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Abstract 22 

In marine ecosystems, Net Primary Production (NPP) is important, not merely as 23 

a critical indicator of ecosystem health, but also as an essential component in the global 24 

carbon cycling process. Despite its significance, the accurate estimation of NPP is 25 

plagued by uncertainty stemming from multiple sources, including measurement 26 

challenges in the field, errors in satellite-based inversion methods, and inherent 27 

variability in ecosystem dynamics. This study focuses on the aquatic environs of 28 

Weizhou Island, located off the coast of Guangxi, China, and introduces an advanced 29 

probability prediction model aimed at improving NPP estimation accuracy while 30 

addressing its associated uncertainties. The dataset comprises eight distinct sets of 31 

monitoring data spanning from January 2007 to February 2018. NPP values were 32 

derived using three widely recognized estimation methods — VGPM, CAFE, and 33 
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CbPM — serving as model outputs for further analysis. The study evaluates two 34 

probability prediction approaches: a Bayesian probability prediction model based on 35 

empirical distribution and a deep learning-based probability prediction model. These 36 

methods are employed to meticulously quantify the uncertainty of NPP. The results 37 

highlight the effectiveness of probability prediction models in capturing the dynamic 38 

trends and uncertainties of marine NPP. Notably, the neural network-based model 39 

demonstrates superior accuracy and reliability compared to the Bayesian approach. 40 

Furthermore, the models are applied to prognosticate NPP variations in specific marine 41 

regions, efficaciously elucidating interannual trends. This research advances both the 42 

methodological precision in quantifying NPP uncertainty and provides robust scientific 43 

evidence for marine ecosystems management and environmental conservation. 44 

Keywords: Net Primary Production; Bayesian Probability Prediction; Neural Network 45 

Probability Prediction. 46 
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graphical abstract 48 

1. Introduction 49 

Net Primary Production (NPP) of phytoplankton, an essential indicator for 50 

biological productivity, exerts a substantial influence on global carbon flux and the 51 
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dynamics of marine ecosystems (Yang et al., 2021; Silsbe et al., 2016). The precision 52 

in estimating NPP is primary for environmental quality assessments (Falkowski et al., 53 

1998; Tan et al., 2005), effective fisheries resource management, and comprehending 54 

the impacts of global climate change (Lee et al., 2015; Ding et al., 2016). Conventional 55 

methods of NPP measurement, such as ship-based sampling and bottle incubations, are 56 

beset with challenges like human errors and inadequacies in capturing spatial and 57 

temporal dynamics. This underscores the necessity for more sophisticated and 58 

comprehensive methods (Yang et al., 2021; Li et al., 2020). 59 

The advent of ocean observation satellites and ocean color remote sensing 60 

technology has catalyzed a paradigm shift in the estimation of large-scale marine 61 

primary productivity (Yang et al., 2021; Westberry et al., 2008). These pioneering 62 

technological advancements furnish novel insights into phytoplankton photosynthetic 63 

production and its essential role in the carbon cycle, thereby broadening the 64 

observational spectrum and establishing a robust foundation for predicting marine NPP. 65 

Initial remote sensing endeavors to estimate NPP, employing satellite-based 66 

chlorophyll-a (Chl-a) (Platt et al., 1991; Platt & Sathyendranath, 1988; Sathyendranath 67 

et al., 1995), stemmed from the established correlation between chlorophyll and 68 

photosynthesis (Ryther, 1956; Ryther & Yentsch, 1957). However, these efforts were 69 

predominantly confined to local or regional applications. A subsequent investigation by 70 

Campbell et al. (2002) delved into the accuracy of various satellite primary productivity 71 

algorithms, unveiling that estimates from the most effective algorithm often diverged 72 

from those derived from those obtained using the 14C isotope labeling method. Their 73 

study also unearthed systematic biases in several algorithms, which could be alleviated 74 

through re-parameterization. Satyendranath et al. (2020) emphasize the critical role of 75 

accurately assigning parameters in primary production models as a key strategy for 76 

reducing model uncertainties and enhancing the reliability of satellite-based primary 77 

production estimates, particularly in the context of climate research. 78 

Currently, the most widely utilized models for estimating NPP include the 79 
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Vertically Generalized Production Model (VGPM), the Carbon-based Productivity 80 

Model (CbPM), and the Carbon, Absorption, and Fluorescence Euphotic-resolving 81 

model (CAFE), have been proposed (Behrenfeld et al., 1997; Westberry et al., 2008; 82 

Silsbe et al., 2016). Spanning various decades, these models address diverse facets of 83 

ocean primary production and are readily accessible via satellite remote sensing data 84 

platforms. As a result, they have been extensively applied and discussed in numerous 85 

studies (Westberry et al., 2008; Pan et al., 2012; Dave et al., 2013; Li et al., 2020; Yang, 86 

