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Abstract. This study explores stress drops and earthquake nucleation
::::::::
triggering within the simplest elasto-plastic media using

two-dimensional simulations, emphasizing the critical role of temporal and spatial resolutions in accurately capturing stress

evolution and strain fields during seismic cycles. Our analysis reveals that stress drops, triggered by plastic deformation once

local stresses reach the yield criteria, reflect fault rupture mechanics, where accumulated strain energy is released suddenly,

simulating earthquake behavior. Finer temporal discretization leads to sharper stress drops and lower minimum stress values,5

while finer spatial grids provide more detailed representations of strain localization and stress redistribution. Our analysis

reveals that displacement accumulates gradually during interseismic periods and intensifies during major stress drops, reflect-

ing natural earthquake cycles. Furthermore, the initial wave field patterns during earthquake nucleation are complex, with

high-amplitude shear components.

The histogram of stress drop amplitudes shows a non-Gaussian distribution, characterized by a sharp peak followed by a10

gradual decay
:::::
broad

::::
peak

:::::
with

::::
long

::::
tails

:::
on

::::
both

:::::
sides, where small stress drops are more frequent, but large stress drops

still occur with significant probability. This "solid turbulence" behavior suggests that stress is redistributed across
:::::
spatial

::::
and

:::::::
temporal

:
scales, with implications for understanding the variability of seismic event

::::
stress

::::
drop

:
magnitudes.

Our results demonstrate that high-resolution elasto-plastic models can reproduce key features of earthquake nucleation

::::::::
triggering and stress drop behavior without relying on complex frictional laws or velocity-dependent weakening mechanisms.15

These findings emphasize the necessity of incorporating plasticity into models of fault slip to better understand the mechanisms

governing fault weakening and rupture. Furthermore, our work suggests that extending these models to three-dimensional fault

systems and accounting for material heterogeneity and fluid interactions could provide deeper insights into seismic hazard

assessment and earthquake mechanics.

1 Introduction20

Understanding earthquake nucleation
::::::::
triggering

:
remains a significant challenge in geophysics, as it directly influences our

ability to predict and mitigate seismic hazards. Earthquake nucleation is often conceptualized through the study of sliding

behavior along fault surfaces, with models traditionally describing the interseismic period as one of near-elastic deformation

in the surrounding crust, interrupted by phases of anelastic slip that eventually result in seismic rupture (Pranger et al., 2022).
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Such models typically rely on phenomenological rate- and state-dependent friction laws (Dieterich, 1978, 1979; Ruina, 1983),25

which have been highly successful in describing various aspects of the seismic cycle. However, these friction-based models

may overlook critical physical processes that govern the transition from aseismic slip to seismic rupture, particularly when

plastic deformation and off-fault processes are involved.

Numerical modeling of elasto-plastic behavior has a long history, with early contributions from Cundall (1989, 1990);

Poliakov et al. (1993, 1994); Poliakov and Herrmann (1994). Regularization of strain localization thickness was addressed30

by Duretz et al. (2019) and de Borst and Duretz (2020). A single-phase (visco)-hypoelastic-perfectly plastic medium was

modeled in both 2D and 3D domains by Alkhimenkov et al. (2024b), while compaction-driven fluid flow and shear bands in

porous media were numerically modeled in 3D by Alkhimenkov et al. (2024a).

:::
One

:::
of

:::
the

::::
first

::::::::::::
computational

:::::::::
earthquake

:::::::::
dynamics

::::::
models

:::::
with

::::::::::::
slip-weakening

:::::::
rupture

::::::::::
simulations

::::
was

:::::::::
introduced

:::
by

:::::::::::::
Andrews (1976)

:
. Recent studies have suggested that plasticity plays a crucial role in the nucleation

::::::::
triggering

:
of earth-35

quakes, particularly through off-fault plasticity mechanisms
::::
(e.g.,

:::::::::::::
Andrews (2005)

:
). Off-fault plasticity refers to the defor-

mation that occurs away from the main fault plane and can significantly influence the dynamics of rupture propagation.

::::::::::::::::::::::::::::::
Ma (2008); Ma and Andrews (2010)

::::::::
conducted

:::::
some

::
of

:::
the

::::::
earliest

::::::
studies

::
on

::::::::
dynamic

::::::
rupture

::::
with

::::::::
plasticity. Previous works

have explored the effects of off-fault plasticity in two-dimensional (2-D) in-plane dynamic rupture simulations (Templeton and

Rice, 2008; Kaneko and Fialko, 2011; Gabriel et al., 2013; Tong and Lavier, 2018; Allison and Dunham, 2018). For instance,40

Dal Zilio et al. (2022) presented a 2-D thermomechanical computational framework for simulating earthquake sequences in

a nonlinear visco-elasto-plastic compressible medium, highlighting the importance of including viscoelastic and plastic be-

havior in realistic models.
:::::
Other

::::::
studies

:::::::::::
highlighting

:::
the

::::::::::
importance

::
of

::::::::
plasticity

::
in
::::::::::

earthquake
:::::::
physics

::::::::
modeling

:::::::
include

:::::::::::::::::
Erickson et al. (2017)

:
,
::::::::::::::::
Preuss et al. (2020),

::::
and

:::::::::::::
Simpson (2023).

:

In addition to 2-D studies, three-dimensional (3-D) dynamic rupture simulations incorporating off-fault plasticity have pro-45

vided deeper insights into the complexity of earthquake mechanics (Wollherr et al., 2018). Another significant advancement

was made by Uphoff et al. (2023), who utilized a discontinuous Galerkin method to model earthquake sequences and aseismic

slip on multiple faults, demonstrating the versatility of numerical approaches in capturing the nuances of seismic phenomena.

The role of plasticity in earthquake nucleation
::::::::
triggering

:
has also been emphasized in laboratory experiments. Studies have

shown that plastic deformation can precede seismic slip, indicating that the onset of plastic yielding may be a precursor to50

earthquake initiation (Johnson et al., 2008; Scuderi et al., 2016). These experimental findings support the incorporation of

plasticity in numerical models to enhance the understanding of the nucleation
::::::::
triggering

:
process.

Furthermore, the impact of material heterogeneity on earthquake dynamics has been investigated extensively. Heterogeneities

in the crust, such as variations in material properties and fault zone complexity, can influence stress accumulation and release

patterns, affecting the timing and magnitude of earthquakes (Ben-Zion and Sammis, 2011; Yao et al., 2017). Numerical studies55

incorporating these heterogeneities have provided valuable insights into the intricate behavior of fault systems under different

loading conditions.

Despite these advancements, there remains a need for simplified models that can effectively capture the essential features

of earthquake nucleation
::::::::
triggering

:
and stress drops while being computationally efficient. The simplest elasto-plastic models
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offer a promising avenue for such investigations. By focusing on basic physical principles, these models can provide insights60

into the fundamental mechanisms of earthquake nucleation
:::::::
triggering, such as the role of stress accumulation and release, the

interaction between elastic and plastic deformation, and the influence of material heterogeneity on seismic behavior.

In this study, we employ a two-dimensional elasto-plastic model to investigate stress drops and earthquake nucleation.

::::::::
triggering.

::::
The

::::::
friction

:::::::::
coefficient

::
is

:::::::
assumed

::
to

::
be

:::::::
constant

::
in

::
all

:::::::::::
simulations,

::::
with

::
no

::::::::
hardening

::
or

:::::::::
softening,

:::::
which

::::::::::
corresponds

::
to

::
an

::::
ideal

::::::::
plasticity

::::::
model.

:
We conduct a series of numerical simulations to explore the effects of temporal and spatial reso-65

lutions on the accuracy of stress and strain predictions. Our goal is to understand how these resolutions impact the modeled

behavior of stress evolution, strain accumulation, and the nucleation of seismic events. Our approach involves detailed conver-

gence tests for temporal and spatial discretizations, analysis of stress drop sequences, and examination of interseismic periods.

