
 

 

Authors response 
egusphere-2024-3225. Future changes in runoff over western and central Europe: disentangling 
the hydrological behavior of CMIP6 models. 
 
We thank the reviewer for their time and constructive feedback. Their thoughtful comments and 
suggestions have helped us improve the clarity and overall quality of the manuscript. We 
appreciate the points raised and the references provided, which prompted us to re-examine 
important aspects of our study and strengthen both the analysis and the presentation of the results.  
 
Our responses to the reviewers’ comments (in black) are shown below in purple, and changes to 
the paper are shown in green. An accompanying manuscript with track changes is also provided. 
 
 
Reviewer 1 

Summary 

In this manuscript, the authors attempt to provide insights into possible future hydrologic 
changes over Western and Central Europe (WCE). To do so, they make use of historical and 
future (ssp585) projections from CMIP6 models. They cluster models into 8 groups based on 
the similarity of their hydrologic responses and show that there is no consistent response 
across models/clusters in future annual runoff changes over WCE, with half of clusters 
showing strong decreases and half showing no change or modest increases. They further 
show that even when clusters of models show similar runoff responses, they may do so for 
different reasons (e.g., divergent signs/strengths of precipitation and evapotranspiration 
trends). Additionally, they show that it is challenging to observationally constrain the model 
projections owing to observational uncertainty in components of the water budget (especially 
P and ET trends) and a weak linkage between historical and future changes in the models. 
Finally, they leverage additional CMIP6 experiments from C4MIP and LS3MIP to provide a 
detailed look at some of the biogeophysical mechanisms driving the models' hydrological 
responses and find a strong role for plant physiological responses to elevated CO2 and a 
limited role for soil moisture-atmosphere feedbacks in the spread of model responses. 

General comments 

Overall, I found the questions the authors posed around future hydrologic changes over WCE 
both scientifically interesting, owing to the substantial uncertainties, and societally relevant. 
Their analysis was thorough and technically sound. I particularly appreciated the use of 
multiple sets of CMIP6 experiments to provide several lines of evidence. I only have two 
minor concerns that I would like the authors to address before I would consider this 
manuscript ready for publication. 

Specific comments 

My first comment pertains to the clustering algorithm used to group models. How was the 
number of clusters determined? The authors do not describe the dissimilarity measure shown 



 

 

on the x-axis in Figure 1 or how the dissimilarity threshold that determines the final clusters 
was chosen. I feel that these analytical choices do require some justification, and checking the 
sensitivity of the main results to the threshold/number of clusters would provide a valuable 
robustness check.  

The number of clusters was determined empirically so that there are enough clusters to 
highlight different behaviors but not so many that there are single model clusters or that the 
diversity of behaviors is too difficult to analyze. The dissimilarity threshold is chosen 
accordingly to get eight clusters of models. 

The Ward’s linkage merges two clusters that result in the smallest increase in intra-cluster 
inertia. The intra-cluster inertia of a cluster C with centroid 𝜇!  is computed as follow: 

𝑊(𝐶) = ∑ '|𝑥 − 𝜇!|'
"

#∈! . The increase in intra-cluster inertia if clusters A and B were 
merged is therefore computed as follow: 𝛥𝑊=𝑊(𝐴 ∪ 𝐵) − (𝑊(𝐴) +𝑊(𝐵)). This increase 
is the dissimilarity measure that is noted on the x-axis. It can also be expressed as : 

𝑑(𝐴, 𝐵) = 2|𝐴||𝐵|/(|𝐴| + |𝐵|)	'|𝜇% − 𝜇&|'
2 

with |𝐴| and |𝐵| the number of points in clusters A and B and 5'𝜇% − 𝜇&'5
2
the Euclidean 

distance between the two cluster centroids.  

