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Abstract. Large-scale hydrologic models are increasingly being developed for operational use in the forecasting and 10 

planning of water resources. However, the predictive strength of such models depends on how well they resolve various 

functions of catchment hydrology, which are influenced by gradients in climate, topography, soils, and land use. Most 

assessment of hydrologic model uncertainty has been limited to traditional statistical methods. Here, we present a proof-of-

concept approach that uses interpretable machine learning techniques to provide post-hoc assessment of model sensitivity 

and process deficiency in hydrologic models. We train a random forest model to predict the Kling-Gupta Efficiency (KGE) 15 

of National Water Model (NWM) and National Hydrologic Model (NHM) streamflow predictions for 4,383 streamgages in 

the conterminous United States. Thereafter, we explain the local and global controls that 48 catchment attributes exert on 

KGE prediction using interpretable Shapley values. Overall, we find that soil water content is the most impactful feature 

controlling successful model performance, suggesting that soil water storage is difficult for hydrologic models to resolve, 

particularly for arid locations. We identify non-linear thresholds beyond which predictive performance decreases for NWM 20 

and NHM. For example, soil water content less than 210 mm, precipitation less than 900 mm/yr, road density greater than 5 

km/km2, and lake area percent greater than 10% contributed to lower KGE values. These results suggest that improvements 

in how these influential processes are represented could result in the largest increases in NWM and NHM predictive 

performance. This study demonstrates the utility of interrogating process-based models using data-driven techniques, which 

has broad applicability and potential for improving the next generation of large-scale hydrologic models. 25 

1 Introduction 

Large-scale hydrologic models are important tools for understanding and forecasting the fluxes of water across the 

earth’s surface to manage floods, droughts, and other hydrologic extremes (Brunner et al., 2021; Tijerina et al., 

2021)(Brunner et al., 2021; Tijerina et al., 2021). Most often, these models convert meteorological inputs to streamflow 

predictions by parameterizing and calibrating internal hydrological processes. Accurate simulation of internal processes is a 30 
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grand challenge of hydrology (Blöschl et al., 2019)(Blöschl et al., 2019) because of the difficulty of resolving equifinality 

(Vrugt and Beven, 2018), scaling relationships (Savenije, 2018), epistemic uncertainties in hydrologic data (Beven, 2024), 

and spatial heterogeneity in watershed attributes (Santos et al., 2025)(Santos et al., 2025). The accurate determination of 

sensitive model parameters and drivers is crucial for improving process representation in hydrologic models and, ultimately, 

the management of water resources (Pandit et al., 2025; Reinecke et al., 2025).  35 

The National Water Model (NWM) and the National Hydrologic Model (NWM) are two process-oriented, 

continental-scale hydrologic models designed for use in operational decision-making (Towler et al., 2023). The NWM 

framework applies the WRF-Hydro formulation, which includes representations for infiltration, evaporation, transpiration, 

overland flow, shallow subsurface flow, baseflow, channel routing, and passive reservoir routing, but not active reservoir 

management (Cosgrove et al., 2024). The NHM framework applies the Precipitation-Runoff Modeling System formulation, 40 

which includes representation of evaporation, transpiration, runoff, infiltration, interflow, groundwater flow, and channel 

routing, but not reservoir operations, water withdrawals, or stream releases (Regan et al., 2019). Perhaps the major difference 

in the two modeling approaches is that the NWM has a focus on high-resolution (hourly) flood forecasting whereas the 

NHM is designed to assess general water availability at timescales from days to centuries (Towler et al., 2023). The NWM 

and NHM have variable success for streamflow prediction (Tijerina et al., 2021), with the strength of prediction varying as a 45 

function of catchment-scale climate, land use, and physiography. As the NWM and NHM have different constructions, their 

sensitivity to catchment drivers is likely to differ. 

The National Water Model (NWM) and the National Hydrologic Model (NHM) are two process-oriented, 

continental-scale hydrologic models used in operational decision-making (Towler et al., 2023). The NWM framework 

applies the Weather Research and Forecasting Hydrologic model (WRF-Hydro) formulation, which simulates infiltration, 50 

evaporation, transpiration, overland flow, shallow subsurface flow, baseflow, channel routing, and passive reservoir routing, 

but not active reservoir management (Cosgrove et al., 2024). The NHM framework applies the Precipitation-Runoff 

Modeling System (PRMS) formulation, which represents evaporation, transpiration, runoff, infiltration, interflow, 

groundwater flow, and channel routing, but not reservoir operations, water withdrawals, or stream releases (Regan et al., 

2019). See Text S1 for more details on each model. A key distinction is that the NWM targets high spatial (~250 m) and 55 

temporal (hourly) resolution flood forecasting. In contrast, the NHM assesses long-term water availability at hydrologic-

response-unit scales (~100 km2, driven by daily forcing) (Towler et al., 2023). Both models exhibit spatially variable 

streamflow skill across US catchments (Tijerina et al., 2021), with the strength of prediction varying as a function of 

catchment-scale climate, land use, and physiography. Collectively, differences in resolution, process formulation, and 

treatment of human regulation make the NWM–NHM pair an ideal testbed for structural sensitivity analysis: drivers 60 

influential in both frameworks likely denote overarching hydrologic controls, whereas divergent sensitivities flag processes 

that are represented differently (or omitted) in either approach. 

The sensitivity of process-based hydrologic models to certain catchment attributes and parameters has been 

interrogated using well-established statistical tools, such as sensitivity analysis (Pianosi et al., 2016; Song et al., 
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2015)(Pianosi et al., 2016; Song et al., 2015). These approaches work by exploring the range of values that model parameters 65 

may take and recording the net impact on model performance (Mai, 2023). Notable examples include the Sobol' (2001) and 

Morris (1991) methods. A drawback of traditional sensitivity analysis methods, particularly when applied to large-scale 

hydrologic applications (Mai et al., 2022)(Mai et al., 2022), is that they can be computationally demanding (Sarrazin et al., 

2016)(Sarrazin et al., 2016). Less demanding techniques, such as the Robustness Assessment Test (RAT; Nicolle et al., 

2021Nicolle et al., 2021), have been developed to evaluate model bias without the need to control the calibration process but 70 

these focus only on the influence of temporal forcings, such as air temperature. Thus, there is a need to continue to develop 

spatial methods for assessing model sensitivity that are useful in scenarios where traditional methods are computationally 

intractable. 