We also investigate the initial wave field patterns during earthquake nucleation to gain insights into the complex interplay

between quasi-static and elasto-dynamic mechanics. Through this comprehensive study, we aim to highlight the critical role of70

high-resolution modeling in capturing the intricate dynamics of earthquake nucleation
::::::::
triggering

:
and stress drops, providing a

foundation for future research and practical applications in seismic hazard assessment.

The novelty of the present study is highlighted by the following contributions:

1. We utilize the simplest pressure-sensitive ideal plasticity model with constant in time and space static friction coefficient.

2. We propose a new physics-based approach explaining spontaneous stress drops in deforming rocks, offering potential appli-75

cations in modeling earthquake nucleation
::::::::
triggering.

3. We achieve fast computational times using high-resolution models.

2 Mathematical formulation

2.1 Quasi-statics80

The conservation of linear momentum is expressed as:

∇jσij + fi = 0, (1)

where σij is the stress tensor, fi is the body force, ∇ is a dell operator, j = 1..3 and Einstein summation convention is applied

(summation over repeated indices). The stress tensor is decomposed into bulk (volumetric) and deviatoric components

σij =−pδij + τij , (2)85

where p is pressure, τij is the deviatoric stress tensor, δij is the Kronecker delta. The strain rate is defined as

ε̇ij =
1

2
(∇ivj +∇jvi) (3)
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The rheology is elasto-plastic, which is characterized by an additive decomposition of the strain rate into an elastic (volumetric

and deviatoric) and plastic components (ε̇vp = ε̇vis + ε̇pl)

ε̇ij = ε̇ebij + ε̇edij + ε̇plij , (4)90

where the superscripts ·eb, ·ed, ·pl denote elastic volumetric (bulk), elastic deviatoric and plastic parts, respectively. The volu-

metric (bulk) elastic strain rate is

ε̇ebij =
1

3
∇kvkδij , (5)

the deviatoric elastic strain rate is

ε̇edij =
1

2G

Dτij
Dt

, (6)95

the
:::::
where

:::
the

:::::::
Jaumann

::::
rate

::
of

:::::::
Cauchy

:::::
stress,

::::::::::
represented

::
as

:::::::::
Dσij/Dt,::

is
:::::::
provided

::
in
:::
the

:::::::::
following

::::::
section

:::
and

:::
the

:
deviatoric

plastic strain rate is

ε̇plij = λ̇
∂Q

∂σij
, (7)

where λ̇ is the plastic multiplier rate and Q is the plastic flow potential. Combining equations (4)-(7), the
::::
total strain rate can

be reformulated as100

1

3
∇kvkδε̇ij+

1

2G

Dτij
Dt

+
∂Q

∂σij
=

1

2
(∇ivj +∇jvi) =

1

3
∇kvkδ

:::::::

ij+
1

2G

Dτij
Dt

+
::::::::::

λ̇
∂Q

∂σij
::::

. (8)

This the system of equation is the static elasto-plastic model routinely used in solid mechanics (Zienkiewicz and Taylor,

2005).

2.1.1 Large strain formulation

The inelastic response is described using hypoelastic constitutive theory. Hypoelasticity involves formulating the constitutive105

equations for stress in terms of objective (frame-invariant) stress rates (de Souza Neto et al., 2011). The rate evolution law for

stress is as follows (de Souza Neto et al., 2011; De Borst et al., 2012):

Dσij
Dt

= Ce
ijklε̇

e
kl = Ce

ijkl(ε̇kl − ε̇plkl), (9)

where Ce
ijkl is the elasticity tensor, ε̇ij = ε̇eij + ε̇plij is the strain rate tensor decomposed into elastic ε̇eij and plastic ε̇pij com-

ponents. Since our medium is isotropic, the stiffness tensor Ce
ijkl can be fully described by the bulk modulus K and shear110

modulus G:

Ce
ijkl =

(
K − 2

3
G

)
δijδkl +2G

(
1

2
(δikδjl + δilδkj)

)
. (10)
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The Jaumann rate of Cauchy stress, represented as Dσij/Dt, is defined by (de Souza Neto et al., 2011):

Dσij
Dt

=
∂σij
∂t

+ vk
∂σij
∂xk

−ẇikσjk − ẇjkσik, (11)

where ẇij is the vorticity tensor defined as: ẇij = (∇ivj −∇jvi)/2.115

2.2 Elasto-dynamics

The conservation of linear momentum is given by:

∇jσij + fi = ρ
∂vi
∂t
, (12)

where v is the velocity and ρ is the density. The stress-strain relation is described by:

∂σij
∂t

= Ce
ijkl

1

2
∇lvk +∇kvl(ε̇kl−

:::
ε̇plkl)
::
, (13)120

where i, j,k, l = 1,2,3.

2.3 Plasticity

Plasticity is implemented using a non-associated, pressure-dependent Drucker–Prager criterion (Drucker and Prager, 1952;

de Souza Neto et al., 2011; De Borst et al., 2012). According to this criterion, plastic yielding begins when the second invariant

of the deviatoric stress, J2, and the pressure (minus the mean stress), p, meet the following condition:125 √
J2 − sin(φ)p= cos(φ)c, (14)

where c is the cohesion and φ is the angle of internal friction. In terms of the stress tensor, plastic deformations occur when the

stresses reach the yield surface. The yield function F and the plastic potential Q for the Drucker–Prager criterion are defined

as:

F (τ,p) =
√
J2 − sin(φ)p− cos(φ)c, (15)130

Q(τ,p) =
√
J2 − sin(ψ)p, (16)

whereψ ≤ φ is the dilation angle. In two dimensions under plane strain conditions, with σzz = 1
2 (σxx+σyy), the Drucker–Prager

criterion is equivalent to the Mohr-Coulomb criterion (Templeton and Rice, 2008). In 2-D, the second invariant of the deviatoric

stress, J2, is expressed as:135

J2 =
1

2
τijτji =

1

2
(τ2xx + τ2yy)+ τ2xy. (17)

As long as F ≤ 0, the material remains in the elastic regime. Once F reaches zero (F = 0), plasticity is activated. If the

material remains in a plastic state (∂F/∂t= 0), plastic yielding continues. The current implementation of perfect plasticity

5



requires small time increments and is computationally expensive. To ensure spontaneous strain localization, strain softening is

often introduced, which promotes the formation of shear bands (Lavier et al., 1999; Moresi et al., 2007; Popov and Sobolev,140

2008; Lemiale et al., 2008). However, there are concerns about the thermodynamic admissibility of such solutions (Duretz

et al., 2019). Additionally, the softening or hardening moduli are small compared to the shear modulus and can be neglected as

a first-order approximation, leading to the ideal plasticity model used in the present study.

3 Numerical implementation

3.1 Discretization145

The numerical domain V is discretized using a staggered grid in both space and time (Virieux, 1986). This method provides a

variant of the conservative finite volume approach (Dormy and Tarantola, 1995). The total number of grid cells is limited only

by the available GPU memory. For the elasto-dynamic equations, an explicit time integration method is employed, offering

second-order accuracy in both space and time. Detailed representations of the discrete equations are available in Alkhimenkov

et al. (2021). For the quasi-static equations, the discrete scheme achieves second-order accuracy in space. Advection is carried150

out using an upwind scheme, which is first-order. Consequently, due to the application of the pseudo-transient method, the

solution demonstrates first-order accuracy in time (Alkhimenkov and Podladchikov, 2025).

