading increments), we

performed a convergence study. Simulations were conducted with different spatial resolutions, ranging from N = 632 to

N = 20472, while keeping the regularization viscosity constant across all cases. The results are shown in Figure 2.

At low resolution (e.g., N = 632), the model does not capture sharp stress drops. However, as resolution increases, stress200

drops become increasingly pronounced. Notably, both the amplitude and clarity of the stress drops converge for resolutions of

N = 10232 and higher.

Figure 3 illustrates the strain localization pattern at time t3 for four different resolutions. Starting atN = 10232, the structure

and distribution of shear bands remain qualitatively similar, indicating convergence of the deformation pattern.

The total (Eulerian) displacement in the x- and y-directions is updated from the velocities using205

u(n)x = u(n−1)
x + v(n)x ∆t, u(n)y = u(n−1)

y + v(n)y ∆t. (27)
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where n and n− 1 denote the current and previous time steps, respectively. The incremental (Eulerian) displacement is then

given by

∆ux = u(n)x −u(n−1)
x , ∆uy = u(n)y −u(n−1)

y . (28)

Strain components are computed from (Eulerian) displacement gradients as210

∇ ·u=
∂ux
∂x

+
∂uy
∂y

, (29)

εxx =
∂ux
∂x

− 1
3∇ ·u, (30)

εyy =
∂uy
∂y

− 1
3∇ ·u, (31)

εxy =
1
2

(
∂ux
∂y

+
∂uy
∂x

)
. (32)

Finally, the (Eulerian) deviatoric strain measure is defined as215

Ju
2 =

√
1
2

(
ε2xx + ε2yy

)
+ ε2xy. (33)

A zoomed-in view of log10(J
u
2 ) field is provided in Figure 4, where we observe that the thickness of the shear bands spans

several grid cells even at N = 5112 (panel a), and more than ten grid cells at N = 10232 (panel b). This confirms that the

regularization is effective—if it were not, the shear bands would collapse to 1–3 grid cells irrespective of resolution.

Figure 5 shows the pressure field p at time t3 for four spatial resolutions. As resolution increases from N = 5112 to N =220

20472, finer pressure structures become apparent, highlighting the emergence of sharp gradients. All snapshots correspond to

a total strain of ε= 0.04. Based on these results, we conclude that a resolution of N = 10232 is sufficient for capturing both

stress drop dynamics and shear band structure while maintaining a balance between accuracy, computational cost, and memory

requirements.
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Figure 2. Convergence study. Panel (a) shows the integrated stress σINT
xx as a function of total strain for multiple resolutions. Panels (b–j)

show the velocity field vx at three different time steps (t1–t3) and three different resolutions: N = 10232, N = 15352, N = 20472. t1

corresponds to the total strain ε= 0.022, t2 corresponds to the total strain ε= 0.026, and t3 corresponds to the total strain ε= 0.04.

Regularization parameter is ηvp = 1/2 · 10−5 in all simulations.
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Figure 3. The total velocity field
√

v2x + v2y . Simulations at t3 for four different resolutions: N = 5112, N = 10232, N = 15352, and

N = 20472. t3 corresponds to the total strain ε= 0.04.
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Figure 4. log10J
u
2 field. Zoomed-in view of simulations at t3 for four different resolutions: N = 5112 (panel a), N = 10232 (panel b),

N = 15352 (panel c), and N = 20472 (panel d). t3 corresponds to the total strain ε= 0.04.
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Figure 5. Pressure field p. Zoomed-in view of simulations at t3 for four different resolutions: N = 5112 (panel a), N = 10232 (panel b),

N = 15352 (panel c), and N = 20472 (panel d). t3 corresponds to the total strain ε= 0.04.
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5 Earthquake sequence225

In this section, we analyze the stress response of the system over a complete loading cycle comprising 16,000 incremental steps.