2021; Cael, 2021). Particularly, VGPM formulates a light-dependent, depth-integrated 87 

model that classifies environmental factors influencing the vertical distribution and 88 

optimal assimilation efficiency of primary production, leveraging 14C productivity 89 

measurement data (Behrenfeld et al., 1997). Conversely, CbPM was a depth-resolved 90 

spectral NPP model designed for phytoplankton growth rates (Westberry et al., 2008). 91 

Its foundational concept was originally articulated by Behrenfeld et al. (2005). 92 

Distinguishing itself from Chl-based models, CbPM enables the differentiation of 93 

physiological changes in biomass and Chl, thus offering a more nuanced depiction of 94 

phytoplankton production. Notably, its strength lies in addressing issues related to light 95 

and nutrient adaptation, thereby enhancing its capability in estimating fixed carbon 96 

output at the ocean surface. Similarly, the CAFE model, introduced in 2016, presents 97 

an adaptive framework that melds satellite ocean color analysis with essential 98 

physiological and ecological attributes of phytoplankton (Silsbe et al., 2016). It 99 

incorporates intrinsic optical properties into the model and calculates NPP by assessing 100 

the product of energy absorption and the efficiency of converting absorbed energy into 101 

carbon biomass, alongside computing growth rates. Nonetheless, these models 102 

commonly generate a single value of NPP, overlooking the range estimation and the 103 

inherent uncertainties in NPP estimation, stemming either from the model itself (BIPM 104 

et al., 2009) or from the model input (Milutinovic & Bertino, 2011). This oversight is 105 

critical, as suggested by Saba et al. (2011), since uncertainties in input variables, like 106 

Chl-a, significantly impinge upon model performance and accuracy. In a recent 107 

assessment, Westberry et al. (2023) examined the daily depth-integrated NPP rates over 108 

2003–2018 for VGPM, CbPM, and CAFE, revealing that the mean NPP fields of CbPM 109 
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and CAFE, along with their associated frequency distributions, are distinctly divergent 110 

from those of VGPM. 111 

Transitioning from the constraints of traditional models, probabilistic forecasting, 112 

in contrast to deterministic forecasting (Juban et al., 2007), generates a cumulative 113 

distribution function or probability density function for the predicted object. This 114 

methodology offers a more holistic understanding of likely outcomes (Gneiting & 115 

Katzfuss, 2014; Schepen et al., 2018; Zhao et al., 2015). Significantly, this approach 116 

has been successfully implemented in fields such as hydrology (Schepen et al., 2018; 117 

Zhao et al., 2015; Schwanenberg et al., 2015) and power system management (Al-118 

Gabalawy et al., 2021). For instance, Schwanenberg et al. (2015) conducted analyses 119 

using both deterministic and probabilistic forecasts. They concluded that deterministic 120 

forecasts tend to overlook forecast uncertainty in short-term decisions, whereas 121 

probabilistic forecasting offers numerous advantages: (i) it enables a longer forecast 122 

horizon, facilitating earlier and more accurate predictions of major events; (ii) it 123 

supports decision-making by incorporating forecast uncertainty into the analysis, 124 

leading to more robust and adaptive outcomes; and (iii) it enhances the flexibility of 125 

system operation through the integration of uncertainty-based methodologies. 126 

The estimated values of NPP derived from the above three classical models 127 

exhibit significant discrepancies, reflecting substantial uncertainties in these methods. 128 

These inaccuracies can impede a comprehensive understanding of the role of oceans in 129 

the global climate system, particularly in their capacity to act as carbon sinks and 130 

regulators of atmospheric CO2 levels. Consequently, quantifying and addressing these 131 

uncertainties is primary to improving the reliability of NPP estimates and ensuring their 132 

applicability in climate research and marine ecosystem management. Although 133 

Bayesian models and probabilistic neural networks are established methods, their 134 

application to the remote sensing of marine net primary productivity (NPP) represents 135 

a novel approach. This study leverages these advanced probabilistic techniques to 136 

address the unique challenges in estimating NPP from satellite data, providing a more 137 
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accurate and reliable quantification of uncertainties. We introduce probabilistic 138 

prediction models to meticulously quantify the uncertainty of NPP estimation, thereby 139 

enhancing our comprehension of NPP’s significance in marine ecosystems. The 140 

research objectives of this paper are articulated as follows: (1) to thoroughly quantify 141 

the uncertainty of NPP estimation through the integration of probabilistic forecasting; 142 

