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Abstract22

In marine ecosystems, Net Primary Production (NPP) is pivotal, not merely as a23

critical indicator of ecosystem health, but also as an integral component in the global24

carbon cycling process. This study introduces an advanced probability prediction25

model to refine the precision of NPP estimation and to deepen our comprehension of26

its inherent uncertainties. A comprehensive comparative analysis is undertaken,27

juxtaposing a Bayesian probability prediction model, predicated on empirical28

distribution, with a probability prediction model anchored in deep learning. The29

objective is to meticulously quantify the uncertainty associated with NPP. The30

findings underscore the applicability of probability prediction in investigating the31

uncertainty of marine NPP. Both models proficiently delineate the dynamic trends and32

inherent uncertainties in NPP, with the neural network model exhibiting superior33
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accuracy and dependability. Additionally, these probability prediction models are34

adeptly applied to prognosticate NPP in specific marine regions, efficaciously35

elucidating the interannual trends in NPP variation. This research contributes not only36

a more precise method for quantifying NPP uncertainty but also bolsters scientific37

support for the stewardship of marine ecosystems and the preservation of38

environmental integrity.39

Keywords: Net Primary Production; Bayesian Probability Prediction; Neural40

Network Probability Prediction.41

42

graphical abstract43

1. Introduction44

Net Primary Production (NPP) of phytoplankton, an indispensable indicator for45

biological productivity, exerts a substantial influence on global carbon flux and the46

dynamics of marine ecosystems (Yang et al., 2021; Silsbe et al., 2016). The precision47

in estimating NPP is paramount for environmental quality assessments (Falkowski et48

al., 1998; Tan et al., 2005), effective fisheries resource management, and49

comprehending the impacts of global climate change (Lee et al., 2015; Ding et al.,50

2016). Conventional methods of NPP measurement, such as ship-based sampling and51
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bottle incubations, are beset with challenges like human errors and inadequacies in52

capturing spatial and temporal dynamics. This underscores the necessity for more53

sophisticated and comprehensive methods (Yang et al., 2021; Li et al., 2020).54

The advent of ocean observation satellites and ocean color remote sensing55

technology has catalyzed a paradigm shift in the estimation of large-scale marine56

primary productivity (Yang et al., 2021; Westberry et al., 2008). These pioneering57

technological advancements furnish novel insights into phytoplankton photosynthetic58

production and its integral role in the carbon cycle, thereby broadening the59

observational spectrum and establishing a robust foundation for predicting marine60

NPP. Initial remote sensing endeavors to estimate NPP, employing satellite-based61

chlorophyll-a (Chl-a) (Platt et al., 1991; Platt & Sathyendranath, 1988;62

Sathyendranath et al., 1995), stemmed from the established correlation between63

chlorophyll and photosynthesis (Ryther, 1956; Ryther & Yentsch, 1957). However,64

these efforts were predominantly confined to local or regional applications. A65

subsequent investigation by Campbell et al. (2002) delved into the accuracy of66

various satellite primary productivity algorithms, unveiling that estimates from the67

most effective algorithm often diverged from those derived from those obtained using68

the 14C isotope labeling method. Their study also unearthed systematic biases in69

several algorithms, which could be alleviated through re-parameterization.70

In response to the aforementioned limitations, several remote sensing-based71

models, such as the Vertically Generalized Production Model (VGPM), the72

Carbon-based Productivity Model (CbPM), and the Carbon, Absorption, and73

Fluorescence Euphotic-resolving model (CAFE), have been innovatively proposed74

(Behrenfeld et al., 1997; Westberry et al., 2008; Silsbe et al., 2016). Spanning various75

decades, these models address diverse facets of ocean primary production and are76

readily accessible via satellite remote sensing data platforms. As a result, they have77

been extensively applied and discussed in numerous studies (Westberry et al., 2008;78

Pan et al., 2012; Dave et al., 2013; Li et al., 2020; Yang, 2021; Cael, 2021).79

https://doi.org/10.5194/egusphere-2024-3221
Preprint. Discussion started: 2 December 2024
c© Author(s) 2024. CC BY 4.0 License.



4

Particularly, VGPM formulates a light-dependent, depth-integrated model that80

classifies environmental factors influencing the vertical distribution and optimal81

assimilation efficiency of primary production, leveraging 14C productivity82

measurement data (Behrenfeld et al., 1997). Conversely, CbPM was a depth-resolved83

spectral NPP model designed for phytoplankton growth rates (Westberry et al., 2008).84

Its foundational concept was originally articulated by Behrenfeld et al. (2005).85

Distinguishing itself from Chl-based models, CbPM enables the differentiation of86

physiological changes in biomass and Chl, thus offering a more nuanced depiction of87

phytoplankton production. Notably, its strength lies in addressing issues related to88

light and nutrient adaptation, thereby enhancing its capability in estimating fixed89

carbon output at the ocean surface. Similarly, the CAFE model, introduced in 2016,90

presents an adaptive framework that melds satellite ocean color analysis with essential91

physiological and ecological attributes of phytoplankton (Silsbe et al., 2016). It92

incorporates intrinsic optical properties into the model and calculates NPP by93

assessing the product of energy absorption and the efficiency of converting absorbed94

energy into carbon biomass, alongside computing growth rates. Nonetheless, these95

models commonly generate a single value of NPP, overlooking the range estimation96

and the inherent uncertainties in NPP estimation, stemming either from the model97

itself (BIPM et al., 2009) or from the model input (Milutinovic & Bertino, 2011). This98

oversight is critical, as suggested by Saba et al. (2011), since uncertainties in input99

variables, like Chl-a, significantly impinge upon model performance and accuracy. In100

a recent assessment, Westberry et al. (2023) examined the daily depth-integrated NPP101

rates over 2003–2018 for VGPM, CbPM, and CAFE, revealing that the mean NPP102

fields of CbPM and CAFE, along with their associated frequency distributions, are103

distinctly divergent from those of VGPM.104

Transitioning from the constraints of traditional models, probabilistic forecasting,105

in contrast to deterministic forecasting (Juban et al., 2007), generates a cumulative106

distribution function or probability density function for the predicted object. This107

methodology offers a more holistic understanding of likely outcomes (Gneiting &108
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Katzfuss, 2014; Schepen et al., 2018; Zhao et al., 2015). Significantly, this approach109

has been successfully implemented in fields such as hydrology (Schepen et al., 2018;110