We focus on three aspects: (i) the sequence of stress drops that emerge as strain accumulates, (ii) the statistical distribution of

these drops, and (iii) the wavefield dynamics resulting from a single stress drop event. All results presented in this section are

obtained from a fully converged simulation with spatial resolution N = 10232, constant regularization viscosity, and pseudo-

transient iterations that ensure convergence at each step.230

5.1 Numerical convergence and stability

To ensure that the stress drops analyzed in this study arise from physically meaningful simulation, we monitor the convergence

behavior of the pseudo-transient iterations used to solve the elasto-plastic equations at each time step. Figure 6 shows the

number of iterations required per physical time step (top panel), the corresponding final residual at convergence (middle panel),

and the residual curve versus pseudo-time iterations for the final step (bottom panel). The residual error is calculated using the235

L∞ norm. The number of iterations per step remains moderate throughout the simulation, and the final residuals consistently

remain below a prescribed threshold, confirming that the nonlinear solver converges consistently even during dynamic events

such as stress drops. These diagnostics support the reliability of the stress evolution and wavefield results presented in the

following subsections.

5.2 Final velocity and pressure fields240

The final velocity and pressure distributions highlight the complex flow and stress responses at the end of the simulation, as

shown in Figure 7. The velocity field vx exhibits sharp gradients in zones of intense shear, while the solid-phase pressure p

shows localized shear bands.

5.3 Stress drops

Figure 8 presents the evolution of integrated axial stress σINT
xx as a function of total applied strain for 16,000 loading increments.245

The main panel (Figure 8a) shows the full sequence, while the three lower panels provide zoomed-in views of the early (0–1/3),

middle (1/3–2/3), and late (2/3–1) loading stages, where individual stress drops become clearly visible. Throughout the loading

process, numerous stress drops are observed. These drops correspond to abrupt changes in the system’s stress state, occurring

when strain localization reaches a critical threshold and further deformation in the prescribed direction becomes unsustainable.

At these points, the system undergoes a rapid stress redistribution, manifested as discrete decreases in the integrated stress250

σINT
xx .

These events are indicative of dynamic rupture-like behavior, resembling the rapid stress release that occurs during seismic

slip in natural earthquakes. However, we note that in this initial study, we focus only on the qualitative resemblance and do

not provide a detailed analysis of slip rates or rupture propagation speeds. The observed sequence of stress drops mimics the

typical behavior of fault systems, where interseismic periods of stress accumulation are interrupted by sudden stress release255
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Figure 6. Convergence diagnostics for pseudo-transient iterations. Top: Number of iterations per physical time step. Middle: Final residual

error per time step. Bottom: Residual magnitude versus iteration number for the final time step.
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Figure 7. Final spatial fields of velocity vx and solid pressure p after 16000 incremental steps.

events. This behavior supports the interpretation of the model as capturing essential features of earthquake cycles within an

elasto-plastic framework.

5.3.1 Histogram of stress drop amplitudes

The histogram of stress drop amplitudes shown in Figure 9 provides a quantitative representation of the frequency and

magnitude of stress drops observed over the course of the full simulation (16,000 loading increments). The distribution is clearly260

non-Gaussian, spanning more than five orders of magnitude in amplitude. It is unimodal and asymmetric, with a pronounced

peak near log10(∆σ)≈−4.5 and long tails toward both smaller and larger events. Small stress drops are significantly more

frequent, but large-magnitude stress releases are still present.

This behavior is reminiscent of turbulence-like spectra in other complex systems, where intermittent bursts coexist with

background fluctuations. In the context of solid deformation, this has been described as “solid turbulence” and was first explored265

by Poliakov et al. (1994), who analyzed the multifractal structure of shear localization in elasto-plastic media. In our model,

the broad-tailed nature of the histogram reflects a complex interaction between localized plastic yield and global elastic stress

redistribution. As in fluid turbulence—where energy cascades from large to small scales—stress in the solid is redistributed

across multiple spatial and temporal scales, leading to intermittent bursts of plastic deformation.