The method section has been modified for more clarity on this point: 

“To facilitate the analysis of the CMIP6 multi-model ensemble, the hydrological responses of 
the 36 models studied in this work are classified using hierarchical clustering. The hydrological 
response of a model is defined by its seasonal relative changes in precipitation, 
evapotranspiration and runoff, averaged over WCE between the periods 2081-2100 and 1995-
2014 for the SSP5-8.5 scenario. When multiple members are available for one model, the multi-
member ensemble mean of the changes is used. Relative changes for each season and variable 
are first standardized by subtracting the multi-model mean and dividing by the inter-model 
standard deviation. The Euclidean distance is used to compute the distance between each model 
based on their changes. The classification algorithm starts with 36 clusters (one per model) and 
then, recursively, the two closest clusters are merged, until one cluster remains. The Ward’s 
linkage merges two clusters that result in the smallest increase in intra-cluster inertia. The 
dissimilarity measure is an estimation of the increase in intra-cluster inertia, it is computed as 

follow: 𝑑(𝐴, 𝐵) = 2|𝐴||𝐵|/(|𝐴| + |𝐵|)	'|𝜇% − 𝜇&|'
2 

with |𝐴| and |𝐵| the number of points in clusters A and B and 5'𝜇% − 𝜇&'5
2
  the Euclidean 

distance between the two cluster centroids.” (lines 118 to 128) 
 
Below is a sensitivity analysis of the results to the number of clusters chosen. We show the 
clustering and the corresponding classified changes in precipitation, evapotranspiration and 
runoff with 4, 6 and 10 clusters (Figures R1 to R8). 
 



 

 

The use of a limited number of clusters (4 in Figure R1 and 6 in Figure R2) in the 
classification of models facilitates the identification of predominant behaviors (Figures R5 
and R6). We clearly see the two types of annual behaviors highlighted in the article: half of 
the clusters show a decrease in runoff and the other half show an increase. The clusters with a 
decrease in runoff either project an increase in precipitation and an even greater increase in 
evapotranspiration or a decrease in precipitation and small changes in evapotranspiration. We 
also distinguish the outlier behavior of the CCCma models, which are as dissimilar with C3 
than C2 is with C1 (Figure R1) or with C1/C5 than C2 with C3/C4 (Figure R2). We could 
have stopped the clustering at six clusters but there are still clusters with high intra-variance 
(C2 and C3 in Figure R2). We have therefore added two more clusters without reducing the 
dissimilarity threshold too much so that TaiESM1 would not be a single model cluster. 

With ten clusters, the C5 and C6 clusters are split (Figure 1) to give the new C5, C9, C6 and 
C10 clusters (Figure R3) with C10 being a single model cluster. In this classification, C5 and 
C9 have very similar behavior (their seasonal changes in R, P and E are close) except in 
summer. C6 and C10 also have similar behavior except for runoff in DJF and MAM with 
C10 showing a stronger than usual increase (Figure R6). Additionally, it is harder to identify 
the mechanisms that might be responsible for a particular behavior with a single model 
cluster (especially as there are not enough models available in the MIPs we analyzed to have 
at least one model per clusters). The issues are the same with 10 clusters or more. 

The choice of eight clusters is therefore a good compromise between a diversity of 
hydrological behavior without having single model clusters or clusters with similar behaviors. 
Furthermore, as discussed above, having fewer or more clusters would not change the main 
physical interpretations of our study based on 8 clusters.  



 

 

 
Figure R1: Same as Figure 1 but with four clusters of models 

 
Figure R2: Same as Figure 1 but with six clusters of models 



 

 

 
Figure R3: Same as Figure 1 but with ten clusters of models 



 

 

 
Figure R4: Same as Figure 4 but with four clusters of models. The associated dendrogram of 
the clustering is given Figure R1. 



 

 

 
Figure R5: Same as Figure 4 but with six clusters of models. The associated dendrogram of 
the clustering is given Figure R2. 



 

 

 
Figure R6: Same as Figure 4 but with ten clusters of models. The associated dendrogram of 
the clustering is given Figure R3. 



 

 

My second comment relates to a point the authors flag in their discussion on ll. 399-403: the 
CMIP6 models display a wide range of climate sensitivities, and as such warm by very 
different amounts over WCE in ssp585 by the end-of-century period the authors examine. 
Accordingly, it would make more analytical sense to normalize the hydrologic changes the 
authors examine by the temperature change over that period (i.e., %/K). This would help 
identify situations in which models might have a similar hydrologic response to warming, but 
warm different amounts, and to more effectively partition how much of the model spread is 
due to dynamic vs. thermodynamic differences. Additionally, this normalization would make 
for more interpretable expectations of future change that are benchmarked to warming levels 
and thus more scenario-independent. 

