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Abstract. This study explores stress drops and earthquake triggering-within-thesimplestsequences in the simplest pressure-sensitive

elasto-plastic media using two-dimensional simulations, emphasizing the critical role of temporal and spatial reselations
resolution in accurately capturing stress evolution and strain fields-]Jocalization during seismic cycles. Our analysis reveals
that stress drops;—triggered by plastic deformation once local stresses reach the yield eriteria;+refleet-criterion—resemble
fault rupture mechanics, where accumulated strain energy is reteased—suddenty——simulating-earthguake-suddenly released,
simulating earthquake-like behavior. Finer temporal and spatial discretization leads to sharper stress drops and lower minimum
stress values;-while-finerspatial-grids-provide-more-detaledrepresentations-of strainocalizatton-and-stressredistribution—Ou

analysis-reveals—that-displacement-, Displacement accumulates gradually during interseismic periods and intensifies during
major stress drops, refleeting-capturing key features of natural earthquake cycles.

The histogram of stress drop amplitudes shows-exhibits a non-Gaussian distribution;charaeterized-by-a-broad-peak-with-long

This "solid turbulence" behavior suggests that stress is redistributed across spatial and temporal scales, with implications for
understanding the variability of stress drop magnitudes.

Our results demonstrate that high-resolution elasto-plastic models ean-teproducekey-ca n reproduce essential features of
earthquake triggeringnucleation and stress drop behavior without relying on complex frietional-friction laws or velocity-
dependent weakening mechanisms. These findings emphasize the necessity of incorporating plasticity into medels-effault
stip—fault slip models to better understand the mechanisms geverning-of fault weakening and rupture. Furthermore, our
work suggests that extending these models to three-dimensional fault systems and aceeunting—for-incorporating material

heterogeneity and fluid interactions could provide-offer deeper insights into seismic hazard assessment and earthquake mechanics.
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1 Introduction

Understanding earthquake triggering remains a significant challenge in geophysics, as it directly influences our ability to predict
and mitigate seismic hazards. Earthquake nucleation is often conceptualized through the study of sliding behavior along fault
surfaces, with models traditionally describing the interseismic period as one of near-elastic deformation in the surrounding
crust, interrupted by phases of anelastic slip that eventually result in seismic rupture (Pranger et al., 2022). Such models
typically rely on phenomenological rate- and state-dependent friction laws (Dieterich, 1978, 1979; Ruina, 1983), which have
been highly successful in describing various aspects of the seismic cycle. However, these friction-based models may overlook
critical physical processes that govern the transition from aseismic slip to seismic rupture, particularly when plastic deformation
and off-fault processes are involved.

Numerical modeling of elasto-plastic behaviorstrain localization in pressure-sensetive geo-materials has a long history, with
early contributions from Cundall (1989, 1990); Poliakov et al. (1993, 1994); Poliakov and Herrmann (1994). Regularization
of strain localization thickness was addressed by Duretz et al. (2019) and de Borst and Duretz (2020). A single-phase (visco)-
hypoelastic-perfectly plastic medium was modeled in both 2D and 3D domains by Alkhimenkov et al. (2024b), while compaction-
driven fluid flow and shear bands in porous media were numerically modeled in 3D by Alkhimenkov et al. (2024a).

One of the first computational earthquake dynamics models with slip-weakening rupture simulations was introduced by
Andrews (1976). Recent studies have suggested that plasticity plays a crucial role in the triggering of earthquakes, particularly
through off-fault plasticity mechanisms (e.g., Andrews (2005)). Off-fault plasticity refers to the deformation that occurs away
from the main fault plane and can significantly influence the dynamics of rupture propagation. Ma (2008); Ma and Andrews
(2010) conducted some of the earliest studies on dynamic rupture with plasticity. Previous works have explored the effects of
off-fault plasticity in two-dimensional (2-D) in-plane dynamic rupture simulations (Templeton and Rice, 2008; Kaneko and
Fialko, 2011; Gabriel et al., 2013; Tong and Lavier, 2018; Allison and Dunham, 2018). For instance, Dal Zilio et al. (2022)
presented a 2-D thermomechanical computational framework for simulating earthquake sequences in a nonlinear visco-elasto-
plastic compressible medium, highlighting the importance of including viscoelastic and plastic behavior in realistic models.
Other studies highlighting the importance of plasticity in earthquake physics modeling include Erickson et al. (2017), Preuss
et al. (2020), and Simpson (2023).

In addition to 2-D studies, three-dimensional (3-D) dynamic rupture simulations incorporating off-fault plasticity have
provided deeper insights into the complexity of earthquake mechanics (Wollherr et al., 2018). Another significant advancement
was made by Uphoff et al. (2023), who utilized a discontinuous Galerkin method to model earthquake sequences and aseismic
slip on multiple faults, demonstrating the versatility of numerical approaches in capturing the nuances of seismic phenomena.

The role of plasticity in earthquake triggering has also been emphasized in laboratory experiments. Studies have shown that
plastic deformation can precede seismic slip, indicating that the onset of plastic yielding may be a precursor to earthquake
initiation (Johnson et al., 2008; Scuderi et al., 2016). These experimental findings support the incorporation of plasticity in

numerical models to enhance the understanding of the triggering process.
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Despite these advancements, there remains a need for simplified models that can effectively capture the essential features
of earthquake triggering and stress drops while being computationally efficient. The simplest elasto-plastic models offer a
promising avenue for such investigations. By focusing on basic physical principles, these models can provide insights into the
fundamental mechanisms of earthquake triggering, such as the role of stress accumulation and release, the interaction between
elastic and plastic deformation, and the influence of material heterogeneity on seismic behavior.