(2) To evaluate and contrast the efficacy of neural network-based probabilistic 143 

forecasting with empirical distribution-based Bayesian probabilistic forecasting in 144 

capturing NPP uncertainty; and (3) To implement probabilistic forecasting of the 145 

uncertainty of the NPP in the study area during 2007–2018 and to explore its temporal 146 

characteristics. Our study offers innovative perspectives and methodologies for 147 

addressing the uncertainty associated with NPP. The organization of this paper is as 148 

follows: Section 2 outlines the study area and data sources; Section 3 elaborates on the 149 

methodology and presents metrics for evaluating forecasting performance; Section 4 150 

discusses the results; and Section 5 presents the conclusions. 151 

2. Data and Methods 152 

2.1. Study Area and Data Sources 153 

The research locale for this study is situated in the aquatic environs of Weizhou 154 

Island, nestled within the Gulf of Tonkin, Guangxi Province, southern China (Fig. 1). 155 

The proportion of excellent water quality in Guangxi's near-shore waters reaches more 156 

than 90% all year round, and the quality of the marine ecological environment has 157 

remained at the forefront of the country for 12 consecutive years, which is the only 158 

stable habitat and feeding ground for large cetaceans known in China's near-shore 159 

waters at present. Weizhou Island is the youngest volcanic island in China geologically, 160 

with more than 95% of its strata comprising volcanic rocks. Its landscape features 161 

include formations resulting from sea erosion, marine sediment accumulation, and 162 

dissolved rocks. Weizhou Island, located in the southern subtropical monsoon zone, 163 

experiences a pleasant climate with abundant heat and precipitation throughout the year. 164 

The average annual temperature is 23℃, and the average winter temperature is 16.3℃. 165 
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The unique climatic conditions and island landscape make it a popular tourist 166 

destination. The waters of Weizhou Island are the habitat of many rare marine 167 

organisms, and the protection and research of its marine ecosystem are of great 168 

significance to maintaining marine biodiversity. 169 

The dataset of this study encompasses eight distinct sets of monitoring data 170 

spanning from January 2007 to February 2018, amassing a total of 4077 days. These 171 

data were procured from the Weizhou Marine Environmental Monitoring Station 172 

(21.0017°N, 109.0117°E) and encompass a spectrum of variables: sea surface 173 

temperature (SST), salinity (Sal), tide height (TH), air pressure (AP), relative humidity 174 

(RH), sea visibility (SV), wind speed (WS), and 1/10th significant wave height (H/10). 175 

Additionally, photosynthetically active radiation (PAR) was retrieved from NASA’s 176 

Ocean Color portal (https://oceancolor.gsfc.nasa.gov/), sea surface precipitation (SSP) 177 

was sourced from Nasa Earth Observation Data (https://www.earthdata.nasa.gov/), and 178 

sunshine hours (SH) was sourced from the China Meteorological Administration 179 

(https://data.cma.cn/). These data were aggregated to constitute a comprehensive 180 

dataset encompassing eleven variables, serving as the input features for the models. 181 

Phytoplankton, the primary source of NPP, is directly influenced by variables such as 182 

SST, Par, and SH, which are critical to its photosynthetic processes. Additionally, other 183 

variables have significant indirect effects on phytoplankton growth. Sal, for example, 184 

influences the community structure of phytoplankton (Braarud et al., 1951). Variables 185 

such as TH, H/10, and WS indirectly affect phytoplankton dynamics by modulating 186 

water column mixing and the vertical distribution of nutrients. AP, RH and SV also 187 

indirectly impacts phytoplankton photosynthetic activity by altering environmental 188 

conditions. For the analysis of three NPP algorithms—namely, VGPM, CbPM, and 189 

CAFE—we utilized their output datasets, which were obtained at an eight-day temporal 190 

resolution from the Ocean Productivity website 191 

(http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.vgpm.m.chl.m.sst.php, 192 

http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.cbpm2.m.php, 193 

http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.cafe.m.php). These 194 

https://www.earthdata.nasa.gov/
http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.cbpm2.m.php,
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datasets represent the modeled NPP estimates produced by each algorithm over a 195 

cumulative duration of 514 days. The specific datasets utilized for this study are 196 

itemized in Table 1. 197 

Due to factors such as equipment malfunctions and adverse weather conditions, 198 

some data for the eleven variables were incomplete. To gain a deeper understanding of 199 

the data structure and address these gaps, we conducted an analysis of the missing data 200 

and identified five variables with missing entries (Table 2): SV, H/10, SSP, PAR, and 201 

SH. These missing data points are primarily due to random occurrences such as satellite 202 

equipment malfunctions and severe weather conditions, which disrupt data acquisition. 203 

Since these events are sporadic and not tied to any specific frequency, only the total 204 

number of missing values has been recorded. Subsequently, we visualized these five 205 

variables in a chronological sequence, with the findings depicted in Fig. 2. Distinct 206 

from daylength, which is computable based on location and date, SH indeed refers to 207 

the daily measured duration of sunlight reaching the Earth's surface. The variability and 208 

instances of zero values observed in Fig. 2 (bottom panel) and mentioned in Table 2 209 

reflect real-world fluctuations due to weather conditions—on overcast or rainy days, 210 

actual sunshine hours recorded can indeed drop to zero. These data are collected on a 211 

daily basis, hence the seemingly sporadic pattern rather than a smooth temporal 212 

variation expected of constant daylength calculations. The analysis revealed a marked 213 

periodicity in these variables, prompting us to employ time series interpolation as our 214 

method of choice for data imputation. The efficacy of this approach is evidenced in 215 