3.2 Accelerated pseudo transient method

The solution of the quasi-static equations is achieved using the matrix-free accelerated pseudo-transient (APT) method (Frankel,

1950; Räss et al., 2022; Alkhimenkov and Podladchikov, 2025). The core concept of this method involves solving dynamic155

equations with appropriate attenuation of the dynamic fields instead of directly solving inertialess equations.
::
To

:::::::
achieve

::::
this,

::
the

:::::::::
equations

:::
are

::::::
written

::
in

::::
their

::::::::::::::
non-dimensional

:::::::
residual

::::
form

::::
and

::::::
iterated

::::
over

::::::::::::
"pseudo-time"

::::
until

:::::::::::
convergence

::
is

:::::::
reached.

Once the dynamic fields attenuate to a specific precision (e.g., to 10−12), the solution of the quasi-static equations is attained.

In other words, the quasi-static problem serves as an attractor for the dynamic problem with damping. The APT method is

capable of handling numerical domains with more than a billion grid cells. Additionally, since all operations are local, this160

method can be naturally parallelized using GPUs, which is the approach taken in this study.

3.3 Implementation of plasticity

In the return mapping algorithm, the following steps are performed:

1. Calculate the components of the trial deviatoric stresses, τ trialij . 2. Compute the trial second invariant of the deviatoric

stresses, J trial
2 , using τ trialij . 3. Determine F trial using the equation:165

F trial =
√
J trial
2 − (sin(φ)p+cos(φ)c) . (18)
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When the material is in the plastic state, the trial deviatoric stress components, τ trialij , are re-scaled according to:

τnewij = τ trialij

(
1− F trial√

J trial
2

)
≡ τ trialij λ̃, (19)

where λ̃= 1− F trial√
Jtrial
2

is the scaling parameter. This re-scaling process is iterated over "pseudo-time" until the updated trial de-

viatoric stresses, τnewij , satisfy the plasticity criterion, ensuring F trial = 0 (thus, λ̃= 1 and no re-scaling occurs). A regularized170

version of this procedure modifies formula (19) to (assuming non-zero dilatation angle ψ):

λ̃= 1− F trial∆tGe

√
J2(Ge∆t+K∆tsinφsinψ+ ηvp)

. (20)

where ηvp is the viscosity of the damper (regularization parameter).
:::
The

:::::::::
numerical

:::::::
viscosity

::::
ηvp

:
is
:::::::
usually

::
set

::
to
::
a
::::
small

::::::
value.

:
If
::::
this

:::::
value

::
is

:::
too

:::::
high,

:::
the

:::::
shear

:::::
bands

:::::::
become

::::
very

:::::
thick;

::::::::::
conversely,

::
if

:::
the

:::::
value

::
is

:::
too

:::::
small,

:::
the

::::::::
thickness

:::
of

:::
the

:::::
shear

::::
band

::
is

:::
just

:::
one

:::::
pixel.

::::
The

::::::
correct

:::::
value

::
of

:::
the

:::::::
viscosity

:::::::
damper

:::
lies

:::::::
between

::::
these

::::::
limits.

::
In

:::
the

::::::::
following

:::::::
section,

:::
we

:::::::
examine175

:::
how

:::
the

::::::
choice

::
of

::::::::
viscosity

:::::::
damper

:::::
affects

:::
the

::::::::
solution. This implementation of plasticity through re-scaling deviatoric stress

components is equivalent to the standard procedure using the plastic multiplier rate, λ̇, which is defined as

λ̇=
F trial

∆tGe +K∆tsinφsinψ+ ηvp
. (21)

For a more detailed explanation of how plasticity with regularization is implemented in single-phase media, refer to Duretz

et al. (2018, 2019, 2021).180

3.4 Nondimensionalization

We select the following dimensionally independent

3.5
:::::

Model
::::::::::::
configuration,

:::::::::
boundary

::::::::::
conditions,

::::
and

::::::::::::::::::::
non-dimensionalization

:::
The

::::::::::::
computational

:::::::
domain

::
is

::
a

:::::
square

:::::
with

:::::::::
dimensions

::::::::::::::::::::
x,y ∈ [0,Lx]× [0,Ly]. :::

All
::::::::::
simulations

::
in

::::
this

:::::
study

:::
are

:::::::::
performed

::::
using

::
a
::::::
simple

:::::
initial

::::::
model

:::::::::::
configuration

:::
and

:::::::::::::::
non-dimensional

::::::::
equations.

:::
To

::::::
ensure

:
a
:::::::::
consistent

::::::::::::
dimensionless

::::::::::
framework,185

::
we

::::::
define

:::
the

::::::::
following

::::::::::::
characteristic scales: length l∗ = Lx, time t∗ = 1/a, and pressure p∗ =G0. Here, Lx represents the

size of the computational domain
::::::
domain

:::
size

:
in the x-dimension,

::::::::
-direction,

:::::::::::
Lx = Ly = 1 and a denotes the background strain

rate. Deformation occurs over times
::::::
evolves

::::
over

:::::::::
timescales inversely proportional to the initial background strain rate a0 at

t= 0. The ratio of cohesion c to the pressure scale p∗ is defined as r = c0
G0::::::
r = c0

G0
.

3.6 Model Configuration and Boundary conditions190

The computational domain is a square with dimensions x,y ∈ [0,Lx]× [0,Ly]. All simulations presented in this study have

been performed using a simple initial model configuration. The
:::
For

::
all

::::::::::::
computations,

:::
we

:::
set

:::
the coefficient of internal friction

µ= 0.6 in all computations. The pure
::
to

:::::::
µ= 0.6.

::::
Pure

:
shear boundary conditions are applied by prescribing velocities at all

7



boundaries
::
in

:::
the

::::::::::::
dimensionless

:::::::::
framework:

:

vx = ax (22)195

and

vy =−ay, (23)

which corresponds to the extension in x-dimension and compression in y- dimension. We impose loading increments applied

to the strain components. At all boundaries, free-slip boundary conditions are implemented. The following initial conditions

are implemented:200

p= 0.004, (24)

τxx = 0.012, (25)

τyy =−0.012. (26)205

We set anomalies to
::::::::
introduce

:
a
:::::::

circular
::::::::
inclusion

:::
in the non-dimensional cohesion c which has an upside-down Gaussian

distribution with the lowest value in
:::::::
pressure

::
p,

::::::::::
representing

::
a
::::::::
localized

:::::::
increase

::::
with

:::
the

:::::::
highest

:::::
value

::
at the center of the

model. The expression is the following:
::
in

:::
the

::::::::::::
dimensionless

:::::::::
framework

::
is

::
as

:::::::
follows:

cp
:
= 0.012+0.0005exp(−(x/0.2)2 − (y/0.2)2).

0.0100, if
√
x2 + y2 < 0.0667,

0.0040, otherwise.
(27)

4 Results210

4.1 Low resolution simulation

In our low-resolution simulations (Figure 2), we observe that the evolution of the integrated stress σINT
xx follows a monotonic

trend, with no discernible stress drops. This outcome aligns with the coarse spatial discretization ofN = 632 grid cells, wherein

finer stress and strain variations cannot be accurately captured. The
::::::::
integrated

:::::
stress

:::::
σINT
xx ::

is
:::::::::
computed

::::
over

:
a
:::::::

vertical
::::
line

:::::::
segment

::::
using

:::
the

:::::::::
following

:::::::::
expression:

:
215

σINT
xx =

1

Ly

Ly∫
0

(−p(x0,y)+ τxx(x0,y))dy,

:::::::::::::::::::::::::::::::::

(28)
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Figure 1. Heterogeneous initial setup of cohesion c
::::::
pressure

:
p. The arrows indicate the pure shear boundary condition which is applied at the

model boundaries.

:::::
where

:::
x0 :

is
::

a
:::::
fixed

:::::::::
coordinate

::
in

:::::::::::
x-dimension.