Zhao et al., 2015; Schwanenberg et al., 2015) and power system management111

(Al-Gabalawy et al., 2021). For instance, Schwanenberg et al. (2015) conducted112

analyses using both deterministic and probabilistic forecasts. They concluded that113

deterministic forecasts tend to overlook forecast uncertainty in short-term decisions,114

whereas probabilistic forecasting offers numerous advantages: (i) it enables a longer115

forecast horizon, facilitating earlier and more accurate predictions of major events; (ii)116

stochastic optimization yields more robust decisions compared to deterministic117

procedures that focus solely on individual future trajectories; and (iii) it permits118

introduction of advanced chance constraints for refining the system operation.119

Although Bayesian models and probabilistic neural networks are established120

methods, their application to the remote sensing of marine net primary productivity121

(NPP) represents a novel approach. This study leverages these advanced probabilistic122

techniques to address the unique challenges in estimating NPP from satellite data,123

providing a more accurate and reliable quantification of uncertainties. We introduce124

probabilistic prediction models to meticulously quantify the uncertainty of NPP125

estimation, thereby enhancing our comprehension of NPP’s significance in marine126

ecosystems. The research objectives of this paper are articulated as follows: (1) to127

thoroughly quantify the uncertainty of NPP estimation through the integration of128

probabilistic forecasting; (2) To evaluate and contrast the efficacy of neural129

network-based probabilistic forecasting with empirical distribution-based Bayesian130

probabilistic forecasting in capturing NPP uncertainty; and (3) To implement131

probabilistic forecasting of the uncertainty of the NPP in the study area during132

2007–2018 and to explore its temporal characteristics. Our study offers innovative133

perspectives and methodologies for addressing the uncertainty associated with NPP.134

The organization of this paper is as follows: Section 2 outlines the study area and data135

sources; Section 3 elaborates on the methodology and presents metrics for evaluating136

forecasting performance; Section 4 discloses the results; and Section 5 presents the137
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conclusions.138

2. Data and Methods139

2.1. Study Area and Data Sources140

The research locale for this study is situated in the aquatic environs of Weizhou141

Island, nestled within the Gulf of Tonkin, Guangxi Province, southern China (Fig. 1).142

The proportion of excellent water quality in Guangxi's near-shore waters reaches143

more than 90% all year round, and the quality of the marine ecological environment144

has remained at the forefront of the country for 12 consecutive years, which is the145

only stable habitat and feeding ground for large cetaceans known in China's146

near-shore waters at present. Weizhou Island is the youngest volcanic island in China147

geologically, with more than 95% of its strata comprising volcanic rocks, and148

landscapes of sea erosion, sea accumulation, and dissolved rocks. Surrounded by the149

sea on all sides, Weizhou Island is in the southern subtropical monsoon zone, with a150

pleasant climate, rich heat, and abundant precipitation throughout the year. The151

average annual temperature is 23℃, and the average winter temperature is 16.3℃.152

The unique climatic conditions and island landscape make it a popular tourist153

destination. The waters of Weizhou Island are the habitat of many rare marine154

organisms, and the protection and research of its marine ecosystem are of great155

significance to maintaining marine biodiversity.156

The dataset of this study encompasses eight distinct sets of monitoring data157

spanning from January 2007 to February 2018, amassing a total of 4077 days. These158

data were procured from the Weizhou Marine Environmental Monitoring Station159

(21.0017°N, 109.0117°E) and encompass a spectrum of variables: sea surface160

temperature (SST), salinity (Sal), tide height (TH), air pressure (AP), relative161

humidity (RH), sea visibility (SV), wind speed (WS), and 1/10th significant wave162

height (H/10). Additionally, photosynthetically active radiation (PAR) was retrieved163

from NASA’s Ocean Color portal (https://oceancolor.gsfc.nasa.gov/), sea surface164

precipitation (SSP) was sourced from Nasa Earth Observation Data165
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(https://www.earthdata.nasa.gov/), and sunshine hours (SH) was sourced from the166

China Meteorological Administration (https://data.cma.cn/). This compilation resulted167

in a comprehensive dataset comprising eleven variables. For the analysis of three NPP168

algorithms — namely, VGPM, CbPM, and CAFE — we acquired datasets at an169

eight-day temporal resolution from the Ocean Productivity website170

(http://orca.science.oregonstate.edu/npp.visual.php). This data acquisition process171

spanned a cumulative duration of 514 days. The specific datasets utilized for this172

study are itemized in Table 1.173

Due to factors such as equipment malfunctions and adverse weather conditions,174

some data for the eleven variables were incomplete. To gain a deeper understanding175

of the data structure and address these gaps, we conducted an analysis of the missing176

data and identified five variables with missing entries (Table 2): SV, H/10, SSP, PAR,177

and SH. Subsequently, we visualized these five variables in a chronological sequence,178

with the findings depicted in Fig. 2. Distinct from daylength, which is computable179

based on location and date, SH indeed refers to the daily measured duration of180

sunlight reaching the Earth's surface. The variability and instances of zero values181

observed in Fig. 2 (bottom panel) and mentioned in Table 2 reflect real-world182

fluctuations due to weather conditions—on overcast or rainy days, actual sunshine183

hours recorded can indeed drop to zero. These data are collected on a daily basis,184

hence the seemingly sporadic pattern rather than a smooth temporal variation185

expected of constant daylength calculations. The analysis revealed a marked186

periodicity in these variables, prompting us to employ time series interpolation as our187

method of choice for data imputation. The efficacy of this approach is evidenced in188

Table 3, which presents the statistical indicators of the data both pre- and189

post-interpolation. Notably, while the post-interpolation data retains a close190

resemblance to the original data in terms of statistical indicators, it is important to191

acknowledge that interpolated data are not independent observations. The validity of192

the interpolation method, therefore, depends on the specific application and context.193

In this study, interpolation was used to address missing variables, and we ensure that194
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the statistical properties of the original data were preserved to the greatest extent195

possible. This approach allows us to maintain the integrity of our analyses while196

recognizing the inherent limitations of using interpolated data.197

Upon visualizing the values of the three NPP products (VGPM, CbPM, and198

CAFE) (Fig. 3), it became evident that each exhibits a distinct periodicity, with the199

fluctuation ranges remaining stable yet markedly varied among them. Specifically,200