Understanding this type of emergent behavior is crucial for modeling seismicity, where stress drops represent analogs of270

earthquake events. The prevalence of small events and the presence of occasional larger ones are qualitatively consistent with

16



Figure 8. Evolution of the normalized integrated stress as a function of total applied strain in a converged simulation with N = 10232 grid

cells, strain increment ∆ε= 1/4×10−5, and viscoplastic regularization ηvp = 1/2×10−5. The main panel shows the full sequence of stress

drops over the entire deformation interval. The three lower panels provide zoomed-in views of the early (0–1/3), middle (1/3–2/3), and late

(2/3–1) loading stages, highlighting the multiscale and irregular nature of stress release events in the model.
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Figure 9. Histogram of stress drop amplitudes computed from a high-resolution simulation (N = 10232). The amplitude of each drop is

defined as the difference in integrated axial stress between consecutive local maxima and minima, and plotted on a base-10 logarithmic scale.

The resulting distribution is non-Gaussian and asymmetric, spanning over five orders of magnitude, with frequent small drops and rarer

large-scale stress releases—consistent with turbulence-like plastic deformation dynamics.

the Gutenberg–Richter relationship. However, we emphasize that our current study does not perform a statistical fit (e.g.,

power-law or log-normal) to extract quantitative scaling exponents. Such an analysis would be required to firmly establish the

statistical nature of the tail and its connection to real seismicity. Overall, the histogram supports the idea that even minimal

elasto-plastic models, with no prescribed faults or complex frictional laws, can give rise to rich and realistic emergent behavior.275

5.3.2 Wave propagation due to a single stress drop

Figure 10 shows the snapshots of wave fields following a single stress drop. The wave response is visualized in terms of

velocity (vx) and pressure (p) at different physical time steps. Panels (a) and (b) present the initial wavefield immediately after

the stress drop. The velocity and pressure distributions are spatially complex and dominated by shear-dominated nucleation

patterns, qualitatively resembling a double-couple source mechanism. The volumetric pressure field also exhibits localized280

amplitudes, indicating simultaneous compressional response.
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Panels (c)–(d), (e)–(f), and (g)–(h) show the evolution of the wavefield after 360, 720, and 1080 time steps, respectively. The

velocity field, initially concentrated near the nucleation region, spreads outward as the system relaxes dynamically. The pressure

field also evolves, exhibiting outward-propagating features that reflect the elastic response of the medium. These results indicate

that a localized stress drop in a plastic medium generates complex wave activity, with both velocity and pressure fluctuations285

contributing to the redistribution of energy. The simulation is performed with a time step size of ∆t= 4× 10−5.

19



Figure 10. Wave propagation following a single stress drop. Panels (a–b) show the initial wavefields: (a) velocity magnitude
√

v2x + v2y , and

(b) pressure p. Panels (c–d), (e–f), and (g–h) show the evolution of the velocity (vx) and pressure (p) fields after 360, 720, and 1080 physical

time steps, respectively. The pattern indicates nucleation dominated by shear (double-couple-like) and volumetric pressure release, consistent

with the early stages of dynamic rupture. 20



6 Discussion

6.1 The nature of stress drops

As shown in Figure 8, numerous stress drops occur throughout the loading process. From a theoretical standpoint, the initial

stress drop—following the onset of strain localization—has been analyzed by, for example, Vermeer (1990) and Le Pourhiet290

(2013). Subsequent stress drops are associated with transitions between quasi-static loading intervals. These events represent

moments when the system shifts from one quasi-equilibrium state to another due to the breakdown of stable deformation paths.

Specifically, when local stresses exceed the yield criterion, plastic deformation is activated, causing a redistribution of stress

and a rapid release of stored energy in the form of a stress drop.

This process mimics the mechanics of fault rupture, where accumulated strain energy is suddenly released during seismic295

events. The sharp, discrete stress drops observed in our simulations—particularly at high spatial and temporal resolutions—are

consistent with such rupture-like behavior.

Beyond the magnitude of individual stress drops, the spatial distribution of strain localization plays a key role in governing

how stress is released. Localized shear bands serve as preferential paths for stress concentration and redistribution, determining

the geometry and timing of stress release. The interplay between elastic loading during interseismic intervals and localized300

plastic deformation during stress drops offers a minimal yet effective model of the earthquake cycle.

