
Replies to Editor’s comments on “Insights into the 
prediction uncertainty of machine-learning-based digital 
soil mapping through a local attribution approach” 
(egusphere-2024-323) 
 

We would like to thank the Editor for giving us the opportunity to correct our manuscript based 

on the constructive comments of both Referees. We agree with most of the suggestions and, 

therefore, we have modified the manuscript to take on board their comments.  

 

Editor:  
 

The two referees made useful suggestions for improvement. I agree with many of the comments 

from R1, in particular the use of variable selection techniques prior to model fitting. It is usually 

not necessary for tree-based models like QRF, and perhaps even less so for a small number of 

covariates. What is the added value of the HSIC test for machine learning models? Authors 

should consider removing this step. 

 

As rightly stated by the Editor, the problem is not related to the use of RF, because RF models 

can handle a large number of covariates. The problem is the computational burden for the 

computation of the Shapley values. This is our motivation for proposing to complement the 

analysis with the HSIC-based screening analysis.  

 

In the manuscript, different elements have been clarified. 

 

(1) In Sect. 3.3 ‘overall procedure’, we have clarified the problem of computational burden. 

 

(2) In Sect. 5.2 ‘applicability to global scale projects’, we underline the following aspects: 

 

 Many real case studies with a moderate number of covariates of the order of 10-20 as 

in our case, have implemented approaches to select covariates. This can be done using 

different methods, for instance recursive feature elimination, forward feature selection, 

and RF importance measures as illustrated by the study by Meyer et al. (2019) and 

Dornik et al. (2022); 

 

 For large-scale projects with hundreds of covariates (see comment of Referee #1), we 

now analyse different options on page 22 as follows: 

 

[…] “we run SHAP for the Toulouse test case using the nine important covariates (without 

grouping) at 100 randomly selected grid points (on a Windows Desktop x-64 with a PC – Intel® 

Core™ i5-13600H, 2,800 MHz, 12-core, 16 logical processor(s) with 32 GB physical RAM), 

which led to an average CPU time of 2.15 seconds. Given the constraints of global-scale studies, 

a direct SHAP analysis would require at least 200 days of calculation on a single laptop. The 

first solution relies on the use of a high-performance computing architecture, as proposed by 

Wadoux et al. (2023). A second option involves approximating the Shapley values using, for 

instance, sampling algorithms (Chen et al., 2023), with some approximation errors opposite to 

those of the exact method used here. A third option explored in this study is the combination of 



screening analysis and a grouping approach. Although RF models can handle a large number 

of covariates, eliminating the covariates before calculating the Shapley values has a clear 

benefit for saving CPU time. In the real case, the SHAP computational complexity is 

proportional to 215=32,768. The application of screening analysis (Fig. 8) decreases the number 

of features from 15 to 9, resulting in a relative computational cost reduction of 215-9=64. An 

additional step of grouping is proposed here, with the primary objective of facilitating 

interpretation. Interestingly, Wadoux et al. (2023) also presented Shapley values for groups of 

covariates (mean climate, climate extremes, vegetation, topography, etc.), as indicated in Figure 

6 of their study. By grouping before calculating the Shapley values, an additional relative 

computational cost reduction can be achieved. In the Toulouse case, this implies a cost 

reduction of 29-4=32, and the analysis required less than one hour for the group-based SHAP 

(with an average CPU time of 0.054 seconds). Given the constraints of global-scale studies, 

this approach would here require less than 7 days of calculation on a single laptop. With the 

growing concern regarding energy consumption (see, e.g., Jay et al., 2024) for scientific 

computing, this option provides soil scientists with efficient, energy-saving analytical tools 

although it requires a careful identification of the covariates of negligible influence as well as 

the definition of groups”. 

 

(3) In the concluding remarks, we underline as a perspective, on page 23, that “the 

implementation to global scale projets still remains challenging and deserves further work to 

find a comprise between accuracy, efficiency and interpretability with particular attention to 

estimation algorithms (Chen et al., 2023) with a potential combination with screening and 

grouping analysis.” 

 

(4) In Sect. 4.2, we underline that the results of the HSIC screening analysis provide valuable 

information regarding the particularities of our problem of soil pollution.  