::::
The strain localization patterns observed in the pressure and strain rate fields

remain symmetric throughout the loading process, indicating a relatively uniform distribution of deformation. This result is

expected in low-resolution simulations, where the model’s ability to resolve localized strain structures, such as shear bands or

deformation zones, is limited by the grid resolution.220

Moreover, in low-resolution models, the regularization parameter ηvp = 6× 10−4 plays a critical role in smoothing out any

potential irregularities in the stress field. While this helps stabilize the model numerically, it also suppresses any potential

stress drops. The absence of stress drops in low-resolution simulations suggests that grid refinement is necessary to capture

more detailed stress and strain distributions, which could better reflect the underlying physical processes driving seismicity.

4.2 Sufficient resolution simulation225

In contrast, our sufficient resolution simulations with N = 10232 grid cells reveal several significant stress drops (Figure 3),

suggesting that the model resolution is now capable of accurately capturing the dynamic changes in stress during loading.

The regularization parameter is set to ηvp = 1× 10−5. The stress drops correspond to instances of rapid strain localization,

where non-symmetric shear bands develop and propagate throughout the model domain. These shear bands form due to the

onset of plastic yielding, which is triggered as local stresses surpass the material’s yield strength. This non-symmetric strain230

localization is a hallmark of plastic deformation and closely resembles the behavior observed in laboratory experiments on rock

deformation, where similar patterns of localized shear zones have been reported (Johnson et al., 2008; Scuderi et al., 2016).

Furthermore, the higher resolution provides clearer insights into the spatial structure of the stress and strain fields, reveal-

ing the complex, non-uniform distribution of deformation during earthquake nucleation
::::
stress

:::::
drop. Notably, the stress drops

9



Figure 2. Low resolution simulation. Panel (a) shows the integrated stress σINT
xx versus strain increments, panels (b-d) show pressure p for at

three different stages of the simulation, panels (e-g) show log10 ϵII and panels (h-j) show log10 ϵ̇II .
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become more pronounced and sharper as the temporal resolution is increased, underscoring the importance of both spatial and235

temporal refinement in accurately capturing the dynamics of stress accumulation and release.

4.2.1 Mohr’s circle analysis

Figure 4 illustrates the stress state of the material through a Mohr’s circle representation at two critical stages: the beginning of

loading (panel (a)) and after shear band localization (panel (b)). Mohr’s circle is a graphical tool used to represent the state of

stress at a point, plotting the normal and shear stresses acting on different planes through that point.240

In panel (a), the stress is evenly distributed, and the circle lies within the elastic regime, meaning the material is undergoing

purely elastic deformation. The material is in equilibrium, with no plastic yielding or localized strain. This initial Mohr’s circle

is small, reflecting the lower stress magnitudes early in the loading process. The friction coefficient is µ= 0.6
:::::::::
µtrue = 0.6, which

corresponds to φ̄≈ 31◦
:::::::::
φtrue ≈ 31◦. Note that tan(φ̄) = tan(31◦)≈ 0.6

:::::::::::::::::::::::
tan(φtrue) = tan(31◦)≈ 0.6.

Panel (b) shows Mohr’s circle after the onset of strain localization, coinciding with a significant stress drop in the simulation.245

As loading progresses and the material begins to yield, Mohr’s circle shifts, reflecting the decrease in pressure as the system

approaches the yield criterion. The expansion of Mohr’s circle towards the yield envelope indicates that the material has reached

its plastic limit, and shear bands begin to localize. We also highlight additional intersections along the yield envelope.

Of particular importance is the angle φA ≈ 27◦
::::::::::::
φapparent ≈ 27◦

:
(estimated numerically by analyzing the green triangle,

Figure 4b), which is the apparent angle related to the apparent coefficient of friction µa::::::
µapparent. According to Byerlee and250

Savage (1992), the value of µa is always lower than the real coefficient of internal friction, µ. There is a theoretical formula

that relates µa and µ (Byerlee and Savage, 1992):
::::::
µapparent::::

and
::::
µtrue :::

(see
::::::
Figure

:::
4):

µaapparent
::::

= sin(tan−1arctan
:::::

µtrue
::

)≡ sin(tan−1arctan
:::::

0.6)≈ 0.51 (29)

The theoretical value of µa = 0.51
::::::::::::
µapparent = 0.51 provides us withφA = tan−1(0.51)≈ 27◦

:::::::::::::::::::::::::
φapparent = arctan(0.51)≈ 27◦,

which is the same value estimated numerically by analyzing the green triangle (see paragraph above and Figure 4b). The re-255

duced apparent coefficient of friction is a consequence of plastic flow in the fault gouge
::::::
plastic

::::
zone, which allows slip to occur

more easily along the fault plane
:::::
shear

::::
band, despite the actual slip occurring along the Coulomb shear planes. Overall, panel

(b) emphasizes how localized plastic shear flow within the fault gouge governs fault slip, offering insights into the mechanics

of fault weakening.

4.3 Focusing on stress dropsand
:
,
::::::::::
quasi-static interseismic period

:::
and

::::::::
dynamic

:::::::::
modeling

::
of

:::
the

:::::::::
transition

:::::::
between260

::::::::::
quasi-static

::::::::::
interseismic

:::::::
periods

Figure 5 shows the numerical simulation with focus on stress drops and interseismic periods. For example, ux corresponding to

stress drop 1 is calculated as ux = ux(t2)−ux(t1), where t1 corresponds to the total strain just before the stress drop (
:::
first red

circle) and t1 corresponds to the total strain just after the stress drop (second red circle). The calculation of ux corresponding

to the interseismic period 1 is similar: ux = ux(t3)−ux(t2), where t2 corresponds to the total strain just after the stress drop265

1 (second red circle) and t3 corresponds to the total strain just before the stress drop 2 (third red circle).
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Figure 3. Sufficient resolution simulation. Panel (a) shows the integrated stress σINT
xx versus strain increments, panels (b-d) show pressure p

for at three different stages of the simulation, panels (e-g) show log10 ϵII and panels (h-j) show log10 ϵ̇II .
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Figure 4. Mohr’s circle
::::::
diagram. Panel (a)

::::
Stress

::::
state

:::::
before

::::
and

::::
after

::::
strain

::::::::::
localization.

::::
This

::::::
diagram

:
shows

:::
that

:
the initial Mohr’s

circle at
:::
true

::::::
friction

::::
angle

::::
φtrue::

is
:::::
always

::::::
greater

:::
than

::
or

:::::
equal

::
to the beginning of loading

::::::
apparent

::::::
friction

::::
angle

::::::
φapparent. Panel (b) shows

:::
The

::::::
relation

::::::
between

:
the Mohr’s circle after shear band localization with additional intersections

:::
true

:::
and

:::::::
apparent

::::::
friction

:::::::::
coefficients

::
is

::::::::::::::::::::
µapparent = sin(arctanµtrue).

13



Figure 5. Stress drops and interseismic periods: numerical simulation of compressible elasto-plastic equations with the resolution of N =

10232 grid cells. Panel (a) shows the integrated stress σxx versus strain increments. Panels (b,d,f,h) show displacement increments ∆ux

corresponding to stress drops and interseismic periods. Panels (c,e,g,i) show pressure increments ∆ux corresponding to stress drops and

interseismic periods.

:::::
Stress

::::
drop

:::::::
manifest

:::
the

:::::
jump

:::::::
between

:::
the

::::
two

:::::::::
quasi-static

::::::::
solutions

::::
and

::::::
perhaps

:::::::
indicate

:::
the

:::::::
absence

::
of

::
a
:::::
static

::::::::
transition

:::::::
between

:::
the

:::::
stress

::::
state

::
at

:::
the

:::
end

::::::::::
interseismic

::::::
period

:::
and

:::::
onset

::
of

:
a
::::
new

::::::::::
interseismic

::::::
period.