In this study, we employ a two-dimensional elasto-plastic model to investigate stress drops and earthquake triggering. The
friction coefficient is assumed to be constant in all simulations, with no hardening or softening, which corresponds to an ideal
plasticity model. We conduct a series of numerical simulations to explore the effects of temporal and spatial resolutions on
the accuracy of stress and strain predictions. Our goal is to understand how these resolutions impact the modeled behavior of
stress evolution, strain accumulation, and the nucleation of seismic events. Our approach involves detailed convergence tests
for temporal and spatial discretizations, analysis of stress drop sequences, and examination of interseismic periods. We also
investigate the initial wave field patterns during earthquake nucleation to gain insights into the complex interplay between
quasi-static and elasto-dynamic mechanics. Through this comprehensive study, we aim to highlight the critical role of high-
resolution modeling in capturing the intricate dynamics of earthquake triggering and stress drops, providing a foundation for
future research and practical applications in seismic hazard assessment.

The novelty of the present study is highlighted by the following contributions:
1. We utilize-employ the simplest pressure-sensitive ideal plasticity modelwith-econstantin-time-and-space-, characterized by a
spatially and temporally constant friction coefficient.
2. We propose a rew-physics-based approach-exptaining-explanation for spontaneous stress drops in deforming rocks, offering
potential apphcatlons mﬁede}mge&ﬁhqﬂak&mggeﬂﬂg for modeling earthquake sequences.
3. We achi ing-do not prescribe any pre-existing faults; instead, new faults emerge spontaneously

from the stress field,

4. We achieve high-resolution medelssimulations with fast computational performance by leveraging GPU-based parallel
computing.

2 Mathematical formulation
2.1 Quasi-statics

The conservation of linear momentum is expressed as:
Vo + fi =0, (D

where 0;; is the stress tensor, f; is the body force, V is a dell operator, j = 1..3 and Einstein summation convention is applied

(summation over repeated indices). The stress tensor is decomposed into bulk (volumetric) and deviatoric components

045 = _péij + Tijs 2
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where p is pressure, 7;; is the deviatoric stress tensor, d;; is the Kronecker delta. The strain rate is defined as
. 1
€ij = 5 (Vi’l)j + Vj’l)i) 3)

The rheology is elasto-plastic, which is characterized by an additive decomposition of the strain rate into an elastic (volumetric

and deviatoric) and plastic components

- __ ceb -ed -pl
€ij = €55 +€55 +€55, @

where the superscripts -¢, -¢?, .P! denote elastic volumetric (bulk), elastic deviatoric and plastic parts, respectively. The

volumetric (bulk) elastic strain rate is

1 1 Dp
-eb
W= g VesT TR By ®
the-where Dp /Dt is the material derivative (provided in the following section), the deviatoric elastic strain rate is
1 D7y,
-ed (¥
ed _ ___ 6
i T 5G Dt ©

where the Jaumann rate of Cauchy-stressdeviator of Cauchy stress tensor, represented as Do/ PtD7;; /D¢, is provided in the
following section and the deviatorie-plastic strain rate is

0 )

where \ is the plastic multiplier rate and @ is the plastic flow potential. Combining equations (4)-(7), the total strain rate can

be reformulated as

1 - 1 Dp 1 D’Tij : 8@
V5 Vi) = 5 VEUROij— ==, T 5~ A .
(Vivg + Vo) = 5Viodu = 50 T 56 1 2%,

AN

®)

|~

E-fij =

This the system of equation is the static elasto-plastic model routinely used in solid mechanics (Zienkiewicz and Taylor,

2005).
2.1.1 Large strain formulation

The inelastic response is described using hypoelastic constitutive theory. Hypoelasticity involves formulating the constitutive

equations for stress in terms of objective (frame-invariant) stress rates (de Souza Neto et al., 2011). Fherate-evolutiontawfor

_(e  ce e - -pl
Dt ZiikiCkl =CFin(Er—Ep);




The scalar pressure material derivative is represented by the following equation:

e Dp 2 N ap 1 - 3p
ijm@:K* gGOij(sk‘l& +£§(5ikojl+5il5kj)%~ )

The Jaumann rate of Cauehy-stressdeviator of Cauchy stress tensor, represented as Pe/P£D7;; /Dt, is defined by (de Souza Neto
et al., 2011):

DO’U DTij 60'”‘ 87’1‘]' ({)0'/5.7' 87’1‘]'

115 Di Dt - ot ot k%@_wikﬂjk_w]’kgzika (10)
where 1, is the vorticity tensor defined as: w;; = (V,v; — V,v;) /2.
2.2 Elasto-dynamics
The conservation of linear momentum is given-by-extended by addition of inertia:
V0 + fi =p?§f, (11)
120 where v is the velocity and p is the density. The-stress-strainrelation-is-deseribed-by:-
24 = gy (=230,

2.3 Plasticity

Plasticity is implemented using a non-associated, pressure-dependent Drucker—Prager criterion (Drucker and Prager, 1952;
125 de Souza Neto et al., 2011; De Borst et al., 2012). According to this criterion, plastic yielding begins when the second invariant

of the deviatoric stress, Jo, and the pressure (minus the mean stress), p, meet the following condition:

VT2 —sin(p)p = cos(¢)c, (12)

where c is the cohesion and ¢ is the angle of internal friction. In terms of the stress tensor, plastic deformations occur when the
stresses reach the yield surface. The yield function F' and the plastic potential () for the Drucker—Prager criterion are defined

130 as:
F(7,p) =/ J2 = sin(p)p — cos(¢)c, (13)
where ¢ is the internal friction angle.