Explainable or interpretable machine learning methods have the potential to bridge the gap between data-driven 

insights (provided by machine learning models) and process-based understanding (contained within physically based 75 

models) (Slater et al., 2025)(Slater et al., 2025). These methods help to explain why a model gives the prediction that it does 

(Lundberg et al., 2020)(Lundberg et al., 2020). Several explainable machine learning methods have been developed, 

including Partial Dependence Plots (PDP; Friedman, 2001), Local Interpretable Model-Agnostic Explainers (LIME; Ribeiro 

et al., 2016)(LIME; Ribeiro et al., 2016), and Shapley Additive Explanations (SHAP; Lundberg et al., 2020)(SHAP; 

Lundberg et al., 2020). In hydrology, for example, these tools have been applied for the analysis of hydrologic fluxes (Brêda 80 

et al., 2024)(Brêda et al., 2024), soil moisture (Huang et al., 2023)(Huang et al., 2023), water table depth (Ma et al., 

2024)(Ma et al., 2024), and drought intensity (De Meester and Willems, 2024). Interpretable machine learning can 

complement and enhance traditional sensitivity approaches  (Maier et al., 2024)(Maier et al., 2024), by providing post-hoc 

interpretative insights into how parameter changes influence hydrologic model predictions, that is, without the need for 

perturbing the model parameter space. Interpretable machine learning methods are not without limitations as they only imply 85 

relations in the model which may not necessarily be causal (Heskes et al., 2020)(Heskes et al., 2020), thus caution should be 

exercised when interpreting results.model explanations.  

 This paper aims to interrogate large-scale hydrologic model performance with machine learning tools to identify 

which processes may be inadequately represented in physically based models. Thus, the questions we address are: what 

catchment attributes can be used to predict poor model performance, and are certain dominant hydrological processes 90 

associated with these catchment attributes? To answer these questions, we present a proof-of-concept approach that uses 

machine learning techniques to provide post-hoc assessment of model sensitivity. We did this by building a random forest 

model to predict KGE values for NWM and NHM predictions at over 4,000 basins. (Fig. 1). Thereafter, model predictions 

were interpreted using Shapley values, which highlight the physiographic and hydrologic controls of process-based model 

performance (Fig. 1).. This work aims to inform how the next generation of large-scale hydrologic models can be improved 95 

for the responsible stewardship of water resources into an uncertain future. 
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Figure 1: Flow diagram showing the application of interpretable machine learning in this study. (1) Data observations and National Water 
Model (NWM) or National Hydrologic Model (NHM) predictions are used to generate a target Kling–Gupta efficiency (KGE) for each 
site. (2) Catchment attributes are input to a Random Forest (RF) model to predict KGE for each site. (3) The RF model is evaluated by 100 
comparing the predicted KGE to the target KGE, using the coefficient of determination (R2) to determine goodness of fit. (4) Shapley 
values (𝝍) are used to explain the marginal contributions of catchment attributes that distinguish KGE prediction at a particular site, f(x), 
from the average modeled KGE for all sites, E[(f(x)]. In the given example, the values of the climate and topography attributes at this 
individual gage lower the predicted KGE (െ𝝍), whereas the values of the hydrology and agriculture attributes increase the predicted KGE 
(൅𝝍).   105 
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2 Methods 

2.1 The National Water and National Hydrologic Models 

We retrieve daily streamflow observations and predictions for gaged locations (sites) for the NWM version 2.1 and 

NHM version 1.0 from existing repositories (Johnson et al., 2023a; Regan et al., 2019; Towler et al., 2023).(Johnson et al., 

2023a; Regan et al., 2019; Towler et al., 2023). Text S1 summarizes the models that produced the data used in this study. A 110 

total of 4,614 basins with at least 10 years of data that span the contiguous US (CONUS) are included in our analysis (U.S. 

Geological Survey, 2024). The date range of flow observations and predictions is from water years 1984 to 2016. 

NWM and NHM performance at each site was assessed using the Kling-Gupta Efficiency (KGE), a common metric 

in hydrologic modeling (Gupta et al., 2009)NWM and NHM performance at each site was assessed using the Kling-Gupta 

Efficiency (KGE), a common metric in hydrologic modeling (Gupta et al., 2009). The KGE is calculated as 115 

KGE = 1 - ඥሺα - 1ሻ2 + ሺρ - 1ሻ2 + ሺβ - 1ሻ2 (1) 

where ρ is Pearson correlation coefficient, and α and β are the ratios of the standard deviation and the mean, 

respectively, of model predictions to data observations. The accuracies of NWM (Fig. 2) and NHM (Fig. S1) predictions are 

particularly sensitive to aridity. The KGE values calculated in Equation (1) serve as the target variables for the forthcoming 

machine learning model (Figure 1). 

 120 

 
Figure 2: Cumulative distribution function (CDF) of National Water Model (NWM) performance for humid (PET/P <1, n = 3,827) and 
arid (PET/P >1, n = 787) sites as assessed by the Kling–Gupta efficiency (KGE) evaluation metric. 

2.2 Random Forest Model 

Random forest modeling is an ensemble-based machine learning approach for predicting continuous values and 125 

capturing non-linear trends in a dataset (Ho, 1998). We train a random forest model, comprising of 1,000 regression trees, to 

predict the target KGE at each site using catchment attributes as input variables (termed “features”). The features (n = 48) 

are derived from BasinATLAS (Linke et al., 2019)(Linke et al., 2019) and incorporate wide ranges of climate, hydrology, 
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topography, soils & geology, undeveloped vegetation, agriculture, and urban land use. The names and descriptions of the 48 

predictors can be found in Table S1, and the spatial variations of the 48 predictors across the CONUS are shown in Fig. S2. 130 

The features were selected based on their likelihood to impact hydrology. Soil water content appears as an important 

predictor in the later analysis, and we define it here for clarity. Soil water content is defined as the annual soil water available 

for evapotranspiration (Trabucco and Zomer, 2010), and the original study authors calculated it as equal to the long-term 

effective precipitation minus the sum of actual evapotranspiration and runoff.  

The random forest model was trained and validated using bootstrapping. Individual trees are grown from an in-the-135 

bag bootstrap of the observation dataset. Out-of-bag observations not included in the bootstrap are used for model validation. 