:

::::
This

::::::::
transition

:::
can

::
be

::::::::
modeled

::::
with

::::::::
simplified

:::::
linear

::::::::::::::
elasto-dynamics

::
by

::::::
setting

:::
the

::::::::
difference

::
in

:::::
strain

::::
just

:::::
before

::::
and

::::
after

:
a
:::::
stress

::::
drop

::
as

:::
an

:::::
initial

::::::::
condition

:::
for

::::
wave

:::::::::::
propagation.270
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4.4 Temporal convergence tests
::::::
Trends

4.4.1
::::::
Trends

::::
with

:::::::::
increasing

:::::::::
temporal

:::::::::
resolution

First, we conduct a temporal convergence test (Figure 6). Using a spatial resolution of N = 5112 grid cells, simulations are

performed with strain increments ∆ϵxx = 1× 10−5, ∆ϵxx = 4× 10−5, ∆ϵxx = 10× 10−5. It is observed that the evolution

of the integrated stress σINT
xx with strain increments is converging to a specific pattern as the number of increment increasing.275

Simulations with finer temporal discretization result in slightly sharper drops in σINT
xx .

4.5 Spatial convergence tests

4.4.1
::::::
Trends

::::
with

:::::::::
increasing

:::::::
spatial

:::::::::
resolution

To investigate the dependence of the integrated stress σxx ::::
σINT
xx versus spatial resolution, we conduct experiment

::::::::::
experiments

with spatial discretizations of N = 632, N = 10232, and N = 20472 (Figure 7).
::::
Note

:::
that

:::
we

:::::::
re-scale

:::
the

::::::::
viscosity

:::::::
damper280

:::::::::::
proportionally

::
to
:::
the

:::::::::
resolution

::
in

::::
each

::::::::
simulation

::
to

::::::::
maintain

:::
the

:::::::
physical

:::::::
thickness

::
of

:::
the

:::::
shear

:::::
bands

::::::::::::::::::::::
Alkhimenkov et al. (2024b)

:
. It can be seen that the low resolution simulation N = 632 does not produce any stress drops. However, simulations with suf-

ficient resolution produce stress drops and their amplitudes are similar.

4.5 Effect of the regularization

4.4.1
:::::
Effect

::
of

:::
the

:::::::::::::
regularization285

To illustrate the dependence of stress drop amplitude versus regularization, we conduct one more series of computations (Figure

8). The spatial discretizations is the same in all simulations N = 5112 but the regularization viscosity ηvp is different. Note

the lower regularization leads to the more pronounced stress drops as can be seen in Figure 8. Too high regularization may

completely miss the stress drop (Figure 8).

Figure 9 shows the simulation results for different spatial discretizations of N = 632, N = 2552, and N = 10232 grid cells.290

Due to high regularization, the results are
:::::
nearly

:
identical and the thickness of the shear bands is the same in all panels.

However, due to over-regularization, the stress drop is not visible.
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Figure 6. Temporal convergence tests
:::::
Trends

::::
with

:::::::
increasing

:::::::
temporal

::::::::
resolution. Panel (a) shows the integrated stress σINT

xx versus strain

increments. Panels (b,c,d,e) show displacement increments ∆ux corresponding to stress drops and interseismic periods that correspond to

∆ϵxx = 1× 10−5. Panels (f,g,h,i) show pressure increments ∆ux corresponding to stress drops and interseismic periods that correspond to

∆ϵxx = 4× 10−5. Panels (j,k,l,m) show pressure increments ∆ux corresponding to stress drops and interseismic periods that correspond to

∆ϵxx = 10× 10−5
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Figure 7. Spatial convergence tests
:::::
Trends

::::
with

::::::::
increasing

:::::
spatial

::::::::
resolution. Panel (a) shows the integrated stress σINT

xx versus strain in-

crements. Panels (b,c,d,e) show displacement increments ∆ux corresponding to stress drops and interseismic periods that correspond to

N = 632 grid cells. Panels (f,g,h,i) show pressure increments ∆ux corresponding to stress drops and interseismic periods that correspond to

N = 10232 grid cells. Panels (j,k,l,m) show pressure increments ∆ux corresponding to stress drops and interseismic periods that correspond

to N = 20472 grid cells.
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Figure 8. Effect of the regularization. Panel (a) shows the integrated stress σINT
xx versus strain increments. Panels (b,c,d,e) show displacement

increments ∆ux corresponding to stress drops and interseismic periods that correspond to ηvp = 0. Panels (f,g,h,i) show pressure increments

∆ux corresponding to stress drops and interseismic periods that correspond to ηvp = 1× 10−5. Panels (j,k,l,m) show pressure increments

∆ux corresponding to stress drops and interseismic periods that correspond to ηvp = 10× 10−5. The resolution is N = 5112 grid cells in

all simulations).
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Figure 9. Effect of the regularization: spatial convergence loading increments. Panel (a) shows the integrated stress σINT
xx versus time, panels

(b-d) show log10 ϵII for a set of different spatial discretizations: N = 632, N = 2552, and N = 10232 grid cells.
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Figure 10. Panel (a) shows log10 ϵII . Panels (b) corresponds to zoom-in focusing on a single shear band thickness.

4.5 High-resolution simulation

The high-resolution simulation is performed with a grid size of N = 40952, allowing for the capture of finer details in the

stress, strain, and pressure fields. In these simulations, the component log10 ϵII is used to represent the second invariant of295

the deviatoric strain rate tensor, which highlights zones of intense strain localization, typically corresponding to regions where

shear bands form.

As shown in Figure 10, the regularization applied is sufficient to resolve pressure drops and observe localized strain structures

across multiple grid cells. The use of such a fine grid provides enhanced spatial resolution, allowing us to capture more realistic

patterns of strain localization that resemble those seen in natural seismic zones, where shear bands and strain concentrations300

often precede fault rupture or failure events.

Additionally, Figure 11 presents a zoomed-in view of these strain localization features as a 3D plot. In this plot, the vertical

axis (z-dimension) corresponds to the amplitude of the pressure field p (Figure 11a) and the log10 ϵII (Figure 11b). The

localized shear band thickness is clearly visible, indicating zones of intense deformation and stress concentration. Such fine-

scale detail is critical for accurately modeling the mechanics of earthquake nucleation
::::::::
triggering, where small variations in305

stress and strain fields can have significant impacts on rupture initiation and propagation.

The high-resolution results emphasize the importance of spatial resolution in capturing the complex interplay between elastic

and plastic deformation, stress accumulation, and release mechanisms, which are crucial for understanding the nucleation of

seismic events.
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Figure 11. Zoom-in result for the spatial discretizations of N = 40952 as a 3D plot where z-dimension corresponds to the amplitude of the

pressure field, p(panel a) and log10 ϵII (panel b).
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4.6 Dilatancy310

Dilatancy refers to the volumetric expansion that occurs in a material when it undergoes shear deformation, particularly under

conditions of plastic flow. This phenomenon is especially important in the study of earthquake mechanics, as it affects the

porosity and fluid flow within fault zones, and hence, influences the strength and failure behavior of the fault.

In Figure 12, numerical simulations are performed for different values of the dilatation angle ψ, representing different

degrees of dilatancy in the material. The results illustrate the effect of the dilatation angle on strain localization and fault315

weakening. For a small dilatation angle (ψ = 5◦), the material exhibits relatively limited volumetric expansion during shear

deformation, leading to more localized strain and narrower shear bands. This corresponds to less energy dissipation and a more

brittle-like failure response.

As the dilatation angle increases to a moderate value (ψ = 15◦), the material shows more volumetric expansion, which

slightly widens the shear bands and leads to a more diffuse strain localization pattern. This represents a more ductile response,320

where plastic deformation is distributed over a broader zone.

In the case of ψ = 30◦, corresponding to the associated plasticity model, the volumetric expansion is maximized, and the

shear bands become much broader. This behavior reflects greater energy dissipation, as the material undergoes significant

volumetric changes during shear deformation. The associated plasticity model is typically used for materials that exhibit a

strong dilatant response, such as certain types of granular soils or fractured rocks.325

These results highlight the sensitivity of fault behavior to the dilatation angle, emphasizing the importance of including

dilatancy effects in models of fault mechanics and earthquake nucleation. In real fault zones, dilatancy can influence pore fluid

pressure and, consequently, the effective normal stress, which plays a crucial role in controlling fault strength and stability.

