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Abstract. Machine learning (ML) models have become key ingredients for digital soil mapping. To improve the 

interpretability of their predictions, diagnostic tools such as the widely used local attribution approach known as SHapley 

Additive exPlanation (SHAP) have been developed. However, the analysis of ML model predictions is only one part of the 

problem, and there is an interest in obtaining deeper insights into the drivers of the prediction uncertainty as well, i.e., to 

explain why an ML model is confident, given the set of chosen covariate values, in addition to why the ML model delivered 10 

some particular results. In this study, we show how to apply SHAP to local prediction uncertainty estimates for a case of urban 

soil pollution, namely, the presence of petroleum hydrocarbons in soil in Toulouse (France), which pose a health risk via 

vapour intrusion into buildings, direct soil ingestion and groundwater contamination. Our results show that the drivers of the 

prediction best estimates are not necessarily the drivers of confidence in these predictions, and we identify those leading to a 

reduction in uncertainty. Our study suggests that decisions regarding data collection and covariate characterisation, as well as 15 

communication of the results, should be made accordingly. 

1 Introduction 

Maps of soil physical properties such as cation exchange capacity, pH, soil organic content, and hydraulic properties, as well 

as chemical properties such as concentrations of heavy metals (arsenic, mercury, etc.) and radionuclides (Caesium 137, 

Plutonium-239+240) and target-oriented indicators such as erodibility and soil compaction (see, e.g., Panagos et al., 2022), 20 

are essential for multiple types of studies, such as pollution assessment, urban planning, and construction design. In recent 

years, these maps have led to many advances in improving spatial prediction in the domain of digital soil mapping, denoted 

DSM (McBratney et al., 2003), with the development of methods and approaches based on either the geostatistical framework 

(Chilès and Desassis, 2018) or machine learning (denoted ML) techniques (Wadoux et al. 2020). 

Beyond spatial prediction, the question of uncertainty in spatial prediction has emerged as a key challenge (Heuvelink and 25 

Webster, 2022: Sect. 4). Historically, this question has been addressed with kriging (see, e.g., Veronesi & Schillaci, 2019 for 

a discussion of DSM). Techniques based on ML have increasingly been used or adapted for this purpose. For instance, the 

popular quantile random forest model (e.g., Vaysse & Lagacherie, 2017) has been used to produce soil information worldwide 

in the SoilGrids 2.0 database together with uncertain information (Poggio et al., 2021). Along these lines, improvements in 
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validation procedures have been proposed (Schmidinger & Heuvelink 2023) together with tools for assessing prediction error 30 

and transferability (Ludwig et al., 2023). 

However, quantifying the uncertainty is only one part of the problem, and there is an interest in gaining deeper insights into 

the influence of each covariate on the overall prediction uncertainty. This is the objective of global sensitivity analysis (Saltelli 

et al., 2008), which can be conducted within two settings: either “factor fixing” to identify noninfluential covariates or “factor 

prioritisation” to rank the covariates in terms of importance. The expected results can be of different types: the former setting 35 

provides justifications for simplifying the spatial predictive model by removing the noninfluential covariates, whereas the 

latter setting provides justifications for prioritising future characterisation efforts by focusing on the most important variables. 

In DSM, this question has been addressed with the tools of variance-based global sensitivity analysis (i.e., the Sobol’ indices, 

as implemented by Varella et al., 2010) or with variable importance scores together with potentially recursive feature 

elimination procedures (as implemented by Poggio et al., 2021, and Meyer et al., 2018). Both approaches provide a “global” 40 

answer to the problem of sensitivity analysis, i.e., by exploring the influence over the whole range of variation of the covariates. 

However, these methods do not enable us to measure the influence of the covariates locally, i.e. for a prediction at a certain 

spatial location. 

 

Figure 1: Example of SHAP-based decomposition of the prediction best estimate (modelled by the conditional mean of a random 45 

forest model, Panel a) and of the prediction uncertainty (modelled by the interquartile width estimated via a quantile random forest 

model, Panel b) for the variable of interest in the synthetic test case (fully described in Sect. 2.1) at a certain location of the study 

area. Each horizontal bar represents the contribution to the prediction (indicated by the vertical dotted line) of the considered 

covariates (indicated on the vertical axis) that correspond to the mean diurnal range Trange, to the group of covariates including the 

maximum and mean temperatures of the warmest quarter of the year Tmean-max, and to the precipitation of the wettest month Pwettest. 50 

Note the differences in the ordering of the groups, which indicate that the contributors to the mean and to the uncertainty estimate 

differ. 
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Recently, an alternative local approach was proposed by relying on a popular method from the domain of interpretable machine 

learning (Molnar, 2022) based on Shapley values (Shapley, 1953). This method has shown promising results in attributing the 55 

contributions of each covariate to any spatial prediction (Padarian et al., 2020; Wadoux et al., 2023; Wadoux and Molnar, 

2022). 

To date, the application of Shapley values to DSM has focused mainly on the prediction best estimate, and little information 

has been provided on the local prediction uncertainty. Motivated by a case of pollution concentration mapping in the city of 

Toulouse, France (Belbeze et al., 2019), we aim to investigate how to use Shapley values to decompose the local uncertainty, 60 

measured either by an interquantile width or by a variance estimate. Our objective is to explore the relationship between the 

drivers of the prediction best estimate and the drivers of confidence in the predictions. Providing evidence of differences in 

the dominant drivers is expected to have implications in terms of data collection and covariate characterisation. 

Communication of the results is also expected to be adapted accordingly. Figure 1 illustrates the type of result that can be 

derived with the approach. In this example (based on the synthetic test case fully detailed in Sect. 2.1), the mean prediction 65 

(best estimate, left panel) of the variable of interest at a certain location does not have the same contributors as the local 

uncertainty measured by the interquartile width (right panel). The group of covariates including the maximum and mean 

temperatures of the warmest quarter of the year (named Tmean-max) was identified as the first and second most important 

contributors, respectively. The identification of the least influential group of covariates also differed across both cases; this is 

illustrated by the mean diurnal range Trange, which has little impact on the prediction result but strongly influences the 70 

confidence in the result. 

The remainder of the paper is organised as follows. We first describe two application cases that motivated this study. In Sect. 

3, we provide further details on the statistical methods used to estimate the local contributions to the prediction uncertainty. In 

Sect. 4, we apply the methods and provide an in-depth analysis of the differences in the drivers of prediction best estimates 

and uncertainty. In Sect. 5, we discuss the practical implications of the proposed procedure and its transferability to global-75 

scale projects. 

2 Case study 

2.1 Synthetic test case 

The first test case is synthetic. It aims to predict a virtual species suitability surface, denoted by y, over central Europe (Figure 

2). This surface is calculated based on six bioclimatic covariates, defined in Table 1 (with prior normalisation between 0 and 80 

1), which were extracted from the WorldClim dataset (available at www.worldclim.org/data/bioclim.html), as follows: 

 

y(𝑠) = 10 × 𝑇range(𝑠) + 5 × 𝑇max(𝑠) +  5 × 𝑇mean(𝑠) + 5 × 𝑃wettest(𝑠) + 10−4. 𝑃driest(𝑠) + 10−4. 𝑃coldest(𝑠), (1) 

 

http://www.worldclim.org/data/bioclim.html
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By construction, this model has two characteristics that are used here to validate the proposed methods described in Sect. 3.4: 85 

(1) the last two covariates have negligible influence and (2) the covariates Tmax and Tmean are strongly dependent. The dataset 

is based on the vignette of the R package CAST, which is available at https://hannameyer.github.io/CAST/articles/cast02-

AOA-tutorial.html. A series of 25 “virtual” soil samples were randomly extracted (highlighted by square-like markers in Fig. 