6.2 Role of regularization in elasto-plastic simulations

Regularization plays a critical role in numerical simulations of elasto-plastic materials, especially when strain localization is

involved. Without regularization, simulations may produce unphysical results such as infinitely narrow shear bands and grid-

dependent failure modes. In this study, the viscoplastic regularization parameter ηvp was carefully selected to ensure numerical305

stability while preserving physically realistic stress and strain fields.

Excessive regularization, however, can overly smooth these fields, suppressing strain localization and significantly reducing

the occurrence and sharpness of stress drops. This effect is clearly observed in low-resolution simulations, where the regularization

length scale becomes comparable to or larger than the grid resolution. Conversely, insufficient regularization can result in non-

convergent or unstable solutions.310

Our results demonstrate that appropriate regularization enables the model to capture both large-scale and fine-scale features

of dynamic deformation—specifically, the spatial organization of shear bands and the timing and magnitude of stress drops.

These findings align with prior work emphasizing the importance of regularization in elasto-plastic modeling, particularly for

resolving localized deformation while maintaining convergence and computational stability (Popov and Sobolev, 2008; Duretz

et al., 2018).315
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6.3 3D simulations with zero regularization

Alkhimenkov et al. (2023) conducted three-dimensional simulations of a single-phase elasto-plastic model without regularization.

These results provide valuable insight into how strain localization and stress drops manifest in fully three-dimensional domains.

Notably, the trends observed in 3D—both in terms of spatial and temporal resolution—are consistent with the 2D results

presented in this study.320

Extending the analysis to three dimensions is essential for a more realistic representation of fault systems, which are

inherently three-dimensional. In 3D, the stress and strain fields exhibit additional complexity, including the development

of intersecting or branching shear bands, and the influence of out-of-plane stresses on rupture propagation. The fact that

unregularized 3D simulations produce physically meaningful and qualitatively similar results further validates the robustness

of the elasto-plastic framework employed here. This also suggests that certain dynamic features—such as stress drop sequences325

and fault-like deformation—can emerge naturally in elasto-plastic systems even in the absence of artificial smoothing.

6.4 Implications for earthquake sequences and fault mechanics

The results of both 2D and 3D (Alkhimenkov et al., 2023) simulations offer important insights into earthquake nucleation and

fault mechanics. The stress drops observed in our models are directly analogous to the rapid release of accumulated stress

during natural seismic events, supporting the idea that pressure-sensitive elasto-plastic models can replicate key features of330

rupture initiation. The quasi-periodic pattern of stress drops, separated by intervals of gradual strain accumulation, mirrors the

fundamental structure of the seismic cycle.

As deformation progresses, the emergence of multiple shear bands becomes evident. Importantly, stress drops do not always

occur on newly formed bands—instead, they frequently reoccur along existing localized zones of weakness. This behavior is

consistent with observations of natural fault systems, where pre-existing fault planes accommodate repeated episodes of stress335

accumulation and release over multiple cycles. Our results highlight the capacity of simple elasto-plastic models to reproduce

not only the mechanical ingredients of rupture, but also the spatial memory and cyclic behavior observed in fault systems.

6.5 Comparison to rate-and-state friction models

While this study focuses on elasto-plasticity as the primary mechanism governing stress drops and strain localization, it is

instructive to compare our approach to traditional rate-and-state friction (RSF) models. RSF models have been widely used to340

describe fault slip behavior, particularly due to their ability to capture velocity-weakening and velocity-strengthening effects

that are critical for earthquake nucleation and stability analyses.

In contrast, the elasto-plastic model presented here does not rely on any velocity-dependent constitutive law. Instead, stress

drops emerge naturally through local plastic yielding when the material reaches a yield criterion. This distinction is significant:

it suggests that fault weakening and slip can be modeled purely through stress-based plasticity, without invoking empirical345

velocity dependence.
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Furthermore, classical RSF models typically describe fault slip on a predefined, spatially fixed fault interface. In our model,

by contrast, faults emerge spontaneously as localized zones of plastic strain, allowing for the generation, reactivation, and

migration of shear bands. This feature provides an important advantage in capturing fault system evolution in heterogeneous

or evolving tectonic environments, which cannot be represented by single-fault RSF frameworks.350

6.6 Limitations and future work

While the present study offers valuable insights into the mechanics of stress drops and fault-like behavior in elasto-plastic

materials, several limitations remain.

