

From: Getachew Agmuas Adnew and co-authors

Anonymous Referee #1

We thank referee 1 for the constructive feedback and suggestions on how to revise the manuscript. The answers to the questions/ comments and suggestions are stated below each comment in blue. *Paragraphs that are modified in the revised manuscript are shown in blue (italics).*

This work presented high-precision measurement results of CO₂ triple oxygen isotopes from upper troposphere lower stratosphere air samples up to 21 km collected during past aircraft campaigns. The results are interesting as it showed distinct relationship between triple oxygen isotopic compositions and N₂O for air in the upper troposphere vs. lower stratosphere. Such observation is critical to enable CO₂ triple oxygen isotopes as a tool to understand stratosphere-troposphere exchange, as well as global carbon cycle. This work highlighted the importance of high-precision triple oxygen isotopes measurements during quantification of the downward net isoflux of O-MIF signal. While the presentation of the results is clear, interpretation of the data is mostly adequate, I have a few minor general comments:

We appreciate your kind words about our work presented in the manuscript and your valuable comments.

1. It would be great if there is more discussion about the de-coupling of chemical mechanisms of CO₂-O₁₇ generation and N₂O loss in the stratosphere due to stratospheric dynamics (Lines **325 - 344**). The CO₂-O₁₇ signal is originated from ozone chemistry, therefore the path history (O_{1D} abundance vary greatly in the stratosphere) and age of the air parcel are both important; while N₂O is more sensitive to altitude as the photochemical lifetime of N₂O decrease exponentially in the stratosphere. Therefore, air parcels that are relatively "young" but have been to mid-stratosphere (~30 km) could have significant N₂O loss but low O₁₇, and vice versa. Clarifying some of these mechanisms could be useful.

In section 2.2 of the revised manuscript, we included the following paragraphs for clarification:

The isotopic composition of CO₂ in the upper stratosphere and mesosphere provides a unique tool for studying atmospheric transport and chemistry [Wiegle et al. 2013; Liang et al., 2007, 2008, boering et al., 2004]. The $\Delta^{17}\text{O}$ of CO₂ is primarily modified by O(¹D), which is produced photochemically by O₃ photolysis. However, the relevant isotope effects occurring in the stratosphere are still not yet well enough understood [Wiegle et al. 2013; Liang et al., 2007, 2008]. Nevertheless, an empirical estimate of the isotope flux

from the stratosphere can be derived from measurements near the tropopause, like the ones presented here

In the stratosphere CO₂ and N₂O isotopes are influenced by different processes. N₂O is mainly destroyed by N₂O photolysis but is also affected by O(¹D) in the lower stratosphere and upper troposphere. Since N₂O photolysis and O₃ photolysis occur at different wavelengths, the relationship between Δ¹⁷O(CO₂) and N₂O contains valuable information about atmospheric chemistry and transport. The lifetime of N₂O varies with altitude. In the upper stratosphere and mesosphere, the N₂O lifetime decreases, leading to greater scatter between the two tracers. Δ¹⁷O(CO₂) values increase with altitude as N₂O mixing ratios decrease below ~70 km. However, above 70 km, Δ¹⁷O(CO₂) begins to decrease with further decreases in N₂O mixing ratios. However, in the lower most stratosphere and upper troposphere, where the lifetime of N₂O against photolysis is longer than the transport time, the scatter in N₂O values remains low. The Δ¹⁷O–N₂O correlation remains consistent both spatially and temporally in the lowermost stratosphere and upper troposphere (Liang et al., 2007, 2008). Since the net isotope flux of Δ¹⁷O is derived from samples from the lower stratosphere and upper troposphere, the observed variability (scatter) in the stratosphere does not affect the global average Δ¹⁷O–N₂O slope used to estimate the flux of Δ¹⁷O from the stratosphere to the troposphere.

2. More discussion may be needed to support the argument that the slope from CARIBIC samples can represent a “global average” N2O-O17 slope. Because of the observed potential “de-coupling” of N2O-O17 slope, it could be useful to discuss what are the potential factors that could result in different slopes. If the well-mixed upper trop air from CARIBIC represents global average slope, StratoClim gives you “below average” slope, where can you anticipate “higher than average” slopes? How will such variations impact the uncertainty of the global average slope?

[See our reply to the previous comment.](#)

3. If the uncertainty in “global average” slope changed because of 1) and 2), how does it impact the uncertainties in global estimation of O17 isoflux?

[See previous comment](#)

More detailed comments:

Sections 2.2 & 2.3: since these were not mentioned until section 5, maybe considering moving these down (after 2.5) a little bit?

Thank you very much for your suggestion. In the revised manuscript we moved section 2.2 and 2.3 to appear after 2.5.

Line 174: maybe briefly mention how age of air is calculated?

In the revised manuscript we included a reference to the publication that was used to calculate the age of air.

The age of air was calculated using SF6 measurements as described in detail by Krol et al., 2018.

Line 249: CO2 not CH2.

Thank you very much for spotting this. In the revised manuscript the typo is corrected.

Figure 5: subpanel titles (a, b, c, d) are not lined up.

In the revised manuscript the subpanel title is aligned.

Figures 3-8: $\Delta^{17}\text{O}$ is used in your text but in figures you used “ $\Delta^{17}\text{O}$ ”, please consider using consistent notations.

In the revised manuscript we have changed the $\Delta^{17}\text{O}$ in the figure label to $\Delta^{17}\text{O}$.

Line 368: uncertainty inconsistent with figure.

Thank you very much for pointing out the inconsistency, in the revised manuscript the uncertainty indicator in the figures has been corrected to be consistent with the text.

Lines 388 & 394: repetitive sentences.

In the revised manuscript the repeated sentence has been deleted.

References

Wiegel, A. A., Cole, A. S., Hoag, K. J., Atlas, E. L., Schauffler, S. M., and Boering, K. A.: Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide, PNAS, 110, 17 680–17 685, <https://doi.org/10.1073/pnas.1213082110>, 2013.

Liang, M.-C., Blake, G. A., and Yung, Y. L.: Seasonal cycle of C16O16O, C16O17O, and C16O18O in the middle atmosphere: Implications for mesospheric dynamics and biogeochemical sources and sinks of CO₂, J. Geophys. Res. Atmos., 113, D12, 2008.

Liang, M.-C., Geoffrey, A. B., Brenton, R. L., and Yung, Y. L.: Oxygen isotopic composition of carbon dioxide in the middle atmosphere, PNAS, 104, 5, 2007.

Boering, K. A., Jackson, T., Hoag, K. J., Cole, A. S., Perri, M. J., Thiemens, M., and Atlas, E.: Observations of the anomalous oxygen isotopic composition of carbon dioxide in the lower stratosphere and the flux of the anomaly to the troposphere, Geophys. Res. Lett., 31, 2004.

Krol, M., De Bruine, M., Killaars, L., Ouwersloot, H., Pozzer, A., Yin, Y., Chevallier, F., Bousquet, P., Patra, P., Belikov, D., et al.: Age of air as a diagnostic for transport timescales in global models, Geoscientific Model Development, 11, 3109–3130, 2018.