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Authors’ Response to Review Comments: 

The authors would like to thank Jonathan Frame, an anonymous reviewer, and the associate 
editor for their time and constructive comments regarding our manuscript. We have acknowledged 
the hard work of the editor and reviewers in the Acknowledgements section of the revised 
manuscript.  

In this document, the authors list the major comments made during the review of the original 
manuscript and, underneath each comment, our responses are written in bold font.  

 

Reviewer #2 Comments: 

This manuscript uses Shapely approach, an explainable AI methodology, to broadly define 
categories that contribute to model bias, with the focus being on streamflow output from two, 
continental-scale, processed based, hydrological models.  The methodology uses a random 
forest model to predict KGE for streamflow in each model and it is trained on several ecoregion 
characteristics. The Shapely values indicate feature importance for all the ecoregion 
characteristics and their impact on streamflow KGE. The random forest model is moderately 
sufficient in predicting KGE. This study, rather than assessing model performance or specific 
ways to improve model performance, is a proof of concept for using explainable AI for process-
based hydrological model bias identification sources in a post-hoc manner. 

We thank the reviewer for the thorough reading and critique of the manuscript. Their 
comments have helped improve the manuscript’s quality. In particular, we agree that the 
study can be framed more clearly as a proof-of-concept and we now emphasize that 
throughout the manuscript. Our specific changes to this end are noted under individual 
reviewer comments below. New sentence in the abstract is below:   

Large-scale hydrologic models are increasingly being developed for operational use in the 
forecasting and planning of water resources. However, the predictive strength of such models 
depends on how well they resolve various functions of catchment hydrology, which are 
influenced by gradients in climate, topography, soils, and land use. Most assessment of 
hydrologic model uncertainty has been limited to traditional statistical methods. Here, we 
present a proof-of-concept approach that uses interpretable machine learning techniques to 
provide post-hoc assessment of model sensitivity and process deficiency in large-scale 
hydrologic models. We train a random forest model to predict …  

 

Overall, this manuscript is well written and organized. There were few grammatical errors, and 
the sections of the manuscript are logically structured. This methodology is an interesting and 
scientifically significant way to assess sources of model bias and parameter sensitivity for 
continental-scale models, which are typically far too computationally expensive for traditional 
sensitivity analyses. I suggest the background and methodology can be expanded in some 
sections for increased clarity, particularly across scientific fields. Additionally, the authors should 
clarify specifically the purpose and motivation. The main points of revision are as follows: 

We respond to each of the reviewer’s main points below:  
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1. Purpose and Motivation: 

1. Clearly define the study's purpose: This is not a model comparison or a process 
representation assessment. This reads more as a proof of concept for a new 
methodology to assess bias and sensitivity in process-based, continental-scale 
hydrologic models. 

We now set up the limitations of traditional sensitivity analyses in the 
Introduction section, namely their computational intractability.  

The sensitivity of process-based hydrologic models to certain catchment 
attributes and parameters has been interrogated using well-established 
statistical tools, such as sensitivity analysis (Pianosi et al., 2016; Song et al., 
2015). These approaches work by exploring the range of values that model 
parameters may take and recording the net impact on model performance (Mai, 
2023). Notable examples include the Sobol' (2001) and Morris (1991) methods. A 
drawback of traditional sensitivity analysis methods, particularly when applied 
to large-scale hydrologic applications (Mai et al., 2022), is that they can be 
computationally demanding (Sarrazin et al., 2016). Thus, there is a need to 
develop alternate methods for assessing model sensitivity that are useful in 
scenarios where traditional methods are computationally intractable.  

 

We follow up the discussion of present-day limitations that leads us into 
the study’s purpose which we put into the objective paragraph:  

This paper aims to interrogate large-scale hydrologic model performance with 
machine learning tools to identify which processes may be inadequately 
represented in physically based models. Thus, the questions we address are: 
what catchment attributes can be used to predict poor model performance, and 
are certain dominant hydrological processes associated with these catchment 
attributes? To answer these questions, we present a proof-of-concept 
approach that uses machine learning techniques to provide post-hoc 
assessment of model sensitivity …  

 

2. Strengthen the introduction and motivation by emphasizing the challenges of 
running traditional sensitivity analyses on computationally expensive, large-scale 
models. This should serve as a primary justification for developing and applying 
this methodology. 