 

 It confirms the negligible influence of the lithology in relation to the nature of the 

hydrocarbon pollution, which is less related to geological processes contrary to heavy 

metal pollution for instance; 

 

 It indicates that the distance to roads has a minor role. It is due less to its dependence 

with the other covariates, whose HSIC measure is up to 0.14 (Supplementary Materials 

B), than to its very dense spatial distribution: the value of this covariate varies very little 

over a large area as indicated by the almost homogeneous colour in Fig. 3, i.e. very few 

zones are discriminated by this covariate in this case. 

 

(5) In Sect. 3, we clarify that the screening analysis using HSIC dependence measure has proven 

to be very efficient in the machine learning community (see e.g. Gretton et al., 2005) with 

applications in multiple domains, e.g. atmospheric pollution (Fellmann et al., 2023); 

environment (Lambert et al., 2024); geochronology (Herrando-Pérez & Saltré 2024); nuclear 

safety (Marrel and Chabridon, 2021); deep learning and image analysis (Novello et al., 2022); 

geothermics (Rohmer et al., 2023).  

 

The key advantages in our case are:  

 

 HSIC measure can capture arbitrary dependence without resorting to some 

assumptions such as linearity, monotonicity;  

 



 HSIC measure can handle random variables potentially of mixed type, continuous 

or categorical; 

 

 HSIC measure avoids the use of RF importance measures, which show some limits 

as extensively discussed, among others, by Ishwaran (2007), Strobl et al., (2007), 

Benard et al. (2022). This aspect has also been clearly underlined by Meyer et al. 

(2019). 

 

For these different reasons, we believe that proposing a screening analysis prior to the SHAP 

implementation remains useful for operational implementation and deserves to be included as 

a step in the procedure, although not compulsory. 
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The level of English throughout the manuscript is currently not sufficient to allow a clear 

understanding of the content. You may want to ask a proficient reader to check your manuscript 

for grammar, style and syntax before resubmitting it. There are also several typos. 

The manuscript has been proofread by American Journal Expert. See the certificate provided 

below. 
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Replies to Referee #1’s comments on “Insights into the 
prediction uncertainty of machine-learning-based digital 
soil mapping through a local attribution approach” 
(egusphere-2024-323) 
 

We would like to thank Referee #1 for the constructive comments. We agree with most of the 

suggestions and, therefore, we have modified the manuscript to take on board their comments. 

We recall the reviews and we reply to each of the comments in turn (outlined in blue). The main 

corrections made to the manuscript are described in a specific section of each response. 

 

Referee #1:  
 

This is a review for the manuscript Insights into the prediction uncertainty of machine-learning-

based digital soil mapping through a local attribution approach by Rohmer et al. The authors 

use SHAP, a common tool for assessing machine learning predictions at local scale, to 

investigate the contribution of covariates (or rather groups of covariates) on the uncertainty of 

a random forest model. It is well known that Shapley values are computationally very expensive, 

and so the authors propose to reduce the number of covariates to speed up computations. This 

is done before model training (a rather odd proposal) by using a statistical dependence test 

(i.e., HSIC), and then after model training by grouping covariates (again with the same 

dependence test). The main aim of investigating covariates with the model's uncertainty is 

intriguing within the field of digital soil mapping, but the manuscript has some major flaws. 

Major concerns are related to the methodology of the entire selection procedure of covariates 

as well as the with the presented case study. The quality of the writing is also unfortunately 

poor. 

 

Main methodological concerns  

 

 My first criticism is related to the first step, that is, the elimination of covariates before 

model training. This is a common pitfall within machine learning in DSM. The problem is 

with data leakage which may cause bias, and this occurred when covariates are removed 

from the entire training data set, and not within for example a cross-validation within each 

fold. Note that any data preprocessing (e.g., normalisation) dealt with in such a way can 

lead to data leakage. Data leakage may also cause the model’s uncertainty to be lower, and 

this is then also problematic if interpretative machine learning (IML) methods (like SHAP) 

are used to analyse the relationships between covariates and the model’s uncertainty. In 

addition, with a model such as random forest, covariate selection is not really required, 

especially with so few covariates (i.e., 15). I invite the authors to refer to the work such as 

that of Zhu et al. (2023) for guidance on data preparation so that data leakage is avoided.  