The models were trained using the mean squared error objective function. The coefficient of determination (R2) was 

calculated to assess predictive performance of the random forest (Pearson, 1901). Extreme values (outliers) can distort the 

utility of a predictive and interpretable model (Liu et al., 2018)(Liu et al., 2018). Because the KGE metric has a small upper 

bound (+1) and an infinite lower bound (-∞), a small subset of very negative values can dominate model inferences. The 140 

lowest KGE value for a gaged location in the NWM dataset is -302.8, whereas the 5th percentile of KGE values -2.7. The 

performance at both sites would be considered “unacceptable”; thus, including extreme negative values negatively affects 

model predictability without providing much additional insight beyond that given by other underperforming sites. To address 

the disproportionate influence of a small subset of values, we consider the 5% of sites with the most negative target KGE 

values as outliers, reducing our dataset from 4,614 to 4,383 sites. Random forest model analyses and development were 145 

performed using the TreeBagger function in MATLAB 2023 (MathWorks, 2024). 

2.3 Shapley Values 

Shapley values are derived from cooperative game theory and they aim to assess how coalitions form and how these 

coalitions impact the payout of a game (Shapley, 1953). In the context of explainable AIinterpretable machine learning, they 

are a model-agnostic approach that attributes each feature an importance value for a prediction, indicating the marginal 150 

benefit that the inclusion of the feature provides to the overall prediction (Lundberg et al., 2020; Lundberg and Lee, 

2017)(Lundberg et al., 2020; Lundberg and Lee, 2017). Thus, Shapley values explain the inner workings of a model, with 

influential features receiving large attribution of credit whereas non-influential features may receive little or no credit for the 

model prediction. The Shapley value is also the only distribution of gain among features (e.g., predictor variables) that 

maximizes four properties: (1) efficiency, (2) symmetry, (3) linearity, and (4) null player (Shapley, 1953). Respectively, 155 

these properties ensure that (1) the total prediction is fully allocated to features, (2) features that contribute the same to the 

prediction should receive identical credit, (3) allocations in ensemble models should be the sum of the allocation in member 

models, and (4) a feature contributing nothing to the prediction should receive no allocation.  

The Shapley value (𝜓) of the i-th feature (catchment attribute) for the query point x (KGE) can be calculated by the 

characteristic value function (v) as:  160 
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ψiሺvxሻ = 
1
M  ෍ |S|! ሺM - |S| - 1ሻ!ሺM - 1ሻ!

S⊆M\{i}

 ሾvxሺS ∪ ሼiሽሻ - vxሺSሻሿ (2) 

where M is the number of features, M is the set of all features, S is a set or coalition of features, |S| is the number of 

elements in the coalition, vx(S) is the value function of the features in the coalition for the query point x (Shapley, 1953). The 

value of vx (S) represents the “worth” or the expected contribution of the features in S to the cooperative prediction for the 

query point x. Leveraging the additive nature of Shapley values, we calculate them for each observation for all trees in the 

random forest and then average respective feature results across trees for a more robust statistic. All Shapley value analyses 165 

were performed using the TreeSHAP function in MATLAB 2023 (Lundberg et al., 2020; MathWorks, 2024). The Shapley 

value has the same units as those of the prediction, in this case unitless (as is KGE).  All Shapley value analyses were 

performed in MATLAB 2023 using the TreeSHAP algorithm with an interventional value function (Lundberg et al., 2020; 

MathWorks, 2024). The interventional value function calculates the expected output of the model when the values for the 

features in a specific coalition S are set to those of the model instance being explained, while the values for the features not 170 

in the coalition are sampled from the full dataset. This approach aims to isolate the impact of the feature coalition by 

breaking potential dependencies with features outside the coalition, effectively simulating an intervention where only the 

features in S are known and fixed, and the others vary according to their marginal distributions. 

To aid in interpretation of Shapley values, we provide a brief example. The random forest model described in 

Section 2.2 is trained to predict the KGE of the NWM (or NHM) model at 4,383 sites in the analysis (Fig. 1). In short, “how 175 

accurate is the NWM model at site?” The random forest model answers this question by transforming 48 catchment attribute 

features into a prediction of KGE. In the absence of Shapley values or interpretable AI, the process by which the catchment 

attributes are transformed to create the KGE prediction is uncertain, that is, it is a black box.. Shapley values elucidate the 

marginal contribution of a feature (𝜓) to the random forest, which is defined as how much the predicted KGE at a site 

increases (+𝜓) or decreases (-𝜓) when a feature is included in the model. In this way, sensitive features will have a high 180 

Shapley value magnitude, |𝜓|, as the predicted KGE is sensitive to the value that the feature takes. Thus, Shapley values help 

to distinguish the catchment attributes that cause variation in predicted KGE across space. Although the full range of 

Shapley values for the 48 catchment attribute features are informative, we highlight and discuss the most impactful feature 

negatively affecting model performances at each site. The most impactful feature is the one having the lowest Shapley value 

(min 𝜓) at a site, meaning it reduces the predicted KGE more than any other feature. 185 

We used the Ecological Regions of North America as a way of grouping clusters of catchments in order to facilitate 

the discussion of similarities (or dissimilarities) between the drivers of model performance across broad areas (Omernik, 

1987). Ecoregions are defined by “perceived patterns of a combination of causal and integrative factors including land use, 

land-surface form, potential natural vegetation, and soils” (Omernik, 1987). Results from individual catchments were 

aggregated to the ecoregion level for comparison of general trends. A catchment was assigned to an ecoregion based on the 190 

greatest area of an ecoregion contained within the drainage boundary of a catchment.  
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3 Results 

Because general results for both the NWM and NHM were broadly similar, we focus the main text discussion on 

the NWM and note instances where the two models differ (detailed results from NHM analysis can be found in the 

Supplement). R2 values for the testing predictions of KGE for the random forest model are shown in Fig. 3. The random 195 

forest model explains 47% (43%) of the variance encoded in the KGE metric for NWM (NHM) simulations at 4,383 gages, 

which contain considerable variability in the processes influencing hydrologic model performance. We consider model 

performance satisfactory as acceptability criteria for R2 varies with the complexity of a dataset (Legates and McCabe, 1999). 

We proceed and apply explainable AI techniques to this random forest modelwith interpretable machine learning to 

understand how catchment attributes influence KGE values of streamflow for the NWM and NHM.  200 

 

 

Figure 3: Evaluation of the random forest model prediction of Kling-Gupta Efficiency (KGE) at NWM and NHM sites. Results are shown 
for the out-of-bag (testing) samples. The density scatter plot displays the count of data points in each partitioned bin. For visual clarity, 
predicted and observed KGE values less than 0 are not plotted, although they are included in the calculation of R2 for each model. NWM = 205 
National Water Model, NHM = National Hydrologic Model, R2 = Coefficient of Determination. 