Table 3, which presents the statistical indicators of the data both pre- and post-216 

interpolation. Notably, while the post-interpolation data retains a close resemblance to 217 

the original data in terms of statistical indicators, it is important to acknowledge that 218 

interpolated data are not independent observations. The validity of the interpolation 219 

method, therefore, depends on the specific application and context. In this study, 220 

interpolation was used to address missing variables, and we ensure that the statistical 221 

properties of the original data were preserved to the greatest extent possible. This 222 

approach allows us to maintain the integrity of our analyses while recognizing the 223 
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inherent limitations of using interpolated data. 224 

VGPM, CbPM, and CAFE rely on similar input variables, derived from satellite 225 

observations and environmental measurements. VGPM uses inputs such as SST, 226 

chlorophyll concentration (Chl), and PAR to estimate NPP, leveraging optimal 227 

assimilation efficiency in its parameterization (Behrenfeld et al., 1997). CbPM focuses 228 

on phytoplankton carbon biomass, incorporating backscattering coefficients along with 229 

Chl. CAFE integrates additional inputs, including atmospheric pressure (AP), solar heat 230 

(SH), and wind speed (WS), to parameterize light and nutrient availability critical for 231 

phytoplankton growth. 232 

To evaluate the long-term trends in Net Primary Production (NPP), we applied a 233 

low-pass filter to the three NPP products (VGPM, CbPM, and CAFE) (Fig. 3). This 234 

filtering process removes high-frequency variations, such as noise and short-term 235 

fluctuations, while retaining the underlying long-term patterns. It became evident that 236 

each exhibits a distinct seasonal periodicity, with the fluctuation ranges remaining 237 

stable over time yet the magnitude and timing of them varing significantly among the 238 

three NPPs. Specifically, VGPM are the smallest, followed by CAFE, while CbPM 239 

have the largest values. This periodicity indicates that changes in NPP are not random 240 

but follow predictable laws and reflects the well-established seasonal patterns in marine 241 

primary production, associated with seasonal variations in environmental factors such 242 

as light availability, temperature, and nutrient. Such periodic trends are expected in 243 

regions around 21 degrees north, including the waters near Weizhou Island, due to the 244 

interplay of monsoonal influences and seasonal shifts in oceanographic conditions. 245 

While all three NPPs capture these periodic patterns, their representation of the 246 

magnitude and timing of peaks differs. The distinct ways in which VGPM, CbPM, and 247 

CAFE capture these patterns provide valuable insights into their respective model 248 

designs and parameterizations. 249 

To elucidate the correlation between these NPP products and our dataset, we 250 

generated Pearson correlation plots (Fig. 4). The results revealed that the variables with 251 
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the highest correlations differed among the three NPP values. Notably, VGPM showed 252 

the strongest correlation with SST, reflecting its dependence on sea surface temperature 253 

in its parameterization. Both CAFE and CbPM showed strong correlation with AP, 254 

albeit in opposing directions—CAFE displayed a positive correlation, while CbPM 255 

NPP exhibited a negative one. Changes in AP affect atmospheric stability, cloudiness, 256 

and precipitation, indirectly altering light conditions in the ocean and subsequently 257 

affecting phytoplankton photosynthesis. Lower AP often corresponds to unstable 258 

atmospheric conditions and increased cloud cover, which may inhibit photosynthesis 259 

activity by reducing light penetration. Additionally, phytoplankton dynamics modeled 260 

in CbPM may respond differently to such changes compared to CAFE, potentially due 261 

to the distinct assumptions and parameterization used in each model. In summary, 262 

among the three models, VGPM possesses the most significant correlation with the 263 

variables, followed by CAFE, and lastly CbPM. 264 

2.2. Methods 265 

2.2.1. Bayesian Probability Prediction 266 

Bayesian models can adeptly quantify the uncertainty in the distribution of 267 

predicted outcomes. The Bayesian approach is particularly advantageous in scenarios 268 

with limited training data or when potential invisibility in training data cannot be 269 

discounted in practical applications (Perfors et al, 2011; Kaplan D, 2021; Zou et al, 270 

2024). The Bayesian formula is represented as: 271 

P(θ|D) =
P(D|θ) · P(θ)

P(D)
(1) 272 

where P(θ|D) denotes the posterior probability, P(D|θ) the likelihood probability, 273 

P(θ) the prior probability, and P(D) the marginal probability for normalization. 274 

When a training dataset D is available, the probability distribution P(θ|D) of θ is 275 

computable using the aforementioned Bayesian formula (Dürr et al, 2020). To deduce 276 