2) across the study area. 

 90 

Table 1. Description of the covariates for the synthetic test case. 

Covariate Unit Description Identifier in the 

WorldClim dataset 

Trange °C Mean diurnal range, i.e., mean of the 

monthly (max temperature - min 

temperature). 

Bio2  

Tmax °C Max temperature of the warmest month Bio5 

Tmean °C Mean temperature of the warmest quarter Bio10 

Pwettest mm Precipitation of the wettest month Bio13 

Pdriest mm Precipitation of the driest month Bio14 

Pcoldest mm Precipitation of the coldest quarter Bio19 

 

 

Figure 2: Covariates (with prior normalisation between 0 and 1) used in the synthetic test case (see Table 1 for a detailed description). 

The spatial distributions of the 25 soil samples are indicated by square-shaped markers. The size of each square is proportional to 95 

the synthetic variable calculated from the covariates based on Eq. (1). 

https://hannameyer.github.io/CAST/articles/cast02-AOA-tutorial.html
https://hannameyer.github.io/CAST/articles/cast02-AOA-tutorial.html
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2.2 Real test case 

The real case focuses on DSM to predict the total petroleum hydrocarbon (C10-C4) concentration over the city of Toulouse 

(located in southwestern France), as part of the definition of urban soil geochemical backgrounds (see the comprehensive 

review by Belbeze et al. (2023)). In this case, petroleum hydrocarbons have multiple sources, such as road and air traffic, 100 

industrial emissions, and residential heating. The presence of this pollutant may inhibit several soil functions and hence prevent 

the delivery of associated ecosystem services (Adhikari and Hartemink, 2016). A primary soil function that may be jeopardised 

is the ability of the soil to provide a platform for human activities in a risk-free environment. Petroleum hydrocarbons in soil 

pose a risk to human health via several pathways, namely, direct soil ingestion, which is a particularly sensitive pathway for 

young children; exposure through respiration via vapour intrusion into buildings; and contamination of groundwater used for 105 

drinking water purposes. Notably, our study uses the data of this case to illustrate and discuss the applicability of the proposed 

approach and is not meant to supplement the results of Belbeze et al. (2019). 

 

Figure 3: (a) Spatial locations of the 1,043 soil samples (square-like markers) across the city of Toulouse, which is located in 

southwestern France (see the location in the top right inset map). The size of each square is proportional to the logarithm (base 10) 110 

of the C10-C4 hydrocarbon concentration (expressed in mg/kg). (b) Histogram of the logarithm (base 10) of the C10-C4 hydrocarbon 

concentration (expressed in mg/kg) with a magnified view of the interval 2.0-4.0 (top right inset panel). 

 

We use 1,043 soil samples collected over a depth interval [0, 2 m] to analyse the logarithm (base 10) of the C10-C4 hydrocarbon 

concentration, expressed in mg/kg (Fig. 3). We aim to predict the concentration over the whole city of Toulouse using a fine 115 

grid of spatial locations (one point every 100 m, i.e., >45,000 grid points) with the covariates described in Table 2. Figures 4 

and 5 depict the spatial distributions of the considered covariates of continuous and categorical types, respectively. 
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Figure 4: Covariates of continuous type over the city of Toulouse (see Table 2 for a detailed description). 

 120 

Figure 5: Covariates of categorical type over the city of Toulouse. Left: Lithology (MT: medium terrace alluviums, LT: low 

terrace alluviums, LP: low plain alluviums, MB: major riverbed alluviums, MO: molasses, and FI: fill materials). Right: Land use 

(AGR: agriculture, FOR: forests and grasslands, and IND: industrial and commercial economic activities); see Table 2 for a 

detailed description. 

 125 
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In addition to these covariates, we follow the approach proposed by Behrens et al. (2018) to better account for spatial 

dependence: we also consider seven additional covariates, namely, the two geographical coordinates, X and Y, and five 

geographical covariates that correspond to the distances to the southeastern, northeastern, southwestern and northwestern 

corners of a rectangle around the city (denoted by Dse, Dne, Dsw, and Dnw) and the distance to the centre location of this rectangle 

(denoted by Dmiddle). A total of 15 covariates are considered. 130 

 

Table 2. Description of the covariates of the real test case. 

Covariate Unit Description Source 

Elevation [m] Digital elevation model 

postprocessed from LIDAR 

data and gridded at a 10 m x 10 

m resolution 

Based on the processing detailed in (Belbeze et 

al., 2022) 

Lithology - 8 categories based on the 

grouping of Belbeze et al. 

(2019) 

Based on the CHARM database available at 

https://www.data.gouv.fr/fr/datasets/cartes-

geologiques-departementales-a-1-50-000-bd-

charm-50/  

Land-Use - 4 categories based on the 

grouping of Belbeze et al. 

(2019) 

Based on Copernicus (2012), available at 

https://doi.org/10.2909/debc1869-a4a2-4611-

ae95-daeefce23490 

Dbasias [m] Distance to industrial sites 

(abandoned or active) 

potentially at the origin of 

pollution 

BASIAS database (Leprond (2013)), available at 

https://www.data.gouv.fr/en/datasets/inventaire-

des-sites-pollues/  

Dbasol [m] Distance to (potentially) 

polluted sites 

BASOL database, available at 

https://www.data.gouv.fr/fr/datasets/base-des-

sols-pollues/  

Droad [m] Distance to the closest roads Based on the processing detailed in (Belbeze et 

al., 2019) 

Dwater [m] Distance to the closest rivers Based on the processing detailed in (Belbeze et 

al., 2019) 

Dcenter [m] Distance to the city centre Based on the processing detailed in (Belbeze et 

al., 2019) 

https://www.data.gouv.fr/fr/datasets/cartes-geologiques-departementales-a-1-50-000-bd-charm-50/
https://www.data.gouv.fr/fr/datasets/cartes-geologiques-departementales-a-1-50-000-bd-charm-50/
https://www.data.gouv.fr/fr/datasets/cartes-geologiques-departementales-a-1-50-000-bd-charm-50/
https://doi.org/10.2909/debc1869-a4a2-4611-ae95-daeefce23490
https://doi.org/10.2909/debc1869-a4a2-4611-ae95-daeefce23490
https://www.data.gouv.fr/en/datasets/inventaire-des-sites-pollues/
https://www.data.gouv.fr/en/datasets/inventaire-des-sites-pollues/
https://www.data.gouv.fr/fr/datasets/base-des-sols-pollues/
https://www.data.gouv.fr/fr/datasets/base-des-sols-pollues/
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X and Y 

coordinate 

[m] Geographical coordinate in the 

coordinate reference system of 

France, Lambert 93 

- 

Dse, Dne, Dsw, 

Dnw, Dmiddle 

[m] Distances to the southeastern, 

northeastern, southwestern 

and northwestern corners of a 

rectangle around the city and 

the distance to the centre 

location of this rectangle 

Based on the approach of Behrens et al. (2018) 

3 Methods 

3.1 Local attribution framework 

We first consider that the value of the variable of interest 𝑦(𝑠) (e.g., a soil property or pollutant concentration) at a given 135 

spatial location s is related to d covariates 𝐱(𝑠) = {𝑥1(𝑠), 𝑥2(𝑠), … , 𝑥𝑑(𝑠)}. The mathematical relationship is modelled by an 