This is a very interesting point that we thought about when writing the article. We think there 
are multiple ways to look at the sensitivity of hydrological changes to warming. We therefore 
have done three sensitivity tests. 

First, we have normalized the hydrological changes by local temperature for the clusters with 
the same classification as in the paper, i.e. on raw hydrological changes (Figure R7). Then we 
have performed the classification on hydrological changes normalized by local temperature 
changes (Figure R8 and R9). Finally, we have performed the classification on hydrological 
changes normalized by ECS (Figure R10 and R11). 

The normalization of hydrological changes by local temperature changes after classification 
(Figure R7) does not modify the two types of behaviors highlighted in Figure 4 (half of the 
clusters give a decrease and the other half an increase). The main discrepancies are some 
differences of intra-cluster variability after normalization by local temperature changes. Also, 
after normalizing by temperature changes, the CCCma models are still outliers but the 
difference between them and the rest of the models is smaller. The stronger than usual 
changes seen in CCCma models can therefore be attributed in part to their very large ECS, as 
discussed in the conclusion of the paper. 



 

 

 
Figure R7: Same as Figure 4 but the changes in each season are divided by the local changes 
of temperature in this season. The associated dendrogram of the clustering is given Figure 4. 
 



 

 

Overall, the classification of hydrological changes (Figure 1 in the paper) and hydrological 
changes normalized by local temperature changes (Figure R8) shows important similarities, 
but also some discrepancies. The Earth System model and high resolution climate model of 
CNRM/Cerfacs switches from cluster C3 of the standard classification to the clusters C7 and 
C8 of this new classification. Former C2 and C4 are grouped in the same cluster, therefore we 
can assume that the difference between their changes is of thermodynamic origin, or at least 
correlated with temperature. The normalization by local temperature changes also highlights 
the outlier behavior of CAMS-CSM1-0, which shows strong annual hydrological changes 
despite small increase in temperature (C4 in Figure R9 a, b, c). This model presents an 
unusual runoff increase in summer despite a decrease in precipitation and an increase in 
evapotranspiration (Figure R9 m, n ,o). 
 

 
Figure R8: Same as Figure 1 but the hydrological changes in each season are normalized by 
the local temperature changes in each season. 



 

 

 
Figure R9: Same as Figure 4 but the changes in each season are divided by the local changes 
of temperature in this season. The associated dendrogram of the clustering is given Figure 
R8. 



 

 

 

Finally, we have performed the classification on the hydrological changes normalized by the 
ECS. This has been done using the 30 models out of the 36 for which the ECS is available in 
the literature. 

With the classification the CCCma model is no longer an outlier because of its very large 
ECS (Figures R10 and R11). 

Figure R10: Same as Figure 1 but the hydrological changes are normalized by the ECS. 



 

 

 
Figure R11: Same as Figure 4 but the changes are divided by the ECS. The associated 
dendrogram of the clustering is given Figure R10. 



 

 

In conclusion, normalizing hydrological changes by temperature changes may lead to 
interesting discussions, as above, some of them already in the paper, but we are not sure that 
it is necessarily more interesting than discussing the raw hydrological changes. In addition, it 
leads to methodological questions: should we normalize by ECS, local annual temperature 
changes, local seasonal temperature changes? This choice has implications on the results and 
for the interpretation of the results. Moreover, even if normalizing by temperature seemingly 
reduces the hydrological difference between models, we are not sure that it should be 
necessarily interpreted as: “thermodynamic processes, scaling with temperature (e.g. the 
Clausius-Clapeyron relationship) explain the difference between models”. This may not be 
causal or the causality could even be reversed. In some cases, the spread of temperature 
changes may be explained by hydrological changes rather than the other way around. For 
example, the physiological effects of CO2 may reduce transpiration and therefore increase 
temperature. 