P(θ|D), it is imperative to ascertain the likelihood probability P(D|θ) of the observed 277 
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data under the model parameter θ. P(D|θ) can also be interpreted as the probability of 278 

obtaining the training dataset D given parameter θ. Additionally, knowledge of the prior 279 

probability P(θ) and the evidence P(D) is essential. Given that the training dataset D is 280 

fixed, P(D) remains constant. Consequently, the posterior distribution is proportional to 281 

the likelihood probability multiplied by the prior distribution, i.e., P(θ|D) ∝ P(D|θ) ∙ 282 

P(θ), in accordance with Bayes' Law. 283 

In this study, the Bayesian approach is employed to calculate the posterior 284 

distributions of the parameters considering the prior information and the input data. 285 

Subsequent predictions are made using the posterior distributions, yielding a 286 

probability distribution for each predicted value. Ultimately, the model's ability to 287 

estimate the uncertainty in the NPP is illustrated by plotting the prediction ranges for 288 

different targets and comparing them to actual observations. 289 

2.2.2. Neural Network Probabilistic Prediction Model Based on TFP 290 

TensorFlow Probability (TFP) represents a sophisticated library of statistical 291 

algorithms, devised atop the TensorFlow Python API. Its primary objective is to 292 

streamline the integration of probabilistic models with deep learning frameworks. TFP 293 

offers a comprehensive suite of tools, enabling the construction of probabilistic models 294 

adept at estimating uncertainty. Aiming to thoroughly assess the predictive efficacy of 295 

the three NPP products, we employed a neural network model grounded in the TFP 296 

framework, capitalizing on its versatility and potent expressive capabilities for 297 

probabilistic prediction in marine ecosystems. 298 

The architecture of this neural network model incorporates multiple hidden layers, 299 

each implementing a nonlinear transformation via an activation function. Such a 300 

configuration enables the model to automatically extract higher-order features and 301 

intricate patterns from the data. Our selection of TFP as the implementation medium 302 

allows us to model the neural network’s output by integrating probability distributions, 303 

thus addressing the model’s uncertainty regarding predictions and yielding more 304 
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exhaustive insights. Specifically, our neural network model utilizes a distribution layer 305 

in the output stage, producing a probabilistic distribution concerning the target variable, 306 

as opposed to a mere deterministic point prediction. This probabilistic output facilitates 307 

the quantification of the model’s confidence level for each prediction, extending beyond 308 

mere point estimates. 309 

The integration of Bayesian models and probabilistic neural networks in our 310 

approach addresses key challenges in the remote sensing of NPP. These challenges 311 

include handling the variability and uncertainty inherent in satellite-derived data and 312 

environmental factors, thus improving the robustness of NPP estimates. In this study, 313 

the input variables for the models are the 11 environmental variables mentioned in 314 

Section 2.1, and the outputs are VGPM, CbPM, and CAFE. These inputs overlap 315 

substantially with those used in VGPM, CbPM, and CAFE, demonstrating that the NN 316 

and Bayesian models do not require additional or more complex inputs. The selection 317 

of input data was not limited to variables directly related to phytoplankton 318 

photosynthesis, such as SST, PAR, and SH. Instead, it also included a wide range of 319 

environmental variables that could influence phytoplankton growth, such as TH, WS, 320 

and AP, which are physical dynamics and meteorological characteristics. Since 321 

phytoplankton are the primary source of NPP, environmental factors affecting 322 

phytoplankton growth also indirectly impact NPP. These emphasize the variability in 323 

how different NPP models capture environmental interactions. Importantly, the Pearson 324 

correlation analysis (Fig. 4) highlights the most relevant variables for prediction, 325 

enabling the NN and Bayesian models to focus on key inputs and filter out less 326 

influential variables. 327 

The dataset spans 4,077 days, but due to the 8-day time interval of the downloaded 328 

NPP products, only 514 complete datasets are available for model training and 329 

performance evaluation. Given the limited amount of data, 80% of the 514 sets are used 330 

for model training and parameter tuning, while the remaining 20% are used for 331 

performance evaluation. In the neural network probabilistic prediction model, there are 332 
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six layers, with two output nodes used to estimate the mean and standard deviation. The 333 

Gaussian distribution is employed in the distribution layer, and the loss function is the 334 

negative log-likelihood loss function. The detailed parameters of the neural network are 335 

presented in Table 4. 336 

2.3. Model Evaluation 337 

Prior to model evaluation, we normalized the NPP satellite data. This step is 338 

critical to improving model performance because it removes the potential effects of 339 

different data scales, allowing the model to consider each data point more fairly. 340 