First, the model assumes homogeneous material properties. In reality, natural fault zones are highly heterogeneous, with

variations in lithology, porosity, cohesion, and pre-existing damage that significantly affect strain localization and rupture355

dynamics. Incorporating spatially variable properties would allow for a more realistic simulation of fault behavior and could

reveal additional mechanisms of rupture complexity.

Second, the model currently neglects fluid-rock interactions. Fluids are known to play a critical role in fault weakening,

particularly through pore pressure buildup and fluid-induced instabilities. Future extensions of this model should incorporate

poroelasticity or two-phase flow to study the coupling between deformation and fluid transport, especially in overpressured or360

fluid-saturated fault zones.

Finally, while the present study includes detailed two-dimensional simulations, the primary findings are limited to 2D

geometries. Three-dimensional simulations provide a more realistic framework for fault mechanics, capturing effects such as

off-plane deformation, complex rupture geometries, and interactions among multiple shear bands. Alkhimenkov et al. (2023)

performed 3D simulations of elasto-plastic deformation and observed multiple stress drops consistent with the results presented365

here. However, that study did not focus on earthquake nucleation or the dynamics of earthquake sequences. Future high-

resolution 3D studies will be essential for advancing elasto-plastic modeling of seismic processes, particularly in relation to

rupture initiation, stress transfer, and fault interaction in realistic geological settings.
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7 Conclusions

In this study, we investigated stress drops and earthquake-like behavior in idealized elasto-plastic media using two-dimensional370

numerical simulations. The first stress drop occurs following the onset of strain localization, a process driven by structural

softening (Vermeer, 1990; Le Pourhiet, 2013; Sabet and de Borst, 2019). Subsequent stress drops are associated with transitions

between quasi-static loading intervals, where the system moves from one equilibrium state to another due to the inability

of strain localization to continue growing in the prescribed direction. This structural softening mechanism, which received

relatively little attention until recently (Sabet and de Borst, 2019), is explored here as a fundamental driver of sudden stress375

release and potential earthquake nucleation.

Our results underscore the critical importance of both temporal and spatial resolution in capturing the evolution of stress

and strain fields throughout the seismic cycle. Convergence tests demonstrate that finer discretization sharpens stress drops and

leads to lower minimum stress values, emphasizing the need for high-resolution modeling to accurately resolve dynamic stress

changes. Analysis of the interseismic periods and stress drops reveals a typical cycle: gradual displacement accumulation380

followed by abrupt, localized deformation. This mirrors the natural earthquake cycle, in which periods of aseismic slip are

interrupted by rapid seismic events that release accumulated strain energy. Moreover, wavefield analysis following a single

stress drop revealed complex nucleation patterns, offering insight into the mechanics of rupture initiation.

One of the key contributions of this work is the demonstration that simple pressure-sensitive elasto-plastic models—with

constant friction coefficient in time and space—can reproduce key features of earthquake sequences and stress drop behavior,385

provided sufficient spatial and temporal resolution. Notably, this is achieved without the use of complex frictional laws or

velocity-dependent weakening mechanisms. Our results show that plastic yielding alone can account for fundamental aspects

of fault slip and rupture. A second important contribution is that faults are not prescribed a priori, as in conventional rate-and-

state models; instead, new faults emerge spontaneously from the evolving stress field, offering a key advantage in modeling

complex fault dynamics.390

These findings have important implications for seismic hazard assessment and the development of predictive models.