 

Technical comments 

I appreciated the authors' Table 2 and related discussion about the overlap in model 
components in their clusters. I'd encourage the authors to take a look at and cite the "model 
genealogy" literature (a few recommended papers below). to contextualize and strengthen this 
section.  

We thank the reviewer for the references. We have added some discussion concerning model 
genealogy in the discussion related to table 2: 

“The clustering highlights the impact of the interdependency of climate models, which has 
been discussed in several studies (e.g. Knutti et al. 2013, Boé 2018, Kuma et al. 2023), and 
may lead to an underestimation of climate change uncertainties (Steinschneider et al. 2015). 
The climate models that share several components (Table 2) are generally in the same cluster, 
except for NorESM2-LM/NorESM2-MM. This is somewhat surprising, as NorESM2-LM 
and NorESM2-MM differ only in resolution (and a very limited number of parameters in the 
atmosphere component, Seland et al. (2020)). Internal variability could explain why these 
two very similar models belong to different clusters, especially since only one member is 
available for these two models. The Earth System Models (ESMs) and Coupled Models (CM) 
developed by the same institute (such as CNRM-CM6-1 and CNRM-ESM2-1, or CMCC-
ESM2 and CMCC-CM2-SR5) are generally in the same cluster, suggesting a secondary role 
for the additional components included in these ESMs. Interestingly, the models from C6 all 
share the same land surface and/or atmosphere components (CLM and CAM, respectively). 
Sharing only the atmospheric component is not always sufficient for models to have similar 
hydrological behavior over WCE. For example, the MetOffice models (HadGEM and 
UKESM) are not in the same cluster as ACCESS models. Two clusters, grouping only 
different versions of the same model, C7 (EC-Earth-Consortium models) and C8 (CCCma 
models), are quite far from the rest of the models, pointing to distinct hydrological 
behaviors.” (lines 130 to 143) 



 

 

How much is the correlation between DJF SLP and precipitation change shown in Figure 6c 
driven by the outliers in C8 and TaiESM1? Given that all models show increased DJF 
precipitation regardless of the sign of SLP change, I'm not sure what conclusions to make 
about the importance of circulation changes for wintertime precipitation changes. 

The correlation still holds but is less significant without the C8 models and TaiESM1 (Figure 
R12a, b, p<0.05 instead of p<0.01). However, we agree that other processes are likely to be 
important: the inter-model correlations with and without TaiESM1 and the C8 models are 
greater in magnitude for precipitation changes normalized by temperature change (Figure 
R12, c and d) pointing to an impact of temperature and thermodynamics processes in addition 
to the one of large scale circulation.  

We have added the following sentence in the paper “The inter-model correlation in Fig. 6c is 
lower when the three outlier models (TaiESM1 and the C8 models) are removed, but is still 
significant (r=-0.42 with p < 0.05, not shown).” (lines 288-289) 

 

 



 

 

Figure R12: (a) Scatterplot between winter changes in precipitation (%) averaged over WCE 
(x-axis) and winter changes in sea level pressure (hPa) averaged over WCE (y-axis) of all 
CMIP6 models. The Pearson correlation coefficient (“r”) and the corresponding p-value are 
given in the figure. (b) Same as (a) but without C8 models nor TaiESM1. (c) and (d) same as 
(a) and (b) but the DJF precipitation changes are normalized by the DJF temperature changes. 
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Kuma, P., Bender, F. A.-M., & Jönsson, A. R. (2023). Climate model code genealogy and its 
relation to climate feedbacks and sensitivity. Journal of Advances in Modeling Earth Systems, 
15, e2022MS003588. https://doi.org/10.1029/2022MS003588 

Steinschneider, S., R. McCrary, L. O. Mearns, and C. Brown (2015), The effects of climate 
model similarity on probabilistic climate projections and the implications for local, risk-based 
adaptation planning. Geophys. Res. Lett., 42, 5014–5044. doi: 10.1002/2015GL064529. 

