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Abstract. This study explores stress drops and earthquake triggering within the simplest elasto-plastic media using two-
dimensional simulations, emphasizing the critical role of temporal and spatial resolutions in accurately capturing stress evolu-
tion and strain fields during seismic cycles. Our analysis reveals that stress drops, triggered by plastic deformation once local
stresses reach the yield criteria, reflect fault rupture mechanics, where accumulated strain energy is released suddenly, simu-
lating earthquake behavior. Finer temporal discretization leads to sharper stress drops and lower minimum stress values, while
finer spatial grids provide more detailed representations of strain localization and stress redistribution. Our analysis reveals that
displacement accumulates gradually during interseismic periods and intensifies during major stress drops, reflecting natural
earthquake cycles.

The histogram of stress drop amplitudes shows a non-Gaussian distribution, characterized by a broad peak with long tails on
both sides, where small stress drops are more frequent, but large stress drops still occur with significant probability. This "solid
turbulence" behavior suggests that stress is redistributed across spatial and temporal scales, with implications for understanding
the variability of stress drop magnitudes.

Our results demonstrate that high-resolution elasto-plastic models can reproduce key features of earthquake triggering and
stress drop behavior without relying on complex frictional laws or velocity-dependent weakening mechanisms. These findings
emphasize the necessity of incorporating plasticity into models of fault slip to better understand the mechanisms governing
fault weakening and rupture. Furthermore, our work suggests that extending these models to three-dimensional fault systems
and accounting for material heterogeneity and fluid interactions could provide deeper insights into seismic hazard assessment

and earthquake mechanics.

1 Introduction

Understanding earthquake triggering remains a significant challenge in geophysics, as it directly influences our ability to predict
and mitigate seismic hazards. Earthquake nucleation is often conceptualized through the study of sliding behavior along fault
surfaces, with models traditionally describing the interseismic period as one of near-elastic deformation in the surrounding
crust, interrupted by phases of anelastic slip that eventually result in seismic rupture (Pranger et al., 2022). Such models

typically rely on phenomenological rate- and state-dependent friction laws (Dieterich, 1978, 1979; Ruina, 1983), which have
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been highly successful in describing various aspects of the seismic cycle. However, these friction-based models may overlook
critical physical processes that govern the transition from aseismic slip to seismic rupture, particularly when plastic deformation
and off-fault processes are involved.

Numerical modeling of elasto-plastic behavior has a long history, with early contributions from Cundall (1989, 1990);
Poliakov et al. (1993, 1994); Poliakov and Herrmann (1994). Regularization of strain localization thickness was addressed
by Duretz et al. (2019) and de Borst and Duretz (2020). A single-phase (visco)-hypoelastic-perfectly plastic medium was
modeled in both 2D and 3D domains by Alkhimenkov et al. (2024b), while compaction-driven fluid flow and shear bands in
porous media were numerically modeled in 3D by Alkhimenkov et al. (2024a).

One of the first computational earthquake dynamics models with slip-weakening rupture simulations was introduced by
Andrews (1976). Recent studies have suggested that plasticity plays a crucial role in the triggering of earthquakes, particularly
through off-fault plasticity mechanisms (e.g., Andrews (2005)). Off-fault plasticity refers to the deformation that occurs away
from the main fault plane and can significantly influence the dynamics of rupture propagation. Ma (2008); Ma and Andrews
(2010) conducted some of the earliest studies on dynamic rupture with plasticity. Previous works have explored the effects of
off-fault plasticity in two-dimensional (2-D) in-plane dynamic rupture simulations (Templeton and Rice, 2008; Kaneko and
Fialko, 2011; Gabriel et al., 2013; Tong and Lavier, 2018; Allison and Dunham, 2018). For instance, Dal Zilio et al. (2022)
presented a 2-D thermomechanical computational framework for simulating earthquake sequences in a nonlinear visco-elasto-
plastic compressible medium, highlighting the importance of including viscoelastic and plastic behavior in realistic models.
Other studies highlighting the importance of plasticity in earthquake physics modeling include Erickson et al. (2017), Preuss
et al. (2020), and Simpson (2023).

In addition to 2-D studies, three-dimensional (3-D) dynamic rupture simulations incorporating off-fault plasticity have pro-
vided deeper insights into the complexity of earthquake mechanics (Wollherr et al., 2018). Another significant advancement
was made by Uphoff et al. (2023), who utilized a discontinuous Galerkin method to model earthquake sequences and aseismic
slip on multiple faults, demonstrating the versatility of numerical approaches in capturing the nuances of seismic phenomena.

The role of plasticity in earthquake triggering has also been emphasized in laboratory experiments. Studies have shown that
plastic deformation can precede seismic slip, indicating that the onset of plastic yielding may be a precursor to earthquake
initiation (Johnson et al., 2008; Scuderi et al., 2016). These experimental findings support the incorporation of plasticity in
numerical models to enhance the understanding of the triggering process.

Despite these advancements, there remains a need for simplified models that can effectively capture the essential features
of earthquake triggering and stress drops while being computationally efficient. The simplest elasto-plastic models offer a
promising avenue for such investigations. By focusing on basic physical principles, these models can provide insights into the
fundamental mechanisms of earthquake triggering, such as the role of stress accumulation and release, the interaction between
elastic and plastic deformation, and the influence of material heterogeneity on seismic behavior.