Normalization ensures that the distribution range of NPP data has the same weight 341 

during model training, thus improving the model's ability to capture the inherent 342 

patterns and features of the data. In addition, normalization helps reduce the noise and 343 

bias introduced by data scale differences, further enhancing the stability and predictive 344 

accuracy of the model. 345 

Before training the model, we divided the dataset reasonably. Specifically, we 346 

divided the dataset into 80% training set and 20% testing set. This division aims to 347 

ensure that the model can fully learn the features and patterns of the data during the 348 

training process, while retaining enough independent data for testing the predictive 349 

ability of the model. This way of dividing the dataset helps us to evaluate the 350 

performance of the model more accurately and avoid problems such as overfitting. 351 

In this study, our models provide probabilistic predictions, generating a probability 352 

distribution for each time point rather than a single point estimate. To facilitate 353 

visualization and interpretation, the curves presented in some figures represent the 354 

mean values derived from these predictive distributions. These mean curves summarize 355 

the central tendency of the model outputs while inherently accounting for the 356 

uncertainty associated with the predictions. 357 

2.3.1. CRPS 358 
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Continuous Ranked Probability Score (CRPS) is a sophisticated statistical metric 359 

employed to evaluate the efficacy of forecasting models. Initially introduced in the 360 

1970s (Matheson & Winkler, 1976), CRPS is widely utilized in areas such as weather 361 

forecasting (Zamo et al., 2018). It quantifies the divergence between the predicted 362 

probability distribution and the actual observations (Hersbach, 2000). Ideally suited for 363 

scenarios where the target variable is continuous and the model predicts its distribution 364 

(Pic et al., 2023), CRPS equates to the mean absolute error (MAE) in deterministic 365 

forecasting (Zhao et al., 2015). 366 

In probabilistic forecasting, the focus extends beyond mere point estimates to 367 

encompass the shape and dispersion of the probability distribution. Hence, traditional 368 

scoring functions prove inadequate, as aggregating the predicted distributions into their 369 

mean or median neglects critical information about the dispersion and shape. CRPS, by 370 

embracing the entire probability distribution, emerges as an invaluable tool in assessing 371 

model uncertainty. CRPS is calculated as follows: 372 

1. For each sample (individual data points in the dataset, each representing a 373 

specific combination of environmental conditions and corresponding NPP estimates), 374 

calculate the discrepancy between the cumulative distribution function (CDF) of the 375 

predicted and observed values. 376 

2. Aggregate the variances for all samples and divide by the number of samples to 377 

obtain the average variance. 378 

𝐶𝑅𝑃𝑆𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝐹, 𝑥) = ∫ [(𝐹(𝑦) − 𝐻(𝑦 − 𝑥)]2𝑑𝑦
+∞

−∞
     (2) 379 

𝐶𝑅𝑃𝑆 =
1

𝑛
∑ 𝐶𝑅𝑃𝑆𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝐹𝑖
𝑛
𝑖=1 , 𝑥𝑖)       (3) 380 

where F(y) denotes the CDF of the predicted value, y the predicted value, x the observed 381 

value, and H(y-x) the Heaviside function which is 0 when y<x and 1 otherwise. n 382 

indicates the total number of samples, and CRPS individual (Fi, xi) the CRPS value for the 383 
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i-th sample. 384 

A smaller CRPS value signifies a closer alignment of the model's probability 385 

distribution with actual observation, integrating insights on both the shape and location 386 

of the distribution and demonstrating sensitivity to outliers. Unlike other metrics such 387 

as Root Mean Square Error (RMSE) or Mean Absolute Error (MAE), CRPS offers a 388 

more holistic evaluation of a probability distribution’s predictive capacity by 389 

considering the full distribution shape. For Bayesian and neural network models, 390 

comparing CRPS values facilitates an understanding of their proficiency in fitting the 391 

entire probability distribution. 392 

2.3.2. CDF 393 

The Cumulative Distribution Function (CDF), also known as the distribution 394 

function, is the integral of probability density function (PDF). It provides a complete 395 

description of the probability distribution of a real-valued random variable X. The CDF 396 

is defined as the probability P that a random variable X is less than or equal to a given 397 

value x, expressed as: 398 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) (4) 399 

To evaluate the predictive performance of the model, we computed the empirical 400 

CDF of the input data and compared it with the average predictive CDF generated by the 401 

model. This comparison provides a graphical representation of the model's predictive 402 

accuracy. A higher degree of overlap between the empirical and predictive CDF curves 403 

indicate a greater similarity between the two distributions, thereby reflecting superior 404 

model predictions. 405 

2.3.3. RMSD 406 

Root Mean Squared Deviation (RMSD) is a widely recognized evaluation metric 407 

in regression analyses, primarily employed to quantify the discrepancy between a 408 
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model's predicted values and the actual observed values. Characterized by its intuitive 409 

nature and simplicity in computation, RMSD is particularly beneficial in scenarios 410 

where emphasis is placed on the magnitude of difference between predicted and actual 411 