Q(7,p) = \/Jo —sin(¥)p, (14)
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where ¢ < ¢ is the dilation angle. In two dimensions under plane strain conditions, with ===-1{e77—+o5)¢.. =0, the

Drucker—Prager criterion is equivalent to the Mohr-Coulomb criterion (Templeton and Rice, 2008). In 2-D, the second invariant

of the deviatoric stress, Jo, is expressed as:

1 1
JQZiTijTji:§(T§I+Tgytiz;)+T§y. (15)

As long as F' <0, the material remains in the elastic regime. Once F' reaches zero (F' = 0), plasticity is activated. If the
material remains in a plastic state (OF/Jt = 0), plastic yielding continues. The current implementation of perfect plasticity
requires small time increments and is computationally expensive. To ensure spontaneous strain localization, strain softening is
often introduced, which promotes the formation of shear bands (Lavier et al., 1999; Moresi et al., 2007; Popov and Sobolev,
2008; Lemiale et al., 2008). However, there are concerns about the thermodynamic admissibility of such solutions (Duretz
etal., 2019). Additionally, the softening or hardening moduli are small compared to the shear modulus and can be neglected as

a first-order approximation (Vermeer, 1990), leading to the ideal plasticity model used in the present study.

For the case of regularized plasticity, the the yield function is defined as (Heeres et al., 2002):

Flrp) = v/ ] —sin(e)p — cos(g)e —n"A. 16)

3 Numerical implementation
3.1 Discretization

The numerical domain is discretized using a staggered grid in both space and time (Virieux, 1986). This method provides a

variant of the conservative finite volume approach (Dormy and Tarantola, 1995). The-totalnumber-of-grid-eels-is-limited-only

by-the-available-GPU-memery—For the elasto-dynamic equations, an explicit time integration method is employed, offering
second-order accuracy in both space and time. Detailed representations of the discrete equations are available in Alkhimenkov

et al. (2021). For the quasi-static equations, the discrete scheme achieves second-order accuracy in space. Advection is carried
out using an upwind scheme, which is first-order. Consequently, due to the application of the pseudo-transient method, the

solution demonstrates first-order accuracy in time (Alkhimenkov and Podladchikov, 2025).
3.2 Accelerated pseudo transient method

The solution of the quasi-static equations is achieved using the matrix-free accelerated pseudo-transient (APT) method (Frankel,
1950; Rass et al., 2022; Alkhimenkov and Podladchikov, 2025). The core concept of this method involves solving dynamic
equations with appropriate attenuation of the dynamic fields instead of directly solving inertialess equations. To achieve this,
the equations are written in their non-dimensional residual form and iterated over "pseudo-time" until convergence is reached.
Once the dynamic fields attenuate to a specific precision (e.g., to 10712), the solution of the quasi-static equations is attained.

In other words, the quasi-static problem serves as an attractor for the dynamic problem with damping. The APT method is
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capable of handling numerical domains with more than a billion grid cells. Additionally, since all operations are local, this

method can be naturally parallelized using GPUs, which is the approach taken in this study.
3.3 Implementation of plasticity

In the return mapping algorithm, the following steps are performed:
1. Calculate the components of the trial deviatoric stresses, Tgial. 2. Compute the trial second invariant of the deviatoric

stresses, J3"%!, using 771!, 3. Determine F'™*! using the equation:

Frial — [ gsrial _ (sin(o)p + cos(@)c) . a7

When the material is in the plastic state, the trial deviatoric stress components, Tit]?ial, are re-scaled according to:

trial
pnew _ prial (4 FT0 ) iarg (18)
R v / Jtrial Y ’
2
~ rial . . . .. . .
where A =1— £ is the scaling parameter. This re-scaling process is iterated over "pseudo-time" until the updated

Jérial
trial deviatoric stresses, 7;5°%, satisfy the plasticity criterion, ensuring Ftial — ( (thus, A =1 and no re-scaling occurs). A

regularized version of this procedure modifies formula (18) to (assuming non-zero dilatation angle 1)):

~ trial e
A=1- PGt : (19)
VJ2(GeAt + K Atsin psine + nvp)

where n*? is the viscosity-of the-damper(regularization-parameter-regularization parameter having units of viscosity, [Pa - s].

The numerical viscosity nVP is usually set to a small value. If this value is too high, the shear bands become very thick;

conversely, if the value is too small, the thickness of the shear band is just one pixel. The correct value of the viscosity damper
lies between these limits. In the following section, we examine how the choice of viscosity damper affects the solution. This
implementation of plasticity through re-scaling deviatoric stress components is equivalent to the standard procedure using the
plastic multiplier rate, A, which is defined as

. Ftrial
A= .
AtG® + K Atsinpsing 4+ nvP

(20)

For a more detailed explanation of how plasticity with regularization is implemented in single-phase media, refer to Duretz
et al. (2018, 2019, 2021).

3.4 Nondi ionalizati

3.4 Model configuration, boundary conditions, and non-dimensionalization

The computational domain is a square with dimensions #;

.y € |=L;/2, L, /2| x |=L,/2,L,/2]. All

simulations in this study are performed using a simple initial model configuration and non-dimensional equations. To ensure

Y

a consistent dimensionless framework, we define the following characteristic scales: length [* = L, --and time ¢* = 1/a;-and
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pressure-p—-=Gr. Here, L, represents the domain size in the z-direction, L, = L, = 1 and a denotes the background strain
rate. Deformation evolves over timescales inversely proportional to the initial background strain rate ag at ¢ = 0. The ratio of
cohesion c to the pressure scale p* is defined as 7 = &~ Wg&g&wﬁ

For all computations, we set the coefficient of internal friction to y+—=6-64 = 0.5. Pure shear boundary conditions are applied

by prescribing normal velocities at the left and right boundaries:
Vy = ax 21

and at top and bottom boundaries
vy = —ay, 22)

which corresponds to the extension in x-dimension and compression in y- dimension. We-impeseloading-inerements-applied
to-the-strain-compenents—At all boundaries, free-slip boundary conditions are implemented. The following initial eenditions

are-tmplemented:—condition is implemented: p = 0

PTzz = 0.004co, 23)
Tayy = 0.012,7¢o. (24)
=—0.012.