For comparison, Figure 13 shows numerical results for ψ = 0 and φ= 0
::::::
ψ = 0◦

::::
and

::::::
φ= 0◦, which correspond to the plas-

ticity behavior typically observed in metals. In this case, the material does not exhibit any volumetric expansion during shear330

deformation, leading to purely deviatoric plastic flow. The absence of dilatancy results in narrow and highly localized shear

bands, as expected in materials that do not undergo volumetric changes. This behavior is characteristic of metals under plastic

deformation, where energy dissipation is minimized, and the material response remains predominantly brittle. These results

underscore the contrasting effects of dilatancy on shear band formation and highlight the unique deformation mechanisms in

metallic versus dilatant materials.335

4.7 Stress drop sequence

Figure 14 presents the integrated stress σINT
xx versus time (Figure 14a) for different temporal resolutions. Figure 14b shows the

zoomed in plot where sharp stress drops can be visible. The stress drops exhibit varying magnitudes and irregular spacing. The

simulation with fine temporal resolution and the lowest regularization corresponds to the sharpest stress drops (blue curve).

The simulations with low temporal resolution does not present a proper stress drops.340

During the loading process, numerous stress drops are observed (Figure 14). These stress drops correspond to sudden shifts

in the system’s stress state, where the strain localization reaches a critical point, and further deformation in the prescribed
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Figure 12. Numerical results for different angles ψ, where ψ = 5
::::::
ψ = 5◦ corresponds to the small dilatation angle, ψ = 5

::::::
ψ = 15◦ corre-

sponds to the moderate dilatation angle, and ψ = 30
::::::
ψ = 30◦

:
corresponds to the associated plasticity.
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Figure 13. Numerical results for ψ = 0 and φ= 0, corresponding to the plasticity behavior of metals.

direction becomes untenable. As a result, the system undergoes a rapid redistribution of stress, manifested as a drop in the

integrated stress σINT
xx .

These stress drops are indicative of dynamic rupture events, akin to the rapid stress release observed during seismic slip in345

natural earthquakes.
:::::::
However,

:::
we

:::::
admit

::::
that

::
in

::::
this

:::
first

::::::
study,

:::
we

::::
only

:::::::
indicate

:::
this

::::::::
similarity

::::
and

::
do

::::
not

::::::
provide

::
a
:::::::
detailed

::::::
analysis

:::
of

:::
slip

:::
rate

::::
and

::::::
rupture

::::::
speeds

::
in

:::
the

::::::
present

::::::
model. The sequence of stress drops observed in the simulation resembles

the cyclic behavior of fault systems, where interseismic periods of stress accumulation are interrupted by seismic events. By

increasing the temporal resolution, we capture sharper, more distinct stress drops, highlighting the need for high-resolution

models to accurately represent seismic processes.350

4.7.1 Interseismic period and stress drops

Figure 15 illustrates the displacement increments ∆ux during the interseismic period (Figures 15a-b) and the stress drops

(Figures 15c-d). For instance, Figure 15a shows the displacement increment ∆ux = ux(3)−ux(2), where ux(2) and ux(3)

::::::::::::::::::::
∆ux = ux(t3)−ux(t2), :::::

where
::::::
ux(t2)::::

and
::::::
ux(t3):represent the displacement fields at the beginning and end of the inter-

seismic period, respectively (the period between two high-amplitude stress drops. Similarly, the displacement increments355

∆ux = ux(2)−ux(1) :::::::::::::::::::
∆ux = ux(t2)−ux(t1) during major stress drops are shown in Figures 15c-d. It is evident that dis-

placement accumulates during the interseismic period (without major stress drops) and also intensifies during major stress

drops.
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Figure 14. Numerical simulation of elasto-plastic equations with the resolution of 10232 grid cells for 2500 loading increments in time.

Panel (a) shows the integrated stress σINT
xx versus loading increments. Panel (b) shows the integrated stress σINT

xx versus loading increments

for a portion of the full model. Panel (b) shows the final strain localization pattern for all three simulations.
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Our simulation results also demonstrate the behavior of the material
::::::::
material’s

:::::::
behavior

:
during interseismic periods, where

displacement gradually accumulates without significant stress drops. As shown in Figure 15, displacement increments ∆ux360

during interseismic periods increase progressively as loading continues, leading up to the next stress drop event. This behavior

mirrors the slow, aseismic slip observed between seismic events in fault zones. The gradual buildup of displacement during

interseismic periods corresponds to the elastic
::::::
reflects

:::
the

:
loading of the fault system, while the rapid displacement during

stress drops corresponds to seismic slip.
:::::::
However,

::::
our

:::::
model

::::
does

:::
not

::::::::
explicitly

::::::::
establish

:
a
::::::

causal
::::
link

:::::::
between

:::::::
aseismic

::::
slip

:::::::::::
accumulation

:::
and

::::::::::
subsequent

::::
stress

::::::
drops,

:::::
which

:::::::
requires

::::::
further

:::::::::::
investigation.

:
365

These findings suggest that the interaction between elastic and plastic deformation plays a critical role in controlling the

timing and magnitude of seismic events. The gradual accumulation of displacement during the interseismic period reflects the

fault’s capacity to store elastic strain energy, which is then rapidly released during seismic events, leading to a stress drop.

4.7.2 Histogram of stress drop amplitudes

The histogram of stress drop amplitudes shown in Figure 16 provides a quantitative representation of the frequency and mag-370

nitude of stress drops occurring during the simulations. The distribution of stress drop amplitudes is notably non-Gaussian,

characterized by a sharp peak followed by a gradual decay
:::::
broad

::::
peak

::::
with

:::::
long

::::
tails

::
on

:::::
both

:::::
sides, indicating that while

small stress drops are more common, larger stress drops still occur with significant probability. This distribution resembles

what is often observed in turbulent systems
::::::::::::
turbulence-like

::::::::
spectrum, where a few large events (bursts) coexist with numerous

smaller fluctuations, a phenomenon referred to as “solid turbulence. ”
:
.
:::
For

::::
solid

::::::::
systems,

:::
this

:::::::::::
phenomenon

:::
was

::::
first

::::::::
analyzed375

::
by

::::::::::::::::::
Poliakov et al. (1994),

::::
who

::::::::
explored

:::
the

:::::::::::
multi-fractal

::::::::::::
characteristics

::
of

:::::
shear

:::::
bands

::
in
::::::::::::

elasto-plastic
::::::
media,

:::
that

::::::
makes

::
it

::::::
similar

::
to

:::
the

::::
fluid

:::::::::
turbulence.

:

Figure 16b presents three histograms of stress drop amplitudes corresponding to very small strain increments, providing

high-resolution data. The overall pattern across the histograms is similar, indicating the convergence of our results. In Fig-

ure 16c, two histograms are shown: one for a high-resolution loading increment (∆ϵxx = 1×10−5) and the other for the lowest380

resolution used in this study (∆ϵxx = 100× 10−5). The difference between these two is substantial, demonstrating that the

low-resolution case fails to capture the full spectrum of stress drop amplitudes. Lastly, Figure 16d compares four histograms at

high, intermediate, and low resolutions for further comparison.

In the context of our elasto-plastic model, the non-Gaussian nature of the histogram suggests a complex interaction between

localized plastic yielding and the broader elastic response of the material. Just as in fluid turbulence, where energy cascades385

from large to small scales, in solid turbulence, stress is redistributed across different spatial and temporal scales, leading to

a range of stress drop magnitudes. This complex behavior highlights the inherent intermittency and unpredictability in the

system’s response, where stress accumulates gradually but is released in sudden, sporadic bursts during stress drops.