ML model (denoted by f(.)), where 𝑓(𝐱(𝑠)) is assumed to resemble 𝑦(𝑠) as closely as possible; that is, 𝑦(𝑠) ≈ 𝑓(𝐱(𝑠)). The 

ML model also provides a measure of the uncertainty (denoted by u(s)) of this prediction that is related to 𝐱(𝑠) through the 

function g(.), which may differ from f(.). In this study, we focus on the random forest model (denoted by RF) used for regression 

(Breiman, 2001) and on its quantile regression variant, denoted by qRF (Meinshausen 2006), because this ML model has 140 

proven to be very efficient in multiple studies for DSM, as outlined in the introduction. Further details are provided in Appendix 

B. To reflect the magnitude of the RF prediction uncertainty 𝑢(s) at spatial location s, we use the interquantile half-width 

(denoted by 𝐼𝑄𝑊) at a given level  defined as follows: 

𝑢(s) = g(𝐱(𝑠)) = 𝐼𝑄𝑊 = 𝑞
1+

2 (𝑦|𝐱(𝑠)) − 𝑞
1−

2 (𝑦|𝐱(𝑠)),       (2) 

where 𝑞𝜏(𝑦|𝐱(𝑠)) is the conditional quantile at level . In particular, the interquartile width corresponds to 𝐼𝑄𝑊=0.50. 145 

Our objective is to decompose u(s) at a given spatial location s as a sum of the µi=1,..,d(s) specific to the values of the covariates 

𝐱(𝑠) within the setting of the additive “feature attribution approach” (as defined by Lundberg and Lee (2017): Sect. 2) as 

follows: 

u(𝑠) =  g(𝐱(𝑠)) = µ0 + ∑ µj(𝑠)
p
j=1 ,         (3) 

where µ0 (named the base value) is a constant value (see the definition in Sect. 3.2). This decomposition can also be applied 150 

to f(.) as described in previous studies, as indicated in the introduction. 

Importantly, Eq. (3) does not aim to linearise g(. ) but to compute the contribution of each covariate to the particular prediction 

uncertainty value 𝑔(𝐱(s)). This means that the decomposition provides insights into the influence of the particular instance of 
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the covariates x(s) relative to g(𝐱(𝑠)): (1) the absolute value of µ(s) informs on the magnitude of the influence at location s, 

directly expressed in physical units, which facilitates interpretation, and (2) the sign of µ(s) indicates the direction of the 155 

contribution, i.e., whether the considered covariate influences the prediction upwards or downwards in relation to the base 

value µ0. Both aspects are outlined in Fig. 1; the width of the horizontal bar and the arrow are indicators of (1) and (2), 

respectively. To quantify µ(𝑠) in Eq. 3, we rely on the SHapley Additive exPlanation (SHAP) approach, which was developed 

by Lundberg and Lee (2017) based on the Shapley values described in Sect. 3.2. 

3.2 Shapley additive explanation 160 

The SHAP approach relies on the Shapley value (Shapley, 1953), which is used in game theory to evaluate the “fair share” of 

a player in a cooperative game, i.e., it is used to fairly distribute the total gains to multiple players working cooperatively. It is 

a “fair” distribution in the sense that it is the only distribution satisfying some desirable properties (efficiency, symmetry, 

linearity, and 'dummy player'). See the proofs by Shapley, 1953, and Aas et al., 2021: Appendix A for a comprehensive 

interpretation of these properties from an ML model perspective. 165 

Formally, we consider a cooperative game with d players and let 𝐷𝑆 ⊆ 𝐷 = {1, … , 𝑑} be a subset of |𝐷𝑆| players. We define a 

real-valued function that maps a subset 𝐷𝑆 to its corresponding value val: 2𝐷𝑆 → ℝ and measures the total expected sum of the 

payoffs that the members of 𝐷𝑆 can obtain by cooperation. The gain that the ith player obtains is defined by the Shapley value 

with respect to val(. ): 

µi(s) =
1

𝑑
∑ (

𝑑 − 1
|𝐷𝑆|

)
−1

(val(𝐷𝑆 ∪ {i}) − val(𝐷𝑆)𝐷𝑆⊆𝐷\{𝑖} ),       (4) 170 

Equation 4 can be interpreted as the weighted mean over the contribution function differences for all subsets 𝐷𝑆 of players not 

containing player i. This approach can be translated for ML-based prediction by viewing each covariate as a player and by 

defining the value function val(.) as the expected output of the ML model conditional on 𝐱𝑆
∗ , i.e., when we only know the 

values of the subset 𝐷𝑆 of inputs (Lundberg and Lee, 2017). This approach is flexible with respect to the output of the ML 

model and can be applied to the conditional mean of the RF model, as well as to the uncertainty measure computed with the 175 

qRF model (Eq. 2). 

Formally, 

val(𝐷𝑆) = E(ℎ(𝐱)|𝐱𝐷𝑆
= 𝐱𝐷𝑆

∗ ),          (5) 

where h(.) can correspond to either the conditional mean, denoted by f(. ), or the uncertainty estimate, denoted by g(. ). 

In this setting, the Shapley value can then be interpreted as the contribution of the considered covariate to the difference 180 

between the prediction ℎ(𝐱∗) and the base value µ0. The latter can be defined as the value that would be predicted if we did 

not know any covariates (Lundberg and Lee, 2017). In the application case, we are interested in pollution prediction; in this 

context, we choose µ0 = 0, which means that if we do not know any covariates, no pollution is expected (and there is no 

uncertainty). In this way, µi in Eq. 3 corresponds to the change in the expected model prediction if f(.) is used (or in the 
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uncertainty if g(.) is used) when conditioning on that covariate and explains how to depart from 0. By construction, µi = 0 185 

indicates the absence of influence for the ith covariate related to the ‘dummy player’ property of the method. In addition, the 

sum of the inputs’ contributions is guaranteed to be exactly ℎ(𝐱∗(s)) − µ0, which is related to the ‘efficiency’ property of the 

method. 

In this study, we aim to calculate the Shapley values for both the prediction best estimates modelled by f(.) and the uncertainty 

modelled by g(.). To facilitate comparison across the study area between these different prediction objectives, we use a scaled 190 

version of the Shapley absolute value, i.e., µ(s)/(𝑓(𝐱∗(𝑠))), expressed in %. This means that the contributions, regardless of 

the prediction objective, are analysed in Sect. 4 with a common scale, which is chosen here as the value of the prediction best 

estimate for the given considered instance. 