 
Reviewer 2 
 
General Comment: 
 
This manuscript provides a comprehensive analysis of future runoff changes over western and 
central Europe using the CMIP6 multi-model ensemble under a high-end emissions scenario. The 
hierarchical classification approach used to categorize models is helpful to identify the sources of 
inter-model uncertainty. I also appreciate the authors investigate multiple mechanisms using other 
experiments such as LS3MIP and C4MIP 
 
Specific comments: 
 

1. Regarding the BGC simulations shown in Fig. 9, the authors did not discuss runoff results. 
Unlike ET and P, runoff does not show a statistically significant correlation between ALL 
and BGC scenarios. It also shows varied signs of change between ALL and BGC, e.g., 
runoff in BGC is negative while ALL is positive, whereas ET and P show more consistent 
signs of change. It would be valuable to discuss these discrepancies explicitly. This 
reference may be relevant: Lesk, Corey S., Jonathan M. Winter, and Justin S. Mankin. 
"Projected runoff declines from plant physiological effects on precipitation." Nature 
Water(2025): 1-11. 

 
We thank the reviewer for the reference. We really enjoyed this article and we found it relevant 
for the results presented in Fig. 9. First, note that the correlation between ALL and BGC for 
runoff is close to be significant at a reasonable level (p<0.076). Also, for a majority of models, 



 

 

the changes in runoff in BGC are negative. Our results are therefore overall consistent with 
Lesk et al. (2025). 
We have added a discussion about the uncertainty of the runoff response to CO2 physiological 
effect at the end of the paragraph discussing the results of Fig. 9. 
 
“The physiological effect of CO2 therefore generally leads to both a direct decrease in 
evapotranspiration and in an indirect decrease in precipitation, and uncertainty remains as to  
how the physiological effect of CO2 will ultimately affect changes in runoff. The inter-model 
correlation between runoff changes in BGC and ALL is less robust (Fig. 9c, r=0.66 and 
0.05<p<0.1) than for precipitation and evapotranspiration, but still 5 out of 8 models show a 
decrease in runoff in BGC. This is in agreement with Lesk et al. (2025), who highlight the 
crucial role of the response of precipitation to the physiological effect of CO2 for changes in 
runoff. ” (lines 342 to 348) 
 

2. Is there a particular reason the authors chose a 20-year climatology period (2081-2100 vs. 
1995-2014)? The standard practice is typically using a 30-year climatology, as used in the 
given reference above. 

 
We have used the 20-year climatology period 2081-2100 vs 1995-2014 period to ensure 
consistency with the IPCC AR6 WGI (Atlas 1.3.1 in Gutiérrez et al. 2021). Climate change is 
rapid in the late 21st century under the SSP5-8.5 scenario, and a 30-year period may smooth the 
signal too much. A 20-year period is a good compromise between being long enough to smooth 
internal variability but short enough to capture rapid changes. However, to evaluate the trends 
in Fig. 5 b, d, f, h, j, we use a 30-year period (1985-2014) in order to reduce the impact of 
internal variability (Maher et al. 2020). 
 

3. One finding of the authors is that multi-model mean and inter-model standard deviation 
could be uninformative. It would be helpful if the authors suggest alternative metrics or 
practices for better representing model agreement or uncertainty in hydrological 
projections. 

 
This is a topic prone to discussion as there exists multiple ways to communicate about the 
results of climate models projections and the associated uncertainties. In our case, we believe 
that the storyline approach would be a very good way to take into account the diversity of 
hydrological response to anthropogenic forcing for practical applications. The storyline 
approach consists in exploring multiple plausible future evolution of the climate (Shepherd et 
al. 2018). In our case, we could do this by randomly selecting one model from each cluster.  
The full diversity of the CMIP6 ensemble would be very well captured, while keeping a 
reasonably small and manageable ensemble of plausible future evolutions (Monerie et al. 2017). 
We have strengthened the part of the conclusion referring to this point. 
 
“Ensemble metrics such as the multi-model mean and inter-model standard deviation based on 
model democracy could therefore be biased. This result also highlights the interest of thinking 
in terms of a few groups of models with similar responses, depicting different possible 



 

 

storylines of future hydrological changes, as in this study. This approach offers a more 
informative perspective on the uncertainties associated with future projections and could be 
completed, for decision-making purposes, by integrating other relevant factors, such as socio-
economic factors (Shepherd et al. 2018).” (lines 371 to 375) 
 

4. Because the mechanisms investigated are focused on particular seasons, e.g., DJF for 
large-scale circulation and JJA for others, in the abstract the seasons should be explicitly 
mentioned to avoid confusion or overly generalized claims. 