We have rewritten the 3rd and 4th paragraphs to clearly establish the 
existing limitations and make it explicit how our approach helps to close 
some existing methodological and knowledge gaps. 

The sensitivity of process-based hydrologic models to certain catchment 
attributes and parameters has been interrogated using well-established 
statistical tools, such as sensitivity analysis (Pianosi et al., 2016; Song et al., 
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2015). These approaches work by exploring the range of values that model 
parameters may take and recording the net impact on model performance (Mai, 
2023). Notable examples include the Sobol' (2001) and Morris (1991) methods. A 
drawback of traditional sensitivity analysis methods, particularly when applied 
to large-scale hydrologic applications (Mai et al., 2022), is that they can be 
computationally demanding (Sarrazin et al., 2016). Thus, there is a need to 
develop alternate methods for assessing model sensitivity that are useful in 
scenarios where traditional methods are computationally intractable.  

Explainable or interpretable machine learning methods have the potential to 
bridge the gap between data-driven insights (provided by machine learning 
models) and process-based understanding (contained within physically based 
models) (Slater et al., 2025). Several explainable machine learning methods have 
been developed, including Partial Dependence Plots (PDP; Friedman, 2001), 
Local Interpretable Model-Agnostic Explainers (LIME; Ribeiro et al., 2016), and 
Shapley Additive Explanations (SHAP; Lundberg et al., 2020). In hydrology, for 
example, these tools have been applied for the analysis of soil moisture 
(Huang et al., 2023), water table depth (Ma et al., 2024), and drought intensity 
(De Meester and Willems, 2024). Interpretable machine learning can 
complement and enhance traditional sensitivity approaches  (Maier et al., 
2024), by providing post-hoc interpretative insights into how parameter 
changes influence hydrologic model predictions, that is, without the need for 
perturbing the model parameter space. Interpretable machine learning 
methods are not without limitations as they only imply relations in the model 
which may not necessarily be causal (Heskes et al., 2020), thus caution should be 
exercised when interpreting results.  

 

2. Improved Model Description: 

1. Include a more detailed description of model configurations and processes of 
interest (even in supplementary materials, if necessary). 

We are not sure that we completely understand this request, but we have 
improved Section 2 Methods to be more easily understood based on the 
reviewer’s specific comments below.  

2. Clearly identify the configurations used and ensure consistency across the text 
(e.g., clarify references to model attributes in results and Line 390). 

The reference to spatial and temporal catchment attributes is in regard to 
the resolution of the 48 predictors appearing in Figures 3 and 5.  

3. Focus on processes directly relevant to the discussion (e.g., those affecting 
streamflow). 

All processes discussed in the article are now relevant to streamflow 
generation and estimation.  
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3. Clarify Objectives and Takeaways: 

1. One suggestion is to change the recurring message: the Shapley results are a 
tool for identifying model deficiencies and offering insights into bias and process 
representation improvements, not for directly improving NWM or NHM 
processes. This study is a proof of concept for using of explainable AI for 
hydrologic model bias identification in a post-hoc manner and authors can 
emphasize that this study demonstrates the utility of explainable AI in detecting 
model deficiencies, particularly for computationally expensive, large-scale 
hydrological models. Authors can compare the methodology to traditional 
sensitivity analyses, highlighting its innovation and feasibility given the 
computational constraints of large-scale models. 

This is a great suggestion by the reviewer and we agree that the paper can 
be more effectively framed as a proof-of-concept tool for identifying model 
deficiency and not for directly improving NWM or NHM. We now spend 
more time in both the Abstract, Introduction, Objective Paragraph, and 
Discussion relating our method to traditional sensitivity analysis 
approaches.  