We introduce a circular inclusion in the non-dimensional presstire-pcohesion c, representing a localized inerease—with—the
highest-value-at-the-center-of-the-modelstiff inclusion. The expression in the dimensionless framework is as follows:

2o, if \/(x + Ly /102 + (y + L, /5)? < 0.06252,
pc= (25)

B cop, otherwise.

We impose loading increments applied to the strain components.
4 Results

4.1 FEewresolutionsimulationIntegrated stress oINT

}&em%ew%e%ekmﬁ&mﬁeﬂ%éﬁgafel%—w&eb%ﬁﬁh%mmme evolution of the fmegm{ed—%&e%%mmulated
stem, we evaluate the integrated axial stress ol "

Ly
1
o= L / ( (—p(mo,w +Tm<xo,y>>) dy. 26)
Yy
0



y ¥

05 Initial Cohesion Field c [Pa]o_oz
0.018
“« =-»> 0.016
E o
>
<« » 0.014
0.012
05 0.01
05 0 0.5
x [m]

+ ¢

Figure 1. Heterogeneous initial setup of pressure-pcohesion c. The arrows indicate the pure shear boundary condition which is applied at the

model boundaries.

220

225 4.1.1 Convergence study

To determine the necessary spatial and temporal resolutions (i.e., the resolution with respect to loading increments

erformed a convergence study. Simulations were conducted with different spatial resolutions, ranging from N = 632 to
N = 20472, while keeping the regularization viscosity constant across all cases. The results are shown in Figure 2.
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aceurately-capturing the-dynamies-of-At low resolution (e.g., NV = 632), the model does not capture sharp stress drops. However.
as resolution increases, stress acetumtation-and-reteasedrops become increasingly pronounced. Notably, both the amplitude
and clarity of the stress drops converge for resolutions of N = 10232 and higher.

245 4.1.1 Mohr’seirele-analysis

{ﬂépaﬂel—@}—%he;sffesﬁs—eveiﬂlyhdtsmbu{ed—&ﬂfkﬁ ure 3 illustrates the strain localization pattern at time t3 for four
250 different resolutions. Starting at N = 10232, the ei

255

260

The total (Eulerian) displacement in the z- and trre—see Figure-22)-

Mapparent = Sin(arctan figye) = sin(arctan0.6) ~ 0.51

10
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-directions is updated from the velocities usin

x x

ul™ = w0 (M A, ué”) = ué"il) + 'Ug(,n) At. 27

revious time steps, respectively. The incremental (Eulerian) displacement is then given b

Aup =uf —ul"D Auy =ulV) —ulrY), (28)

Strain components are computed from (Eulerian) displacement gradients as

Ouy — Ouy
V. u oz +87yv (29)
Oouy,
gy V™ o
ou
= FL—4Vu 31)
Ou,  Ou
_1 @ y
%2(6y+%>. (32)

Finally, the (Eulerian) deviatoric strain measure is defined as

Jy = \/% (€2, +e3,) +e2,. 33

A zoomed-in view of lo J34) field is provided in Figure 4, where we observe that the thickness of the shear bands spans
several grid cells even at N = 5112 (panel a), and more than ten grid cells at N = 10232 (panel b). The redueed-apparent

were not, the shear bands would collapse to 1-3 grid cells irrespective of resolution.

Figure 5 shows the pressure field p at time t3 for four spatial resolutions. As resolution increases from NN =511° to
N = 2047°, finer pressure structures become apparent, highlighting the emergence of sharp gradients. All snapshots correspond
to a total strain of £ = 0.04. Based on these results, we conclude that a resolution of V= 1023 is sufficient for capturing both
stress drop dynamics and shear band structure while maintaining a balance between accuracy, computational cost, and memory.
requirements.

11
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Figure 2. Convergence study. Panel (a) shows the integrated stress ol as a function of total strain for multiple resolutions. Panels (b—j
=1023%, N =1535%, N =2047°. t;

show the velocity field v, at three different time steps (£1—t3) and three different resolutions: N

corresponds to the total strain £ = 0.022, {5 corresponds to the total strain € = 0.026, and ¢3 corresponds to the total strain £ = 0.04.

P —1/2.107° in all simulations.

Regularization parameter is
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Figure 3. The total velocity field vZ, Simulations at t3 for four different resolutions: N = 5112, N = 1023, N = 1535

N = 20472, t3 corresponds to the total strain £ = 0.04.

13



(@) N = 5112 logio(J2) at t; (P

N = 10232 logo(J3') at t3
260 —

530
=270 T 540
2 2
o] 8 550 g
2 o
& 280 5 560
570
290 580
210 220 230 240 420 440 460 480
(c) u (d) 2 logo(J3) at t
N = 15352 logy(J3') at t3 N = 2047 10 2 3
1060
800
O 221080
o) [72]
2 $ 1100
je) je)
5 840 - 5 1120
860 1140
1160
640 660 680 700 720 850 900 950
Grid cells (-) Grid cells (_)

290

295

14



Zoomed-in Pressure Fields at t3
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4.2 Trends

5 Earthquake sequence

51n this section, we analyze the stress response of the system over a
complete loading cycle comprising 16,Aez+=4x10=5000 incremental steps. We focus on three aspects: (i) the sequence of
stress drops that emerge as strain accumulates, (ii) the statistical distribution of these drops, Aez=10-%10=2Ttis-observed

—and (iii) the

wavefield dynamics resulting from a single stress drop event. All results presented in this section are obtained from a full
converged simulation with spatial resolution N = 10232, constant regularization viscosity, and pseudo-transient iterations that
ensure convergence at each step.