Understanding the solid turbulence-like behavior in these systems is crucial for developing accurate models of seismicity,

where stress drops correspond to earthquake events. The implications of this behavior are significant for earthquake hazard390

assessment, as it suggests that a wide range of earthquake magnitudes should be expected, with smaller events being far more

frequent than larger ones. This insight aligns with the Gutenberg-Richter
:::::::
suggests

:
a
:::::::::::
resemblance

::
to

:::
the

:::::::::::::::::::
Gutenberg-Richter-like
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Figure 15. Interseismic period and stress drops: numerical simulation of compressible visco-elasto-plastic equations with the resolution of

N = 10232 grid cells for 2500 loading increments in time. Panels (a-b) show displacement increments ∆ux corresponding to interseismic

periods. Panels (c-d) show displacement increments ∆ux corresponding to major stress drops.
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law, which describes the frequency-magnitude distribution of earthquakesbut ;
::::::::

however,
::
a
::::
more

:::::::
detailed

:::::::
analysis

::
is
::::::::

required

::
to

:::::::
establish

::
a
:::::
direct

::::::::::
connection,

::::::::::
particularly

:
from a plastic deformation perspective. Overall, the histogram of stress drop

amplitudes reinforces the idea that the simplest elasto-plastic models, despite their minimalistic assumptions, are capable of395

capturing complex, emergent behavior that is often associated with more sophisticated models of seismicity.

4.7.3 Earthquake nucleation
:::::::::
triggering due to a single stress drop

Figure 17 displays the integrated stress σINT
xx versus loading increments and the wave fields (velocity vx and pressure p) at the

initial stage (Figures 17a-b) and after 250 physical time steps (Figures 17c-d). The initial wavefield pattern is complex mostly

corresponds to nucleation is shear (i.e., as a double-couple mechanism) and in a the volumetric component (pressure). The400

velocity field exhibits high amplitudes (Figures 17b and 17d), indicating that the shear component has high amplitudes.
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Figure 16. Histogram of of stress drop amplitudes for different resolutions. Panel (a) shows the integrated stress σINT
xx versus loading incre-

ments. Panel (b) shows the histogram of stress drop amplitudes for three different resolutions. Panel (c) shows the histogram of stress drop

amplitudes for two different resolutions. Panel (d) shows the histogram of stress drop amplitudes for four different resolutions.

29



Figure 17. Earthquake nucleation due to a single stress drop. Panel (a-b) show the wave fields (velocity vx and pressure p) at the initial

stage. Panels (c-d) show the wave fields (velocity vx and pressure p) after 250 time steps. Panels (g-h) show the wave fields (velocity vx and

pressure p) after 500 time steps. Panels (c-d) show the wave fields (velocity vx and pressure p) after 750 time steps.

30



5 Discussion

5.1 The nature of stress drops

As can be seen in Figure 14, during the loading, many stress drops occur.
::::
From

::
a
:::::::::
theoretical

::::::::::
perspective,

:::
the

:::
first

:::::
stress

:::::
drop

::::
after

:::
the

::::
onset

::
of

:::::
strain

::::::::::
localization

:::
was

::::::::
predicted

:::
and

::::::::
analyzed

:::
by,

::::
e.g.,

:::::::::::::
Vermeer (1990)

:::
and

::::::::::::::::
Le Pourhiet (2013).

::::
The

::::::::
following405

::::
stress

:::::
drops

:::::
occur

:::
due

::
to
::::::::
switches

:::::::
between

:::::::::
quasi-static

:::::::
loading

::::::::
intervals. These stress drops correspond to transitions where the

system moves from one quasi-static equilibrium to another due to the inability of strain localization to continue growing in the

prescribed direction. Once the local stresses exceed the yield criteria, plastic deformation is activated, causing a redistribution

of stresses and, consequently, a rapid drop in stress. This process mimics the mechanics of fault rupture, where the accumulation

of strain energy leads to a sudden release in the form of an earthquake.410

The observed stress drops are consistent with those expected in elasto-plastic materials, where plastic yielding results in

rapid shifts in the stress state. In our simulations, these stress drops are sharp and distinct, especially at higher temporal and

spatial resolutions. This behavior reflects the real-world phenomenon of earthquake nucleation
::::::::
triggering, where a sudden stress

drop corresponds to a seismic event
::::::::
nucleation.

In addition to stress drop magnitudes, the spatial patterns of strain localization play a critical role in determining the nature415

of stress release. In particular, localized shear bands act as conduits for stress concentration, dictating how and where stress

is released. The interplay between elastic loading during the interseismic period and plastic deformation during stress drops

provides a simplified but effective model for capturing earthquake cycles.

5.2 Role of regularization in elasto-plastic simulations

Regularization is crucial in numerical simulations of elasto-plastic materials, particularly in models involving strain localiza-420

tion. Without regularization, simulations can exhibit unrealistic results, such as the formation of infinitely narrow shear bands.

In our study, the regularization parameter ηvp was carefully chosen to prevent such artifacts while preserving the physical

realism of the stress and strain fields.

The absence of regularization can lead to numerically unstable results, where stress drops occur too frequently or are too

abrupt, producing non-physical behaviors in the model. On the other hand, excessive regularization can overly smooth out425

stress and strain fields, suppressing the formation of localized shear bands and reducing the occurrence of stress drops. The

balance between these extremes is key to accurately modeling the dynamic behavior of elasto-plastic systems.

Our results demonstrate that appropriate regularization is necessary to capture both the broad and fine-scale features of

earthquake nucleation
::::::::
triggering, such as the spatial distribution of strain localization and the timing and magnitude of stress

drops. The findings align with prior studies that show the importance of regularization in stabilizing numerical simulations of430

plastic deformation while maintaining physical accuracy (Popov and Sobolev, 2008; Duretz et al., 2018).
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5.3 3D simulations with zero regularization

Alkhimenkov et al. (2023) performed 3D simulations of a single-phase elasto-plastic model with zero regularization. These

simulations provide valuable insights into how strain localization and stress drops manifest in fully 3D domains. The convergence

tests performed in 3D, both in temporal and spatial resolutions, show good agreement
::::::
similar

:::::
trends with the results of the 2D435

simulations presented in this study.

The extension to 3D is important because it allows for a more realistic representation of fault systems, which are inherently

three-dimensional in nature. In 3D, stress and strain fields exhibit more complex behaviors, such as the formation of multiple

interacting shear bands or the influence of out-of-plane stresses on fault slip. The fact that the 3D simulations without reg-

ularization produced results consistent with our 2D study underscores the robustness of the elasto-plastic model used in this440

research.

5.4 Implications for earthquake nucleation
:::::::::
triggering and fault mechanics

The results from both 2D and 3D simulations provide important implications for our understanding of earthquake nucleation

::::::::
triggering

:
and fault mechanics. The stress drops observed in our models are analogous to the rapid release of accumulated

stress during seismic events, suggesting that elasto-plastic models can effectively capture the mechanics of rupture initiation.445

The periodic nature of stress drops, interspersed with slower periods of strain accumulation, closely mirrors the earthquake

::::::
mirrors

:::
the

:::::::::::::
earthquake-like cycle seen in nature.

These findings also highlight the role of strain localization in controlling fault weakening and slip behavior. The formation

of shear bands , which localize deformation, is crucial for dictating the location and extent of fault slip during seismic events.

This phenomenon is particularly important for understanding the evolution of fault zones, where
::
As

:::
the

:::::::::
simulation

::::::::::
progresses,450

:::::::
multiple

::::
shear

::::::
bands

:::::::
develop,

::::
and

:::::
stress

:::::
drops

:::
can

:::::
occur

:::::::::
repeatedly

::
on

:::
the

:::::
same

:::::
shear

:::::
band,

:::::
rather

::::
than

::::::
always

::::::::
initiating

:::
on

:::
new

:::::::::
segments.