 

We investigated the local structure of Shapley values (𝜓) at three demonstration sites (Fig. 4). We report how the 

Shapley values explain random forest model predictions of KGE, but it is important to note that these explanations are not 

necessarily directly causal.causal but rather reflect correlations identified by the algorithm. The directionality and extent of 210 

influence by each predictor is indicated by the magnitude and sign of the predictor’s Shapley value (േ𝜓). Each waterfall plot 

shows how Shapley values (𝜓) of features help to distinguish one site, f(x), from the mean of all sites, E[f(x)]. These three 

sites were selected to demonstrate various catchment controls, such as climate at Tucannon River, WA; hydrology at Seboeis 

River, ME; and soils & geology at Timpas Creek, CO. At Tucannon River, the relatively high values of actual 

evapotranspiration and aridity index at the site cause a decrease (-𝜓) in the prediction of KGE at that site. At Seboeis River, 215 

the large lake area percentage causes a decrease (-𝜓) in KGE prediction, but the high soil water content causes an increase 

(+𝜓) in KGE prediction. At the final site, Timpas Creek, the most influential feature is the low soil water content, which has 

a considerable negative contribution (-𝜓) to KGE prediction. With an understanding of how Shapley values operate at a an 
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individual gage (local site-scale,), we proceed to a global perspective by assessing the aggregate Shapley value results of all 

4,383 sites. 220 
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Figure 4: Local structure of Kling–Gupta efficiency (KGE) prediction for the National Water Model (NWM) as illustrated by Shapley 
value (ψ) waterfall plots at three demonstration sites, indicated by U.S. Geological Survey station numbers associated with streamgages 
and 2-letter state abbreviations. Each plot begins with the expected value of the model prediction for all sites, E[f(x)], which undergoes 225 
marginal alteration (±ψ) by each of the 48 predictor features. The final model prediction, f(x), is equal to E[f(x)] plus the cumulative sum 
of all marginal contributions. Undeveloped Vegetation is abbreviated as Und. Veg.  
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The global structure of Shapley values (𝜓) for six important catchment attributes is shown (Fig. 5): soil water 

content, snow cover maximum, road density, precipitation, lake area, and irrigated area. The marginal contribution of the soil 

water content variable (𝜓soil water content) is positive (+𝜓) in areas with high soil water content (east of the 98th meridian and in 230 

the Pacific Northwest) and negative (-𝜓) in areas with lower soil water content (Great Plains, Intermountain West, and 

California). The Shapley dependence plot identifies 210 mm soil water content as a threshold from when 𝜓soil water content 

increases (+𝜓) versus decreases (-𝜓) the prediction of KGE. The 𝜓snow cover max. values are positive in the Rocky Mountains 

and the upper Midwest. Snow cover maximum has little effect on KGE predictions until a threshold of 40% is exceeded, at 

which point maximum snow coverage improvesincreases KGE prediction. The 𝜓road density  values are negative in urban 235 

centers, when road density exceeds 5 km/km2, suggesting high road density decreases accuracies of model predictions. 

Otherwise, the presence of roadways has little impact on KGE predictions at lower road densities. A threshold of 900 mm/yr 

in precipitation emerges; precipitation values lower than this threshold lower KGE (-𝜓precipitation) and values greater than this 

threshold increase KGE (+𝜓precipitation). The 𝜓lake area values are generally close to zero except for when lakes constitute a 

substantial portion of a watershed (> 10%), such as in Minnesota and Wisconsin and the Northeast Region. For 𝜓irrigated area, 240 

watersheds with less than 3% irrigated area are unaffected by the variable, but beyond a threshold of around 10%, the 

presence of irrigation decreases KGE predictions. 

Shapley value swarm charts show the directionality and magnitude of feature importance for all 48 predictors (Fig. 

6). Globally, the most impactful features (greatest |𝜓|തതതത) for KGE prediction are 𝜓soil water content, 𝜓aridity index, 𝜓actual ET, and 𝜓precipitation. Regarding directionality, higher catchment-scale values of soil water content, aridity index, actual ET, and 245 

precipitation increase KGE prediction (+𝜓) whereas smaller values decrease KGE prediction (-𝜓). Although these are 

globally the most influential variables, they are not necessarily the most influential at each individual site. We plot the spatial 

distribution of the most impactful feature group leading to poor KGE scores at each site, that is the predictor group having 

the greatest negative Shapley value (min 𝜓) at a site. The count of most impactful features groups at individual sites were 

climate (n = 761), hydrology (n = 1,290), and soils and geology (n = 1,447). Soils and geology features, most frequently low 250 

soil water contents, reduced KGE most often in the Great Plains and Intermountain West. Hydrology features, typically large 

values of lake and reservoir storage, reduce modeled KGE in the Midwest. Climate features did not have strong spatial 

coherence. Next, we assess the distribution of KGE values grouped by most impactful feature (Fig. 7). For the NWM, sites 

where the most impactful features were soils & geology as well as urban land use had the lowest median KGE values. The 

results for NHM were similar to NWM except that areas controlled by climate have lower median KGE values for NHM 255 

than NWM. 

We map the spatial linkage between ecological regions in the US and the influential features controlling KGE 

scores at sites contained within these regions (Fig. 8). The ecoregions containing the most streamgages are Eastern 

Temperate Forest, Great Plains, Northwestern Forested Mountains, and North American Deserts. Streams in the Eastern 

Temperate Forest ecoregions are most frequently influenced by, in decreasing order, hydrology, climate, urban, and soils & 260 
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geology features. For the Great Plains, the most frequent controlling features are soils & geology, followed distantly by 

hydrology. The Northwestern Forested Mountains are influenced by soils & geology, climate, hydrology, and topography. 

Lastly, the North American Desert streams are controlled almost exclusively by soils & geology features.  