In this study, we employ a two-dimensional elasto-plastic model to investigate stress drops and earthquake triggering. The
friction coefficient is assumed to be constant in all simulations, with no hardening or softening, which corresponds to an ideal

plasticity model. We conduct a series of numerical simulations to explore the effects of temporal and spatial resolutions on



60

65

70

75

80

85

the accuracy of stress and strain predictions. Our goal is to understand how these resolutions impact the modeled behavior of
stress evolution, strain accumulation, and the nucleation of seismic events. Our approach involves detailed convergence tests
for temporal and spatial discretizations, analysis of stress drop sequences, and examination of interseismic periods. We also
investigate the initial wave field patterns during earthquake nucleation to gain insights into the complex interplay between
quasi-static and elasto-dynamic mechanics. Through this comprehensive study, we aim to highlight the critical role of high-
resolution modeling in capturing the intricate dynamics of earthquake triggering and stress drops, providing a foundation for
future research and practical applications in seismic hazard assessment.

The novelty of the present study is highlighted by the following contributions:
1. We utilize the simplest pressure-sensitive ideal plasticity model with constant in time and space friction coefficient.
2. We propose a new physics-based approach explaining spontaneous stress drops in deforming rocks, offering potential appli-
cations in modeling earthquake triggering.

3. We achieve fast computational times using high-resolution models.

2 Mathematical formulation

2.1 Quasi-statics

The conservation of linear momentum is expressed as:

V01 + fi =0, (1)

where 0;; is the stress tensor, f; is the body force, V is a dell operator, j = 1..3 and Einstein summation convention is applied

(summation over repeated indices). The stress tensor is decomposed into bulk (volumetric) and deviatoric components

045 = —P0ij + Tij, (@)
where p is pressure, 7;; is the deviatoric stress tensor, d;; is the Kronecker delta. The strain rate is defined as

. 1

€ij = 5 (Vivj + Vj’l}i) 3)

The rheology is elasto-plastic, which is characterized by an additive decomposition of the strain rate into an elastic (volumetric

and deviatoric) and plastic components

- __ ceb -ed -pl
€ij = €55 T €55 T &5, 4)

where the superscripts -°°, -¢¢, -P! denote elastic volumetric (bulk), elastic deviatoric and plastic parts, respectively. The volu-

metric (bulk) elastic strain rate is

w1
€ = 3 Vivkdij, (5)
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the deviatoric elastic strain rate is

ged — 1 Drj
Y 2G Dt

(6)

where the Jaumann rate of Cauchy stress, represented as Do;;/Dt, is provided in the following section and the deviatoric
plastic strain rate is

-pl_A aQ

K 80’1']' ’

)

where ) is the plastic multiplier rate and @) is the plastic flow potential. Combining equations (4)-(7), the total strain rate can

be reformulated as

o 1 1 D’Tij : 8@
(le] + VJ'UZ) = ng'Uk-(sw + ﬁ Dt + )\80'1] .

Eij =

®)

N =

This the system of equation is the static elasto-plastic model routinely used in solid mechanics (Zienkiewicz and Taylor,

2005).
2.1.1 Large strain formulation

The inelastic response is described using hypoelastic constitutive theory. Hypoelasticity involves formulating the constitutive
equations for stress in terms of objective (frame-invariant) stress rates (de Souza Neto et al., 2011). The rate evolution law for
stress is as follows (de Souza Neto et al., 2011; De Borst et al., 2012):

Do;; . . pl
D;] = ijkﬁil = ijkl(gkl - 5iz)a ©)

where Cf;;, is the elasticity tensor, £;; = £f; + ¢} is the strain rate tensor decomposed into elastic £f; and plastic £}; com-

ponents. Since our medium is isotropic, the stiffness tensor ij x; can be fully described by the bulk modulus K and shear

modulus G:

2 1
Ciim = (K - 3G) 040kt + 2G (2(5ik5jz + 5iz5kj)> . (10)

The Jaumann rate of Cauchy stress, represented as Do /Dt, is defined by (de Souza Neto et al., 2011):
DO‘ij aaij 00

Dt - o +Ukaxz_wik0jk_wjk0ika (11)

where 1;; is the vorticity tensor defined as: w;; = (V;v; — V;v;) /2.
2.2 Elasto-dynamics

The conservation of linear momentum is given by:

8vi

_ v 12
P ot (12)

Vjoij+ fi
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where v is the velocity and p is the density. The stress-strain relation is described by:

aO'ij
ot

= Cfim (0 — €5), (13)
where i,j,k, 0l =1,2,3.
2.3 Plasticity

Plasticity is implemented using a non-associated, pressure-dependent Drucker—Prager criterion (Drucker and Prager, 1952;
de Souza Neto et al., 2011; De Borst et al., 2012). According to this criterion, plastic yielding begins when the second invariant

of the deviatoric stress, Jo, and the pressure (minus the mean stress), p, meet the following condition:

V/J2 — sin()p = cos(y)c, (14)

where c is the cohesion and ¢ is the angle of internal friction. In terms of the stress tensor, plastic deformations occur when the

stresses reach the yield surface. The yield function F' and the plastic potential ) for the Drucker—Prager criterion are defined

as:
F(7,p) = \/J2 — sin(p)p — cos(p)c, (15)
Q(7,p) = \/Jo —sin(¥)p, (16)

where ¢ < @ is the dilation angle. In two dimensions under plane strain conditions, with o, = %( Oza+0yy), the Drucker—Prager
criterion is equivalent to the Mohr-Coulomb criterion (Templeton and Rice, 2008). In 2-D, the second invariant of the deviatoric

stress, Ja, is expressed as:

1 1
T = 5mimii = 5 (T + 75) + 72y

A7)
As long as F' <0, the material remains in the elastic regime. Once F' reaches zero (F' = 0), plasticity is activated. If the
material remains in a plastic state (OF /0t = 0), plastic yielding continues. The current implementation of perfect plasticity
requires small time increments and is computationally expensive. To ensure spontaneous strain localization, strain softening is
often introduced, which promotes the formation of shear bands (Lavier et al., 1999; Moresi et al., 2007; Popov and Sobolev,
2008; Lemiale et al., 2008). However, there are concerns about the thermodynamic admissibility of such solutions (Duretz

et al., 2019). Additionally, the softening or hardening moduli are small compared to the shear modulus and can be neglected as

a first-order approximation, leading to the ideal plasticity model used in the present study.
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3 Numerical implementation
3.1 Discretization

The numerical domain is discretized using a staggered grid in both space and time (Virieux, 1986). This method provides a
variant of the conservative finite volume approach (Dormy and Tarantola, 1995). The total number of grid cells is limited only
by the available GPU memory. For the elasto-dynamic equations, an explicit time integration method is employed, offering
second-order accuracy in both space and time. Detailed representations of the discrete equations are available in Alkhimenkov
et al. (2021). For the quasi-static equations, the discrete scheme achieves second-order accuracy in space. Advection is carried
out using an upwind scheme, which is first-order. Consequently, due to the application of the pseudo-transient method, the

solution demonstrates first-order accuracy in time (Alkhimenkov and Podladchikov, 2025).
3.2 Accelerated pseudo transient method

The solution of the quasi-static equations is achieved using the matrix-free accelerated pseudo-transient (APT) method (Frankel,
1950; Riss et al., 2022; Alkhimenkov and Podladchikov, 2025). The core concept of this method involves solving dynamic
equations with appropriate attenuation of the dynamic fields instead of directly solving inertialess equations. To achieve this,
the equations are written in their non-dimensional residual form and iterated over "pseudo-time" until convergence is reached.
Once the dynamic fields attenuate to a specific precision (e.g., to 10712), the solution of the quasi-static equations is attained.
In other words, the quasi-static problem serves as an attractor for the dynamic problem with damping. The APT method is
capable of handling numerical domains with more than a billion grid cells. Additionally, since all operations are local, this

method can be naturally parallelized using GPUs, which is the approach taken in this study.
3.3 Implementation of plasticity

In the return mapping algorithm, the following steps are performed:

1. Calculate the components of the trial deviatoric stresses, Tf;i‘"‘l. 2. Compute the trial second invariant of the deviatoric

stresses, J3"*!, using 7,71, 3. Determine F'*"*! using the equation:

pivial = / jtrial _ (sin(o)p + cos(p)c). (18)

When the material is in the plastic state, the trial deviatoric stress components, Titjrial, are re-scaled according to:

| Ftrial |

new __ __tria _ — trialy

Ti; = Tij 1 /jirial | Tij A, (19)
2

rial . . . . " . " . :
jﬁ is the scaling parameter. This re-scaling process is iterated over "pseudo-time" until the updated trial de-
2

where A = 1—

viatoric stresses, T;}ew, satisfy the plasticity criterion, ensuring Ftrial — () (thus, A =1 and no re-scaling occurs). A regularized

version of this procedure modifies formula (19) to (assuming non-zero dilatation angle 1)):
Ftrial AtGe

A=1-— _ 20
V2 (GeAt + K Atsinpsing +nVP) (20)
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where n"P is the viscosity of the damper (regularization parameter). The numerical viscosity n*? is usually set to a small value.
If this value is too high, the shear bands become very thick; conversely, if the value is too small, the thickness of the shear
band is just one pixel. The correct value of the viscosity damper lies between these limits. In the following section, we examine
how the choice of viscosity damper affects the solution. This implementation of plasticity through re-scaling deviatoric stress
components is equivalent to the standard procedure using the plastic multiplier rate, A, which is defined as
i Frtrial

A= AtGe 4 K Atsinpsint) +nvp’

2y

For a more detailed explanation of how plasticity with regularization is implemented in single-phase media, refer to Duretz

et al. (2018, 2019, 2021).
3.4 Nondimensionalization
3.5 Model configuration, boundary conditions, and non-dimensionalization

The computational domain is a square with dimensions z,y € [0, L,] x [0, L,]. All simulations in this study are performed
using a simple initial model configuration and non-dimensional equations. To ensure a consistent dimensionless framework,
we define the following characteristic scales: length {* = L, time t* = 1/a, and pressure p* = G,. Here, L, represents the
domain size in the x-direction, L, = L, = 1 and a denotes the background strain rate. Deformation evolves over timescales
inversely proportional to the initial background strain rate a¢ at ¢ = 0. The ratio of cohesion c to the pressure scale p* is defined
asr= é—%

For all computations, we set the coefficient of internal friction to = 0.6. Pure shear boundary conditions are applied by

prescribing velocities at all boundaries in the dimensionless framework:

Vg = AT 22)
and
vy = —ay, (23)

which corresponds to the extension in x-dimension and compression in y- dimension. We impose loading increments applied
to the strain components. At all boundaries, free-slip boundary conditions are implemented. The following initial conditions

are implemented:

p=0.004, (24)
Tow = 0.012, (25)
Ty = —0.012. (26)
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Figure 1. Heterogeneous initial setup of pressure p. The arrows indicate the pure shear boundary condition which is applied at the model

boundaries.

We introduce a circular inclusion in the non-dimensional pressure p, representing a localized increase with the highest value at

the center of the model. The expression in the dimensionless framework is as follows:

0.0100, if /22 + y2 < 0.0667,
p= 27
0.0040, otherwise.