VGPM NPPs are the smallest, followed by CAFE NPPs, while CbPM NPPs have the201

largest values. To elucidate the correlation between these NPP products and our202

dataset, we generated Pearson correlation plots (Fig. 4). The results revealed that the203

variables with the highest correlations differed among the three NPP values. Notably,204

VGPM NPP showed the strongest correlation with SST, because the estimation of205

VGPM NPP is directly dependent on the optimal assimilation efficiency of the206

productivity profile (Behrenfeld et al., 1997). Whereas both CAFE NPP and CbPM207

NPP were most closely correlated with AP, albeit in opposing directions—CAFE NPP208

displayed a positive correlation and CbPM NPP, a negative one. Changes in AP209

mainly affect atmospheric stability, cloudiness, and precipitation, which in turn210

indirectly affect light conditions in the ocean and phytoplankton photosynthesis.211

Photosynthesis in plants may be inhibited under low-pressure environments. This212

analysis highlights that the three NPP estimation models exhibit distinct affinities with213

each variable. In summary, among the three models, VGPM NPP possesses the most214

significant correlation with the variables, followed by CAFE NPP, and lastly CbPM215

NPP.216

2.2. Methods217

2.2.1. Bayesian Probability Prediction218

Bayesian models can adeptly quantify the uncertainty in the distribution of219

predicted outcomes. The Bayesian approach is particularly advantageous in scenarios220

with limited training data or when potential invisibility in training data cannot be221
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discounted in practical applications (Perfors et al, 2011). The Bayesian formula is222

represented as:223

P θ D =
P D θ ·P θ

P D
# 1

where P(θ|D) denotes the posterior probability, P(D|θ) the likelihood probability,224

P(θ) the prior probability, and P(D) the marginal probability for normalization.225

When a training dataset D is available, the probability distribution P(θ|D) of θ is226

computable using the aforementioned Bayesian formula (Dürr et al, 2020). To deduce227

P(θ|D), it is imperative to ascertain the likelihood probability P(D|θ) of the observed228

data under the model parameter θ. P(D|θ) can also be interpreted as the probability of229

obtaining the training dataset D given parameter θ. Additionally, knowledge of the230

prior probability P(θ) and the evidence P(D) is essential. Given that the training231

dataset D is fixed, P(D) remains constant. Consequently, the posterior distribution is232

proportional to the likelihood probability multiplied by the prior distribution, i.e.,233

P(θ|D) ∝ P(D|θ) ∙ P(θ), in accordance with Bayes' Law.234

In this study, the Bayesian approach is employed to calculate the posterior235

distributions of the parameters considering the prior information and the input data.236

Subsequent predictions are made using the posterior distributions, yielding a237

probability distribution for each predicted value. Ultimately, the model's ability to238

estimate the uncertainty in the NPP is illustrated by plotting the prediction ranges for239

different targets and comparing them to actual observations.240

2.2.2. Neural Network Probabilistic Prediction Model Based on TFP241

TensorFlow Probability (TFP) represents a sophisticated library of statistical242

algorithms, devised atop the TensorFlow Python API. Its primary objective is to243

streamline the integration of probabilistic models with deep learning frameworks. TFP244

offers a comprehensive suite of tools, enabling the construction of probabilistic245
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models adept at estimating uncertainty. Aiming to thoroughly assess the predictive246

efficacy of the three NPP products, we employed a neural network model grounded in247

the TFP framework, capitalizing on its versatility and potent expressive capabilities248

for probabilistic prediction in marine ecosystems.249

The architecture of this neural network model incorporates multiple hidden250

layers, each implementing a nonlinear transformation via an activation function. Such251

a configuration enables the model to automatically extract higher-order features and252

intricate patterns from the data. Our selection of TFP as the implementation medium253

allows us to model the neural network’s output by integrating probability distributions,254

thus addressing the model’s uncertainty regarding predictions and yielding more255

exhaustive insights. Specifically, our neural network model utilizes a distribution256

layer in the output stage, producing a probabilistic distribution concerning the target257

variable, as opposed to a mere deterministic point prediction. This probabilistic output258

facilitates the quantification of the model’s confidence level for each prediction,259

extending beyond mere point estimates.260

The integration of Bayesian models and probabilistic neural networks in our261

approach addresses key challenges in the remote sensing of NPP. These challenges262

include handling the variability and uncertainty inherent in satellite-derived data and263

environmental factors, thus improving the robustness of NPP estimates. In this study,264

the input variables for the models are the 11 environmental variables mentioned in265

Section 2.1, and the outputs are VGPM, CbPM, and CAFE NPPs. The selection of266

input data was not limited to variables directly related to phytoplankton267

photosynthesis, such as SST, PAR, and SH. Instead, it also included a wide range of268

environmental variables that could influence phytoplankton growth, such as TH, WS,269

and AP, which are physical dynamics and meteorological characteristics. Since270

phytoplankton are the primary source of NPP, environmental factors affecting271

phytoplankton growth also indirectly impact NPP. The dataset spans 4,077 days, but272

due to the 8-day time interval of the downloaded NPP products, only 514 complete273
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datasets are available for model training and performance evaluation. Given the274

limited amount of data, 80% of the 514 sets are used for model training and parameter275

tuning, while the remaining 20% are used for performance evaluation. In the neural276

network probabilistic prediction model, there are six layers, with two output nodes277

used to estimate the mean and standard deviation. The Gaussian distribution is278

employed in the distribution layer, and the loss function is the negative log-likelihood279

loss function. The detailed parameters of the neural network are presented in Table 4.280

2.3. Model Evaluation281

Prior to model evaluation, we normalized the NPP satellite data. This step is282

critical to improving model performance because it removes the potential effects of283

different data scales, allowing the model to consider each data point more fairly.284

Normalization ensures that the distribution range of NPP data has the same weight285

during model training, thus improving the model's ability to capture the inherent286

patterns and features of the data. In addition, normalization helps reduce the noise and287

bias introduced by data scale differences, further enhancing the stability and288

predictive accuracy of the model.289

Before training the model, we divided the dataset reasonably. Specifically, we290

divided the dataset into 80% training set and 20% testing set. This division aims to291

ensure that the model can fully learn the features and patterns of the data during the292

training process, while retaining enough independent data for testing the predictive293

ability of the model. This way of dividing the dataset helps us to evaluate the294

performance of the model more accurately and avoid problems such as overfitting.295

2.3.1. CRPS296

Continuous Ranked Probability Score (CRPS) is a sophisticated statistical metric297

employed to evaluate the efficacy of forecasting models. Initially introduced in the298