First, they highlight the need for high-resolution numerical models to capture the transient, localized phenomena that govern

earthquake triggering. Second, they reaffirm the critical role of plastic deformation in fault weakening and rupture, suggesting

that plasticity should be incorporated alongside traditional frictional formulations in future modeling efforts. Finally, although

this study focuses on two-dimensional idealized settings, the insights gained provide a foundation for extending the framework395

to more realistic three-dimensional, heterogeneous systems. Future research could explore the interaction between plasticity,

material heterogeneity, and fluid migration, thereby contributing to a more comprehensive understanding of the physical

mechanisms underlying seismic events. Advancing these models brings us closer to developing robust, physics-based tools

for earthquake forecasting and seismic risk mitigation.

24



Code availability400

The software developed and used in the scope of this study is licensed under MIT License. The latest versions of the code is

available from a permanent DOI repository (Zenodo) at: https://doi.org/10.5281/zenodo.16412530 (last access: 24 July 2025)

(Alkhimenkov et al., 2025). The repository contains code examples and can be readily used to reproduce the figures of the

paper. The codes are written using the Matlab, and CUDA C programming languages.

Author contribution405

YA designed the original study, developed the codes and algorithms, performed benchmarks, created the figures, and wrote

the manuscript. LK contributed to the study design, helped develop the codes and algorithms, and edited the manuscript. YP

provided early work on accelerated PT methods, contributed to the study design, helped develop the codes and algorithms,

assisted with the interpretation of the results, edited the manuscript, and supervised the work.

Competing interests410

The contact author has declared that none of the authors has any competing interests.

Financial support

Yury Alkhimenkov gratefully acknowledges support from the Swiss National Science Foundation, project number P500PN_206722.

Lyudmila Khakimova and Yury Podladchikov thank the Russian Science Foundation (project �24-77-10022) for supporting

the development of numerical algorithms and facilitating large-scale GPU-based computations.415

25



References

Alkhimenkov, Y. and Podladchikov, Y. Y.: Accelerated pseudo-transient method for elastic, viscoelastic, and coupled hydromechanical

problems with applications, Geoscientific Model Development, 18, 563–583, https://doi.org/10.5194/gmd-18-563-2025, 2025.

Alkhimenkov, Y., Räss, L., Khakimova, L., Quintal, B., and Podladchikov, Y.: Resolving wave propagation in anisotropic poroelastic media

using graphical processing units (GPUs), Journal of Geophysical Research: Solid Earth, 126, e2020JB021 175, 2021.420

Alkhimenkov, Y., Khakimova, L., Utkin, I., and Podladchikov, Y.: Resolving Strain Localization of Brittle and Ductile Deformation in

two-and three-dimensions using Graphical Processing Units (GPUs), arXiv preprint arXiv:2305.01701, 2023.

Alkhimenkov, Y., Khakimova, L., and Podladchikov, Y.: Shear bands triggered by solitary porosity waves in deforming fluid-saturated porous

media, Geophysical Research Letters, 51, e2024GL108 789, 2024a.

Alkhimenkov, Y., Khakimova, L., Utkin, I., and Podladchikov, Y.: Resolving strain localization in frictional and time-dependent plasticity:425

Two-and three-dimensional numerical modeling study using graphical processing units (GPUs), Journal of Geophysical Research: Solid

Earth, 129, e2023JB028 566, 2024b.

Alkhimenkov, Y., Khakimova, L., and Podladchikov, Y.: FastLocalization_2D_Stress_Drops, https://doi.org/10.5281/zenodo.16412530,

2025.

Allison, K. L. and Dunham, E. M.: Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity, Tectonophysics,430

733, 232–256, 2018.

Andrews, D.: Rupture propagation with finite stress in antiplane strain, Journal of Geophysical Research, 81, 3575–3582, 1976.

Andrews, D.: Rupture dynamics with energy loss outside the slip zone, Journal of Geophysical Research: Solid Earth, 110, 2005.

Cundall, P.: Numerical experiments on localization in frictional materials, Ingenieur-archiv, 59, 148–159, 1989.

Cundall, P.: Numerical modelling of jointed and faulted rock, in: International conference on mechanics of jointed and faulted rock, pp.435

11–18, 1990.