5.1 Numerical convergence and stabilit

5.1.1 Frends-with-inereasing-spatial-reselution

diseretizations-of-N-=-=632To ensure that the stress drops analyzed in this study arise from physically meaningful simulation,

16
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350 eoftenprecedefaultrupture-orfatlure-events—

ne-we monitor the convergence behavior
of the logryer—(Figure-2?bpseudo-transient iterations used to solve the elasto-plastic equations at each time step. Figure 6

shows the number of iterations required per physical time step (top panel), the corresponding final residual at convergence

355 (middle panel), and the residual curve versus pseudo-time iterations for the final step (bottom panel). The lecalized—shear

aresidual error is calculated using the L°° norm. The number of
iterations per step remains moderate throughout the simulation, and the final residuals consistently remain below a prescribed

17
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Figure 6. Panel(a)-showstogrgerrConvergence diagnostics for pseudo-transient iterations. Panels(b)-corresponds-to-zoom-infoeusing-on
a-single-shear-band-thieknessTop: Number of iterations per physical time step. Middle: Final residual error per time step. Bottom: Residual
magnitude versus iteration number for the final time step.

360 threshold, confirming that the nonlinear solver converges consistently even during dynamic events such as stress drops. These

diagnostics support the reliability of the stress evolution and wavefield results presented in the following subsections.

18



5.2 Final velocity and pressure fields

365 5.3 Dilataney

370

375

380

dilataney-resultsinnarrow-and-highly-stress responses at the end of the simulation, as shown in Figure 7. The velocity field v
385 exhibits sharp gradients in zones of intense shear, while the solid-phase pressure p shows localized shear bands;-as-expeeted

390

5.3 Stress drops

5.4 Stress-drop-sequenee

INT

FigureF: MlglAJLeNS presents the m{egfafeekevolutlon of integrated axial stress o,

19
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Figure 7. Num s —wh rete b=

moderate-dilatation-angle;Final spatial fields of velocity v, and +=-30"-ceorresponds-to-the-associated-plastieitysolid pressure p after 16000
incremental steps.

Puring-as a function of total applied strain for 16,000 loading increments. The main panel (Figure 8a) shows the full

sequence, while the three lower panels provide zoomed-in views of the early (0-1/3), middle (1/3-2/3), and late (2/3-1

loading stages, where individual stress drops become clearly visible. Throughout the loading process, numerous stress drops
are observed(Figure-8)—These-stress—, These drops correspond to sudden-shifts-abrupt changes in the system™’s stress state,

where—the-occurring when strain localization reaches a critical peint—threshold and further deformation in the prescribed

direction becomes untenable—As-a—resultunsustainable. At these points, the system undergoes a rapid redistribution-of-stress

INT

stress redistribution, manifested as a-drop-discrete decreases in the integrated stress o, .

These stress-drops-events are indicative of dynamic rupture-events;-akintorupture-like behavior, resembling the rapid stress
release observed-that occurs during seismic slip in natural earthquakes. However, we admitnote that in this first-initial study,
we only-indicate-this-similarityfocus only on the qualitative resemblance and do not provide a detailed analysis of slip rate
and-rupture speeds-in-the present-model—The rates or rupture propagation speeds. The observed sequence of stress drops
observed-in-the simulationresembles—the-eyelie-mimics the typical behavior of fault systems, where interseismic periods of

stress accumulation are interrupted by seismic-events—By-inereasing-the-tempeoralresolution;-we-capturesharper-mere-distin
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—sudden stress release

events. This behavior supports the interpretation of the model as capturing essential features of earthquake cycles within an
elasto-plastic framework.

5.3.1 Histogram of stress drop amplitudes

The histogram of stress drop amplitudes shown in Figure 9 provides a quantitative representation of the frequency and

magnitude of stress drops eceurring-during-thesimulationsobserved over the course of the full simulation (16,000 loadin
increments). The distribution efstress-drop-amplitudesisnotably-is clearly non-Gaussian, eharacterized-by-a-broad-peak—with
longtails-enbothsides indicating-that-while-smallspanning more than five orders of magnitude in amplitude. It is unimodal and

asymmetric, with a pronounced peak near lo Ao) ~ —4.5 and long tails toward both smaller and larger events. Small stress

significantly

drops are m

more frequent, but large-magnitude stress releases are still present.
@Ww&g&urbulence -like Wﬁeﬁeﬁ%ﬁg&ﬁeﬁ&@tﬁfﬁf@eﬂﬁ%ﬁm@f@ﬂ%ﬂﬂ&

characteristies-of shear-bands-spectra in other complex systems, where intermittent bursts coexist with background fluctuations.

In the context of solid deformation, this has been described as “‘solid turbulence” and was first explored by Poliakov et al. (1994
who analyzed the multifractal structure of shear localization in elasto-plastic media;—that-makes—it-similar—to—theflaid

In-the-context-of-our-elaste-plastie-. In our model, the ror-Gaussian-broad-tailed nature of the histogram suggestsreflects a
complex interaction between localized plastic yielding-and-the breaderelastie response-of the-materialJustas-yield and global

elastic stress redistribution. As in fluid turbulence;—where energy cascades from large to small scales;-in—solid-turbulence;

stress—stress in the solid is redistributed across different-multiple spatial and temporal scales, leading to a-range-of-stress

deformation.