 

 265 

 
Figure 5: Spatial distribution of Shapley values (𝝍) for selected influential features and their impact on Kling–Gupta efficiency (KGE) 
prediction for the National Water Model (NWM). The colorbar represents the magnitude of 𝝍. The partial dependence plot of each feature 
is shown. Features value distributions are represented with a heatmap. A moving average of feature values is indicated by a line to show 
general trends. 270 
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Figure 6: (a) Map of Kling–Gupta efficiency (KGE) for the National Water Model. (b) Map and histogram of the most impactful feature 
causing poor model performance at each site, i.e., the predictor group having the greatest negative Shapley value (𝝍) at a site. (c) Swarm 
chart of Shapley values for KGE prediction showing feature importance for 48 predictors. The staircase plot on the right axis indicates the 275 
mean absolute Shapley value |𝝍|തതതത) of all observations for a predictor. The predictor value is the magnitude of the catchment attribute.



 

14 
 

 

Figure 7: Kling–Gupta efficiency (KGE) performance grouped by the most important variable at each site as identified by Shapley values 
for the National Water Model (NWM) and National Hydrologic Model (NHM). 

 280 

 
 

Figure 8: Map of study stream gages (black markers) and the Ecological Regions of North America (as defined in Omernik, 1987). 
Sankey diagram showing the pairing of ecoregions and impactful feature classes for the National Water Model (NWM) for the Kling–
Gupta efficiency (KGE) evaluation metric. Ecoregion classifications are defined using the following superscripts: 1Atlantic Highlands, 285 
2Mixed Wood Shield, 3Ozark, Ouachita-Appalachian Forests, 4Mixed Wood Plains, 5Central USA Plains, 6Southeastern USA Plains, 
7Mississippi Alluvial and Southeast USA Coastal Plains, 8Everglades, 9Temperate Prairies, 10West-Central Semi-Arid Prairies, 11South 
Central Semi-Arid Prairies, 12Texas-Louisiana Coastal Plain, 13Tamaulipas-Texas Semi-Arid Plain, 14Cold Deserts, 15Warm Deserts, 
16Western Sierra Madre Piedmont, 17Upper Gila Mountains, 18Western Cordillera, 19Marine West Coast Forest, and 20Mediterranean 
California. 290 
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4 Discussion 

We investigate the relative importance of catchment attributes to streamflow model performance to diagnose 

deficiencies in how the hydrologic models represent physical processes. Compared to other parameter-based continental-

scale sensitivity analyses (e.g., Mai et al., 2022)(e.g., Mai et al., 2022), our approach provides a post-hoc assessment of 

model sensitivity. That is, perturbing the parameterization of the original modeling framework is not necessary to identify 295 

model sensitivities. Rather, sensitivities are deduced (learned) through the identification of the marginal contribution of 

predictor features to model performance. In this way, our approach identifies how catchment attributes may impact KGE—

rather than how model parameters directly impact KGE. The interpretable machine learning approach we present is flexible 

and model agnostic, meaning it can be applied to any modeling framework.  

4.1 Model diagnostics with explainable AIinterpretable machine learning 300 

The Shapely value approach used in our study is able to make both local (Fig. 4) and global (Fig. 5) inferences from 

the same model. Shapley dependence plots allow us to infer the individual (marginal) contribution of a feature to the overall 

model as a function of the feature’s magnitude. Compared to traditional sensitivity analyses, which perturb model parameters 

and observe the resulting impact to a performance evaluation metric (Pianosi et al., 2016)(Pianosi et al., 2016), this approach 

identifies spatial patterns in where models perform well and where they do not, and relates that pattern to the spatial 305 

variation in catchment attributes. This indirect approach to model sensitivity allows for the identification of attributes that 

show a high degree of influence on model performance. This approach can serve as an interrogation tool for prioritizing 

which processes should be better represented within the evaluated hydrologic model structure. Below, we highlight both 

local and global structures that emerge from our analysis and that allow for the interrogation of NWM and NHM model 

performance. 310 

Local structures emerge whereby a few sensitive attributes can dominate the overall KGE prediction at a site (Fig. 

4). This can manifest as a catchment attribute decreasing or increasing prediction accuracies (as measured by KGE) of NWM 

or NHM. For example, at an arid site on the Tucannon River (WA), the NWM performance is lower at this site than the 

nation-wide average of NWM for all sites because of high actual evapotranspiration and low precipitation conditions. 

Conversely, at Seboeis River (ME), the higher humidity and soil water content contributes to higher NWM prediction 315 

accuracy compared to the nation-wide average site. In some instances, multiple competing attributes offset their negative and 

positive contributions to KGE prediction. At the Seboeis River, the positive contribution to KGE from high soil water 

content is offset by the negative contribution of a large lake area percentage. Another way to interpret this would be that in 

the absence of lakes in the basin, the NWM would produce more accurate streamflow predictions at this site, that is, a higher 

KGE. Therefore, although the model’s representation of soil water content at this site increases streamflow prediction 320 

accuracy, the simulation of lake water storage (or lack thereof) is inhibiting streamflow prediction. Importantly, the Shapley 

value approach can also identify features that are not influential to KGE. For example, for all three sites investigated in Fig. 
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4, the natural vegetation and agricultural variables have limited influence on KGE. By elucidating the local structure of 

catchment controls on model performance, this approach allows for inference about which processes are not well represented 

by the model. Addressing these processes could be prioritized in further iterations of models to facilitate large increases in 325 

model accuracy.  

Global structures emerge whereby the Shapley value approach can identify thresholds at which features become 

influential (Fig. 5). Because our approach considers all sites simultaneously, we can make conclusions about the spatial 

coherence of influential attributes across regions (Mai et al., 2022)(Mai et al., 2022). A few variables, most prominently soil 

water content, are highly influential regardless of whether the variable takes a small or large value. However, some variables 330 

largely have nolittle influence until certain thresholds are crossed (Fig. 5), such as snow cover, road density, irrigation area, 

and lake area. The ability to resolve threshold behavior in model performance allows for better parameterization of models 

and identification of areas where increased data collection could improve model calibration (Zehe and Sivapalan, 2009).  

This model diagnostic approach provided intuitive results that match the general understanding of streamflow 

controls across ecoregions (Figs. 6 and. S5). The features that commonly decreased model accuracy the most at individual 335 

sites (min 𝜓) were related to soils & geology, hydrology, and climate predictor groups (Fig. 6). The influence of other 

predictor groups is more variable. For example, urban features (urban extent, road density, population count and density, and 

human footprint index) are influential in catchments near large metropolitan areas, such Chicago, New York, and Boston, 

but their influence is largely absent elsewhere. Urban features are the most influential predictors for just 7.7% of all gages, 

but these urban-controlled sites have low KGE values that are similar to sites controlled by the most influential variable 340 

group,  (soils and geology (, Fig. 7). In this way, Shapley values show utility in interrogating process-based models by 

allowing for the identification overarching controls across all sites in a dataset while not obscuring unique, local controls.  