In practice, the computation of the Shapley value may be demanding because Eq. (4) implies covering all subsets 𝐷𝑆 (the 

number of which grows exponentially with the number of covariates d, i.e., 2d) and Eq. (5) requires solving integrals of 195 

dimension 1 to d−1. When the SHAP approach is applied to a large number of spatial locations (in our case, >45,000), the 

computational complexity is high. To alleviate the computational burden, a possible option is to rely on the group-based 

approach proposed by Jullum et al. (2021), which can be used to adapt Eq. 4 for a group of covariates. Considering a partition 

𝑮 = {𝐺1, 𝐺2, … , 𝐺𝑔} of the covariate set D, the Shapley value for the ith group of covariates Gi is as follows: 

µGi
(s) =

1

𝑔
∑ (

𝑔 − 1
|𝑇|𝑔

)
−1

(val(𝑇 ∪ {G𝑖}) − val(𝑇)𝑇⊆𝑮\{𝐺𝑖} ),       (6) 200 

where the summation index T runs over the groups in the sets of groups 𝑮\{𝐺𝑖} and |𝑇|𝑔 is the number of groups in T. This 

means that this group Shapley value is the game theoretic Shapley value framework applied to groups of covariates instead of 

individual covariates. The group Shapley values possess all the Shapley value properties. The practical advantage of working 

with groups is that computing Eq. 6 has a relative computational cost reduction of 2𝑑−𝑔, hence making possible the use of an 

exact method by considering all combinations of covariates for computing the Shapley values. 205 

This definition raises the practical question of how to define groups. As explained by Jullum et al. (2021), this definition can 

be based on knowledge/expertise, i.e., on information that makes sense in relation to the problem at hand. The main advantage 

is that this facilitates the interpretation of the Shapley values. The second grouping option, which is complementary to the one 

based on expertise, consists of identifying covariates that provide redundant information because they share a strong 

dependency. The groups of dependent covariates can be identified with a clustering algorithm (see Hastie et al., 2009: Chapter 210 

14) by taking as input the matrix of pairwise similarities. This approach does not, however, ensure that the effect of dependence 

among the covariates is completely removed, which may influence the SHAP results, as was extensively investigated by Aass 

et al. (2021). To account for this, we rely on the method proposed by Redelmeier et al. (2020) using conditional inference trees 

(Hothorn et al., 2006) to model the dependence structure of the covariates. 

3.3 Overall procedure 215 

The proposed approach, named group-based SHAP (see the implementation details in Appendix A), comprises three steps. 
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Step 1 aims to build and train the RF models based on the dataset of soil samples together with the covariate values, which is 

named the training dataset. The RF hyperparameters correspond to the number of variables at which to possibly split in each 

node (denoted by mtry) and the minimal node size at which to split (denoted by ns). Their values are tuned via a repeated 10-

fold cross-validation process (Hastie et al., 2009: Chapter 7). Although the RF model is efficient in taking into account many 220 

covariates, performing a screening analysis prior to the SHAP application within the cross-validation procedure is useful for 

facilitating its implementation. By reducing the number of covariates directly during the construction of the RF, the SHAP 

computational burden can be largely alleviated, as discussed in Sect. 3.2, and the applicability to global-scale projects where 

hundreds of covariates are present can be improved (see the discussion in Sect. 5.2). 

To eliminate the covariates of negligible influence, different options are available in the literature (see, e.g., the procedure 225 

based on recursive feature elimination described by Poggio et al., 2021). Here, we propose relying on a popular method in the 

ML community, namely, the dependence measure based on the Hilbert-Schmidt Independence Criterion HSIC of Gretton et 

al. (2005). This generic measure has the advantages of being applicable (1) to any type of dependence, i.e., linear, monotonic, 

or nonlinear (see the discussion by Song et al., 2022); (2) to mixed variables, i.e., continuous or categorical (as in our case 

described in Sect. 2); and (3) without the use of RF importance measures, for which limitations have been identified in the 230 

literature, as has been extensively discussed (see, e.g., Benard et al., 2022 and references therein). In addition, the combination 

of HSIC with a hypothesis testing procedure (El Amri and Marrel, 2021) provides a rigorous setting for quantifying the 

significance of the considered covariate through the computation of p values. Further details are provided in Appendix C. 

Step 2 is optional and aims to identify groups of covariates. The objective is twofold. First, by grouping covariates suitably 

with respect to the problem at hand, the Shapley values can be easily interpreted. This can be done based on expert knowledge 235 

or/and by identifying covariates that share a strong dependence to reduce the redundancy of information, for instance, using 

the HSIC pairwise dependence measure (Appendix C). The second practical implication is a reduction in the computational 

burden of the Shapley value estimation, as discussed in Sect. 3.2. 

Step 3 is to compute the Shapley values associated with each covariate or group identified in Step 2 to decompose the prediction 

uncertainty provided by the qRF model (trained in Step 1). 240 

4 Results 

4.1 Application to the synthetic test case 

Using the 25 randomly selected soil samples described in Sect. 2.1, we construct an RF model to estimate the conditional 

mean, which is used as the best estimate of the prediction, and a qRF model to estimate the interquartile width (IQW), which 

is used as the uncertainty estimate. To select the RF parameters ns and mtry, we repeat a 10-fold cross-validation exercise 25 245 

times (Hastie et al., 2009: Chapter 7) by varying ns from 5 to 10 and mtry from 1 to 4. The number of random trees is fixed at 

1,000; preliminary tests have shown that this parameter has little influence provided that it is large enough. This tuning 

procedure selects the pairs (ns, mtry) for which the average relative absolute error is minimised, identifying (ns=5, mtry=3) as 



12 

 

the combination that results in the lowest error of 6.8% (averaged over 25 replicates of the 10-fold cross-validation) with a 

frequency of 72% (i.e., 18 replicates out of 25). A screening analysis is performed within the cross-validation procedure using 250 

HSIC measures combined with a hypothesis testing procedure using the sequential random permutation-based algorithm 

developed by El Amri and Marrel (2021) with up to 5,000 random replicates. Averaged over the replicates of the 10-fold cross 

validation (repeated 25 times), the p values for the first four covariates reach a maximum value of 2% (Supplementary 

Materials A). The p values of the last two covariates are 16% (with a standard deviation of 10%) and 20% (with a standard 

deviation of 12%). Using a significance threshold of 5%, this means that the last two covariates are not statistically significant; 255 

hence, the number of covariates can reasonably be reduced from 6 to 4. This result is consistent with the construction of the 

synthetic case described by Eq. (1). 

Using the trained RF model, Figure 6 shows the best estimate of the true value of the synthetic variable of interest (Panel a) 

and the prediction best estimate (Panel b) together with the uncertainty measure (Panel c) at 10,000 grid points across the 

European study area (with a spatial resolution of 13.5 x 13.5 km²). The RF predictions relatively well reproduce the true 260 

spatial distribution (comparing Panels a and b in Fig. 6), with an average relative absolute error of approximately 5%. The 

uncertainty indicator reaches the highest values (highlighted in yellow in Fig. 6c) where observations are sparsely distributed, 

particularly in the Alps (zone Z1) and in northern Germany (zone Z2). It is important to note that our objective here goes beyond 

improving the predictive capability of the RF model: given this level of prediction uncertainty (Fig. 6c), we aim, in the 

following, to investigate the main drivers of this uncertainty and whether they differ from the drivers of the best estimate of 265 

the prediction (Fig. 6b). 

 

Figure 6: (a) Spatial distribution of the synthetic variable of interest modelled by Eq. 1; (b) Prediction best estimate using the 

conditional mean of the RF model. (c) Interquartile width IQW computed using the 25th and 75th quantiles of the qRF model. The 

25 soil samples are indicated by squares whose sizes are proportional to the value of the synthetic variable of interest. The results 270 

are more specifically discussed in Sect. 4.1 for the zones indicated by Z1-2. 

 

To ease the interpretation, we group the temperature variables Tmax and Tmean because they are, by nature, physically related. 

To further support this choice, we apply a partitioning around medoids clustering algorithm (Rdusseeun & Kaufman 1987) 

using the matrix of the pairwise HSIC dependence measures (provided in Supplementary Materials A). The average silhouette 275 
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width reaches 0.32 and 0.41 for two and three groups, respectively, which justifies the use of three groups, namely, Tmean-max, 

Trange, and Pwettest. 