 
We have added in the abstract the seasons corresponding to each mechanisms investigated. The 
modified sentences are shown in reply to the reviewer’s next comment. 
 

5. The current phrasing of "extreme hydrological changes" in the abstract could lead to 
misunderstandings. I though the authors suggest a focus on extremes (such as the 99th 
percentile runoff values), but later it becomes clear that the authors refer to models 
showing unusually high responses compared to other models. Clarifying this phrasing 
early on in the abstract would enhance reader understanding. 

 
We have modified the abstract concerning the mention of extreme hydrological changes. We 
have replaced “extreme” by “unusually large”. 
 
“Finally, we show that large-scale circulation in winter and the representation of the 
physiological impact of CO2 in summer are important for the unusually large hydrological 
changes projected by some models. The soil-moisture precipitation feedback is important in 
summer for the multi-model ensemble mean but not for the inter-model spread.” (lines 20-23) 

 
Technical corrections: 
 

1. Line 97: ERA5-Land should be described as a reanalysis dataset rather than an 
observational dataset. 

 
We have modified the description of the datasets used for evaluation for more clarity on their 
nature (reanalysis for ERA5-Land, remote sensing-based modeling framework for GLEAM or 
observational for CRU-TS). 
 
“Three datasets are used for the evaluation of historical simulations. The reanalysis ERA5-
Land (Muñoz-Sabater et al., 2021) consists of the land component of the ERA5 reanalysis and 
is forced by ERA5 meteorological fields. Its enhanced resolution and increased complexity in 
land surface representation lead to an added value compared to ERA5 for the estimation of 
runoff and soil moisture, among other land surface variables (Muñoz-Sabater et al., 2021). The 
remote sensing-based modeling framework GLEAM (Global Land Evaporation Amsterdam 
Model, Miralles et al. 2011; 2025) version 4.1a, uses observations of surface net radiation, 
near-surface air temperature, wind speed, leaf area index and vapor pressure deficit to estimate 
potential evapotranspiration with the Penman’s equation. The surface soil moisture from 



 

 

satellite observations is assimilated into the soil profile. The potential evapotranspiration is 
then combined with an evaporative stress factor based on root-zone soil moisture. The 
evapotranspiration is finally computed as the sum of transpiration, interception, bare soil 
evaporation, evaporation for water bodies and evaporation for regions covered by ice and/or 
snow. Finally, the gridded monthly data over land from the Climatic Research Unit (CRU) time 
series (TS) version 4 (Harris et al., 2020) provide another estimation of potential 
evapotranspiration and precipitation. CRU TS is based on the interpolation of weather station 
observations on a 0.5° resolution grid. The CRU TS potential evapotranspiration is computed 
with the Penman-Monteith formula from gridded mean temperature, vapor pressure, cloud 
cover and climatological wind field values.” (lines 98 to 111) 
 
 

2. Line 94: Please clarify the temporal resolution of the model output used. Does the daily 
mean temperature imply PET is calculated at a daily timestep? Please specify the 
resolution of other variables as well. 

 
We have added a clarification about the temporal resolution of the computation of PET. 
“Potential evapotranspiration is calculated at the daily time step for the 24 CMIP6 models with 
the necessary data (Table 1)” (line 92) 
 
We have also specified the temporal resolution of other variables. 
“The variables considered in this study are precipitation (P), evapotranspiration (ETR), 
transpiration (Tran), potential evapotranspiration (PET), total runoff (R), surface soil moisture 
(SSM) and sea level pressure (SLP). All variables are considered at the monthly time step 
except for potential evapotranspiration.“ (lines 91-92) 
 

3. Table 2: The caption mentions “the colors of the first column”, but the first column is 
entirely black. It is also unclear why the cluster is not in a sorted order. It only becomes 
clear in Fig. 4 that sorting is based on annual runoff. 