 

We are grateful to Referee #1 for pointing out the potential problem of data leakage. Now we 

better underline that the proposed screening analysis is conducted during the cross-validation 

procedure as recommended by Zhu et al. (2023). Our HSIC-based covariate selection is now 

analysed at each iteration of the cross-validation. Considering the 10-fold cross validation 

procedure (repeated 25 times), new Figure 10 shows the corresponding p values. The dots 

indicate the mean value estimated over the replicates of a 10-fold cross validation (repeated 25 

times), and the lower and upper bounds of the error-bar are defined at +/- one standard 



deviation. . When the dot merges with the error-bar, this indicates that the value of the standard 

deviation is low. 

 

Covariates with p values below the 5% significance level are considered influential. This shows 

that, out of all the cross-validation replicates, nine covariates have a statistically significant 

influence on hydrocarbon concentration. These covariates are retained in the construction of 

the RF model. 

 

 
New Figure 8: Screening analysis showing the p values of the HSIC-based test of independence (described in Appendix 

C) for the Toulouse case. The dots indicate the mean values estimated over the replicates of a 10-fold cross-validation 

(repeated 25 times). The lower and upper bounds of the error bars are defined as +/- one standard deviation. When the 

dot merges with the error bar, the value of the standard deviation is low. The vertical red line indicates the significance 

threshold at 5%. When the p value is less than 5%, the null hypothesis should be rejected, i.e., the considered covariate 

has a significant influence on the hydrocarbon concentration and is retained in the RF construction. 

 

Regarding the usefulness of the screening analysis, we only partly agree with Referee #1’s 

comment, because many real case studies have implemented such approaches to select 

covariates using either recursive feature elimination or forward feature selection or RF 

importance measures for cases with both very large number of covariates, such as the study by 

Poggio et al. (2021), but also with a moderate number of covariates of the order of 10-20 as in 

our case, such as the study by Meyer et al. (2019) and Dornik et al. (2022). 

 

In our study, we rely on an alternative approach which has proven to be very efficient in the 

machine learning community (see e.g. Gretton et al., 2005) with applications in multiple 

domains, e.g. atmospheric pollution (Fellmann et al., 2023); environment (Lambert et al., 

2024); geochronology (Herrando-Pérez & Saltré 2024); nuclear safety (Marrel and Chabridon, 

2021); deep learning and image analysis (Novello et al., 2022); geothermics (Rohmer et al., 

2023). The key advantages in our case are:  

(i) HSIC measure can capture arbitrary dependence without resorting to some 

assumptions such as linearity, monotonicity;  

(ii) HSIC measure can handle random variables potentially of mixed type, continuous 

or categorical; 

(iii) HSIC measure avoids the use of RF importance measures, which show some limits 

as extensively discussed, among others, by Ishwaran (2007), Strobl et al., (2007), 



Benard et al. (2022). This aspect has also been clearly underlined by Meyer et al. 

(2019). 

 

The objective of the HSIC-based covariate selection is thus two-fold: 

- Using a model-agnostic approach that avoids the use of an importance measure that is 

inherent to the selected ML model; 

- Decrease the computational burden of the SHAP approach. 

 

Main correction:  

The covariate selection is now conducted in the cross-validation procedure following the 

recommendation of Zhu et al. (2023). The twofold objective of the HSIC-based covariate 

selection is now better highlighted in Sect. 3.1 ‘global procedure’. We recognise, however, that 

it is beyond the scope of this study to compare this method with alternative techniques available 

in the literature. This is indicated as a perspective. 
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 Linking to my previous point. if the goal is to speed up computations, then removing 

covariates should not be a first choice. In addition, in typical DSM projects the number of 

covariates is usually more than 100. Therefore, the presented case study, which only has 

15 covariates, is not the best choice to showcase the proposed methodology. One could 

rather perform a sample of grid cells at which Shapley values are estimated. Like for 

example in the Wadoux et al. (2023) paper. Again, in many DSM projects, maps are 

sometimes created over millions of grid cells, so the presented case study is not the best one 

to showcase this methodology. Therefore, to speed up computations with a small data set 

(like the one in this study), I would rather use a stronger machine to do the calculations 

than to omit potentially important parts of my data. If not possible, then let the computations 

run for a few days.  