4 Results
4.1 Low resolution simulation

In our low-resolution simulations (Figure 2), we observe that the evolution of the integrated stress o\ follows a monotonic

trend, with no discernible stress drops. This outcome aligns with the coarse spatial discretization of N = 632 grid cells, wherein

INT

finer stress and strain variations cannot be accurately captured. The integrated stress o,

is computed over a vertical line

segment using the following expression:

~

Yy

1
ony = I (—=p(®0,y) + Twa(20,y)) dy, (28)
Yy

o

where 1z is a fixed coordinate in x-dimension. The strain localization patterns observed in the pressure and strain rate fields
remain symmetric throughout the loading process, indicating a relatively uniform distribution of deformation. This result is
expected in low-resolution simulations, where the model’s ability to resolve localized strain structures, such as shear bands or

deformation zones, is limited by the grid resolution.
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Figure 2. Low resolution simulation. Panel (a) shows the integrated stress oINT versus strain increments, panels (b-d) show pressure p for at

three different stages of the simulation, panels (e-g) show log,, €77 and panels (h-j) show log,, é;;.

Moreover, in low-resolution models, the regularization parameter 7P = 6 x 10~ plays a critical role in smoothing out any
potential irregularities in the stress field. While this helps stabilize the model numerically, it also suppresses any potential
stress drops. The absence of stress drops in low-resolution simulations suggests that grid refinement is necessary to capture

more detailed stress and strain distributions, which could better reflect the underlying physical processes driving seismicity.
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4.2 Sufficient resolution simulation

In contrast, our sufficient resolution simulations with N = 10232 grid cells reveal several significant stress drops (Figure 3),
suggesting that the model resolution is now capable of accurately capturing the dynamic changes in stress during loading.
The regularization parameter is set to 7' = 1 x 1075, The stress drops correspond to instances of rapid strain localization,
where non-symmetric shear bands develop and propagate throughout the model domain. These shear bands form due to the
onset of plastic yielding, which is triggered as local stresses surpass the material’s yield strength. This non-symmetric strain
localization is a hallmark of plastic deformation and closely resembles the behavior observed in laboratory experiments on rock
deformation, where similar patterns of localized shear zones have been reported (Johnson et al., 2008; Scuderi et al., 2016).
Furthermore, the higher resolution provides clearer insights into the spatial structure of the stress and strain fields, revealing
the complex, non-uniform distribution of deformation during stress drop. Notably, the stress drops become more pronounced
and sharper as the temporal resolution is increased, underscoring the importance of both spatial and temporal refinement in

accurately capturing the dynamics of stress accumulation and release.
4.2.1 Mohr’s circle analysis

Figure 4 illustrates the stress state of the material through a Mohr’s circle representation at two critical stages: the beginning of
loading (panel (a)) and after shear band localization (panel (b)). Mohr’s circle is a graphical tool used to represent the state of
stress at a point, plotting the normal and shear stresses acting on different planes through that point.

In panel (a), the stress is evenly distributed, and the circle lies within the elastic regime. The material is in equilibrium, with
no plastic yielding or localized strain. This initial Mohr’s circle is small, reflecting the lower stress magnitudes early in the
loading process. The friction coefficient is fiye = 0.6, which corresponds to @y &~ 31°. Note that tan () = tan(31°) =
0.6.

Panel (b) shows Mohr’s circle after the onset of strain localization, coinciding with a significant stress drop in the simulation.
As loading progresses and the material begins to yield, Mohr’s circle shifts, reflecting the decrease in pressure as the system
approaches the yield criterion. The expansion of Mohr’s circle towards the yield envelope indicates that the material has reached
its plastic limit, and shear bands begin to localize. We also highlight additional intersections along the yield envelope.

Of particular importance is the angle apparent = 27° (estimated numerically by analyzing the green triangle, Figure 4), which
is the apparent angle related to the apparent coefficient of friction piapparent- According to Byerlee and Savage (1992), the value
of g is always lower than the real coefficient of internal friction, . There is a theoretical formula that relates fiapparent and firye

(see Figure 4):
apparent = sin(arctan e ) = sin(arctan0.6) ~ 0.51 (29)

The theoretical value of ftapparens = 0.51 provides us with @upparent = arctan(0.51) ~ 27°, which is the same value estimated
numerically by analyzing the green triangle (see paragraph above and Figure 4b). The reduced apparent coefficient of friction
is a consequence of plastic flow in the plastic zone, which allows slip to occur more easily along the shear band, despite the

actual slip occurring along the Coulomb shear planes.

10
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Figure 3. Sufficient resolution simulation. Panel (a) shows the integrated stress o' versus strain increments, panels (b-d) show pressure p

for at three different stages of the simulation, panels (e-g) show log,, €77 and panels (h-j) show log,,ér;.
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Figure 4. Mohr’s circle diagram. Stress state before and after strain localization. This diagram shows that the true friction angle e
is always greater than or equal to the apparent friction angle @apparent. The relation between the true and apparent friction coefficients is

Happarent = sSin(arctan fiyue ).