Understanding the-selid-turbulence-like-behaviorin-these-systems-this type of emergent behavior is crucial for developing
aeceurate-models-efmodeling seismicity, where stress drops eerrespond-terepresent analogs of earthquake events. The implications
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Figure 9. Histogram of ef stress drop amplitudes for-different resohutions—Paneltcomputed from a )shews-the-integrated-stress-om —versus
bmwmmw%mmbkmmmm of stress-each drop amplitudesfor
three-differentresotutions—Panel-(e)showsis defined as the histogram-of-difference in integrated axial stress drop-amplitudesfortwo-different
stress drop-amplitudesforfour-differentresolutionsreleases—consistent with turbulence-like plastic deformation dynamics.

tveprevalence of small
events and the presence of occasional larger ones are qualitatively consistent with the Gutenberg—Richter relationship. However.
we emphasize that our current study does not perform a statistical fit (e.g., power-law or log-normal) to extract quantitative

scaling exponents. Such an analysis would be required to firmly establish the statistical nature of the tail and its connection to
real seismicity. Overall, the histogram ef-stress-drop-amplitudesreinforees-supports the idea that the-simplest-even minimal

elasto-plastic models, despite-their—minima assumptions,are capable of capturing complex—emergent -behavior tha
often—assoctated-with-more-sophisticated-models-of setsmiettywith no prescribed faults or complex frictional laws, can give
rise to rich and realistic emergent behavior.
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5.3.2 Wave propagation due to a single stress dro

455 tty—Figure 10 shows the

wwwmmmmvzm
MM) at m&%ag&@tgﬁeﬁga-bﬁﬂéﬂﬁe%dlﬁerent physical time stepstFigures+0e-d)—The-initial
- Panels (a) and (b) present the initial wavefield
immediately after the stress drop. The velocity and pressure distributions are spatially complex and dominated by shear-dominated
460 nucleation patterns, qualitatively resembling a double-couple mechanisa-and-in-a-the-volumetric-component(pressure)—The
veloeityfield-exhibitshigh-amplitudessource mechanism. The volumetric pressure field also exhibits localized amplitudes,
indicating simultaneous compressional response.
Panels (c)-(Figures10b-and—10d), indicating
the evolution of the wavefield after 360, 720, and 1080 time steps, respectively. The velocity field. initially concentrated
465 near the nucleation region, spreads outward as the system relaxes dynamically. The pressure field also evolves, exhibiting
outward-propagating features that reflect the elastic response of the medium. These results indicate that a localized stress
drop in a plastic medium generates complex wave activity, with both velocity and pressure fluctuations contributing to the
redistribution of energy. The simulation is performed with a time step size of At =4 x 107°.

e)—(f), and (g)-(h) show
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Figure 10. Earthquake nueleation-due-to-Wave propagation following a single stress drop. Panel-Panels (a-ba—b) show the wave-fields-initial
wavefields: (a) velocity +=—magnitude ,/v2 + vZ, and pressure—p(b) at-the-initial-stagepressure p. Panels (e-dc—d)show—the-wavefields—,
(vetoeity—v—and-pressure—pe—f)after 250-timesteps—Panels—, and (g-hg-h) show the wavefields—evolution of the velocity +z—(v;) and
pressute p(p) fields after 500360, 720, and 1080 physical time stepyy respectively. Panels-The pattern indicates nucleation dominated by,
shear (e-ddouble-couple-like) show-the-wave-fields{vetoettyv—and volumetric pressure p)-after-756-time-stepsrelease, consistent with the
early stages of dynamic rupture.
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6 Discussion

6.1 The nature of stress drops

As ecan-be-seeninFigured;-during-the-loading:—many-shown in Figure 8, numerous stress drops occur throughout the loading
process. From a theoretical perspeetive;-the-first-stress-dropafter-standpoint, the initial stress drop—following the onset of
strain localizationwas-predicted-and—has been analyzed by, e-g=Vermeer(1990)-and-lePourhiet{2043)-The followingstress
WW@&M%

transitions between quasi-static loading intervals. These <

eﬂfkquast-staﬂ&eqﬂt}rbﬂuﬁ%events represent moments when the system shifts from one quasi-equilibrium state to another
due to the inabi

deformation paths. Specifically, when local stresses exceed the yield eriteriacriterion, plastic deformation is activated, causing
i —stress and a rapid release of stored energy in the form of a

a redistribution of s

stress drop.
This process mimics the mechanics of fault rupture, where the-acenmulation-of strain-energyleadsto-a-suddenrelease-inthe

eorresponds-to-a-seismic event-nucleation—accumulated strain energy is suddenly released during seismic events. The sharp,
discrete stress drops observed in our simulations—particularly at high spatial and temporal resolutions—are consistent with
such rupture-like behavior.

MWH%MM@WM&W& the spatial wmmwmmof
strain localization
eonduits-plays a key role in governing how stress is released. Localized shear bands serve as preferential paths for stress
concentration ;-dietating-how-and-where-stress-is-releasedand redistribution, determining the geometry and timing of stress
release. The interplay between elastic loadmg durmg fheﬁﬂ{efseiﬁmepeﬁedaﬁek %ﬁdsawocahzedﬂplamc
soffers a minimal yet

deformation during stress drops

effective model of the earthquake cycle.

6.2 Role of regularization in elasto-plastic simulations

Regularization is—eruetal-plays a critical role in numerical simulations of elasto-plastic materials, partienlarly—in—medels

involving-strainJoecalization—especially when strain localization is involved. Without regularization, simulations ean—exhibit
unrealisticresults—sueh—as—the foermation—ef-may produce unphysical results such as infinitely narrow shear bands —In

our-and grid-dependent failure modes. In this study, the regularization—parameter+2—was—carefullychosen—toprevent-such
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artifacts-while-preserving-the-physiealrealism-of-the-viscoplastic regularization parameter "> was carefully selected to ensure
numerical stability while preserving physically realistic stress and strain fields.