Dal Zilio, L., Lapusta, N., Avouac, J.-P., and Gerya, T.: Subduction earthquake sequences in a non-linear visco-elasto-plastic megathrust,

Geophysical Journal International, 229, 1098–1121, 2022.

de Borst, R. and Duretz, T.: On viscoplastic regularisation of strain-softening rocks and soils, International Journal for Numerical and

Analytical Methods in Geomechanics, 44, 890–903, 2020.440

De Borst, R., Crisfield, M. A., Remmers, J. J., and Verhoosel, C. V.: Nonlinear finite element analysis of solids and structures, John Wiley &

Sons, 2012.

de Souza Neto, E. A., Peric, D., and Owen, D. R.: Computational methods for plasticity: theory and applications, John Wiley & Sons, 2011.

Dieterich, J. H.: Time-dependent friction and the mechanics of stick-slip, Rock friction and earthquake prediction, pp. 790–806, 1978.

Dieterich, J. H.: Modeling of rock friction: 1. Experimental results and constitutive equations, Journal of Geophysical Research: Solid Earth,445

84, 2161–2168, 1979.

Dormy, E. and Tarantola, A.: Numerical simulation of elastic wave propagation using a finite volume method, Journal of Geophysical

Research: Solid Earth, 100, 2123–2133, 1995.

Drucker, D. C. and Prager, W.: Soil mechanics and plastic analysis or limit design, Quarterly of applied mathematics, 10, 157–165, 1952.

Duretz, T., Souche, A., De Borst, R., and Le Pourhiet, L.: The benefits of using a consistent tangent operator for viscoelastoplastic450

computations in geodynamics, Geochemistry, Geophysics, Geosystems, 19, 4904–4924, 2018.

26

https://doi.org/10.5194/gmd-18-563-2025
https://doi.org/10.5281/zenodo.16412530


Duretz, T., de Borst, R., and Le Pourhiet, L.: Finite thickness of shear bands in frictional viscoplasticity and implications for lithosphere

dynamics, Geochemistry, Geophysics, Geosystems, 20, 5598–5616, 2019.

Duretz, T., de Borst, R., and Yamato, P.: Modeling lithospheric deformation using a compressible visco-elasto-viscoplastic rheology and the

effective viscosity approach, Geochemistry, Geophysics, Geosystems, 22, e2021GC009 675, 2021.455

Erickson, B. A., Dunham, E. M., and Khosravifar, A.: A finite difference method for off-fault plasticity throughout the earthquake cycle,

Journal of the Mechanics and Physics of Solids, 109, 50–77, 2017.

Frankel, S. P.: Convergence rates of iterative treatments of partial differential equations, Mathematics of Computation, 4, 65–75, 1950.

Gabriel, A.-A., Ampuero, J.-P., Dalguer, L., and Mai, P. M.: Source properties of dynamic rupture pulses with off-fault plasticity, Journal of

Geophysical Research: Solid Earth, 118, 4117–4126, 2013.460

Heeres, O. M., Suiker, A. S., and de Borst, R.: A comparison between the Perzyna viscoplastic model and the consistency viscoplastic model,

European Journal of Mechanics-A/Solids, 21, 1–12, 2002.

Johnson, P. A., Savage, H., Knuth, M., Gomberg, J., and Marone, C.: Effects of acoustic waves on stick–slip in granular media and

implications for earthquakes, Nature, 451, 57–60, 2008.

Kaneko, Y. and Fialko, Y.: Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations with elasto-plastic off-fault465

response, Geophysical Journal International, 186, 1389–1403, 2011.

Lavier, L. L., Roger Buck, W., and Poliakov, A. N.: Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal

faults, Geology, 27, 1127–1130, 1999.

Le Pourhiet, L.: Strain localization due to structural softening during pressure sensitive rate independent yielding, Bulletin de la Société

géologique de France, 184, 357–371, 2013.470

Lemiale, V., Mühlhaus, H.-B., Moresi, L., and Stafford, J.: Shear banding analysis of plastic models formulated for incompressible viscous

flows, Physics of the Earth and Planetary Interiors, 171, 177–186, 2008.