values, irrespective of the difference’s direction. 412 

𝑅𝑀𝑆𝐷 = √
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)2
𝑛
𝑖=1       (5) 413 

where n denotes the number of samples, yi represents the predicted value of the i-th 414 

sample, and xi symbolizes the actual value of the i-th sample. 415 

A lower RMSD value is indicative of superior model performance, signaling a 416 

smaller variance between the model's predictions and the observed values. Nevertheless, 417 

it is important to note that RMSD exhibits sensitivity to outliers, as it constitutes the 418 

mean of the squared differences. Incorporating RMSD alongside CRPS in our analysis 419 

enables a more comprehensive evaluation of both the overall accuracy and uncertainty 420 

inherent in the predictions. 421 

2.3.4. MAPD 422 

Mean Absolute Percentage Deviation (MAPD) is a frequently utilized percentage 423 

error metric in regression problems. It expresses the prediction error as a percentage, 424 

offering an insightful perspective into the relative error between predicted results and 425 

true values in predictive model evaluations. 426 

𝑀𝐴𝑃𝐷 =
1

𝑛
∑ |

𝑥𝑖−𝑦𝑖

𝑥𝑖
| × 100%𝑛

𝑖=1      (6) 427 

where n signifies the number of samples, yi the predicted value of the i-th sample, and 428 

xi the actual value of the i-th sample. 429 

A lower MAPD value is desirable, indicating a reduced relative error of the model. 430 

However, a cautionary note: MAPD may prove unreliable in instances where the 431 

predicted value approaches zero, as a zero denominator results in infinity. Therefore, 432 
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careful consideration is warranted when employing MAPD, particularly in scenarios 433 

where relative accuracy is primary. 434 

In the context of comparing Bayesian probabilistic prediction models with neural 435 

network probabilistic prediction models, the synergistic application of these three 436 

metrics—CRPS, RMSD, and MAPD—affords a multifaceted assessment of the models. 437 

This triad of metrics enhances our understanding of the importance of relative error 438 

alongside the accuracy of point estimates and the fit of probability distributions. 439 

3. Results and Discussion 440 

3.1. Comparative Analysis of Prediction Efficacy Between Two Models 441 

We utilized VGPM, CbPM, and CAFE as prediction targets to scrutinize the 442 

predictive effectiveness of both the neural network-based probabilistic prediction 443 

model and the empirical distribution-based Bayesian probabilistic prediction model. 444 

Fig. 5 presents a comparison of CRPS, RMSD, and MAPD values for both NN and 445 

Bayes models using three NPPs as prediction targets across training and test datasets. 446 

Notably, CRPS provides a holistic evaluation of prediction accuracy and reliability. All 447 

the metrics are calculated using normalized data for better comparison. Lower values 448 

are indicative of enhanced model performance. Fig. 5(a)-(c) and (d)-(f) respectively 449 

depict the CRPS, RMSD, and MAPD of the NN model and Bayes model when using 450 

the three NPP values as prediction targets. The color blue represents the training set, 451 

while red represents the test set. It can be observed from Fig.5 (a) and (d) that the CRPS 452 

values of both the NN model and Bayes model are similar. When VGPM is used as a 453 

prediction target, the performance of the models is closest between the training set and 454 

test set, followed by CbPM. However, CAFE has the lowest CRPS value among all 455 

three models, with its test set slightly larger than that of its training set. The lower CRPS 456 

value for the CAFE NPP, compared to VGPM and CbPM, may stem from the fact that 457 

its probability distribution aligns more closely with the prediction of models in terms 458 

of both shape and central tendency, since CRPS evaluates the full probability 459 
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distribution, incorporating factors such as skewness and kurtosis in addition to variance. 460 

In the case of CAFE, the probabilistic structure of its predictions may exhibit better 461 

congruence with the observed cumulative distribution function (CDF) (Section 3.2.2), 462 

particularly in regions with higher data density. This enhanced alignment could 463 

compensate for its slightly larger variance compared to CbPM, thereby resulting in a 464 

lower CRPS value. Additionally, the design and parameterization of the CAFE model 465 

may inherently emphasize features that lead to improved probabilistic predictions, 466 

which warrants further investigation. 467 

In terms of RMSD metrics (Fig. 5 (b) and (e)), when VGPM is used as a prediction 468 

target, its index value is significantly higher compared to others; however, its 469 

performance between training set and test set remains close. When CbPM is used as a 470 

prediction target, Bayes model outperforms NN model but exhibits a larger difference 471 

between training set and test set compared to NN model. 472 

The neural network and Bayesian models developed in this study were trained 473 

using outputs from the VGPM, CbPM, and CAFE models. While this approach allowed 474 

us to evaluate the uncertainty in emulating these base models, it also means that our 475 

models inherit their underlying biases and errors. As such, the uncertainty estimates 476 

reported here reflect the uncertainty in emulating these specific outputs and do not 477 

represent the true uncertainty of NPP estimation. Furthermore, as Fig. 3 demonstrates, 478 

the outputs of VGPM, CbPM, and CAFE differ significantly, underscoring the need for 479 

ground truth data to validate these models. Among these, CAFE NPP is often 480 

considered more accurate based on prior studies, but further validation with 481 

observational data is necessary to confirm this assumption. 482 

On using CAFE as a prediction target, both models show more consistent 483 

performance. The values of these indicators are relatively close in all aspects at around 484 