Using the trained RF model and the selected groups of covariates, we apply the group-based SHAP approach to decompose 

the data at the 10,000 grid points of the study area. An example of this analysis at the grid point of coordinates (4,206,729 m, 

2,149,423 m) is provided in Fig. 1. To facilitate comparison across the study area, we plot the scaled Shapley values, as defined 280 

in Sect. 3.2, and use them to map the contributions to the prediction best estimate (i.e., the conditional mean, Fig. 7a) and to 

the corresponding uncertainty (i.e., IQW, Fig. 7b). With regard to the prediction best estimate, the upper panels of Fig. 7 show 

that the three groups of covariates have Shapley values in the range [25, 50%] over 75% of the whole study area. Figure 7 

shows that the major contributors to the prediction best estimate and to the uncertainty differ. This is exemplified by the two 

zones where the uncertainty is the highest (see Fig. 6c). In the central zone around the Alps (zone Z1 in Fig. 7), the major 285 

contributors to the best estimate and to the uncertainty are Pwettest (with contributions in the range of 50-75%), the group Tmean-

max (with contributions in the range of 10-25%) and Trange over a more limited spatial extent. On the other hand, in northern 

Germany (zone Z2 in Fig. 7), Pwettest contributes the most to the uncertainty, with contributions in the range of 10-25%, whereas 

the group Tmean-max contributes the most to the prediction mean, with contributions in the range of 50-75%. These differences 

in importance may be related to the scarcity of soil samples in both zones (see Fig. 2). This means that the training data are 290 

not representative of both zones. The practical implication is that decisions regarding the characterisation of the covariates are 

different in these two zones; this is discussed in more detail in Sect. 5.1. 

 

Figure 7: Scaled Shapley values (in %) for the synthetic test case considering the prediction best estimate modelled by the RF 

conditional mean (top) and the prediction uncertainty modelled by the qRF interquartile width IQW (bottom). The black squares 295 
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indicate the spatial locations of the 25 soil samples. The results are more specifically discussed in Sect. 4.1 for the zones indicated by 

Z1-2. 

4.2 Application to the real case 

We construct an RF model using the 1,043 soil samples described in Sect. 2.2. We use the conditional mean as the best estimate 

of the prediction, and the interquartile width IQW as the uncertainty estimate, with the 25th and 75th quantiles computed using 300 

a qRF model. In our case, one additional difficulty is related to how the points are spatially distributed. Figure 3a shows that 

the points are spatially clustered as they overrepresent some regions while underrepresent, or even miss, others. This situation 

might lead to biased predictions, because the same weight is given to every point and thus regions with high sampling density 

are overweighted. To alleviate this problem, we follow an approach similar to that of Bel et al. (2009). First, we use an inverse 

sampling intensity weighting to assign more weight to the observations in sparsely sampled zones and less weight to the 305 

observations in densely sampled zones. Second, to estimate the sampling intensity, we use a two-dimensional normal kernel 

density estimation with bandwidth values estimated based on the rule of thumb of Venables and Ripley (2002). Finally, the 

inverse sampling intensity weights, with prior normalisation to between 0 and 1, are used for RF training during bootstrap 

sampling (see Appendix B) to create individual trees with different probability weights by following a method similar to that 

of Xu et al. (2016). 310 

To select the RF parameters ns and mtry, we use a cross-validation exercise similar to that used for the synthetic case. This 

tuning procedure selects the pairs (ns, mtry) for which the average relative absolute error is minimised, yielding (ns=5, mtry=2) 

as the combination that results in the lowest error of 12% (averaged over 25 replicates of the 10-fold cross-validation) with 

a frequency of 76% (i.e., 19 replicates out of 25). 
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 315 

Figure 8: Screening analysis showing the p values of the HSIC-based test of independence (described in Appendix C) for the Toulouse 

case. The dots indicate the mean values estimated over the replicates of a 10-fold cross-validation (repeated 25 times). The lower and 

upper bounds of the error bars are defined as +/- one standard deviation. When the dot merges with the error bar, the value of the 

standard deviation is low. The vertical red line indicates the significance threshold at 5%. When the p value is less than 5%, the null 

hypothesis should be rejected, i.e., the considered covariate has a significant influence on the hydrocarbon concentration and is 320 

retained in the RF construction. 

 

A screening analysis is performed within the cross-validation procedure using HSIC measures combined with a hypothesis 

testing procedure. Figure 10 shows the statistics of the p values calculated over the replicates of the 10-fold cross-validation 

(repeated 25 times). Several observations can be made: 325 

- The distance to potentially polluted sites, Dbasos, has a minor influence, contrary to the distance to industrial sites 

Dbasias (abandoned or active). This is due to the high dependence of Dbasos (whose HSIC is on the order of 0.93-0.95; 

Supplementary Materials B) with elevation and geographical coordinates. This is also supported by Fig. 3, which 

suggests that polluted sites tend to be located in relatively low-lying areas in the vicinity of the city centre. In other 

words, the inclusion of Dbasos in the analysis is redundant with respect to the information provided by the covariates 330 

on which it is dependent; 

- Land use has a strong impact, whereas lithology appears to have little impact, with a p value on the order of 25%, i.e., 

larger than the significance threshold. This is interpreted as being related to the hydrocarbon nature of the pollution, 

which is less strongly related to geological processes than heavy metal pollution, for instance; 
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- The distance to roads was not included even though its relation to hydrocarbon concentration was expected. This is 335 

due less to its dependence on the other covariates, whose HSIC values are as high as 0.14 (Supplementary Materials 

B), than to its very dense spatial distribution: the value of this covariate varies very little over a large area, as indicated 

by the almost homogeneous colour in Fig. 3, i.e., very few zones are discriminated by this covariate in this case. 

- Out of all the cross-validation replicates, nine covariates have a statistically significant influence on hydrocarbon 

concentration considering a significance threshold of 5%. These covariates are retained in the construction of the final 340 

RF model that is used for the application of the group-based SHAP approach. 

 

 

Figure 9: (a) Prediction best estimate of the hydrocarbon concentration (log10 scale) for the city of Toulouse using the conditional 

mean of the RF model. The soil samples are indicated by squares whose sizes are proportional to the log10 of the hydrocarbon 345 

concentration. (b) Interquartile width IQW computed using the 25th and 75th quantiles of the qRF model (expressed on the same 

scale as the hydrocarbon concentration). 

 

Figure 9 shows the prediction (Panel a) of the hydrocarbon concentration together with the uncertainty measure (Panel b) at 

the grid points across the city with a spatial resolution of 100 × 100 m². Notably, a large proportion of the city has a predicted 350 

concentration varying between 1 and 2 (on a log10 scale), with the exception of the southeastern part, where the concentration 

is predicted to be >3. In this zone, the uncertainty of the prediction is the highest, with values ranging up to 2.5. Outside this 

zone, a large proportion of the study area has uncertainty estimates of <1.0, with some zones having uncertainties of <0.01, 

particularly in the vicinity of the observations. 