Ma, S.: A physical model for widespread near-surface and fault zone damage induced by earthquakes, Geochemistry, Geophysics,

Geosystems, 9, 2008.

Ma, S. and Andrews, D.: Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault, Journal of475

Geophysical Research: Solid Earth, 115, 2010.

Moresi, L., Mühlhaus, H.-B., Lemiale, V., and May, D.: Incompressible viscous formulations for deformation and yielding of the lithosphere,

Geological Society, London, Special Publications, 282, 457–472, 2007.

Poliakov, A. and Herrmann, H.: Self-organized criticality of plastic shear bands in rocks, Geophysical Research Letters, 21, 2143–2146,

1994.480

Poliakov, A., Podladchikov, Y., and Talbot, C.: Initiation of salt diapirs with frictional overburdens: numerical experiments, Tectonophysics,

228, 199–210, 1993.

Poliakov, A. N., Herrmann, H. J., Podladchikov, Y. Y., and Roux, S.: Fractal plastic shear bands, Fractals, 2, 567–581, 1994.

Popov, A. and Sobolev, S. V.: SLIM3D: A tool for three-dimensional thermomechanical modeling of lithospheric deformation with elasto-

visco-plastic rheology, Physics of the earth and planetary interiors, 171, 55–75, 2008.485

Pranger, C., Sanan, P., May, D. A., Le Pourhiet, L., and Gabriel, A.-A.: Rate and state friction as a spatially regularized transient viscous flow

law, Journal of Geophysical Research: Solid Earth, 127, e2021JB023 511, 2022.

Preuss, S., Ampuero, J. P., Gerya, T., and van Dinther, Y.: Characteristics of earthquake ruptures and dynamic off-fault deformation on

propagating faults, Solid Earth Discussions, 2020, 1–39, 2020.

27



Räss, L., Utkin, I., Duretz, T., Omlin, S., and Podladchikov, Y. Y.: Assessing the robustness and scalability of the accelerated pseudo-transient490

method, Geoscientific Model Development, 15, 5757–5786, 2022.

Ruina, A.: Slip instability and state variable friction laws, Journal of Geophysical Research: Solid Earth, 88, 10 359–10 370, 1983.

Sabet, S. A. and de Borst, R.: Structural softening, mesh dependence, and regularisation in non-associated plastic flow, International Journal

for Numerical and Analytical Methods in Geomechanics, 43, 2170–2183, 2019.

Scuderi, M., Marone, C., Tinti, E., Di Stefano, G., and Collettini, C.: Precursory changes in seismic velocity for the spectrum of earthquake495

failure modes, Nature geoscience, 9, 695–700, 2016.

Simpson, G.: Emergence and growth of faults during earthquakes: Insights from a dynamic elasto-plastic continuum model, Tectonophysics,

868, 230 089, 2023.

Templeton, E. L. and Rice, J. R.: Off-fault plasticity and earthquake rupture dynamics: 1. Dry materials or neglect of fluid pressure changes,

Journal of Geophysical Research: Solid Earth, 113, 2008.500

Tong, X. and Lavier, L. L.: Simulation of slip transients and earthquakes in finite thickness shear zones with a plastic formulation, Nature

communications, 9, 3893, 2018.

Uphoff, C., May, D. A., and Gabriel, A.-A.: A discontinuous Galerkin method for sequences of earthquakes and aseismic slip on multiple

faults using unstructured curvilinear grids, Geophysical Journal International, 233, 586–626, 2023.

Vermeer, P.: The orientation of shear bands in biaxial tests, Géotechnique, 40, 223–236, 1990.505

Virieux, J.: P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 51, 889–901, 1986.

Wollherr, S., Gabriel, A.-A., and Uphoff, C.: Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal

Discontinuous Galerkin method on unstructured meshes: implementation, verification and application, Geophysical Journal International,

214, 1556–1584, 2018.

Zienkiewicz, O. C. and Taylor, R. L.: The finite element method for solid and structural mechanics, Elsevier, 2005.510

28