 

We thank Referee #1 for the comments. It is true that the presented case study is not 

representative of very large scale projects with millions of grid cells and hundreds of covariates.  

https://ec-lyon.hal.science/hal-04546338/file/Article_QLHS.pdf


However, we would like to underline that numerous case studies have been found in the 

literature with number of covariates that are comparable to our case study. Among others, please 

refer to:  

- de Bruin et al. (2022) used a set of 15-20 covariates to predict the organic carbon stock 

and the above ground biomass; 

- Dornik et al. (2022) used 10-15 covariates to predict soil properties in Romania; 

- Meyer et al. (2019) used 16 covariates to the classification of Land Use/Land Cover in 

Germany; 

- Fendrich et al. (2024) used 17 covariates to predict arsenic in European topsoils; 

- Milà et al. (2022) used 19 WorldClim bioclimatic variables for their synthetic case; 

- Wadoux et al. (2023) used 23 covariates for their study. 

 

Regarding the very large number of grid cells, we propose to improve the discussion on this 

aspect. In the discussion section, we now indicate how the proposed approach could be helpful 

for these challenging cases. The combination of the grouping and of the screening analysis 

allow us to decrease the computation cost from 1 day to less than half an hour given 

approximately 45,000 grid cells. Accounting now for the constraints of global scale studies such 

as Poggio et al. (2021), a direct SHAP analysis would imply >22 days of calculation, hence 

requiring a high performance computing architecture. Our approach would here imply <1 day 

of computation on a single laptop. Moreover, with the growing concern of energy consumption 

(see e.g., Jay et al., 2024) for scientific computing, we believe of the importance of providing 

the soil scientists with efficient, energy-saving analytical tools. The other side of the coin is 

however the introduction of some simplifications that are discussed in the reply to Referee #1’s 

next comment.  

 

Main correction:  

While we believe that our actual case is representative in terms of number of covariates of many 

found in the literature, we recognise that our approach should be better discussed in relation to 

the challenge of large-scale projects. To this end, we have replaced section 5.2 ‘Added value of 

clustering’ with a new section 5.2 ‘Large-scale implementation’ to better highlight the 

challenge of handling hundreds of covariates as well as implementing studies on a national or 

global scale. This aspect is also highlighted as a perspective of the present study. 

 

References 
de Bruin, S., Brus, D. J., Heuvelink, G. B., van Ebbenhorst Tengbergen, T., and Wadoux, A. M. C.: Dealing with 

clustered samples for assessing map accuracy by cross-validation. Ecological Informatics, 69, 101665, 2022. 

Dornik, A., Cheţan, M. A., Drăguţ, L., Dicu, D. D., & Iliuţă, A. (2022). Optimal scaling of predictors for digital 

mapping of soil properties. Geoderma, 405, 115453. 

Fendrich, A. N., Van Eynde, E., Stasinopoulos, D. M., Rigby, R. A., Mezquita, F. Y., & Panagos, P. (2024). 

Modeling arsenic in European topsoils with a coupled semiparametric (GAMLSS-RF) model for censored data. 

Environment International, 108544. 

Jay, C., Yu, Y., Crawford, I., Archer-Nicholls, S., James, P., Gledson, A., et al.: Prioritize environmental 

sustainability in use of AI and data science methods. Nature Geoscience, 1-3, 2024. 

Milà, C., Mateu, J., Pebesma, E., & Meyer, H. (2022). Nearest neighbour distance matching Leave‐One‐Out Cross‐

Validation for map validation. Methods in Ecology and Evolution, 13(6), 1304-1316. 

Meyer, H., Reudenbach, C., Wöllauer, S., & Nauss, T. (2019). Importance of spatial predictor variable selection 

in machine learning applications–Moving from data reproduction to spatial prediction. Ecological Modelling, 411, 

108815. 

Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 

2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217-240, 2021. 