 
Indeed, they were first colored but the journal does not support colored tables so we removed 
the colors and did not change the caption. We have replaced the sentence. 
“The eight clusters are identified through hierarchical clustering (see Section 2 and Figure 1).” 
(lines 151-152) 
We have rearranged the order of the clusters in Table 2 as it does not make sense, as the 
reviewer said, at this stage of the study. We have also rearranged the order of the clusters in 
the legend of the figures 6, 8 and 9. 
 

4. Fig. 2: The caption mentions the "multi-model ensemble mean," but line 157 says one 
member per model was used. Please clarify why all members per model were not averaged 
or specify the criteria for selecting the single member. 

 
Thank you for highlighting this inconsistency. We chose one member per model in Figure 2 in 
order to be coherent between the models for the computation of the variability threshold. 



 

 

Comparing a member to a threshold is not the same as comparing the mean signal to that 
threshold. The variability threshold is intended to account for uncertainty due to internal 
variability, so we didn't want to smooth it for some models and not others. The selected member 
is always the first on the list. We have specified it in the text where it is needed. 
“for one member (the first) per model” (line 93) 
“On these maps, one member (the first) per model is used.” (line 170) 
“The colored dots and cross correspond to individual models with a single member (the first).” 
(caption Figure 5, line 274) 
 

5. Line 159-160: This methodological explanation should be moved to the methods section. 
Additionally, please briefly define the "linearly detrended modern period," and clarify the 
period used to calculate the standard deviation. Is sigma-1yr calculated from the multi-
model ensemble mean or individually from each member? This clarification also applies to 
lines 175-180. 

 
We have moved the definition of the variability threshold in the methods section and have 
clarified how it is calculated. We consider the period 1995-2014 as the modern period. 
Therefore, we have replaced “modern period” by 1995-2014. “Linearly detrended” means that 
we have removed the linear trend. As noted above, we use one member per model for this 
analysis and therefore δ!"# is always calculated on one member. 

“2.3 Significance of the changes 

To assess the significance of projected changes, their magnitude is compared to a variability threshold. 

This variability threshold γ is defined as in Gutierrez et al. 2021 (Eq. 1) and represents the amplitude of 

internal variability.  

𝛾 = &2/20 ∗ 1.645 ∗ 𝛿!"# 

where 𝛿!"# 	is the interannual standard deviation measured calculated over the linearly detrended 1995-
2014 period.” (lines 152 to 156) 
 
We have modified all parts of the text referencing the Methods section for the definition of the 
variability threshold (caption Figures 2 and 3, lines 171 and 188). 
 

6. Line 166: How do you define significant? Is it referring to statistical significance? 
 
By significant changes we mean changes that have a magnitude greater than the variability 
threshold. We believe that it is clearer now that we have defined the variability threshold and its 
purpose in the Methods section. 

 



 

 

7. Fig. 5: Figures 5d and 5i seem to include only GLEAM as a reference dataset, although 
ERA5-Land also provides the variable "Evaporation from Vegetation Transpiration." 
Please clarify why ERA5-Land was not included. 

 
ERA5-Land does indeed provide the transpiration variable. We first tested it and we found that 
its climatological mean was very small compared to evapotranspiration (Fig. R13) so we 
decided not to use it. Nevertheless, in order to respond to the points raised in your commentary, 
we have conducted further investigation into the reasons for this low climatological value and 
we have found that it was due to an issue in the dataset (section “known issues” subsection “3. 
Swapped value of the components of the total evapotranspiration” from the ERA5-Land 
documentation at https://confluence.ecmwf.int/display/CKB/ERA5-
Land%3A+data+documentation#). The values corresponding to the variable “Evaporation from 
vegetation transpiration” are replaced by the values corresponding to the variable “Evaporation 
from open water surfaces excluding oceans”. And the values corresponding to the variable 
“Evaporation from vegetation transpiration” are the values corresponding to the variable 
“Evaporation from bare soil”. We have therefore added the right values of transpiration from 
ERA5-Land in Figure 5 and have modified the text mentioning Figure 5 d, i. 
 