 

Specific Comments: 

1. Line 30: “Grand challenge of hydrology…” Why/what makes this especially difficult at 
large scales? What are the specific challenges for large scale models that are addressed 
with this methodology? 

We note several reasons why this is difficult at large scales, including (1) 
equifinality, (2) scaling, (3) epistemic uncertainties, and (4) spatial heterogeneity in 
processes. Our methodology most directly addresses point (4) regarding spatial 
heterogeneities in watershed processes and how these impact streamflow 
generation.  

2. It is not initially clear why the analysis includes both the NWM and NHM. Justification for 
this should be added. Does using two models illustrate that this methodology is useful 
beyond a single-model use case? Or something else? 

We apply the method to two models to see if the method can identify unique 
deficiencies that are a function of the model structures. In the end, yes – our 
method achieves this. The method identifies that reservoir water storage 
negatively impacts flow prediction more so in the NHM (which does not consider 
reservoir storage) than in the NWM (which does explicitly consider reservoir 
storage). We make it clear in the intro why we consider multiple hydrologic 
models.  

In introduction, we add the following:  
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Perhaps the major difference in the two modeling approaches is that the NWM has a 
focus on high-resolution (hourly) flood forecasting whereas the NHM is designed to 
assess general water availability at timescales from days to centuries (Towler et al., 
2023). The NWM and NHM have variable success for streamflow prediction (Tijerina et 
al., 2021), with the strength of prediction varying as a function of catchment-scale 
climate, land use, and physiography. As the NWM and NHM have different 
constructions, their sensitivity to catchment drivers is likely to differ. 

3. Generally, the use of ecoregions needs to be expanded upon in the introduction and 
methods. It should be a bigger part of the central thesis, since the analysis and 
discussion consist primarily of the catchment attributes of these ecoregions. Additionally, 
it is not entirely clear in the methodology how streamflow gages are related to the 
ecoregions and catchment attributes. What is the catchment size / product (e.g., 
NHDPlus)? 

The ecoregions are used solely to see if the model sensitivities (identified by 
explainable AI) are a function of spatial variation in the US. A single model of KGE 
for all sites was trained, rather than a model for each ecoregion.  

Streamflow gages and their respective drainage areas were assigned to the 
ecoregion they fell within. The catchment attributes for each drainage area were 
calculated from BasinATLAS (Linke et al., 2009). Because ecoregions represent 
spatial variation, the catchment attributes of streamgages in the same ecoregion 
will be relatively similar while the attributes of streamgages in differing 
ecoregions will differ more greatly.  

We add more justification of ecoregions to the methods.  

We used the Ecological Regions of North America as a way of grouping clusters of 
catchments in order to facilitate the discussion of similarities (or dissimilarities) 
between the drivers of model performance across broad areas (Omernik, 1987). 
Ecoregions are defined by “perceived patterns of a combination of causal and 
integrative factors including land use, land-surface form, potential natural vegetation, 
and soils” (Omernik, 1987). Results from individual catchments were aggregated to the 
ecoregion level for comparison of general trends. A catchment was assigned to an 
ecoregion based on the greatest area of an ecoregion contained within the drainage 
boundary of a catchment.  

 

4. Line 20 and 71: “model performance” – should indicate that streamflow performance is 
the only variable being assessed. 

We have clarified that streamflow is being assessed in the abstract.  

5. Line 26: Why are large-scale hydrologic models important? Should add brief justification 
of the rational of using these vs. e.g. regional, catchment scale models. 

We note justifications for the use of large-scale models over smaller-scale 
models, including their comprehensive spatial coverage, 
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consistency/transferability in methodology across regions, and their ability to 
inform transboundary water policy.  

6. Line 29: Besides parameterizing and calibrating, what about physics and physical 
process representation in these models? 

This is an important question, but beyond the capabilities of our approach or this 
study. 

7. Line 44: Clarify what is meant by “sites”. 

A “site” is a streamgage and its upstream drainage.  