 

 The grouping of covariates is a practical way of speeding up computation, but I am afraid 

it holds no meaning for DSM practitioners. The authors acknowledge this in the discussion, 



starting at Line 519. Doing inference on machine learning output with IML methods is hard 

enough. I cannot see how the grouping of covariates could hold much interpretive meaning. 

From Referee #1's comment, we understand that we have falsely conveyed our message about 

grouping. It should not be understood as a “one-fits-all” method. Instead the grouping should 

preferably be used to help the interpretation of the Shapley values. This can be done by defining, 

from the beginning of the analysis, groups of covariates that hold: 

 

- a certain redundancy in terms of information due to the strong dependency between 

them. This is the solution followed in the original version of our work, but we recognise 

that it cannot be the only one;  

- a meaning for analysists or the end-users. This is the second grouping option by Jullum 

et al. (2021) based on underlying knowledge/expertise (i.e. grouping covariates that 

make sense with respect to the problem at hand). As a motivation for this option, the 

study of Wadoux et al. (2023) is illustrative. In the presentation of their results (Figure 

6 of their study), they naturally propose to analyse groups of covariates.  

 

Main correction:  

In the revised version of the manuscript, we propose to: 

- reformulate our message about grouping by presenting it as an option to facilitate the 

analysis, and not a mandatory step. The section 3.1 “overall procedure” has been 

reworked along these lines; 

- re-analyse our case study by reworking the groups using the information on dependency 

and the experts' knowledge. 

 

In our real case, we now analyse four groups of covariates:  

- Land-use; 

- The elevation. 

- The group Dbasias-water which includes Dbasias and Dwater. Since group reflects the general 

tendency of industrial sites to locate close to a water supply, the analyse of the joint 

influence is meaningful; 

- The group of geographical coordinates, i.e. Dne, Dse, Dnw, Dsw, and the Y-coordinate. 

This group of covariates were introduced to improve the predictive capability of the RF 

model by following the approach by Behrens et al. (2018). Interpreting the respective 

influence of each of these individual covariates is in practice tricky, and grouping them 

makes sense in this regard. 

 

 To sum up, exploring the relationship between covariates and model uncertainty is 

intriguing and worth exploring. However, the paper's emphasis on reducing computation 

with (questionable?) methods distracts from the main goal of the paper. That is, I would 

have liked to see more in-depth analysis of covariates related to SHAP (prediction) vs SHAP 

(uncertainty). I would also like to have seen more emphasis on: do we expect the same 

covariates to be related to both, why do we see different covariates in terms of predictions 

vs uncertainty. 

 

We agree with Referee #1 that our message on the methods has to be clarified.  

 

Main correction:  

We are now emphasising the advantages of the different stages (elimination of characteristics, 

grouping).  

 



Particular attention has therefore been paid to 

- Improving the implementation of the selection analysis based on the recommendation 

of Zhu et al (2023); 

- Clarifying the definition of groups by combining information on dependency and expert 

knowledge; 

- Improving the presentation of clustering as an option to facilitate the interpretation of 

Shapley values instead of a single method; 

- Further developing the discussion regarding transfer to large-scale projects with 

millions of grid cells and hundreds of covariates. 

 

We also agree with Referee #1 on the interest of further exploring the link between SHAP 

(prediction) vs SHAP (uncertainty). To improve this aspect, we propose to define a common 

level of comparison by normalizing the Shapley values with the same quantity, i.e. the predicted 

value. New Figure 10 has been updated accordingly (see below). This shows that the scaled 

Shapley's values are mainly in the range [0, 25%], but with some particular areas where the 

determining factors for one or other situation (best prediction estimate or uncertainty) are not 

necessarily the same.  

 



 
New Figure 10: Scaled Shapley values (in %) for each group of covariates of the Toulouse test case considering the 

prediction best estimate using the RF conditional mean (left) and the prediction uncertainty using the qRF interquartile 

width (IQW) (right). The black squares indicate the locations of the soil samples used for RF training. 

 

Main correction: 

To deepen the analysis of the link between SHAP (prediction) vs SHAP (uncertainty), we 

propose to investigate in more details three distinct cases which are relevant from the viewpoint 

of uncertainty management. 