4.3 Focusing on stress drops, quasi-static interseismic period and dynamic modeling of the transition between

quasi-static interseismic periods

Figure 5 shows the numerical simulation with focus on stress drops and interseismic periods. For example, u,. corresponding to
250 stress drop 1 is calculated as u, = u,(t2) — u,(t1), where ¢1 corresponds to the total strain just before the stress drop (first red
circle) and t; corresponds to the total strain just after the stress drop (second red circle). The calculation of w, corresponding
to the interseismic period 1 is similar: u, = u, (t3) — u,(t2), where to corresponds to the total strain just after the stress drop

1 (second red circle) and t3 corresponds to the total strain just before the stress drop 2 (third red circle).
Stress drop manifest the jump between the two quasi-static solutions and perhaps indicate the absence of a static transition

255 Dbetween the stress state at the end interseismic period and onset of a new interseismic period.
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Figure 5. Stress drops and interseismic periods: numerical simulation of compressible elasto-plastic equations with the resolution of N =

10232 grid cells. Panel (a) shows the integrated stress o, versus strain increments. Panels (b,d,f,h) show displacement increments Au,,

corresponding to stress drops and interseismic periods. Panels (c,e,g,i) show pressure increments Au, corresponding to stress drops and

interseismic periods.

This transition can be modeled with simplified linear elasto-dynamics by setting the difference in strain just before and after

a stress drop as an initial condition for wave propagation.
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4.4 Trends
4.4.1 Trends with increasing temporal resolution

First, we conduct a temporal convergence test (Figure 6). Using a spatial resolution of N = 5112 grid cells, simulations are
performed with strain increments Ae,, =1 x 1072, A€, =4 x 1072, A€y, = 10 x 1072, It is observed that the evolution

of the integrated stress o'N! with strain increments is converging to a specific pattern as the number of increment increasing.

INT

Simulations with finer temporal discretization result in slightly sharper drops in o, .

4.4.2 Trends with increasing spatial resolution

INT

To investigate the dependence of the integrated stress o,

versus spatial resolution, we conduct experiments with spatial
discretizations of N = 632, N = 10232, and N = 20472 (Figure 7). Note that we re-scale the viscosity damper proportionally
to the resolution in each simulation to maintain the physical thickness of the shear bands Alkhimenkov et al. (2024b). It can
be seen that the low resolution simulation N = 632 does not produce any stress drops. However, simulations with sufficient

resolution produce stress drops and their amplitudes are similar.
4.4.3 Effect of the regularization

To illustrate the dependence of stress drop amplitude versus regularization, we conduct one more series of computations (Figure
8). The spatial discretizations is the same in all simulations N = 5112 but the regularization viscosity n"P is different. Note
the lower regularization leads to the more pronounced stress drops as can be seen in Figure 8. Too high regularization may
completely miss the stress drop (Figure 8).

Figure 9 shows the simulation results for different spatial discretizations of N = 632, N = 2552, and N = 10232 grid cells.
Due to high regularization, the results are nearly identical and the thickness of the shear bands is the same in all panels.

However, due to over-regularization, the stress drop is not visible.
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Figure 10. Panel (a) shows log, €77. Panels (b) corresponds to zoom-in focusing on a single shear band thickness.

4.5 High-resolution simulation

The high-resolution simulation is performed with a grid size of N = 40952, allowing for the capture of finer details in the
stress, strain, and pressure fields. In these simulations, the component log;, €rr is used to represent the second invariant of
the deviatoric strain rate tensor, which highlights zones of intense strain localization, typically corresponding to regions where
shear bands form.

As shown in Figure 10, the regularization applied is sufficient to resolve pressure drops and observe localized strain structures
across multiple grid cells. The use of such a fine grid provides enhanced spatial resolution, allowing us to capture more realistic
patterns of strain localization that resemble those seen in natural seismic zones, where shear bands and strain concentrations
often precede fault rupture or failure events.

Additionally, Figure 11 presents a zoomed-in view of these strain localization features as a 3D plot. In this plot, the vertical
axis (z-dimension) corresponds to the amplitude of the pressure field p (Figure 11a) and the log,qer; (Figure 11b). The
localized shear band thickness is clearly visible, indicating zones of intense deformation and stress concentration. Such fine-
scale detail is critical for accurately modeling the mechanics of earthquake triggering, where small variations in stress and

strain fields can have significant impacts on rupture initiation and propagation.
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4.6 Dilatancy

Dilatancy refers to the volumetric expansion that occurs in a material when it undergoes shear deformation, particularly under
conditions of plastic flow. This phenomenon is especially important in the study of earthquake mechanics, as it affects the
porosity and fluid flow within fault zones, and hence, influences the strength and failure behavior of the fault.

In Figure 12, numerical simulations are performed for different values of the dilatation angle v, representing different
degrees of dilatancy in the material. The results illustrate the effect of the dilatation angle on strain localization and fault
weakening. For a small dilatation angle (¢ = 5°), the material exhibits relatively limited volumetric expansion during shear
deformation, leading to more localized strain and narrower shear bands. This corresponds to less energy dissipation and a more
brittle-like failure response.

As the dilatation angle increases to a moderate value (i) = 15°), the material shows more volumetric expansion, which
slightly widens the shear bands and leads to a more diffuse strain localization pattern. This represents a more ductile response,
where plastic deformation is distributed over a broader zone.

In the case of 1) = 30°, corresponding to the associated plasticity model, the volumetric expansion is maximized, and the
shear bands become much broader. This behavior reflects greater energy dissipation, as the material undergoes significant
volumetric changes during shear deformation. The associated plasticity model is typically used for materials that exhibit a
strong dilatant response, such as certain types of granular soils or fractured rocks.

For comparison, Figure 13 shows numerical results for ¢ = 0° and ¢ = 0°, which correspond to the plasticity behavior
typically observed in metals. In this case, the material does not exhibit any volumetric expansion during shear deformation,
leading to purely deviatoric plastic flow. The absence of dilatancy results in narrow and highly localized shear bands, as ex-
pected in materials that do not undergo volumetric changes. This behavior is characteristic of metals under plastic deformation,
where energy dissipation is minimized, and the material response remains predominantly brittle. These results underscore the
contrasting effects of dilatancy on shear band formation and highlight the unique deformation mechanisms in metallic versus

dilatant materials.