4.2 Natural and anthropogenic drivers of NWM and NHM performance 

4.2.1 Climate  

Climate processes are of central importance to the goodness-of-fit for the NWM for many sites (Fig. 6), as indicated 345 

by large absolute Shapley values (|𝜓|തതതത) for climate variables. These results align with results of multiple studies focused on 

climate processes as drivers for streamflow processes, such as non-perennial streamflow (Hammond et al., 2021; Price et al., 

2021; Zipper et al., 2021) and peak streamflow (McMillan et al., 2018). Shapley values results show that climate processes 

that are related to low water availability (i.e., low values of precipitation, aridity, and ET) decrease the predictive capacity of 

the NWM (Fig. 5). The inverse is also true, in that streamflow can be simulated more accurately at sites with higher 350 

precipitation and lower ET (Fig. 6). Thus, while the NWM is recognized to have poor performance in arid locations (Johnson 

et al., 2023b), our results show that it is well-suited for prediction in humid locations. 



 

17 
 

Soil water content, actual ET, and precipitation are the most influential features for determining KGE, all of which 
are highly seasonal (Elnashar et al., 2021)4.2 Natural and anthropogenic drivers of NWM and NHM performance 

4.2.1 Climate  355 

Climate processes are of central importance to the goodness-of-fit for the NWM for many sites (Fig. 6), as indicated 

by large absolute Shapley values (|𝜓|തതതത) for climate variables. These results align with results of multiple studies focused on 

climate processes as drivers for streamflow processes, such as non-perennial streamflow (Hammond et al., 2021; Price et al., 

2021; Zipper et al., 2021) and peak streamflow (McMillan et al., 2018). Shapley values results show that climate processes 

that are related to low water availability (i.e., low values of precipitation, aridity, and ET) decrease the predictive capacity of 360 

the NWM (Fig. 5). The inverse is also true, in that streamflow can be simulated more accurately at sites with higher 

precipitation and lower ET (Fig. 6). Thus, while the NWM is recognized to have poor performance in arid locations (Johnson 

et al., 2023b), our results show that it is well-suited for prediction in humid locations. 

Soil water content, actual ET, and precipitation are the most influential features for determining KGE, all of which 

are highly seasonal (Elnashar et al., 2021). For example, the spatial map of KGE performance (Fig. 6) is broadly related to 365 

precipitation amount and the Shapley value for precipitation (Fig. 5; Lute and Luce, 2017). In areas where climate may have 

a lower degree of variance throughout the year, NWM accurately simulates streamflow because of the predictability of the 

hydrologic response in a basin. As an example, we find that the presence of a considerable snow cover (> 40%; Fig. 5) can 

improve model predictability, which has been noted elsewhere (Johnson et al., 2023b)(Johnson et al., 2023b) and may be 

related to the predictability of seasonal snowmelt, which can dominate the water balance in cold regions. These results 370 

highlight the ability of Shapley values to elucidate the relationships between climate and streamflow and provide important 

insights into careful parameterization of climate forcings to increase model accuracy. 

4.2.2 Hydrology 

Of the variables in the hydrology category, we observed the largest effect on KGE in the NWM from lake area and 

upstream reservoir storage relative to annual flow volume (the degree of regulation), with KGE decreasing as lake area and 375 

the degree of regulation increase (Figs. 3 and 4). The modeling of pond and lake storage and release is a known deficiency in 

large-scale hydrologic modeling, and recent parameterizations have been developed to enhance representation of surface-

water depression storage (Costigan and Daniels, 2012; Hay et al., 2018; Hodgkins et al., 2024). 

The negative impact of lake and reservoir features on model accuracy is greater to the NHM (Fig. S3) than to the 

NWM (Fig. 5). As noted earlier, the NHM framework does not simulate any kind of reservoir operations, water withdrawals, 380 

or stream releases (Regan et al., 2019). On the other hand, the NWM framework models passive reservoir routing (Cosgrove 

et al., 2024) to mitigate the confounding effects of lake and reservoir volume on model performance. The Shapley value 

approach was able to successfully identify that the model without any provision for reservoirs (NHM) is more negatively 
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affected by the presence of reservoirs than the model with routing capability (NWM), underscoring that the method is highly 

interpretable and can produce intuitive results that match our conceptual models.  385 

4.2.3 Physiography (Topography, Soils, and Geology) 

Hydrologic connectivity controls many facets of the natural flow regime and determines the ability of a watershed 

to store and release water (Michalek et al., 2023). Parameterizations of soils, geology, and other basin characteristics are 

highly heterogeneous and mediate many facets of connectivity, many of which are poorly resolved in large-scale hydrologic 

models (Li et al., 2023). For example, soil water content was the most impactful predictor for KGE according to the Shapley 390 

value analysis (Fig. 5), with low values of soil water content greatly impacting the KGE. Accurate simulation of soil 

moisture patterns, particularly in arid locations, is a well-recognized challenge in the NWM, which can be mitigated by the 

integration of soil moisture data into the model calibration process (Araki et al., 2025). Other factors that contribute to a high 

degree of hydrologic connectivity, including high percent sand and low percent clay (Fig. 6), also highlight the inability of 

the NWM to resolve storage dynamics, which likely results from inadequate parameterization of areas that have highly 395 

seasonal soil water content (Hughes et al., 2024) and the inability of the current generation of NWM to represent losing 

streams (Jachens et al., 2021; Lahmers et al., 2021). 

We also identified predictor variables commonly associated with the physiography of headwater systems as 

important predictors of KGE (Fig. 6), such as drainage area and mean elevation. Headwater systems are defined as “surface-

water catchment areas and groundwater zones that contribute water, material, and energy to a headwater stream” 400 

(Brinkerhoff et al., 2024; Golden et al., 2025)The negative impact of lake and reservoir features on model accuracy is greater 

to the NHM (Fig. S3) than to the NWM (Fig. 5). As noted earlier, the NHM framework does not simulate any kind of 

reservoir operations, water withdrawals, or stream releases (Regan et al., 2019). On the other hand, the NWM framework 

models passive reservoir routing (Cosgrove et al., 2024) to mitigate the confounding effects of lake and reservoir volume on 

model performance. The Shapley value approach was able to successfully identify that the model without any provision for 405 

reservoirs (NHM) is more negatively affected by the presence of reservoirs than the model with routing capability (NWM), 

underscoring that the method can produce intuitive results that match our conceptual models.  