505 however, can overly smooth eut-stress-and-strain-these fields, suppressing the-formation-ofJoealized-shear-bands-and-strain

localization and significantl reducmg the occurrence Wof stress drops. The-balance-between-these-extremes-is

~This effect is clearly observed in low-resolution
simulations, where the regularization length scale becomes comparable to or larger than the grid resolution. Conversely,
insufficient regularization can result in non-convergent or unstable solutions.

510 Our results demonstrate that appropriate regularlzatlon is-neeessary-enables the model to capture both the-bread-large-scale

a-dynamic deformation—specifically,
the spatial organization of shear bands and the timing and magnitude of stress drops The-These ﬁndlngs align with prior studies
i ie-elasto-plastic

modeling, particularly for resolving localized deformation while maintaining physical-aceuraey-convergence and computational
515 stability (Popov and Sobolev, 2008; Duretz et al., 2018).

and fine-scale features of e

that-shew—work emphasizing the importance of regularization in s

6.3 3D simulations with zero regularization

Alkhimenkev-et-al+(2023)-performed-3D-Alkhimenkov et al. (2023) conducted three-dimensional simulations of a single-phase
elasto-plastic model with—zere-without regularization. These simulations—provide-valuable-insightsresults provide valuable
insight into how strain localization and stress drops manifest in fully %MW&MW
520 domains, Notably, the trends observed in 3D-beth
the—Dboth in terms of spatial and temporal resolution—are consistent with the 2D simulations-results presented in this study.
The-extension—to-3D-is-important-because—it-alows-Extending the analysis to three dimensions is essential for a more
realistic representation of fault systems, which are inherently three-dimensionalin—ratare. In 3D, the stress and strain fields
additional complexity, including.
525 the development of intersecting or branching shear bands, and the influence of out-of-plane stresses on f shiprupture
propagation. The fact that the-unregularized 3D simulations witheut-regularization-produced-results-consistent-with-our 2D
plastic model-used-in-this researehframework employed here, This also suggests that certain dynamic features—such as stress
drop sequences and fault-like deformation—can emerge naturally in elasto-plastic systems even in the absence of artificial
530 smoothing.

exhibit m

6.4 Implications for earthquake triggering-sequences and fault mechanics

The results from-of both 2D and 3D si
Alkhimenkov et al., 2023) simulations offer important insights into earthquake nucleation and fault mechanics. The stress

27



535

540

545

550

555

560

drops observed in our models are directly analogous to the rapid release of accumulated stress during natural seismic events,
suggesting-thatsupporting the idea that pressure-sensitive elasto-plastic models can effeetively-capture-the-mechaniesreplicate
key features of rupture initiation. The pertodie-nature-quasi-periodic pattern of stress drops, interspersed-with-stewer-periods
of-separated by intervals of gradual strain accumulation, mirrors the earthquake-like-eyeleseen-in-natare—As-the-simulation
progresses; fundamental structure of the seismic cycle.

ngmmmuhlple shear bands develop,-and-stress-drops-can-ocecurrepeatedty-on-the
sbecomes evident. Importantly, stress drops do not always
Wwfmwmmmm This behavior
v1s consistent with observations
of natural fault systems, where pre-existing fault planes accommodate repeated episodes of stress accumulation and release
along pre-existing fault strueturesover multiple cycles. Our results highlight the capacity of simple elasto-plastic models to
reproduce not only the mechanical ingredients of rupture, but also the spatial memory and cyclic behavior observed in fault
systems.

6.5 Comparison to rate-and-state friction models

While et+this study focuses on elasto-plasticity as the primary mechanism driving-governing stress drops and strain localization,
it is impertant-to-consider-how-these-results-eompare-instructive to compare our approach to traditional rate-and-state friction
(RSF) models. RSF models —Rate-and-state-friction-models-have been suecessful-in-explaining-many-aspeets-of-earthquake
nucleation-and-widely used to describe fault slip behavior, particularly threugh-due to their ability to capture veloeity-weakening
and-strengthening behaviorsyelocity-weakening and velocity-strengthening effects that are critical for earthquake nucleation
and stability analyses.

In contrast, the elasto-plastic model used-in-this-study-presented here does not rely on any velocity-dependent frietion-taws
butinstead-eaptures stress-drops-through-plastie-yieldingconstitutive law. Instead, stress drops emerge naturally through local
plastic yielding when the material reaches a yield criterion. This distinction is impertant-because-it-provides-an-alternative

aspeets-of fault stip-behaviorsignificant: it suggests that fault weakening and slip can be modeled purely through stress-based
plasticity, without invoking empirical velocity dependence.

Furthermore, classical RSF models typically describe fault slip on a predefined, spatially fixed fault interface. In our model,
by contrast, faults emerge spontaneously as localized zones of plastic strain, allowing for the generation, reactivation, and
migration of shear bands. This feature provides an important advantage in capturing fault system evolution in heterogeneous
or evolving tectonic environments, which cannot be represented by single-fault RSF frameworks.
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6.6 Limitations and future work

While eurstudy-provides-the present study offers valuable insights into the mechanics of stress drops and strainteeatization;
it-is-important-to-acknowledgethe-limitations—of the-eurrent-model—fault-like behavior in elasto-plastic materials, several

First, the model assumes homogeneous material properties;—which-may-oversimplify-the-complexity-ofreal-faultzones.
In reality, natural fault zones are highly heterogeneous, with variations in material-properties-that-can-significantly-influenee
fault-behavior-lithology, porosity, cohesion, and pre-existing damage that significantly affect strain localization and rupture
dynamics. Incorporating spatially variable properties would allow for a more realistic simulation of fault behavior and could
reveal additional mechanisms of rupture complexity.