1970s (Matheson & Winkler, 1976), CRPS is widely utilized in areas such as weather299
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forecasting (Zamo et al., 2018). It quantifies the divergence between the predicted300

probability distribution and the actual observations (Hersbach, 2000). Ideally suited301

for scenarios where the target variable is continuous and the model predicts its302

distribution (Pic et al., 2023), CRPS equates to the mean absolute error (MAE) in303

deterministic forecasting (Zhao et al., 2015).304

In probabilistic forecasting, the focus extends beyond mere point estimates to305

encompass the shape and dispersion of the probability distribution. Hence, traditional306

scoring functions prove inadequate, as aggregating the predicted distributions into307

their mean or median neglects critical information about the dispersion and shape.308

CRPS, by embracing the entire probability distribution, emerges as an invaluable tool309

in assessing model uncertainty. CRPS is calculated as follows:310

1. For each sample, calculate the discrepancy between the cumulative311

distribution function (CDF) of the predicted and observed values.312

2. Aggregate the variances for all samples and divide by the number of samples313

to obtain the average variance.314

���� �, � = −∞
+∞ [(�(�) − �(� − �)]2��� (2)315

���� = 1
� �=1

� ����(��� , ��) (3)316

where F(y) denotes the CDF of the predicted value, y the predicted value, x the317

observed value, and H(y-x) the Heaviside function which is 0 when y<x and 1318

otherwise. n indicates the total number of samples, and CRPS (Fi, xi) the CRPS value319

for the i-th sample.320

A smaller CRPS value signifies a closer alignment of the model's probability321

distribution with actual observation, integrating insights on both the shape and322

location of the distribution and demonstrating sensitivity to outliers. Unlike other323
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metrics such as Root Mean Square Error (RMSE) or Mean Absolute Error (MAE),324

CRPS offers a more holistic evaluation of a probability distribution’s predictive325

capacity by considering the full distribution shape. For Bayesian and neural network326

models, comparing CRPS values facilitates an understanding of their proficiency in327

fitting the entire probability distribution.328

2.3.2. RMSD329

Root Mean Squared Deviation (RMSD) is a widely recognized evaluation metric330

in regression analyses, primarily employed to quantify the discrepancy between a331

model's predicted values and the actual observed values. Characterized by its intuitive332

nature and simplicity in computation, RMSD is particularly beneficial in scenarios333

where emphasis is placed on the magnitude of difference between predicted and334

actual values, irrespective of the difference’s direction.335

���� = 1
� �=1

� �� − �� �
2� (4)336

where n denotes the number of samples, yi represents the actual value of the i-th337

sample, and ŷi symbolizes the predicted value of the i-th sample.338

A lower RMSD value is indicative of superior model performance, signaling a339

smaller variance between the model's predictions and the observed values.340

Nevertheless, it is important to note that RMSD exhibits sensitivity to outliers, as it341

constitutes the mean of the squared differences. Incorporating RMSD alongside CRPS342

in our analysis enables a more comprehensive evaluation of both the overall accuracy343

and uncertainty inherent in the predictions.344

2.3.3. MAPD345

Mean Absolute Percentage Deviation (MAPD) is a frequently utilized percentage346

error metric in regression problems. It expresses the prediction error as a percentage,347

offering an insightful perspective into the relative error between predicted results and348
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true values in predictive model evaluations.349

���� = 1
� �=1

� ���−��
��

× 100%� (5)350

where n signifies the number of samples, yi the actual value of the i-th sample, and ŷi351

the predicted value of the i-th sample.352

A lower MAPD value is desirable, indicating a reduced relative error of the353

model. However, a cautionary note: MAPD may prove unreliable in instances where354

the predicted value approaches zero, as a zero denominator results in infinity.355

Therefore, careful consideration is warranted when employing MAPD, particularly in356

scenarios where relative accuracy is paramount.357

In the context of comparing Bayesian probabilistic prediction models with neural358

network probabilistic prediction models, the synergistic application of these three359

metrics — CRPS, RMSD, and MAPD — affords a multifaceted assessment of the360

models. This triad of metrics enhances our understanding of the importance of relative361

error alongside the accuracy of point estimates and the fit of probability distributions.362

3. Results and Discussion363

3.1. Comparative Analysis of Prediction Efficacy Between Two Models364

We utilized VGPM, CbPM, and CAFE NPPs as prediction targets to scrutinize365

the predictive effectiveness of both the neural network-based probabilistic prediction366

model and the empirical distribution-based Bayesian probabilistic prediction model.367

Fig. 5 presents a comparison of CRPS, RMSD, and MAPD values for these models368

across training and test datasets. Notably, CRPS provides a holistic evaluation of369

prediction accuracy and reliability. All the metrics are calculated using normalized370

data for better comparison. Lower values are indicative of enhanced model371

performance. Fig. 5(a)-(c) and (d)-(f) respectively depict the CRPS, RMSD, and372

MAPD of the NN model and Bayes model when using the three NPP values as373
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prediction targets. The color blue represents the training set, while red represents the374

test set. It can be observed from Fig.5 (a) and (d) that the CRPS values of both the NN375

model and Bayes model are similar. When VGPM NPP is used as a prediction target,376

the performance of the models is closest between the training set and test set,377

followed by CbPM NPP. However, CAFE NPP has the lowest CRPS value among all378

three models, with its test set slightly larger than that of its training set.379

In terms of RMSD metrics (Fig. 5 (b) and (e)), when VGPM NPP is used as a380

prediction target, its index value is significantly higher compared to others; however,381

its performance between training set and test set remains close. When CbPM NPP is382

used as a prediction target, Bayes model outperforms NN model but exhibits a larger383

difference between training set and test set compared to NN model.384

On using CAFE NPP as a prediction target, both models show more consistent385

performance. The values of these indicators are relatively close in all aspects at386

around 0.2. Regarding MAPD metrics (Fig.5 (c) and (f)), clear differences among the387

three NPP models can be seen where CAFE has obviously lower index value388

compared to CbPM and VGPM. In addition, for NN model's MAPD index value for389

CAFE is lower than that for Bayes model. However there exists significant difference390

between its training set and test set.391

Overall evaluation indicates that under both models' assessment criteria, CAFE392