4.2.3 Physiography (Topography, Soils, and Geology) 

Hydrologic connectivity controls many facets of the natural flow regime and determines the ability of a watershed 

to store and release water (Michalek et al., 2023). Parameterizations of soils, geology, and other basin characteristics are 410 

highly heterogeneous and mediate many facets of connectivity, many of which are poorly resolved in large-scale hydrologic 

models (Li et al., 2023). For example, soil water content was the most impactful predictor for KGE according to the Shapley 

value analysis (Fig. 5), with low values of soil water content greatly impacting the KGE. Accurate simulation of soil 

moisture patterns, particularly in arid locations, is a well-recognized challenge in the NWM, which can be mitigated by the 

integration of soil moisture data into the model calibration process (Araki et al., 2025). Other factors that contribute to a high 415 
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degree of hydrologic connectivity, including high percent sand and low percent clay (Fig. 6), also highlight the inability of 

the NWM to resolve storage dynamics, which likely results from inadequate parameterization of areas that have highly 

seasonal soil water content (Hughes et al., 2024) and the inability of the current generation of NWM to represent losing 

streams (Jachens et al., 2021; Lahmers et al., 2021). 

We also identified predictor variables commonly associated with the physiography of headwater systems as 420 

important predictors of KGE (Fig. 6), such as drainage area and mean elevation. Headwater systems are defined as “surface-

water catchment areas and groundwater zones that contribute water, material, and energy to a headwater stream” 

(Brinkerhoff et al., 2024; Golden et al., 2025). Headwater streams typically have smaller drainage areas and higher mean 

elevations, which our approach found were associated with lower KGE values for NWM predictions possibly because NWM 

simulates atmospheric states and fluxes on a 1×1 km2 grid cell and can misrepresent processes that are on the scale of 425 

headwater systems. These headwater systems are low-order and highly variable in their flow regimes (Rojas et al., 

2020)(Rojas et al., 2020), both of which are inadequately represented in NWM. 

4.2.4 Anthropogenic processes 

Of the variables related to anthropogenic influence, we note that urban features, such as urban extent, road density, 

population count, population density, and human footprint, typically decrease KGE values for modeled streamflows (Figs. 5 430 

and S4). The construction of urban drainage networks has been recognized to increase the connectivity of water, solutes, and 

sediment, and to add additional pathways of transport through the artificial routing of water (Zarnaghsh and Husic, 2021). In 

a continental-scale analysis of the NWM, urban areas exhibited some of the largest bias (Johnson et al., 2023b)(Johnson et 

al., 2023b), in part due to the presence of constructed drainage networks. Notwithstanding this limitation, the NWM has 

shown some success in simulating hydrology when artificial urban channels, which differ from natural flow paths, are 435 

manually delineated within the flow grid (Pasquier et al., 2022). However, manual delineation is not feasible for applications 

at intended for regional or continental scales, such as NWM and NHM.  

Our model identifies a threshold of around 5 km/km2 of roadways as the initiation point whereby the presence of 

roadways decreases accuracies of NWM and NHM predictions (Figs. 4 and S3). The sensitivity of the roadway density 

feature may indicate other associated infrastructure, the configuration of proximal impervious areas, and the relative amount 440 

of human alternation of surface flow generation and routing mechanisms not picked up by considering imperious area alone. 

Population and population density similarly likely indicate associated infrastructure that alters flow timing and magnitude of 

water delivery to rivers (Hopkins et al., 2019). For example, leaky infrastructure can result in elevated low flows beyond 

natural background levels (Bhaskar et al., 2020). Regarding agriculture, irrigation return flows have been shown to be 

important to flow generation processes, particularly in lower elevation, arid rivers (Putman et al., 2024). These urban and 445 

agricultural features can decrease model accuracy when present, but the absence of these features does not necessarily 

increase model accuracy (Fig. 6).  
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4.3 Limitations and Future Research 

Our interpretable modeling approach has provided several insights into interrogating process deficiencies in the 

NWM and NHM. Although the inferences we derived from the Shapley values are robust, interpretable, and intuitive, the 450 

analysis approach itself is not causative (Lundberg et al., 2020). Thus, some inferences may occur due to indirect correlation 

(Heskes et al., 2020). We took precautions to mitigate the effect of feature correlations while constructing the random forest 

model, such as through random exclusion of features during tree construction and out-of-bag sampling (Fox et al., 2017). 

Our approach provides us with confidence because, as we noted earlier, many of the inferences we derived with the Shapley 

values match the causative and mechanistic model assessments performed by others (Hodgkins et al., 2024; Hughes et al., 455 

2024; Jachens et al., 2021; Pasquier et al., 2022).  

The interpretable modeling approach has its own set of limitations. First, predictions made by Shapley values are a 

function of (1) the set of sites considered, in this case 4,383 streamgages in the United States used in NWM and NHM 

assessment and (2) the choice and performance of the predictive model, which in this case was a reasonably accurate random 

forest model (R2 ≥ 0.43). With regard to the first point, if our analysis approach were applied to interpreting the KGE values 460 

for streamflow predictions made by applying the Soil Water and Assessment Tool (SWAT) to Europe (Abbaspour et al., 

2015)Our model identifies a threshold of around 5 km/km2 of roadways as the initiation point whereby the presence of 

roadways decreases accuracies of NWM and NHM predictions (Figs. 4 and S3). The sensitivity of the roadway density 

feature may indicate other associated infrastructure, the configuration of proximal impervious areas, and the relative amount 

of human alternation of surface flow generation and routing mechanisms not picked up by considering imperious area alone. 465 

Population and population density similarly likely indicate associated infrastructure that alters flow timing and magnitude of 

water delivery to rivers (Hopkins et al., 2019). For example, leaky infrastructure can result in elevated low flows beyond 

natural background levels (Bhaskar et al., 2020). Regarding agriculture, irrigation return flows have been shown to be 

important to flow generation processes, particularly in lower elevation, arid rivers (Putman et al., 2024). These urban and 

agricultural features can decrease model accuracy when present, but the absence of these features does not necessarily 470 

increase model accuracy (Fig. 6).  