Additionally-the-current-model-doesnot-aceount-for-Second, the model currently neglects fluid-rock interactions;-whieh-,
Fluids are known to play a ﬁgmﬁc—dﬁ%cntlcal role in fault weakemng'

complete picture of the processes governing fault stip, particularly through pore pressure buildup and fluid-induced instabilities.
Future extensions of this model should incorporate poroelasticity or two-phase flow to study the coupling between deformation
and fluid transport, especially in overpressured or fluid-saturated fault zones.

Finally, while eur results-are-based-on-the present study includes detailed two-dimensional simulations, the primary findings
are limited to 2D simutations; future studies should-further explore-geometries. Three-dimensional simulations provide a more
realistic framework for fault mechanics, capturing effects such as off-plane deformation, complex rupture geometries, and
interactions among multiple shear bands. Alkhimenkoy et al. (2023) performed 3D simulations s-which-are more representative
ofreal-faultsystems—Extending-the-present-medel-to-includeof elasto-plastic deformation and observed multiple stress drops
consistent with the results presented here. However, that study did not focus on earthquake nucleation or the dynamics of
earthquake sequences. Future high-resolution 3D ¢ i ith-hi ton-simutati

sstudies will be essential for advancing elasto-plastic
modeling of seismic processes, particularly in relation to rupture initiation, stress transfer, and fault interaction in realistic
eological settings.
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7 Conclusions

In this study, we investigated stress drops and earthquake-triggering-earthquake-like behavior in idealized elasto-plastic media
threugh-using two-dimensional numerical simulations. The first stress drop develops-after-occurs following the onset of strain

localizationdue-to—, a process driven by structural softening (Vermeer, 1990; Le Pourhiet, 2013; Sabet and de Borst, 2019).
The-following stress-drops-oceur-due-to-switeches-Subsequent stress drops are associated with transitions between quasi-static
loading intervals—Fhese-stress-drops—correspond-to-transitions—, where the system moves from one quasi-static-equilibrivim

equilibrium state to another due to the inability of strain localization to continue growing in the prescribed direction. Fhe

struetural-softening-phenomenon—reeeived-This structural softening mechanism, which received relatively little attention until
recently (Sabet and de Borst, 2019)and-studied-, is explored here as a mechanism-fundamental driver of sudden stress drops

and-potential-triggering-of earthquakesrelease and potential earthquake nucleation.
Our results underscore the critical role-i Wof both temporal and spatial reselutions—resolution in capturmg the

evolution of stress and strain fields duxi

sharpens-the-observed-throughout the seismic cycle. Convergence tests demonstrate that finer discretization sharpens stress
drops and leads to lower minimum stress values, uﬂdefseefmg—ﬂaefmpef%&neeefﬂeelmfe}ffeseh‘tﬂgem hasizing the need
for high-resolution modeling to accurately resolve dynamlc stress changes. Simi

The—&nalyﬂ&e#Anal sis of the interseismic perlods and stress drops mvea%eekﬂaa&d*splaeema%gr&éua#yﬁteemﬁ&la%es

reveals a typical cycle:
radual displacement accumulation followed by abrupt, localized deformation. This mirrors the natural earthquake cycle, where
periods-of-slow,-in which periods of aseismic slip are feHeweé«byf&ptd*setsmﬂ:—s}tp nterrupted by rapid seismic events that

release accumulated strain energy. F

“Moreover, wavefield

analysis following a single stress drop revealed complex initi

deminating-the response;providinginsightsnucleation patterns, offering insight into the mechanics of rupture initiation.
One of the key contributions of this stuey-work is the demonstration that 51mple W e elasto- plastlc modelswith

eenstant—with constant friction coefficient in time and space
are-eapable-of reprodueing—can reproduce key features of earthquake triggering-sequences and stress drop behavior, witheut
relying-on-more-provided sufficient spatial and temporal resolution. Notably, this is achicved without the use of complex
frictional laws or velocity-dependent weakening mechanisms. This-indieates-Our results show that plastic yielding alone can
account for some-of-the-fundamental-proeesses-governing-fundamental aspects of fault slip and rupture. A second important
contribution is that faults are not prescribed a priori, as in conventional rate-and-state models; instead, new faults emerge
spontaneously from the evolving stress field. offering a key advantage in modeling complex fault dynamics.
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Our-findings-have-several-These findings have important implications for seismic hazard assessment and the development

of predictive models. First, they emphasize-the-necessity-of-incorporating-highlight the need for high-resolution spatial-and

625 temperal-diseretizationsinto-numerical models to acenrately-eapture-the-toealized-and-transtentcapture the transient, localized

phenomena that govern earthquake triggering. Second, the-results—confirmprevious-studies-highlighting-the-important-they

reaffirm the critical role of plastic deformation in fault weakening and rupture, suggesting that plasticity should be eensidered
incorporated alongside traditional frictional medels-in-future-earthquake-simulations—

Finalty,while-our study has foeused-formulations in future modeling efforts. Finally, although this study focuses on two-

630 dimensional idealized elasto-plastic-mediasettings, the insights gained hem—pwv&dea%ehek%foundahon for extendlng

the analysis—to-mere—complex;—framework to more realistic three-dimensionalfz

heterogeneous systems. Future research could explore the interactions-interaction between plasticity, material heterogeneity,

R

and fluid migration, providing thereby contributing to a more comprehensive understanding of the meehantes-physical mechanisms

underlying seismic events. By—advaﬂexﬂg-ﬁaesemede}s——we—mev&Advancm these models brings us closer to developing mere
635 aceuraterobust, physics-based tools for isk-earthquake forecasting and

seismic risk mitigation.
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