NPP demonstrates superior accuracy in predicting effects compared to VGPM NPP393

and CbPM NPP. VGPM NPP shows greater instability with inferiority in it's trainig394

process over testing process (Fig.5 (d), (e), (f)), which may be attributed to overfitting.395

However, there is a more noticeable difference in the performance of CbPM NPP in396

the two models. The CRPS value and RMSD value in the Bayes model are397

significantly lower than those in the NN model (Bayes is less than 0.2, while NN is398

more than 0.2). Therefore, the following analyses will focus on the efficacy of399

probabilistic prediction models with CAFE NPP as the prediction target.400
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3.2. Quantify the Uncertainty of CAFE NPP401

When quantifying uncertainty in the CAFE NPP, we need to focus on the402

uncertainty factors that exist in the input variables in addition to the uncertainty that403

may arise during model training. These uncertainty factors include measurement404

errors and temporal variability, among others. Measurement errors usually originate405

from the accuracy limitations of the instruments, the complexity of the observation406

environment, or the instability of human operations. These errors not only affect the407

accuracy of the input variables to varying degrees, but also propagate through the408

model and thus affect the accuracy of the prediction results. The temporal variability,409

on the other hand, reflects the dynamic changes of marine environmental parameters,410

such as seasonal temperature changes, cyclic fluctuations of tides, etc., which also411

affect the NPP prediction results. Consequently, quantifying these uncertainties is412

particularly important in conducting CAFE NPP predictions.413

3.2.1. Comparative Analysis of Confidence Interval Widths414

Fig. 6 illustrates the comparison between the forecast mean of the NN model and415

Bayes model, and the CAFE NPP value when CAFE NPP is utilized as the prediction416

target. In the figure, the triangular icons represent 514 sets of the forecast average,417

while the gray and blue represent the 95% and 75% confidence intervals, respectively.418

Overall, both models exhibit relatively wide confidence intervals for their predicted419

results, possibly due to the large range of changes in CAFE NPP. The models may420

face greater challenges in capturing this wide range of changes, resulting in increased421

uncertainty.422

When CAFE NPP is less than 450 mg C m−2 d−1, both models tend to423

overestimate the actual NPP value. This phenomenon becomes more pronounced424

when CAFE NPP is less than 350 mg C m−2 d−1. In contrast, a certain linear425

relationship between true value and predicted mean value emerges within a range of426

450-600 mg C m−2 d−1. Most of the predicted mean values are distributed around the427

1:1 line in this range, indicating higher accuracy by these models. However, when428
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CAFE NPP exceeds 600 mg C m−2 d−1, it is observed that both models tend to429

underestimate actual NPP values. This phenomenon may be attributed to an imbalance430

in sample data distribution within different intervals of CAFE NPP. The majority of431

data points are concentrated in a narrow range (350-600 mg C m−2 d−1), while data432

points in other intervals are scarce. This inadequacy makes it difficult for model433

training to capture its distribution law accurately and leads to increased prediction434

uncertainty within these ranges.435

Compared with the two models, the predicted value of NN model is more436

concentrated around the 1:1 line, while the predicted value of Bayes model is437

relatively dispersed and the confidence interval is wider. The smaller the confidence438

interval width, the higher the accuracy of model prediction. It manifests that the NN439

probabilistic prediction model is more accurate in predicting CAFE NPP than the440

Bayes probabilistic prediction model, and the uncertainty of its prediction results is441

lower. The prediction mean obtained by the NN probabilistic prediction model is442

closer to the 1:1 line, which usually means that the deviation between the predicted443

value of the model and the actual observed value is small, that is, the prediction444

accuracy of the model is higher. The differences in the performance of the two models445

may stem from their different strategies for dealing with uncertainty and data fitting.446

Neural network models typically capture the nonlinear relationships of data through a447

large number of parameters and complex network structures, so they may be able to448

fit the data distribution more accurately in some cases. Bayes model deals with449

uncertainty by introducing prior knowledge and a posteriori inference, but its450

performance may be limited under some complex data distributions.451

To further elucidate the models’ effectiveness in probabilistic prediction of452

CAFE NPP, Fig. 7 visualizes the time series model predictions with a 95% confidence453

interval uncertainty range. The figure shows that almost all CAFE NPP values fall454

within the 95% confidence interval of the mean of the predicted values. It can be455

clearly seen that the predicted distribution of the NN model is much smaller than that456

of the Bayes model, which is consistent with the results shown in Fig. 6. The NPP is457

https://doi.org/10.5194/egusphere-2024-3221
Preprint. Discussion started: 2 December 2024
c© Author(s) 2024. CC BY 4.0 License.



18

clearly periodic in time, and both models are able to align their predictions on the test458

set with the periodicity of the training set. In particular, the scatter in the NN model is459

more centrally distributed around the red line, while the scatter in the Bayes model is460

more discrete from the red line, which further suggests that the NN model has a more461

accurate estimate in predicting the CAFE NPP.462

Overall, the trends in the predicted means of the two models are consistent with463

the trends in the majority of CAFE NPP values, which further validates the accuracy464

of the two methods in capturing the process of CAFE NPP changes. This consistency465

not only indicates that the models can accurately reflect the long-term trends of CAFE466

NPP changes, but also capture short-term fluctuations and outliers. This is of great467

significance for ecosystem monitoring and prediction, and helps to better understand468

the dynamics of the ecosystem and take appropriate management and conservation469

measures. However, in terms of confidence interval width, the width of the 95%470

confidence interval in the results of the Bayesian probabilistic prediction model is471

larger than that of the neural network probabilistic prediction model, indicating that472

the Bayesian probabilistic prediction model is not as sharp as the neural network473

probabilistic prediction model, which is more locally sensitive and able to respond to474

the changes in data more quickly.475

Although the neural network probabilistic prediction model shows an advantage476

in terms of sharpness and local sensitivity, this does not mean that it is superior to the477

Bayesian model in all cases. In fact, Bayesian models are more robust and478

explanatory by introducing prior knowledge and posterior inferences to deal with479

uncertainty. Therefore, when choosing a predictive model, trade-offs need to be made480

based on specific application scenarios and data characteristics.481

3.2.2. Comparative Analysis of CDF482

Evaluating the empirical CDF of the model input data and the average predictive483

CDF affords a graphical representation of the model's predictive accuracy. A higher484

degree of overlap in the CDF curves signifies greater similarity between the two485

distributions, thereby reflecting superior model predictions. Fig. 8 depicts the overall486

https://doi.org/10.5194/egusphere-2024-3221
Preprint. Discussion started: 2 December 2024
c© Author(s) 2024. CC BY 4.0 License.