4.7 Stress drop sequence

INT

xrx

Figure 14 presents the integrated stress o, versus time (Figure 14a) for different temporal resolutions. Figure 14b shows the
zoomed in plot where sharp stress drops can be visible. The stress drops exhibit varying magnitudes and irregular spacing. The
simulation with fine temporal resolution and the lowest regularization corresponds to the sharpest stress drops (blue curve).
The simulations with low temporal resolution does not present a proper stress drops.

During the loading process, numerous stress drops are observed (Figure 14). These stress drops correspond to sudden shifts
in the system’s stress state, where the strain localization reaches a critical point, and further deformation in the prescribed

direction becomes untenable. As a result, the system undergoes a rapid redistribution of stress, manifested as a drop in the

INT

integrated stress o, .
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Figure 13. Numerical results for 1) = 0 and ¢ = 0, corresponding to the plasticity behavior of metals.

These stress drops are indicative of dynamic rupture events, akin to the rapid stress release observed during seismic slip in
natural earthquakes. However, we admit that in this first study, we only indicate this similarity and do not provide a detailed
analysis of slip rate and rupture speeds in the present model. The sequence of stress drops observed in the simulation resembles
the cyclic behavior of fault systems, where interseismic periods of stress accumulation are interrupted by seismic events. By
increasing the temporal resolution, we capture sharper, more distinct stress drops, highlighting the need for high-resolution

models to accurately represent seismic processes.
4.7.1 Interseismic period and stress drops

Figure 15 illustrates the displacement increments Aw, during the interseismic period (Figures 15a-b) and the stress drops
(Figures 15¢-d). For instance, Figure 15a shows the displacement increment Au, = u,(t3) — u, (t2), where u, (t2) and u,(t3)
represent the displacement fields at the beginning and end of the interseismic period, respectively (the period between two high-
amplitude stress drops. Similarly, the displacement increments Au, = wu, (t2) — u,(¢1) during major stress drops are shown in
Figures 15c-d. It is evident that displacement accumulates during the interseismic period (without major stress drops) and also
intensifies during major stress drops.

Our simulation results also demonstrate the material’s behavior during interseismic periods, where displacement gradually
accumulates without significant stress drops. As shown in Figure 15, displacement increments Awu,, during interseismic periods

increase progressively as loading continues. This behavior mirrors the slow, aseismic slip observed between seismic events in

23



a) X10_3\ T T T T T T | I
I (1) A6y =4 - 5 i
o] Stress Drop Sequence (i ool
9.4 1
T 92 .
Z x "

©

©
o

Inregrated stress o
o
o

®
~

@
(S

0.02 0.03 0.04 005 006 0.07 0.08 0.09 0.1 0.11
Total strain € (-)

b) o

8.7

Stress Drop Sequence | = ()2-=4107

) ——(i)Ac,,= 100 - 1077
(zoom in) ]
8.65 § ]

1

®
o

¢

NT
X

Inregrated stress UL

Stress drop
Stress drop

8.35F

8.3" Stress drop ]

0.02 003 004 0.05 006 0.07 0.08 0.09 0.1 0.11
Total strain €x (-)

Figure 14. Numerical simulation of elasto-plastic equations with the resolution of 1023 grid cells for 2500 loading increments in time.
Panel (a) shows the integrated stress ol versus loading increments. Panel (b) shows the integrated stress o versus loading increments

for a portion of the full model. Panel (b) shows the final strain localization pattern for all three simulations.

24



340

345

350

355

360

365

370

fault zones. The gradual buildup of displacement during interseismic periods reflects the loading of the fault system, while the
rapid displacement during stress drops corresponds to seismic slip. However, our model does not explicitly establish a causal
link between aseismic slip accumulation and subsequent stress drops, which requires further investigation.

These findings suggest that the interaction between elastic and plastic deformation plays a critical role in controlling the
timing and magnitude of seismic events. The gradual accumulation of displacement during the interseismic period reflects the

fault’s capacity to store elastic strain energy, which is then rapidly released during seismic events, leading to a stress drop.
4.7.2 Histogram of stress drop amplitudes

The histogram of stress drop amplitudes shown in Figure 16 provides a quantitative representation of the frequency and mag-
nitude of stress drops occurring during the simulations. The distribution of stress drop amplitudes is notably non-Gaussian,
characterized by a broad peak with long tails on both sides, indicating that while small stress drops are more common, larger
stress drops still occur with significant probability. This distribution resembles turbulence-like spectrum, where a few large
events (bursts) coexist with numerous smaller fluctuations. For solid systems, this phenomenon was first analyzed by Poliakov
et al. (1994), who explored the multi-fractal characteristics of shear bands in elasto-plastic media, that makes it similar to the
fluid turbulence.

Figure 16b presents three histograms of stress drop amplitudes corresponding to very small strain increments, providing
high-resolution data. The overall pattern across the histograms is similar, indicating the convergence of our results. In Fig-
ure 16¢, two histograms are shown: one for a high-resolution loading increment (Ae,, = 1 x 10~°) and the other for the lowest
resolution used in this study (Ae,, = 100 x 10~?). The difference between these two is substantial, demonstrating that the
low-resolution case fails to capture the full spectrum of stress drop amplitudes. Lastly, Figure 16d compares four histograms at
high, intermediate, and low resolutions for further comparison.