8. Line 54: Can also cite Ma et al., 2023 (Groundwater) https://doi.org/10.1111/gwat.13362 

Thank you for the reference. We now cite this study. We moved sentences around 
so the citation is later on in the paragraph.  

9. Lines 54-55: This is too broad a statement. Needs further explanation or an example 
given. 

This statement has been deleted as the section was rewritten.  

10. Line 60: Have numerous explainable AI methods been developed for use in hydrology or 
just generally? More generally, expand on what explainable AI is and how it is defined. 
Authors discussed that XAI can be leveraged and cite methods, but there is not a clear 
explanation of what XAI is.   

We cite three studies are now cited that have been used in hydrology: 

In hydrology, for example, these tools have been applied for the analysis of soil 
moisture (Huang et al., 2023), water table depth (Ma et al., 2024), and drought 
intensity (De Meester and Willems, 2024). Interpretable machine learning can 
complement and enhance traditional sensitivity approaches  (Maier et al., 2024), by 
providing post-hoc interpretative insights into how parameter changes influence 
hydrologic model predictions, that is, without the need for perturbing the model 
parameter space. 

11. Line 90: Clarify if these basins are NHDPlus or something else. 

Yes, as these are USGS gages they are.  

12. Line 92-93: This seems more like a result and might fit better in the results section. 

The NHM and NWM model outputs were not produced by us, rather we just use 
the products of other researchers, thus we keep this line in the methods.  

13. Line 94: separate the metrics section from the model section as these are not explicitly 
related. Also, provide justification for only using KGE. 

We separate these sections. Further, justification for the KGE and discussion of 
alternate metrics is listed in the Discussion. 
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14. Line 105: It is not clear what the “aggregated” attributes are. Are these the 7 groupings 
listed in the next sentence? 

We remove the term “aggregated” and replace it with “selected”. Yes, those are 
the seven groupings.  

15. Line 110-111: Need to clarify where soil water content is being “represented.” In the 
models or elsewhere? 

This sentence has been corrected. The authors of this study are using the 
products in BasinATLAS, thus “we” are not representing the value. Rather, the 
soil water content in the BasinATLAS dataset is calculated as described and we 
simply use this value as a catchment attribute. 

16. Line 112: The “in-the-bag” and “out-of-bag” language is jargon and can be explained in 
plain language. The language could be revised to be more consistent with the “training-
testing” language in the results. Further explanation can be provided on the RF 
methodology, particularly because this paper is outlining a new methodology that others 
will likely want to employ and will need more specifics to do that. E.g., what was the 
training-testing split as a percentage? Was this a randomized selection? 

We keep the in-the-bag and out-of-bag terminology as it is true to the context our 
modeling approach. We do bootstrapping rather than cross-validation so it is 
more appropriate to write it the way we have. We use bootstrapping in lieu of 
cross-validation, thus the percentage (e.g., 80:20) is not explicitly defined but 
depends on the amount of random sampling. In our study, this split tends towards 
66:34 (training-testing) but varies for each tree in the random forest.  

17. Line 125: Unless someone is familiar with Shapely values and methodology, some of the 
results are initially difficult to interpret. Consider adding some general explanation of 
what feature importance, Shapely value, and directionality mean within the context of the 
results and figures. Also, it would be helpful to consider explaining further in the methods 
/ changing the language about how KGE behaves (perhaps instead of 
increase/decrease use improve/worsen) so that the qualitative relationship between 
Shapely and KGE is clear. 

In earlier iterations of this manuscript, we used terminology such as 
“improve/worsen” but this can be viewed as subjective language, thus we use 
more the more exact language of “increase/decrease. This was done to comply 
with USGS style guidance.  