19

predictive distribution versus the empirical distribution of the CAFE NPP input data.487

Concurrently, Fig. 9 methodically quantifies the disparity between the average488

predictive CDF and the empirical CDF of the input data. Optimally, the divergence489

between these two CDFs should be minimal, manifested as extensive overlap between490

the yellow and blue curves in Fig. 8, and the blue curve in Fig. 9 approaching zero.491

Fig. 8 demonstrates the CDF curves of the predicted mean values after the492

normalization process and the CDF curves of the CAFE NPP. The CDF plots of the493

normalized data can reflect the statistical distribution of the datasets, especially when494

the different datasets have different magnitudes or scales, and the normalization can495

eliminate these differences, which makes the comparisons and analyses between the496

different datasets more accurate and intuitive. Fig. 9 specifically quantifies the497

difference between the two CDF curves in FIG. 8 at each point, which is498

accomplished by calculating the difference between the y-values of the two CDF499

curves at the same x-value.500

Observing the results in the figure, it is found that the mean values of the501

prediction results of the NN probabilistic prediction model and the Bayes probabilistic502

prediction model are roughly consistent with the trend of the CDF of the input503

prediction target CAFE NPP. For the NN probabilistic prediction model, when the504

CAFE NPP is small, the two CDF curves on the training set and the test set move505

gently and almost overlap, with the difference close to 0, which indicates that the506

model can predict the actual data distribution well within the range of small values of507

CAFE NPP. As CAFE NPP increases, the difference between the CDF curves starts to508

become larger, and the predicted mean CDF on the training set lies below the CAFE509

NPP CDF, with the difference between the two ranging from 0 - 0.2. The predicted510

mean CDF on the test set first lies below the true value CDF curve, and then becomes511

steeper and lies above the true value CDF curve, and when CAFE NPP continues to512

increase, the two curves alternate again, which may imply that the model is more513

unstable in predicting high values, and the absolute value of the difference between514

the CDF does not exceed 0.1.515
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For the Bayesian probabilistic prediction model, the predicted mean CDF curve516

is above the true value in the training set. When the CAFE NPP increases to a certain517

extent, the two curves alternate, and the absolute value of the difference between the518

CDF does not exceed 0.2. In the test set, the two CDF curves overlap first and then519

separate. The predicted mean CDF rises more quickly, and is on top of the true value520

CDF curve, with the difference between the two curves not exceeding 0.1 when the521

CAFE NPP increases to a certain extent. When the NPP increases to a certain degree,522

the two curves overlap again, and the absolute value of the difference between the523

CDF does not exceed 0.3. Overall, the difference between that of the predicted mean524

values and the CDF of the true values obtained by the two models is small, which525

indicates that the overall deviation of the model predictions is not large, and both526

models show good prediction performance and can capture the statistical527

characteristics of the data well. However, the CDF curves of the neural network528

probabilistic prediction model are closer to the true values on both the training and529

test sets, possibly implying that the neural network model is more effective in dealing530

with complex data and capturing nonlinear relationships. The flexibility of neural531

networks allows them to adapt to different data distributions and patterns.532

Table 5 presents RMSD, MAPD, and CRPS for both models. Additionally, we533

analyzed the proportion of raw input data encompassed within the 95% confidence534

interval, thereby providing a more nuanced evaluation of the model's proficiency in535

capturing CAFE NPP uncertainty. According to Table 5, the neural network-based536

probabilistic prediction model exhibits superior performance in terms of CRPS,537

RMSD, and MAPD. This denotes a higher level of accuracy and reliability for the538

neural network model in probabilistic predictions of CAFE NPP, especially when539

considering uncertainty. Conversely, the Bayesian probabilistic prediction model540

demonstrates a stronger ability to encompass a greater proportion of the raw input541

data within the 95% confidence interval. This suggests that while it may exhibit542

higher overall uncertainty, it has a more pronounced capability to capture the nuances543

of uncertainty.544
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This comparative analysis elucidates that both the neural network-based545

probabilistic prediction model and the Bayesian probabilistic prediction model,546

grounded in empirical distributions, are adept at capturing and quantifying the547

uncertainty of CAFE NPP. While the Bayesian model demonstrates a heightened548

capability in encompassing a broader scope of uncertainty, the neural network model549

distinguishes itself by its superior accuracy and reliability, particularly in precisely550

predicting the uncertainty of CAFE NPP. A notable observation is that when CAFE551

NPP values exceed 350 mg C m−2 d−1, the predictive performance of both models552

deteriorates. This manifests as an underestimation of mean predictions, indicating an553

inability to fully and accurately predict NPP across the entire range of size classes.554

The underlying reason for this may stem from the considerable variation in the input555

data and its skewed sample distribution. Most notably, a significant proportion of the556

samples were primarily concentrated within the 200-350 mg C m−2 d−1 range. In557

contrast, CAFE NPP values exceeding 350 mg C m−2 d−1 constitute only 28% of the558

input dataset. Consequently, the models exhibit insufficient learning of higher value559

ranges during the training phase, resulting in a notable prediction bias for larger560

CAFE NPP values.561

3.3. Probabilistic Prediction of NPP in Weizhou Island (2007–2018)562

Given the 8-day temporal resolution of data acquired by remote sensing satellites563

and the consequent data incompleteness, this study employed the previously trained564

neural network and the Bayesian probabilistic prediction models to forecast the daily565

NPP in the Weizhou Island sea area from 2007 to March 2018, thereby supplementing566

the NPP dataset. The results are illustrated in Fig. 10, where the predicted mean567

values and 95% confidence intervals for both models are displayed. Fig. 10(c) reveals568

that the Bayesian model’s confidence interval is broader, primarily due to its lower569

limit, yet no substantial difference is noted between the predicted mean values of the570

two models. Both models effectively mirror the trend of NPP. The analysis of the571

annual change of NPP shows a clear periodicity, which means that the change of NPP572
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is not random, but follows certain laws and patterns. Combined with Fig. 11, the573

seasonal variation of NPP throughout the year emerges. Specifically, NPP shows a574

decreasing trend from January to July each year, with July generally being the lowest575

level of the whole year. Then it increases from July to November and slightly576

decreases from November to December. Overall, NPP has larger values in winter and577

spring. These results provide important insights into seasonal variations and578

interannual trends of NPP in the Weizhou Island waters and provide valuable data to579

support the study of the marine ecosystem dynamics.580

However, the significance of our work extends far beyond mere data replication.581