In the context of our elasto-plastic model, the non-Gaussian nature of the histogram suggests a complex interaction between
localized plastic yielding and the broader elastic response of the material. Just as in fluid turbulence, where energy cascades
from large to small scales, in solid turbulence, stress is redistributed across different spatial and temporal scales, leading to
a range of stress drop magnitudes. This complex behavior highlights the inherent intermittency and unpredictability in the
system’s response, where stress accumulates gradually but is released in sudden, sporadic bursts during stress drops.

Understanding the solid turbulence-like behavior in these systems is crucial for developing accurate models of seismicity,
where stress drops correspond to earthquake events. The implications of this behavior are significant for earthquake hazard
assessment, as it suggests that a wide range of earthquake magnitudes should be expected, with smaller events being far
more frequent than larger ones. This insight suggests a resemblance to the Gutenberg-Richter-like law, which describes the
frequency-magnitude distribution of earthquakes; however, a more detailed analysis is required to establish a direct connection,
particularly from a plastic deformation perspective. Overall, the histogram of stress drop amplitudes reinforces the idea that the
simplest elasto-plastic models, despite their minimalistic assumptions, are capable of capturing complex, emergent behavior

that is often associated with more sophisticated models of seismicity.
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Figure 15. Interseismic period and stress drops: numerical simulation of compressible visco-elasto-plastic equations with the resolution of
N =1023?% grid cells for 2500 loading increments in time. Panels (a-b) show displacement increments Aw,, corresponding to interseismic

periods. Panels (c-d) show displacement increments Awu, corresponding to major stress drops.
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4.7.3 Earthquake triggering due to a single stress drop

INT

rxr

Figure 17 displays the integrated stress o, versus loading increments and the wave fields (velocity v, and pressure p) at the
375 initial stage (Figures 17a-b) and after 250 physical time steps (Figures 17c-d). The initial wavefield pattern is complex mostly
corresponds to nucleation is shear (i.e., as a double-couple mechanism) and in a the volumetric component (pressure). The

velocity field exhibits high amplitudes (Figures 17b and 17d), indicating that the shear component has high amplitudes.
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Figure 17. Earthquake nucleation due to a single stress drop. Panel (a-b) show the wave fields (velocity v, and pressure p) at the initial
stage. Panels (c-d) show the wave fields (velocity v, and pressure p) after 250 time steps. Panels (g-h) show the wave fields (velocity v, and

pressure p) after 500 time steps. Panels (c-d) show the wave fields (velocity v, and pressure p) after 750 time steps.
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5 Discussion
5.1 The nature of stress drops

As can be seen in Figure 14, during the loading, many stress drops occur. From a theoretical perspective, the first stress drop
after the onset of strain localization was predicted and analyzed by, e.g., Vermeer (1990) and Le Pourhiet (2013). The following
stress drops occur due to switches between quasi-static loading intervals. These stress drops correspond to transitions where the
system moves from one quasi-static equilibrium to another due to the inability of strain localization to continue growing in the
prescribed direction. Once the local stresses exceed the yield criteria, plastic deformation is activated, causing a redistribution
of stresses and, consequently, a rapid drop in stress. This process mimics the mechanics of fault rupture, where the accumulation
of strain energy leads to a sudden release in the form of an earthquake.

The observed stress drops are consistent with those expected in elasto-plastic materials, where plastic yielding results in
rapid shifts in the stress state. In our simulations, these stress drops are sharp and distinct, especially at higher temporal and
spatial resolutions. This behavior reflects the real-world phenomenon of earthquake triggering, where a sudden stress drop
corresponds to a seismic event nucleation.

In addition to stress drop magnitudes, the spatial patterns of strain localization play a critical role in determining the nature
of stress release. In particular, localized shear bands act as conduits for stress concentration, dictating how and where stress
is released. The interplay between elastic loading during the interseismic period and plastic deformation during stress drops

provides a simplified but effective model for capturing earthquake cycles.
5.2 Role of regularization in elasto-plastic simulations

Regularization is crucial in numerical simulations of elasto-plastic materials, particularly in models involving strain localiza-
tion. Without regularization, simulations can exhibit unrealistic results, such as the formation of infinitely narrow shear bands.
In our study, the regularization parameter n*P was carefully chosen to prevent such artifacts while preserving the physical
realism of the stress and strain fields.

The absence of regularization can lead to numerically unstable results, where stress drops occur too frequently or are too
abrupt, producing non-physical behaviors in the model. On the other hand, excessive regularization can overly smooth out
stress and strain fields, suppressing the formation of localized shear bands and reducing the occurrence of stress drops. The
balance between these extremes is key to accurately modeling the dynamic behavior of elasto-plastic systems.

Our results demonstrate that appropriate regularization is necessary to capture both the broad and fine-scale features of
earthquake triggering, such as the spatial distribution of strain localization and the timing and magnitude of stress drops. The
findings align with prior studies that show the importance of regularization in stabilizing numerical simulations of plastic

deformation while maintaining physical accuracy (Popov and Sobolev, 2008; Duretz et al., 2018).
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5.3 3D simulations with zero regularization

Alkhimenkov et al. (2023) performed 3D simulations of a single-phase elasto-plastic model with zero regularization. These
simulations provide valuable insights into how strain localization and stress drops manifest in fully 3D domains. The tests
performed in 3D, both in temporal and spatial resolutions, show similar trends with the results of the 2D simulations presented
in this study.