To ease the interpretation of the Shapley values, we define two groups of covariates whose contributions are considered 355 

together with the land use and the elevation: 

- The group Dbasias-water includes Dbasias and Dwater. The analysis of the joint influence is meaningful because this group 

reflects the general tendency of industrial sites to be located close to a water supply; 
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- The geographical group includes Dne, Dse, Dnw, Dsw, and the Y-coordinate. This group of covariates was introduced 

to improve the predictive capability of the RF (see Sect. 2.2). Interpreting the respective influence of each of these 360 

individual covariates is often difficult in practice, and grouping them makes sense in this regard. 

To support these choices, we analyse the pairwise dependence measure (Supplementary Materials B), which confirms the 

moderate-to-high pairwise dependence of all variables in this group. This analysis also indicates that land use has a low 

dependence with the other variables. 

Using the trained RF model, we apply the group-based SHAP approach to decompose the data at >45,000 grid points in the 365 

study area. As for the synthetic test case, we compute the scaled Shapley values and use them to map the contribution to the 

prediction best estimate (i.e., the conditional mean; Fig. 10, left) and to the corresponding uncertainty (i.e., IQW; Fig. 10, 

right). With regard to the prediction best estimate, the left panels of Fig. 10 show that the four covariate groups have 

contributions, to some extent, of approximately the same order of magnitude. The different groups have high influence, with 

scaled Shapley values within the range [25, 50%] but in different areas of the city, namely, in the central part of the city for 370 

elevation and land use, i.e., in low-lying industrial areas (Fig. 4); in the western part for Dbasias-water; and in the eastern part for 

the geographical group. The geographical group has the largest contribution in the southeastern part of the city where the 

predicted values are the largest, as outlined by the dark green zone in Fig. 10, left. This is also confirmed by the analysis of 

the boxplots provided in Supplementary Materials B. Regarding the prediction uncertainty, the scaled Shapley's values are 

mainly in the range [0, 25%], but with some particular areas where the determining factors for either the best prediction 375 

estimate or uncertainty, or both, are not necessarily the same. 
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Figure 10: Scaled Shapley values (in %) for each group of covariates of the Toulouse test case considering the prediction best estimate 

using the RF conditional mean (left) and the prediction uncertainty using the qRF interquartile width (IQW) (right). The black 

squares indicate the locations of the soil samples used for RF training. 380 
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Three distinct situations are identified that are relevant from the viewpoint of uncertainty management. The first situation 

corresponds to the locations outlined in Fig. 11, where the groups of covariates contribute significantly to the prediction best 

estimate, with a scaled Shapley value exceeding that of the uncertainty by more than 25%. Interestingly, the main contributors 

to this situation are the three groups that are relevant to the soil prediction problem, as opposed to the geographical group, 385 

whose objective is to account for spatial dependence. This gives some confidence in the process underlying the RF prediction 

because it indicates that the best estimate is controlled mainly by the soil-relevant predictors. This also indicates that their 

influence on the prediction is not masked by the use of geographical covariates, i.e., the use of spatial surrogate covariates, 

also called pseudocovariates, as discussed by Wadoux et al. (2020): Sect. 3.3. 

 390 

Figure 11: Locations where each corresponding group of covariates contributes significantly to the best estimate, with a scaled 

Shapley value exceeding that of the uncertainty by more than 25%. The colours indicate the scaled Shapley value for the best 

estimate. The areas in grey correspond to grid points where the condition is not met. The black squares indicate the locations of the 

soil samples used for RF training. 

 395 
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An examination of the distribution of the corresponding covariates (Fig. 12) reveals that these locations have elevation values 

and distances Dbasias and Dwater of the same order of magnitude as those in the training dataset, resulting in an “optimal” 

prediction situation in which the RF model is used to predict cases that are relatively similar to those used for its training. In 

the areas where land use contributes most to this situation, we show (Fig. 12, bottom, right-hand panel) that this is linked to 

agricultural areas and forests, i.e., areas where there is less chance of finding potentially polluted sites, as shown by the analysis 400 

of the training dataset. 

 

 

Figure 12: Boxplots of the covariate values for the training dataset and for the locations (named “selection”) where the corresponding 

group of covariates contributes significantly to the best estimate, with a scaled Shapley value exceeding that of the uncertainty by 405 

more than 25%. The bottom right-hand panel compares the proportions of land use categories (AGR: agriculture, FOR: forests and 

grasslands, IND: industrial and commercial economic activities) for the selection and training datasets. 
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The second situation is the opposite of the first and corresponds to locations where the groups of covariates contribute 

significantly to the uncertainty, exceeding their contributions to the best estimate by more than 25%. These are shown in dark 410 

green and light red in Fig. 10 (right) and only concern the geographical and Dbasias-water groups. In these areas, the RF model 

predict cases that are well outside the range observed in the training dataset. This is clear for the identified area for the 

geographical group, which is located outside the spatial domain covered by the soil samples, with the exception of one soil 

sample located farthest east. An examination of the distributions of the distances Dbasias and Dwater reveals that the median 

values exceed those of the training dataset by factors of 10 and 4, respectively (Supplementary Materials B). This indicates 415 

that the RF model is being used here beyond the area from which the training data were taken. This is a situation of spatial 

extrapolations, where tree-based methods such as RF can fail completely; see a recent study highlighting the limitations by 

Takoutsing and Heuvelink, (2022). 

Finally, the third situation corresponds to where the covariate groups have negative contributions (outlined in light blue in 

Figure 10, right), i.e., where they participate directly in reducing the prediction uncertainty. An examination of the distribution 420 

of the corresponding covariates (Supplementary material B) indicates the same result as for the first situation, with distances 

to the nearest rivers even smaller than those observed in the training dataset and with even more marked land use behaviour, 

where agriculture, forest and urban are almost the only categories identified. We also note that the geographical group 

contributes negatively to uncertainty only in the vicinity of the soil samples at distances of 1 to 2 km. 

5 Discussion 425 

5.1 Usefulness of the results 

To date, the Shapley values have been used to explain individual predictions related to a certain instances of covariates by 

computing the contribution of each of them to the prediction. Translated for DSM, the Shapley values can be used to determine 

why a spatial ML model reached a certain value for the soil or chemical properties at a certain spatial location. As discussed 

by Wadoux and Molnar (2022), the use of Shapley values has the potential to constitute a key tool for environmental soil 430 

scientists to improve the interpretation of ML-based DSMs, particularly by providing insights into the underlying physical 

processes that drive soil variations. 
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Figure 13: Spatial distributions of the most important group of covariates with respect to the scaled Shapley values for the prediction 435 

best estimate (mean, Panel a) and for the prediction uncertainty (IQW, Panel b) in the city of Toulouse. Panel c shows the regions 

where the most important group of covariates for the mean agrees with that for IQW. The black squares indicate the locations of 

the soil samples used for RF training. 

 

In this study, we complement this type of analysis by addressing the “why” question with respect to the prediction uncertainty, 440 

i.e., by explaining why the spatial ML model is confident. For this purpose, the SHAP approach for estimating the Shapley 

values is applied to decompose the uncertainty indicator provided by the ML spatial model. The attribution results are expected 

to facilitate communication between environmental soil scientists and stakeholders, which is essential for the inclusion of these 

new digital soil map products in current practices (see, e.g., the discussion by Arrouays et al., 2020). The SHAP results are 

expected to improve the framing of the prediction results together with the associated uncertainty as illustrated with the 445 

synthetic test case described in the introduction as follows: “The predicted value of 12.20 is mainly attributable, by a positive 

factor of almost 50%, to the maximum and mean temperature of the warmest quarter of the year. The confidence in this result 

measured by the uncertainty indicator of 1.98 is explained by the diurnal range by almost 50%. To further increase this 

confidence by decreasing the uncertainty, next efforts should concentrate on the characterisation of this particular covariate”. 