The primary aim of our study is to enhance the reliability of marine NPP estimates by582

using advanced probabilistic models. Our objective extends beyond merely583

reproducing satellite NPP products. We aim to improve the overall accuracy and584

uncertainty quantification of NPP estimates by incorporating a robust probabilistic585

framework. This framework helps to better understand and quantify the uncertainties586

inherent in marine NPP, whether they originate from satellite data or environmental587

factors. By using Bayesian models and probabilistic neural networks, we not only588

replicate satellite NPP estimates but also capture and quantify uncertainties at multiple589

levels. These models account for uncertainties in the satellite products, input data590

variability, and the predictive model itself, thus providing a more comprehensive591

uncertainty quantification relevant to marine NPP.592

4. Conclusion593

This study primarily addresses the challenge of uncertainty in satellite ocean594

color data estimates of ocean NPP. Departing from traditional point estimation595

regression models, we embraced a probabilistic prediction approach where the output596

is a probability distribution. The models utilized in this study include a Bayesian597

probabilistic prediction model based on empirical distributions and a deep598

learning-based probabilistic prediction model under the TFP framework. Focusing on599

the NPP uncertainty analysis in the Weizhou Island sea area, we explored the effect of600
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the probabilistic prediction model when the NPPs obtained by the VGPM, CbPM, and601

CAFE methods, respectively, are used as the prediction targets. Furthermore, this602

study compares and analyzes the capabilities of Bayesian and neural network603

probabilistic models in predicting the CAFE NPP uncertainty. The results reveal that604

both models are competent in quantifying CAFE NPP uncertainty.605

When exploring the uncertainty of the NPP using the Bayesian probabilistic606

prediction model and the neural network probabilistic prediction model, the results607

show that the two probabilistic prediction models are the most effective when the608

prediction target is the CAFE NPP. The probability distributions obtained by the two609

probabilistic prediction models are similar to those of CAFE NPP, with the difference610

in CDF between the predicted mean and true values at each data point not exceeding611

0.2 for the neural network probabilistic prediction model and 0.3 for the Bayesian612

probabilistic prediction model. In contrast, the confidence intervals for the outputs of613

the Bayesian probabilistic prediction model are wider, and the proportion of the614

CAFE NPP that falls in the confidence intervals is higher, which shows that Bayes is615

more capable of capturing uncertainty, but its accuracy is not high. However, the616

neural network probabilistic prediction model is more accurate and reliable. Its617

performance is better in many assessment indicators, but not all CAFE NPP values in618

the size range can be predicted accurately by the model. When the CAFE NPP is less619

than 450 mg C m-2 d -1, the model tends to overestimate the actual NPP value. When620

CAFE NPP is larger than 600 mg C m-2 d-1, it tends to underestimate the actual NPP621

value. When the two probabilistic prediction models are applied to the prediction of622

CAFE NPP in the Weizhou Island waters between January 2007 and February 2018,623

the prediction results illustrate the interannual trend of CAFE NPP, and the magnitude624

of NPP is found to show obvious cyclic changes. Our study demonstrates the novel625

application of advanced probabilistic models to the remote sensing of marine NPP. By626

addressing the uncertainties in satellite-derived estimates and improving the reliability627

of NPP predictions, our work contributes to advancing the field of marine remote628

sensing and provides a foundation for future research.629

https://doi.org/10.5194/egusphere-2024-3221
Preprint. Discussion started: 2 December 2024
c© Author(s) 2024. CC BY 4.0 License.



24

In the context of ongoing climate change, accurately capturing and reducing the630

uncertainty of marine NPP emerges as a pivotal research focus in marine ecology.631

This endeavor is crucial for a deeper understanding of energy and matter flow in632

marine ecosystems, providing a solid scientific foundation for the judicious633

management of the conservation of natural resources. While our study has advanced634

the field by demonstrating the feasibility of probabilistic prediction in quantifying635

NPP uncertainty, we acknowledge the potential for further enhancements and636

expansions. Looking ahead, future research could embark on the following paths to637

augment our work: (1) Expanding the research scope: The current study has638

concentrated primarily on specific marine areas. Future initiatives could broaden this639

focus to encompass diverse geographic regions and types of marine ecosystems. Such640

expansion is vital to gain a more comprehensive understanding of probabilistic641

prediction’s applicability and effectiveness across varying environmental conditions;642

(2) Enhancing data collection: The acquisition of more extensive and comprehensive643

observational data is instrumental in refining model training and prediction accuracy.644

Future endeavors should aim to amass a richer array of observational data,645

emphasizing the need for long-term time series and high-resolution remote sensing646

data. These efforts will significantly bolster the development and validation of robust647

probabilistic prediction models; (3) Refining model structure: Our study utilized648

Bayesian probabilistic regression and deep learning-based probabilistic prediction649

models. Future studies could explore the integration of other advanced model650

structures or the optimization of the existing ones, aiming to elevate the model's651

performance and robustness. Through these concerted efforts, we aspire to continually652

refine the methodologies of probabilistic prediction in quantifying marine NPP653

uncertainty, thereby laying the groundwork for more precise ecosystem management654

and environmental protection strategies.655
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Tables783

Table 1. Summary of Variables and Data Sources.784

Variable name Variable description Data source

SST Sea surface temperature (℃)

Weizhou Marine environment

monitoring station

Sal Salinity (‰)

TH Height of tide(m)

AP Air pressure (hPa)

RH Relative humidity (%)

SV Sea visibility (km)

WS Wind speed (m·s-1)

H/10 1/10th significant wave height (m)

PAR Photosynthetically active radiation (W·m-²) https://oceancolor.gsfc.nasa.gov/

SSP Sea surface precipitation (mm) https://www.earthdata.nasa.gov/

SH Sunshine hours (h·d-1) https://data.cma.cn/

VGPM NPP NPP from the VGPM model (mgC m-2·d-1)
http://orca.science.oregonstate.edu/npp.vi

sual.php
CbPM NPP NPP from the CbPM model (mgC m-2·d-1)

CAFE NPP NPP from the CAFE model (mgC m-2·d-1)

Table 2. Summary of Missing Variables.785

Variable SV (km) H/10 (m) PAR (W·m-²) SSP (mm) SH (h·d-1)