4.3 Limitations and Future Research 

Our interpretable modeling approach has provided several insights into interrogating process deficiencies in the 

NWM and NHM. Although the inferences we derived from the Shapley values are robust, interpretable, and intuitive, the 

analysis approach itself is not causative (Lundberg et al., 2020). Thus, some inferences may occur due to indirect correlation 475 

(Heskes et al., 2020). We took precautions to mitigate the effect of feature correlations while constructing the random forest 

model, such as through random exclusion of features during tree construction and out-of-bag sampling (Fox et al., 2017). 

Our approach provides us with confidence because, as we noted earlier, many of the inferences we derived with the Shapley 
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values match the causative and mechanistic model assessments performed by others (Hodgkins et al., 2024; Hughes et al., 

2024; Jachens et al., 2021; Pasquier et al., 2022).  480 

The interpretable modeling approach has its own set of limitations. First, predictions made by Shapley values are a 

function of (1) the set of sites considered, in this case 4,383 streamgages in the United States used in NWM and NHM 

assessment and (2) the choice and performance of the predictive model, which in this case was a reasonably accurate random 

forest model (R2 ≥ 0.43). With regard to the first point, if our analysis approach were applied to interpreting the KGE values 

for streamflow predictions made by applying the Soil Water and Assessment Tool (SWAT) to Europe (Abbaspour et al., 485 

2015), the order and magnitude of influence by various features would undoubtedly change. To the second point, although 

our random forest model is reasonably accurate, it only explains 47% of the variance in KGE prediction for the NWM (and 

43% for the NHM). While our model effectively captures dominant global trends and local structures, it still leaves more 

than half of the variance in KGE predictions unexplained. Future studies could explore ways to further explain this variance. 

Additionally, we consider only the KGE goodness-of-fit metric in this study, but if we were to interpret other goodness-of-fit 490 

metrics, such as the Nash-Sutcliffe Efficiency, there is potential that inferred controls on model performance may change. 

This is because all goodness-of-fit metrics encode for – and are biased by – various information contained within streamflow 

timeseries (Clark et al., 2021)(Clark et al., 2021). Nonetheless, of the common evaluation metrics presently applied in the 

hydrologic literature, use of the KGE is increasing because of its lower overall bias and provision for balanced results during 

low- and high-flow conditions (Althoff and Rodrigues, 2021).  495 

Several opportunities exist for overcoming limitations and making improvements to the data inputs and model 

outputs. First, the spatial extent and resolution of the catchment attribute dataset may be too coarse, particularly for smaller 

basins. Of the 48 catchment attributes derived from the BasinATLAS dataset (Linke et al., 2019)(Linke et al., 2019), spatial 

resolutions range from 3 arc-seconds for elevation to 5 arc-minutes for land use. At 40º N, the median latitude of the 

CONUS, these arc values correspond to ~85 meters and ~7 kilometers, respectively. These datasets were aggregated to 15-500 

arcseconds (~350 m), thus the calculated attributes for smaller basins are more uncertain due to a smaller sample size of 

attribute estimates contained within basin bounds. A second data limitation is that the catchment attribute dataset represents 

snapshot-in-time value for all basins (Linke et al., 2019)(Linke et al., 2019). However, catchments and their characteristics, 

particularly land use, may change substantially over time. The hydrologic models are simulated over multiple decades (1984 

to 2016), during which change may occur and be captured within the process-based representation of the models but not in 505 

the catchment attribute dataset. Improved spatial resolution and temporal evolution of catchment attributes could provide 

deeper insights into identifying NWM and NHM process deficiencies. There is potential that latent factors not explicitly 

included as attributes in BasinATLAS, such as wastewater effluent or groundwater pumping, exert control on NWM and 

NHM model performance. Finally, the process-based models used here vary in their spatial and physical representation of 

hydrologic processes. Process-based model differences in routing schema, spatial groupings (hydrologic response unit vs 510 

grid-based), and subsurface properties could result in slightlocal differences butin model performance. While these specific 
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model structural variations are unlikelyless likely to impact or explaindominate the explanation of broad, CONUS -scale 

patterns observedidentified in our analysis, they can contribute to residual unexplained variance.  

 Looking forward, the National Oceanic and Atmospheric Administration (NOAA), the developers of NWM, are 

expanding modeling capacity with their Next Generation Water Resources Modeling Framework (NextGen; Ogden et al., 515 

2021)(NextGen; Ogden et al., 2021). In addition to a uniformly applied national hydrologic model, there will be tools for 

identifying the best model/parameterization for each individual location and then modeling regions as patchworks of 

individual/local models (Cosgrove et al., 2024)(Cosgrove et al., 2024). In addition to assessing overall flow performance, 

this approach could be used for specific components of the flow regime, such as high and low flows. For example, studies 

that have focused on individual components of non-perennial drying regimes have used a random forest approach coupled 520 

with partial-dependency analysis (e.g., Price et al., 2021). The Shapley value approach used in this study could be used in a 

similar way to evaluate magnitude and directionality of impact between predictor values and flow regimes across systems. 

Further, modules are planned for purely data-driven approaches, like Long-Short Term Memory models (Frame et al., 2025, 

2021). Our interpretable modeling approach provides a starting point to inform the parametrization of local-scale and 

regional-scale applications in the next generation of hydrologic models.  525 

5 Conclusions 

The interpretable machine learning technique we present is flexible and model agnostic. We use the technique to 

identify potential process-based deficiencies in two continental scale hydrologic models: the National Water Model and the 

National Hydrologic Model. Compared to other parameter-based continental-scale sensitivity analyses, our approach 

provides a post-hoc assessment of model sensitivity. This method allows for the identification of thresholds after which a 530 

feature begins to negatively impact streamflow model performance. Globally, soil water content was the most common 

feature influencing the accuracies of streamflow simulations, followed by aridity, evapotranspiration, and precipitation. We 

interpret the results to indicate that the present formulations of NWM and NHM have limited ability to resolve soil water 

storage and release, particularly in arid locations. Locally, the presence of lakes and reservoirs were related to decreased 

model accuracy as was the presence of roadways and irrigation canals. Our results suggest that further refining how these 535 

influential processes are represented in large scale hydrological models would result in the largest increases in model 

accuracies. This study demonstrates the utility of interrogating process-based models using data-driven techniques and 

explainable AIinterpretable machine learning, which has broad applicability and potential for improving simulation of large-

scale hydrology and water quality. 

 540 
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