Nonetheless, the point is taken regarding the complexity of the topic.  We add a 
new paragraph to the method to describe a more plain language summary of how 
Shapley values work:  

To aid in interpretation of Shapley values, we provide a brief example. The random forest 
model described in Section 2.2 is trained to predict the KGE of the NWM (or NHM) model 
at 4,383 sites in the analysis. In short, “how accurate is the NWM model at  site?” The 
random forest model transforms 48 catchment attribute features into a prediction of 
KGE. In the absence of Shapley values or interpretable AI, the process by which the 



8 
 

catchment attributes are transformed to create the KGE prediction is uncertain, that is, it 
is a blackbox. Shapley values elucidate the marginal contribution of a feature (𝜓) to the 
random forest, which is defined as how much the predicted KGE at a site increases (+𝜓) 
or decreases (-𝜓) when a feature is included in the model. In this way, sensitive features 
will have a high magnitude of Shapley values, |𝜓|, as the predicted KGE is sensitive to 
the value that the feature takes. Thus, Shapley values help to distinguish the catchment 
attributes that cause variation in predicted KGE across space. Although the full range of 
Shapley values for the 48 catchment attribute features are informative, we focus on the 
most impactful feature negatively affecting model performances at each site. The most 
impactful feature is defined as the one having the lowest Shapley value (min 𝜓) at a site, 
indicating the most negative marginal contribution to KGE prediction, that is, reducing 
the predicted accuracy of the NWM (or NHM) 

 

18. Figure 5: Explain difference between Shapely value and the Predictor Value, this will 
help in interpreting the swarm plot. 

The Predictor Value is the value of the explanatory variable (e.g., Precipitation). 
Thus, when the markers in the swarm plot are dark, the precipitation is low at that 
basin relative to other basins. On the other hand, when the markers in the swarm 
plot are bright, the precipitation at that basin is high relative to other basins.  

We add this explanation to the caption. 

19. Line 128: Expand on this point and give reasoning for why this is beneficial within this 
methodology. Explain “distribution of gain.” 

Detailed description of the four properties is beyond the necessity of the text and 
the reader is left to follow up on the in text citation to read more. 

20. Line 146: Consider moving the ecoregion names listed here to the figure caption and 
replace with content focused on why this methodology was chosen, the implications of 
this method on the study, general ecoregion methodology explanation. (See Comment 
6). 

This is now done.  

21. Line 154: A plot of actual to modeled KGE would be helpful (maybe in the 
Supplementary Materials). Did authors evaluate this with any other metrics? 

This is now shown in the paper and below for the reviewer. We briefly looked at 
NSE, but it did not show much of a different story than KGE.  
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Figure 3. Random forest model evaluation for KGE prediction. The binned scatter plot displays 
the count of data points in each partitioned bin. For visual clarity, predicted and observed KGE 
values less than 0 are not plotted, although they are included in the calculation of R2 for each 
model.  

 

22. Line 249-242: This is a great explanation. Perhaps include something similar in the 
introduction as this is an important point which makes this study unique. Remove the 
second “that is.” 

Thank you – we now include this statement in the introduction to justify the work. 
We also remove the second “that is”.  

23. Line 272: after “certain thresholds are crossed” reference specifically the scatter plots in 
Fig. 4. 

The figure is now referenced.  

24. Section 4.2 Title: Rethink the section heading. The section broadly discusses model 
performance related to the ecoregion features, not model formulations or actual process 
representations. 

We change the section heading to “Natural and anthropogenic drivers of NWM 
and NHM performance” to be more consistent with the model insights.  

25. Line 332: The NWM routes streamflow through the NHDPlus vector network, not across 
a 1km2 The reasoning for headwater performance should be given more thought. 

The flow is routed as you say, but the landscape fluxes are produced at the 
resolution we describe.  

26. Line 362: “under the hood” model assessments – this is jargon and can be clarified with 
plain language. 

We change this term to “causative and mechanistic model assessments 
performed by others”.  

27. Figure 3: Specify on the x-axis this is predicted. 

This is given in the figure caption.  

28. Figure 4, Figure S2, Figure S3: Need colorbar explanations. 
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The colorbars represent the values of the Shapley value (𝝍) for each panel. This 
has now been noted.  