The second implication of our study is in terms of uncertainty management. Our application to hydrocarbon concentration 450 

mapping in Toulouse, as well as to the synthetic test case, reveals that the determining contributors to the best estimate or the 

uncertainty may not necessarily be the same. Fig. 13 shows maps of the most important groups of covariates with respect to 

the scaled Shapley absolute values for the real case. These maps show that the prediction uncertainty is dominated by the 

geographical group over almost 65% of the entire study area, whereas the best estimate is influenced by this group of covariates 

over less than 35%; these areas are outlined in purple in Fig. 13a,b. Overall, the most important group of covariates differ for 455 

both prediction objectives over about 50% of the entire study area (outlined in red in Fig. 13c), mostly in the western and 

central part of the city. The dichotomy between the drivers of the best estimate and uncertainty is also illustrated for the 

synthetic test case in Fig. 7. 
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On this basis, distinct situations can be identified with different practical implications for data collection and covariate 

characterisation. This is illustrated in the Toulouse case in Sect. 4.2. If the primary objective of environmental soil scientists 460 

is to increase the confidence in the prediction, the characterisation efforts should be concentrated in the zones outside the 

spatial domain covered by the soil samples, i.e., in regions where the RF models appear to be used to make spatial 

extrapolations. Two improvements are particularly notable: (1) the modelling of the spatial dependence in the ML model, as 

revealed by the high importance of the geographical group, and (2) the need for more samples outside the range covered by 

the soil samples to better characterise the pair of distances Dbasias and Dwater. On the other hand, if the primary objective of 465 

environmental soil scientists is to support the communication of the prediction results to end-users, this analysis provides two 

key elements. First, the results can be explained in the same form as the example provided above by stressing that the predicted 

pollutant concentration values in the central and western zones of the city are influenced mainly by the covariates that are 

relevant to the soil prediction problem; different parts of the city being influenced by different groups of covariates (Fig. 11). 

Second, the results provide evidence for confidence in how the RF model can make predictions, as discussed in Sect. 4.2 based 470 

on Fig. 12. Finally, identifying areas where groups of covariates have negative contributions is essential for prioritising actions 

to reduce prediction uncertainty. 

5.2 Applicability to global-scale projects 

The application cases analysed in this study correspond to situations with a moderate number of covariates (a few tens) and 

predictions at either the city scale or the national scale, with several tens of thousands of grid cells, which are representative 475 

of other real case situations described in the literature, such as those of Meyer et al. (2018), de Bruin et al. (2022), and Wadoux 

et al. (2023). In this section, we extend the discussion regarding the applicability to global-scale projects such as that described 

by Poggio et al. (2021) with hundreds of covariates and millions of grid cells. Applying the SHAP approach is challenging in 

this context due to its computational load, which is directly related to the number of covariates (Sect. 3.2). 

As an illustration, we run SHAP for the Toulouse test case using the nine important covariates (without grouping) at 100 480 

randomly selected grid points (on a Windows Desktop x-64 with a PC – Intel® Core™ i5-13600H, 2,800 MHz, 12-core, 16 

logical processor(s) with 32 GB physical RAM), which led to an average CPU time of 2.15 seconds. Given the constraints of 

global-scale studies, a direct SHAP analysis would require at least 200 days of calculation on a single laptop. The first solution 

relies on the use of a high-performance computing architecture, as proposed by Wadoux et al. (2023). A second option involves 

approximating the Shapley values using, for instance, sampling algorithms (Chen et al., 2023), with some approximation errors 485 

opposite to those of the exact method used here. A third option explored in this study is the combination of screening analysis 

and a grouping approach. Although RF models can handle a large number of covariates, eliminating the covariates before 

calculating the Shapley values has a clear benefit for saving CPU time. In the real case, the SHAP computational complexity 

is proportional to 215=32,768. The application of screening analysis (Fig. 8) decreases the number of features from 15 to 9, 

resulting in a relative computational cost reduction of 215-9=64. An additional step of grouping is proposed here, with the 490 

primary objective of facilitating interpretation. Interestingly, Wadoux et al. (2023) also presented Shapley values for groups 
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of covariates (mean climate, climate extremes, vegetation, topography, etc.), as indicated in Figure 6 of their study. By 

grouping before calculating the Shapley values, an additional relative computational cost reduction can be achieved. In the 

Toulouse case, this implies a cost reduction of 29-4=32, and the analysis required less than one hour for the group-based SHAP 

(with an average CPU time of 0.054 seconds). Given the constraints of global-scale studies, this approach would here require 495 

less than 7 days of calculation on a single laptop. With the growing concern regarding energy consumption (see, e.g., Jay et 

al., 2024) for scientific computing, this option provides soil scientists with efficient, energy-saving analytical tools although it 

requires a careful identification of the covariates of negligible influence as well as the definition of groups. 

6 Summary and future work 

Providing insights into the uncertainty impacting DSM is a key challenge that requires appropriate diagnostic tools. In an effort 500 

to complement the toolbox of environmental soil scientists, in this study, we assessed the feasibility of using the SHAP 

approach to quantify the contributions of covariates to the machine learning-based prediction uncertainty at any location in the 

study area. Using a real case of pollution concentration mapping in the city of Toulouse, as well as a synthetic test case, we 

explored the benefits of jointly analysing the contributors to the prediction best estimate and to the prediction uncertainty. Our 

results revealed that the drivers of the prediction best estimate are not necessarily the drivers of the confidence in the 505 

predictions: this means that decisions in terms of data collection and covariate characterisation may differ depending on the 

target, the prediction best estimate or the confidence/uncertainty and the way in which the results of the prediction (and their 

uncertainty) are communicated. 

However, to integrate SHAP at a fully operational level, several lines of improvement need to be considered. First, the 

implementation to global scale projets still remains challenging and deserves further work to find a comprise between accuracy, 510 

efficiency and interpretability by paying a particular attention paid to estimation algorithms (Chen et al., 2023) with a potential 

combination with screening and grouping analysis. Second, we focused on a unique uncertainty indicator, namely, the 

interquartile width, but in some situations, it may not be representative of the total uncertainty, and additional developments 

are necessary to integrate the entire prediction probability distribution within the SHAP setting. The use of an information 

theoretic variant of Shapley values, as investigated by Watson et al. (2023), may be helpful here. Third, we focused on one 515 

type of machine learning model, i.e., the quantile RF model. Alternative approaches should be considered in future research: 

different types of machine learning models, such as deep learning techniques, which have shown promising results (see, e.g., 

Kirkwood et al. (2022)), and improved approaches, in particular, to address complex sample distributions such as clustering 

(see, e.g., de Bruin et al. (2022) and references therein). Different uncertainty measures should also be tested, for example, 

geostatistical methods using the kriging variance or statistical quantities derived from stochastic simulations (see, e.g., Chilès 520 

and Delfiner (2012)); Bayesian techniques (see Abdar et al., 2021 for deep learning techniques); and data-driven approaches 

such as cross-validation procedures (Ben Salem et al., 2017). These future studies are made possible by the model-agnostic 

nature of SHAP.  
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Appendix A Implementation 