::::
This

:::::::
behavior

::::::
closely

:::::::::
resembles

::::::
natural

::::::
faulting

:::::::::
processes,

::::::
where

::::
strain

::::::::::
localization

:::::
leads

::
to repeated cycles of

strain localization and stress drop shape the mechanical properties of the fault over time
::::
stress

:::::::::::
accumulation

::::
and

::::::
release

:::::
along

::::::::::
pre-existing

::::
fault

::::::::
structures.

5.5 Comparison to rate-and-state friction models455

While our study focuses on elasto-plasticity as the primary mechanism driving stress drops and strain localization, it is im-

portant to consider how these results compare to traditional rate-and-state friction models. Rate-and-state friction models have

been successful in explaining many aspects of earthquake nucleation and fault slip behavior, particularly through their ability

to capture velocity weakening and strengthening behaviors.

In contrast, the elasto-plastic model used in this study does not rely on velocity-dependent friction laws but instead captures460

stress drops through plastic yielding. This distinction is important because it provides an alternative explanation for how faults

might weaken and slip during seismic events. The fact that our elasto-plastic model produces stress drops without needing
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to invoke velocity weakening suggests that plastic deformation alone may be sufficient to explain certain aspects of fault slip

behavior.

5.6 Apparent coefficient of friction465

A mature fault is one that has experienced significant slip over geological time, leading to the development of fault gouge—a

fine-grained, granular material that accumulates within the fault zone. This fault gouge undergoes elasto-plastic deformation,

exhibiting plastic flow when stresses exceed the yield limit. In elasto-plastic models of fault zones, slip is accommodated by a

combination of elastic deformation and plastic shear flow, with the latter dominating once the material reaches its plastic limit.

470

The apparent coefficient of friction, µa, is consistently lower than the real internal friction, µ, due to the complex plastic flow

within the fault gouge. As described by Byerlee and Savage (1992), µa is related to the internal friction angle φ̄ by µa = sin(φ),

while the real coefficient of friction is given by µ= tan(φ̄).

In the case of the fault gouge material, as illustrated by the Mohr’s circle in Figure 4b, the apparent angle φA ≈ 27◦ results

in µa ≈ 0.51, significantly lower than the real friction value of µ= 0.6. This reduction in the apparent coefficient of friction is475

a direct consequence of the plastic shear flow within the fault gouge, which reduces the shear stress required for slip. The lower

µa facilitates fault slip at reduced shear stresses, thus influencing fault stability and the potential for earthquake initiation. This

behavior emphasizes the critical role of plastic deformation in the mechanics of fault weakening during seismic events.

5.6 Limitations and future work

While our study provides valuable insights into the mechanics of stress drops and strain localization, it is important to acknowl-480

edge the limitations of the current model. First, the model assumes homogeneous material properties, which may oversimplify

the complexity of real fault zones. In reality, fault zones are highly heterogeneous, with variations in material properties that

can significantly influence fault behavior.

Additionally, the current model does not account for fluid-rock interactions, which are known to play a significant role

in fault weakening and earthquake nucleation
::::::::
triggering, particularly in fluid-saturated fault zones. Future work could extend485

this model to include poroelastic effects or fluid migration, which would provide a more complete picture of the processes

governing fault slip.

Finally, while our results are based on 2D simulations, future studies should further explore 3D simulations, which are

more representative of real fault systems. Extending the present model to include 3D geometries, along with higher-resolution

simulations, would allow for a more detailed investigation of fault mechanics and earthquake nucleation
::::::::
triggering.490
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6 Conclusions

In this study, we investigated stress drops and earthquake nucleation
::::::::
triggering

:
in idealized elasto-plastic media through

two-dimensional numerical simulations.
:::
The

::::
first

:::::
stress

::::
drop

::::::::
develops

::::
after

:::
the

:::::
onset

:::
of

:::::
strain

::::::::::
localization

:::
due

:::
to

::::::::
structural

:::::::
softening

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Vermeer, 1990; Le Pourhiet, 2013; Sabet and de Borst, 2019).

::::
The

:::::::::
following

:::::
stress

::::::
drops

:::::
occur

::::
due

::
to

::::::::
switches

:::::::
between

:::::::::
quasi-static

:::::::
loading

:::::::
intervals.

:::::
These

:::::
stress

:::::
drops

:::::::::
correspond

::
to

:::::::::
transitions

:::::
where

:::
the

::::::
system

::::::
moves

::::
from

:::
one

::::::::::
quasi-static495

:::::::::
equilibrium

::
to
:::::::
another

:::
due

::
to
:::
the

::::::::
inability

::
of

:::::
strain

:::::::::
localization

:::
to

:::::::
continue

:::::::
growing

::
in

:::
the

:::::::::
prescribed

::::::::
direction.

::::
The

::::::::
structural

:::::::
softening

:::::::::::
phenomenon

::::::::
received

::::
little

::::::::
attention

::::
until

:::::::
recently

:::::::::::::::::::::::
(Sabet and de Borst, 2019)

::
and

:::::::
studied

::::
here

::
as

::
a
:::::::::
mechanism

:::
of

::::::
sudden

:::::
stress

:::::
drops

:::
and

:::::::
potential

:::::::::
triggering

::
of

:::::::::::
earthquakes.

Our results underscore the critical role of both temporal and spatial resolutions in capturing the evolution of stress and

strain fields during seismic cycles. The convergence tests demonstrated that finer temporal discretization sharpens the observed500

stress drops and leads to lower minimum stress values, underscoring the importance of accurately resolving dynamic stress

changes. Similarly, spatial resolution tests showed that while broad patterns of accumulated strain were consistent across

different resolutions, higher-resolution grids provided significantly more detail, capturing intricate strain localization and stress

redistribution mechanisms that are essential for modeling realistic earthquake behavior.

The analysis of interseismic periods and stress drops revealed that displacement gradually accumulates during the interseis-505

mic phase, followed by intensified strain during major stress drops. This behavior mirrors the natural earthquake cycle, where

periods of slow, aseismic slip are followed by rapid, seismic slip events that release accumulated strain energy. Furthermore,

our detailed investigation of earthquake nucleation due to a single stress drop revealed complex initial wave field patterns, with

high-amplitude shear components dominating the response, providing insights into the mechanics of rupture initiation.

One of the key contributions of this study is the demonstration that simple elasto-plastic models
::::
with

:::::::
constant

::
in
:::::

time510

:::
and

:::::
space

:::::::
friction

:::::::::
coefficient, when coupled with high-resolution discretizations, are capable of reproducing key features

of earthquake nucleation
::::::::
triggering and stress drop behavior, without relying on more complex frictional laws or velocity-

dependent weakening mechanisms. This indicates that plastic yielding alone can account for some of the fundamental processes

governing fault slip and rupture.

Our findings have several important implications for seismic hazard assessment and the development of predictive models.515

First, they emphasize the necessity of incorporating high-resolution spatial and temporal discretizations into numerical models

to accurately capture the localized and transient phenomena that govern earthquake nucleation
::::::::
triggering. Second, the results

highlight the
::::::
confirm

::::::::
previous

::::::
studies

::::::::::
highlighting

:::
the

:::::::::
important role of plastic deformation in fault weakening and rupture,

suggesting that plasticity should be considered alongside traditional frictional models in future earthquake simulations.

Finally, while our study has focused on two-dimensional idealized elasto-plastic media, the insights gained here provide a520

solid foundation for extending the analysis to more complex, three-dimensional fault systems and heterogeneous materials.

Future research could explore the interactions between plasticity, material heterogeneity, and fluid migration, providing a more

comprehensive understanding of the mechanics underlying seismic events. By advancing these models, we move closer to

developing more accurate, physics-based tools for predicting earthquake behavior and mitigating seismic risk.
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