- The first case corresponds to locations where at least one group of covariates contribute 

significantly to the uncertainty, by more than 25% compared with its contribution to the 

best estimate. This corresponds to <15% of study area; 



- The second case is the opposite of the first one, and corresponds to locations where at 

least one group of covariates contribute significantly to the best estimate, by more than 

25% compared with its contribution to the uncertainty. This corresponds to about 66% 

of the study area; 

- Finally, the third situation overlaps with the second case and corresponds to where at 

least one covariates’ group has negative contributions (in light blue in Figure 10, 

bottom), i.e. where they participate directly in reducing prediction uncertainty. This 

corresponds to a large proportion of the study area, of about 80%. 

 

 
New Figure 12: Boxplots of the covariate values for the training dataset and for the locations (named “selection”) 

where the corresponding group of covariates contributes significantly to the best estimate, with a scaled Shapley value 

exceeding that of the uncertainty by more than 25%. The bottom right-hand panel compares the proportions of land 

use categories (AGR: agriculture, FOR: forests and grasslands, IND: industrial and commercial economic activities) 

for the selection and training datasets. 
 

As recommended by Referee #1, we analyse the analysis of the relationships by examining the 

distribution of the corresponding covariates. Comparison with the training data set gives us an 

insight into the reasons for the different situations. New Figure 12 illustrates the second case. 

It reveals that these locations have elevation values and distances Dbasias and Dwater of the same 

order of magnitude as those in the training dataset. This corresponds to a prediction situation 

where the RF model is used to predict cases that show similarities to the training dataset. This 

also means that this prediction situation does not rely too much on the extrapolation capability 

of the RF model; a situation known to be difficult for this type of ML model (Takoutsing and 



Heuvelink, 2022). In the areas where land use contributes most to this case, we show (Fig. 12, 

bottom, right-hand panel) that this is linked to agricultural areas and forests, i.e. areas where 

there is less chance of finding potentially polluted sites, as shown by the analysis of the training 

dataset. 
 

It should be noted that, for the sake of brevity of the revised manuscript, some of these analyses 

are included in the supplementary documents. In particular, the number of figures in the main 

text has been limited to around ten. 
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Some other concerns / suggestions 

 

 The synthetic case study adds no value to the paper. I suggest removing it as the paper is 

already a bit long for the topic at hand. 

We only partly agree with Referee 1’ comment, because Referee 2 clearly emphasised the value 

of this synthetic case study in facilitating understanding of the methods. In addition, the data 

from the Toulouse case study has restricted access. We believe that having a synthetic test case 

that we can share publicly should facilitate the use and critical analysis of our approach. 

Therefore we have chosen to keep the synthetic case in the study. 

 

 Section 3.1 is difficult to follow without the knowledge of HSIC and some of the information 

in the many cited references. Maybe just restructure the manuscript and include essential 

methodology. 

 Random forests are standard and already widely known in DSM. The sections on RF and 

QRF can be removed, and replaced with brief references to RF and QRF. 

We reply here to both comments. To improve the clarity of the presentation, we have 

reformulated Sect. 3 by: 

- describing the essential details of the methodology in a section Sect. 3.1 “overall 

procedure”; 

- describing in full details in section Sect. 3.2 “3.2 Shapley additive explanation” the 

approach based on Shapley values with additional comments on the computational 

burden and the benefit of grouping;  

- moving the sections on RF models and on HSIC dependence measure in Supplementary 

Materials. 

 

 Maps presented in this manuscript are of poor quality and not visually appealing. Captions 

and legend can also be improved. With Figure 3, show more information. Not everyone is 

that familiar with this region in France. The histogram is not very clear, especially the long 

right tail can be enhanced visually. 

The maps have been reworked. In particular the locations of the samples are systematically 

added to the maps to ease the interpretation of the results with respect to the training dataset. 

More appealing color scales have been chosen, namely “Set3” and “Paired” from ColorBrewer 

(https://colorbrewer2.org/); see above an example with new Figure 10. The captions and 

legends have also been further detailed.  