“The simulated trends in transpiration are significantly positive in models from C1, C7, C5 and 
C8, in line with the significant positive trend in GLEAM and ERA5-Land.” (line 245) 

“A large and quasi-generalized underestimation of climatological transpiration in climate 
models compared to GLEAM and ERA5-Land is found.” (line 255) 

 

 



 

 

Figure R13: Seasonal and annual evapotranspiration (1st row) and transpiration (2nd row) 
averaged over WCE for ERA5-Land (blue) and Gleam (orange) datasets over the period 1995-
2014. 
 
 

8. Line 182: Section 2b should be Section 2.2. 
 
We have replaced it. 
 

9. Line 260: Please check and correct the ordering of letters corresponding to the correct sub-
figures. 

 
We have corrected it. 
 

10. Lines 253-256: There seems to be some redundancy. 
 
It was a summary of the section’s results but there were too many details. We have streamlined 
the sentence. 
“The models with future decreases in annual runoff (C1, C7, C2 and C4, see Fig. 4a) tend to 
have higher present-day climatological values of evapotranspiration. In addition, the C7 models 
have both strong present-day trends and strong projected changes in evapotranspiration ad 
precipitation between 2081-2100 and 1995-2014 as shown in Fig. 4a, b.” (lines 263 to 265)  
 

11. Line 242: Please be aware of the difference of observations and reanalysis. Here the 
authors use “observations” to refer to GLEAM and ERA5-Land, but in line 245, they 
mention GLEAM has a lack of direct observations for transpiration. 

 

We agree that the difference between observations and reanalysis should be more carefully 
considered. We have modified the description of GLEAM in the Data section in response to 
your commentary 1. We believe that the sentence that you mentioned (line XX) makes more 
sense with this correction. 
 
“The remote sensing-based modeling framework Global Land Evaporation Amsterdam Model 
(GLEAM, Miralles et al. 2011; 2025) version 4.1a” (lines 102-103) 
 

12. Line 250: Please provide relevant citations to support the statement. 
 
We have added a reference. 

“Moreover, transpiration depends on the stomatal conductance of the plant, which could be 
affected by CO2 through its physiological effect (Vicente-Serrano et al. 2022).” (lines 259-260) 
 

13. Line 269: Cite Fig. 4b as well since annual precipitation is also mentioned. 



 

 

 
We have added Fig. 4b in the citation. 
“A salient feature of the cluster's hydrological response to climate change is the very strong 
increase in annual and winter precipitation in C8, and in one model of the C6 cluster, TaiESM1 
(Fig. 4b, h).” (line 278) 
 

14. Fig. 7: Consider adding observational data to help assess which LS3MIP experiment better 
aligns with observed conditions. 

 
We are not sure that adding GLEAM and ERA5 is sufficient to assess which LS3MIP 
experiment better aligns with observed conditions, as large uncertainties exist and the 
simulations do not diverge much on the historical period (Figure R14).  
 

 
Figure R14: as Figure 7 but with Gleam, ERA5-Land and Cru-TS. 
 

15. Lines 298-299: The text refers to differences in ET and P between two LS3MIP 
experiments, but Fig. 8 shows differences between historical and SSP585 simulations. 

 
Figure 8 shows both the differences of evapotranspiration (a) / precipitation (b) changes 
between historical and SSP585 simulations (y-axis) and differences of changes of 
evapotranspiration or precipitation between the two LS3MIP experiment divided by the 
difference of changes in soil moisture in the two experiments (x-axis). This metric captures the 
strength of the soil moisture atmosphere feedback in each model. Figure. 8 shows that there is 
no relationship across models between the magnitude of summer evapotranspiration (a) or 
precipitation (b) changes and the strength of the soil moisture - atmosphere feedback.  
 

16. Lines 321-322: The authors mention “ALL” and “BGC”, but in the figure they didn’t use 
the same notation. 

 
We have modified the labels of the axis in Figure 9 to maintain consistency throughout the 
article. We have also replaced “ssp585” by “ALL” in Figure 8. 
 

17. Fig. 9: The caption does not follow the sub-figures being shown. The y-axis and x-axis are 
also not consistent with the description. 

 



 

 

Thank you for pointing it out, the axes of the figure were inverted. We have corrected this 
mistake. 
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