The R package ranger developed by Wright & Ziegler (2017) is used to train the RF models as well for the predictions, and 

quantile estimates. The R package sensitivity (https://cran.r-project.org/web/packages/sensitivity/index.html) is used to 

implement the HSIC-based analysis (screening and dependence). The R package shapr developed by Sellereite et al. (2023) is 

used to implement the group-based SHAP approach. The R package cluster by Maechler et al. (2023) is used to implement the 545 

PAM clustering method. An R markdown based on the vignette of the R package CAST (available at: 

https://hannameyer.github.io/CAST/articles/cast02-AOA-tutorial.html) is provided on the Github repository: 

https://github.com/anrhouses/groupSHAP-uncertainty. 

https://github.com/anrhouses/groupSHAP-uncertainty
https://hannameyer.github.io/CAST/articles/cast02-AOA-tutorial.html
https://cran.r-project.org/web/packages/sensitivity/index.html
https://hannameyer.github.io/CAST/articles/cast02-AOA-tutorial.html
https://github.com/anrhouses/groupSHAP-uncertainty
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Appendix B Quantile Random Forest 

The Random Forest (RF) model, as introduced by Breiman (2001), is used here for regression. It is a non-parametric technique 550 

based on a combination (ensemble named “forest”) of regression trees (Breiman et al. 1984). Each tree is constructed by relying 

on recursive partitioning, which aims at finding an optimal partition of the covariates’ domain of variation by dividing it into 

L disjoint sets R1, …, RL to have homogeneous Yi values in each set Rl=1,…,L by minimizing a splitting criterion (e.g. based on 

the sum of squared errors, see Breiman et al. 1984) or when the number of observations in each partition reaches a minimal 

number termed nodesize (denoted ns). To sum up, the RF model aggregates the different regression trees as follows: (1) random 555 

bootstrap sample from the training data and randomly select mtry variables at each split; (2) construct ntree trees T(), where t 

denotes the parameter vector based on which the tth tree is built; (3) aggregate the results from the prediction of each single 

tree to estimate the conditional mean of Y as follows: 

𝑌(𝑠) = 𝑓(𝐱(s)) = 𝐸(𝑌|𝑿 = 𝐱(𝑠)) = ∑ 𝑤𝑗(𝐱(𝑠))𝑌𝑗
𝑛
𝑗=1 ,       (B1) 

where E(.) is the mathematical expectation, and the weights 𝑤𝑗  are defined as follows: 560 

𝑤𝑗(𝐱(s)) =
∑ 𝑤𝑡(𝐱(s), 𝑡)

𝑛tree
𝑡=1

𝑛𝑡𝑟𝑒𝑒
, with 𝑤𝑗(𝐱(s),) =

I
{𝑋𝑖ϵR𝑙(𝑥,𝜶)}

#{𝑗∶ 𝑋𝑖ϵR𝑙(𝑥,𝜶)}
,       (B2) 

where I(A) is the indicator operator which equals 1 if A is true, 0 otherwise; R𝑙(𝑥,𝛼) is the partition of the tree model with 

parameter  which contains x. 

The RF method is very flexible and can be adapted to predict quantiles. The quantile random forest (qRF) model was originally 

developed by Meinshausen (2006), who proposed to estimate the conditional quantile 𝑞(𝑦|𝒙) at level  as 565 

𝑞(𝑦|𝒙) = inf (𝒙: 𝐹𝐻|𝐗(𝑦|𝒙) ≥ ),          (B3) 

where  

𝐹𝑌|𝐗(𝑦|𝐱) = ∑ 𝑤𝑗(𝒙)I{𝑌𝑗𝑦}
𝑛
𝑗=1 ,          (B4) 

where the weight are calculated in the same manner as for the regression RF model.  

The major difference with the formulation for regression RF is that the qRF model computes a weighed empirical CDF of Y 570 

for each partition instead of computing a weighed average value (as in Eqs. B2-B4).  

Appendix C HSIC dependence measure 

The number of covariates is 15 (Sect. 2), which is sufficiently large to pose some difficulties regarding the computational time 

cost of the SHAP approach (Sect. 3.2). To filter out covariates of negligible influence (screening analysis), we rely on the 

HSIC (Hilbert‒Schmidt independence criterion) measure, which can capture arbitrary dependence between two random 575 

variables (potentially of mixed type, continuous or categorical). In the following, we describe the main aspects and the 

interested readers can refer to Gretton et al. (2005) and da Veiga (2015). 
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Let us associate Xi with a universal reproducing kernel Hilbert‒Schmidt (RKHS) space defined by the characteristic kernel 

function ki(.,.). The same transformation is associated with Y by considering a RKHS space with kernel k(.,.). We define the 

HSIC measure as follows: 580 

𝐻𝑆𝐼𝐶(𝑋𝑖 , 𝑌) = E(𝑘𝑖(𝑋𝑖 , 𝑋𝑖
′)𝑘(𝑌, 𝑌′)) + E(𝑘𝑖(𝑋𝑖 , 𝑋𝑖

′))E(𝑘(𝑌, 𝑌′)) 

                                                      −2E(E(𝑘𝑖(𝑋𝑖 , 𝑋𝑖
′)|𝑋𝑖)E(𝑘𝑖(𝑌, 𝑌′)|𝑌)),      (C1) 

where (𝑋𝑖
′, 𝑌′) is an independent and identically distributed copy of (𝑋𝑖 , 𝑌), and E(.) is the expectation operator.  

The role of the characteristic kernel is here central because it can be defined depending on the type of the considered variables. 

For continuous variables, the Gaussian kernel is used, and is defined as exp(−𝜆‖𝐱 − 𝐱′‖²), with 𝜆 being the bandwidth 585 

parameter chosen as the inverse of the empirical variance of the considered variable. For categorical variables, the identity 

function is used as a characteristic kernel. 

The pairwise dependence is measured by 𝐻𝑆𝐼𝐶(𝑋𝑖 , 𝑋𝑗)
𝑖≠𝑗

. To ease the interpretability, the scaled version of Eq. (C1) between 

0 and 1 is preferably used, namely the ratio between 𝐻𝑆𝐼𝐶(𝑋𝑖 , 𝑋𝑗), and the square root of a normalizing constant equal to 

𝐻𝑆𝐼𝐶(𝑋𝑖 , 𝑋𝑖). 𝐻𝑆𝐼𝐶(𝑋𝑗 , 𝑋𝑗) as proposed by da Veiga (2015). From the scaled 𝐻𝑆𝐼𝐶(𝑋𝑖 , 𝑋𝑗)
𝑖≠𝑗

, we define the similarity 590 

𝑆(𝑋𝑖 , 𝑋𝑗)
𝑖≠𝑗

= 1 − 𝐻𝑆𝐼𝐶(𝑋𝑖 , 𝑋𝑗)
𝑖≠𝑗

. 

To perform the screening analysis, we rely on the interpretation of 𝐻𝑆𝐼𝐶(𝑋i, 𝑌) from a sensitivity analysis perspective (da 

Veiga, 2015), namely its nullity indicates that Xi does not influence Y. To identify the significant Xi, the null hypothesis 

′H0: 𝐻𝑆𝐼𝐶(𝑋i, 𝑌) = 0′ (against the hypothesis ′H1: 𝐻𝑆𝐼𝐶(𝑋i, 𝑌) > 0′) is tested, and the corresponding p value can be evaluated 

(El Amri and Marrel, 2021). When the p value is below a given significance threshold (typically of 5%), it indicates that the 595 

null hypothesis should be rejected, i.e., the considered covariate Xi has a significant influence on the variable of interest Y. 
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