Missing quantity 31 51 828 378 18

Table 3. Statistics of data pre- and post-interpolation.786

SV (km) H/10 (m) PAR (W·m-²) SSP (mm) SH (h·d-1)

pre- post- pre- post- pre- post- pre- post- pre- post-

count 4046 4077 4026 4077 3249 4077 3699 4077 4059 4077

mean 15.22 15.23 0.57 0.57 34.92 35.97 4.94 4.85 5.19 5.18

std 10.33 10.30 0.41 0.41 15.64 15.20 16.13 15.61 3.93 3.93
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min 0.00 0.00 0.00 0.00 1.20 1.20 0.00 0.00 0.00 0.00

25% 7.00 7.00 0.30 0.30 22.19 24.14 0.00 0.00 0.80 0.80

50% 12.00 12.00 0.50 0.50 36.03 36.87 0.00 0.00 5.60 5.60

75% 25.00 25.00 0.70 0.70 47.58 48.49 1.30 1.50 8.90 8.80

max 50.00 50.00 4.00 4.00 61.13 61.13 280.40 280.40 12.6 12.6

Table 4. Parameters of the Neural Network Model787

Hyper-parameters

Layer Sizes

Layer 1 64

Layer 2 32
Layer 3 16
Layer4 16
Layer 5 2

Distribution Layer Gaussian distribution
Epochs 800

Learning Rate 0.0001
Batch Size 16
optimizer Adam

loss Negative log likelihood

Table 5. CRPS, RMSD, MAPD, and proportion of input data within 95% confidence interval.788

CRPS RMSD MAPD Proportion

Train Test Train Test Train Test Train Test

NN 0.096 0.133 0.149 0.198 11.828 13.237 0.971 0.932

Bayes 0.151 0.20 0.201 0.253 13.909 14.145 0.976 0.951

789
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791

Fig. 1. The research area is located in the waters of Weizhou Island in Beibu Gulf, south China.792
The red dots in the figure indicate the location of Weizhou Marine Environmental Monitoring793
Station (21.0017°N, 109.0117°E). Eight distinct sets of monitoring data were collected from this794
monitoring station.795
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796

Fig. 2. Time series plots of SV, H/10, PAR, SSP, and SH with missing variables, showing the797
cyclical variation of these five variables.798

799

Fig. 3. Time series of VGPM, CbPM, and CAFE NPPs from January 2007 to February 2018,800
where the green line represents VGPM NPP, the blue line represents CbPM NPP, and the orange801
line represents CAFE NPP. Abbreviations and data sources can be referenced in Table 1.802
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803

Fig. 4. Pearson correlation of VGPM, CAFE, and CbPM NPPs with input variables. The deeper804
the shade of red indicates a stronger positive correlation, whereas the deeper shade of blue805
indicates a stronger negative correlation.806

807

Fig. 5. Comparison of NPP predictive effects from VGPM, CbPM, and CAFE. Panels (a)–(c)808
present the results from the neural network-based probabilistic prediction models; panels (d)–(f)809
the results from Bayesian probabilistic prediction models based on empirical distributions. The810
horizontal coordinates represent the VGPM, CbPM, CAFE NPPs as inputs in sequence, separated811
by gray dashed lines, where blue dots represent data from the training set, and red dots denote data812
from the test set, and the vertical coordinates are the values of the three metrics, CRPS, RMSD,813
MAPD. Since NPP values were normalized to the range of 0 – 1, the y axes of subplots (a), (b),814
(d), and (e) are dimensionless. The units for MAPD are percentile.815
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816

Fig. 6. Uncertainty quantification of (a) neural network-based probabilistic prediction model and817
(b) empirical distribution-based Bayesian probabilistic prediction model. The horizontal axes818
represent the input VGPM NPP value, while the vertical axes show the mean predicted by the819
model. The triangular icons in the figure represent 514 sets of the forecast average, the gray820
vertical lines represent the 95% confidence intervals for the predictions, and the blue vertical lines821
represent the 75% confidence intervals.822

823

Fig. 7. Comparison of original and predicted mean values shown at an 8-day temporal resolution824
within a 95% confidence interval. (a) Probabilistic prediction results based on neural networks; (b)825
Bayesian probabilistic prediction results based on empirical distributions. The dashed lines826
represent the mean values of the probabilistic predictions. The purple and red shaded areas827
illustrate the uncertainty ranges for the training and the test sets, respectively. Blue dots signify828
observed data points. All predictions and observations are presented in chronological sequence.829
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830

Fig. 8. Comparison of VGPM NPP and predicted mean CDF. Panels (a) and (b) display the831
performance of the training and test sets, respectively, in the neural network-based probabilistic832
prediction model. Panels (c) and (d) illustrate the performance of the training and test sets,833
respectively, in the empirical distribution-based Bayesian probabilistic prediction model. In each834
panel, the blue curves represent the CDFs of the VGPM NPP values, while the yellow curves835
depict the CDFs of the model's predicted mean values.836

837

Fig. 9. Difference between the input data CDF and mean CDF of model predictions. Panels (a)838
and (b) represent the performance of the training set and test sets, respectively, in the neural839
network-based probabilistic prediction model. Panels (c) and (d) showcase the performances of840
the training set and test sets, respectively, in the empirical distribution-based Bayesian841
probabilistic prediction model. The blue curves in each panel indicate the differential magnitude842
of the CDFs. Instances where the blue curves align with the yellow lines denote zero discrepancy843
between the input data CDF and the model’s predicted mean CDF.844

https://doi.org/10.5194/egusphere-2024-3221
Preprint. Discussion started: 2 December 2024
c© Author(s) 2024. CC BY 4.0 License.



35

845

Fig. 10. Time series plots of daily probabilistic NPP predictions in Weizhou Island (2007 – March846
2018). (a) Probability prediction results of the neural network model; (b) Bayesian probability847
prediction results based on empirical distribution; (c) Comparison of the two models’ predictions,848
with the green lines representing the mean predictions from the neural network model and the gray849
lines depicting the mean predictions from the Bayesian model.850

851

Fig. 11. Time series plots of probabilistic NPP predictions in Weizhou Island (2007 – 2017). The852
light purple shading indicates the 95% confidence interval of the Bayesian model, while the dark853
purple shading represents the 95% confidence interval of the neural network model. The green854
lines show the mean prediction values from the neural network model; and the gray lines depict855
the mean prediction values from the Bayesian model.856
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