 

In particular, the presentation of Figure 3 has been improved. 

https://colorbrewer2.org/


 
New Figure 3: (a) Spatial location of the 1,043 soil samples (square-like markers) across Toulouse city located in the 

South-West of France (see the grey dot in the top right inserted map). The size of the squares is proportional to the 

logarithm (base 10) of the C10-C4 hydrocarbon concentration (expressed in mg/kg). (b) Histogram of the logarithm 

(base 10) of the C10-C4 hydrocarbon concentration (expressed in mg/kg) with a zoom on the interval 2.0-4.0 (top right 

inserted panel). 

 

 General writing of the manuscript is poor. Some examples: The overuse of “etc”, too many 

brackets to give additional information, brief introductions at each section. 

Careful rewriting has been carried out to avoid unnecessary 'etc' and the brackets. The brief 

introductions have been removed.  

 

 The mathematical writing can also be improved. For example, are the ahuthors sure that 

ML model is just y=f(x)? See Line 142. 

The mathematical writing has been cross-checked and the identified problem in line 142 has 

been corrected as follows: “The mathematical relationship is modelled by a ML model (denoted 

f(.)) sot that 𝑓(𝐱(𝑠)) is assumed to resemble 𝑦(𝑠) as closely as possible. i.e. 𝑦(𝑠) ≈ 𝑓(𝐱(𝑠)).” 

 

 Figure 6 does not make sense. Why is there an arrow from Step 2 to 4? 

From Referee #1’s comment, we have the impression that Figure 6 introduces some confusion. 

We propose to remove it and to describe in more details the different steps and their interplay 

in the sub-section Sect. 3.1 “overall procedure”. 

 

References: 

 

Wadoux, A., Saby, N., Martin, M. (2023). Shapley values reveal the drivers of soil organic 

carbon stock prediction. SOIL, 9, 21-38. doi: 10.5194/soil-9-21-2023. 

 

Zhu et al. (2023). Machine Learning in Environmental Research: Common Pitfalls and Best 

Practices. https://pubs.acs.org/doi/10.1021/acs.est.3c00026. 

  



Replies to Referee #2’s comments on “Insights into the 
prediction uncertainty of machine-learning-based digital 
soil mapping through a local attribution approach” 
(egusphere-2024-323) 
 

We would like to thank Referee #2 for the positive analysis and the constructive comments. We 

agree with most of the suggestions and, therefore, we have modified the manuscript to take on 

board their comments. We recall the reviews and we reply to each of the comments in turn.  

Referee #2:  
This manuscript is well written, clear and relevant, and presents methods that could provide 

stakeholders with valuable insights into where the uncertainty comes from: this has the 

potential to make uncertainty more concrete for them. 

I appreciate the use of a synthetic test case, which makes the whole procedure a lot easier to 

understand. 

We thank Referee #2 for this positive feedback. 

 

I don’t have any major criticisms. I would be pleased to see this manuscript published after 

attention to the following minor details : 

 

Line 44: However, at a local scale, these methods don’t (?) provide any information for a 

prediction at a certain spatial location. 

We thank Referee #2 for noticing this problem. We have reformulated as follows: “However, 

these methods do not allow to measure the influence of the covariates for a prediction at a 

certain spatial location.” 

 

Line 157: pushes the prediction uncertainty? 

We agree that this term is confusing. The sentence has been replaced as follows: “i.e. whether 

the considered covariate influences the prediction upwards or downwards in relation to the base 

value” 

 

Line 442: I don’t see any circular pattern on the bottom middle panel of Figure 13 (in the 

bottom right one however, they are really clear). 

We thank Referee #2 for noticing this problem. We have corrected the text by referring to Figure 

13, bottom right. 

 

Synthetic test case: isn’t the fact that in Z1, the biggest contributor to uncertainty is Tmean-

Tmax (and that respectively in Z2, the biggest contributor is Pwettest) be linked to the fact that 

these covariates have uniquely high (respectively low) values there, that are not represented in 

the dataset? If you agree, this in my opinion would be interesting to put in the discussion. 

We thank Referee #2 for the analysis. These additional elements are helpful for a better 

understating of the synthetic case and have been added to Sect. 4.1. 

 

  



 

Orleans, 

June 25th, 2024 
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