The extension to 3D is important because it allows for a more realistic representation of fault systems, which are inherently
three-dimensional in nature. In 3D, stress and strain fields exhibit more complex behaviors, such as the formation of multiple
interacting shear bands or the influence of out-of-plane stresses on fault slip. The fact that the 3D simulations without reg-
ularization produced results consistent with our 2D study underscores the robustness of the elasto-plastic model used in this

research.
5.4 Implications for earthquake triggering and fault mechanics

The results from both 2D and 3D simulations provide important implications for our understanding of earthquake triggering and
fault mechanics. The stress drops observed in our models are analogous to the rapid release of accumulated stress during seismic
events, suggesting that elasto-plastic models can effectively capture the mechanics of rupture initiation. The periodic nature of
stress drops, interspersed with slower periods of strain accumulation, mirrors the earthquake-like cycle seen in nature. As the
simulation progresses, multiple shear bands develop, and stress drops can occur repeatedly on the same shear band, rather than
always initiating on new segments. This behavior closely resembles natural faulting processes, where strain localization leads

to repeated cycles of stress accumulation and release along pre-existing fault structures.
5.5 Comparison to rate-and-state friction models

While our study focuses on elasto-plasticity as the primary mechanism driving stress drops and strain localization, it is im-
portant to consider how these results compare to traditional rate-and-state friction models. Rate-and-state friction models have
been successful in explaining many aspects of earthquake nucleation and fault slip behavior, particularly through their ability
to capture velocity weakening and strengthening behaviors.

In contrast, the elasto-plastic model used in this study does not rely on velocity-dependent friction laws but instead captures
stress drops through plastic yielding. This distinction is important because it provides an alternative explanation for how faults
might weaken and slip during seismic events. The fact that our elasto-plastic model produces stress drops without needing
to invoke velocity weakening suggests that plastic deformation alone may be sufficient to explain certain aspects of fault slip

behavior.
5.6 Limitations and future work

While our study provides valuable insights into the mechanics of stress drops and strain localization, it is important to acknowl-

edge the limitations of the current model. First, the model assumes homogeneous material properties, which may oversimplify
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the complexity of real fault zones. In reality, fault zones are highly heterogeneous, with variations in material properties that
can significantly influence fault behavior.

Additionally, the current model does not account for fluid-rock interactions, which are known to play a significant role in
fault weakening and earthquake triggering, particularly in fluid-saturated fault zones. Future work could extend this model to
include poroelastic effects or fluid migration, which would provide a more complete picture of the processes governing fault
slip.

Finally, while our results are based on 2D simulations, future studies should further explore 3D simulations, which are
more representative of real fault systems. Extending the present model to include 3D geometries, along with higher-resolution

simulations, would allow for a more detailed investigation of fault mechanics and earthquake triggering.
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6 Conclusions

In this study, we investigated stress drops and earthquake triggering in idealized elasto-plastic media through two-dimensional
numerical simulations. The first stress drop develops after the onset of strain localization due to structural softening (Vermeer,
1990; Le Pourhiet, 2013; Sabet and de Borst, 2019). The following stress drops occur due to switches between quasi-static
loading intervals. These stress drops correspond to transitions where the system moves from one quasi-static equilibrium to
another due to the inability of strain localization to continue growing in the prescribed direction. The structural softening
phenomenon received little attention until recently (Sabet and de Borst, 2019) and studied here as a mechanism of sudden
stress drops and potential triggering of earthquakes.

Our results underscore the critical role of both temporal and spatial resolutions in capturing the evolution of stress and
strain fields during seismic cycles. The convergence tests demonstrated that finer temporal discretization sharpens the observed
stress drops and leads to lower minimum stress values, underscoring the importance of accurately resolving dynamic stress
changes. Similarly, spatial resolution tests showed that while broad patterns of accumulated strain were consistent across
different resolutions, higher-resolution grids provided significantly more detail, capturing intricate strain localization and stress
redistribution mechanisms that are essential for modeling realistic earthquake behavior.

The analysis of interseismic periods and stress drops revealed that displacement gradually accumulates during the interseis-
mic phase, followed by intensified strain during major stress drops. This behavior mirrors the natural earthquake cycle, where
periods of slow, aseismic slip are followed by rapid, seismic slip events that release accumulated strain energy. Furthermore,
our detailed investigation of earthquake nucleation due to a single stress drop revealed complex initial wave field patterns, with
high-amplitude shear components dominating the response, providing insights into the mechanics of rupture initiation.

One of the key contributions of this study is the demonstration that simple elasto-plastic models with constant in time
and space friction coefficient, when coupled with high-resolution discretizations, are capable of reproducing key features
of earthquake triggering and stress drop behavior, without relying on more complex frictional laws or velocity-dependent
weakening mechanisms. This indicates that plastic yielding alone can account for some of the fundamental processes governing
fault slip and rupture.

Our findings have several important implications for seismic hazard assessment and the development of predictive models.
First, they emphasize the necessity of incorporating high-resolution spatial and temporal discretizations into numerical models
to accurately capture the localized and transient phenomena that govern earthquake triggering. Second, the results confirm
previous studies highlighting the important role of plastic deformation in fault weakening and rupture, suggesting that plasticity
should be considered alongside traditional frictional models in future earthquake simulations.

Finally, while our study has focused on two-dimensional idealized elasto-plastic media, the insights gained here provide a
solid foundation for extending the analysis to more complex, three-dimensional fault systems and heterogeneous materials.
Future research could explore the interactions between plasticity, material heterogeneity, and fluid migration, providing a more
comprehensive understanding of the mechanics underlying seismic events. By advancing these models, we move closer to

developing more accurate, physics-based tools for predicting earthquake behavior and mitigating seismic risk.
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