0.2. Regarding MAPD metrics (Fig.5 (c) and (f)), clear differences among the three 485 

NPP models can be seen where CAFE has obviously lower index value compared to 486 

CbPM and VGPM. In addition, for NN model's MAPD index value for CAFE is lower 487 
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than that for Bayes model. However there exists significant difference between its 488 

training set and test set. 489 

Overall evaluation indicates that under both models' assessment criteria, CAFE 490 

demonstrates superior accuracy in predicting effects compared to VGPM and CbPM. 491 

VGPM shows greater instability with inferiority in its training process over testing 492 

process (Fig.5 (d), (e), (f)), which may be attributed to overfitting. However, there is a 493 

more noticeable difference in the performance of CbPM in the two models. The CRPS 494 

value and RMSD value in the Bayes model are significantly lower than those in the NN 495 

model (Bayes is less than 0.2, while NN is more than 0.2). 496 

Therefore, among the three NPP datasets (VGPM, CbPM, and CAFE), the CAFE 497 

was selected as the primary prediction target for subsequent analysis. This decision was 498 

motivated by two factors: (1) prior research indicating that CAFE provides relatively 499 

accurate estimates of NPP in marine ecosystems with characteristics similar to the 500 

Weizhou Island area, due to its advanced parameterization of phytoplankton dynamics, 501 

and (2) the demonstrated ability of both probabilistic prediction models (NN and 502 

Bayesian) to emulate CAFE output with high accuracy and reliability. While this does 503 

not imply that CAFE perfectly represents true NPP, its suitability for capturing patterns 504 

in the study area supports its use as the prediction target in this work. 505 

3.2. Quantify the Uncertainty of CAFE 506 

When quantifying uncertainty in the CAFE, we need to focus on the uncertainty 507 

factors that exist in the input variables in addition to the uncertainty that may arise 508 

during model training. These uncertainty factors include measurement errors and 509 

temporal variability, among others. Measurement errors usually originate from the 510 

accuracy limitations of the instruments, the complexity of the observation environment, 511 

or the instability of human operations. These errors not only affect the accuracy of the 512 

input variables to varying degrees, but also propagate through the model and thus affect 513 

the accuracy of the prediction results. The temporal variability, on the other hand, 514 
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reflects the dynamic changes of marine environmental parameters, such as seasonal 515 

temperature changes, cyclic fluctuations of tides, etc., which also affect the NPP 516 

prediction results. Consequently, quantifying these uncertainties is particularly 517 

important in conducting CAFE predictions. 518 

3.2.1. Comparative Analysis of Confidence Interval Widths 519 

Fig. 6 illustrates the comparison between the forecast mean of the NN model and 520 

Bayes model, and the CAFE value when CAFE is utilized as the prediction target. In 521 

the figure, the triangular icons represent 514 sets of the forecast average, while the gray 522 

and blue represent the 95% and 75% confidence intervals, respectively. Overall, both 523 

models exhibit relatively wide confidence intervals for their predicted results, possibly 524 

due to the large range of changes in CAFE. The models may face greater challenges in 525 

capturing this wide range of changes, resulting in increased uncertainty. 526 

When CAFE is less than 450 mg C m−2 d−1, both models tend to overestimate the 527 

actual NPP value. This phenomenon becomes more pronounced when CAFE is less 528 

than 350 mg C m−2 d−1. In contrast, a certain linear relationship between true value and 529 

predicted mean value emerges within a range of 450-600 mg C m−2 d−1. Most of the 530 

predicted mean values are distributed around the 1:1 line in this range, indicating higher 531 

accuracy by these models. However, when CAFE exceeds 600 mg C m−2 d−1, it is 532 

observed that both models tend to underestimate actual NPP values. This phenomenon 533 

may be attributed to an imbalance in sample data distribution within different intervals 534 

of CAFE. The majority of data points are concentrated in a narrow range (350-600 mg 535 

C m−2 d−1), while data points in other intervals are scarce. This inadequacy makes it 536 

difficult for model training to capture its distribution law accurately and leads to 537 

increased prediction uncertainty within these ranges.  538 

Compared with the two models, the predicted value of NN model is more 539 

concentrated around the 1:1 line, while the predicted value of Bayes model is relatively 540 

dispersed and the confidence interval is wider. The smaller the confidence interval 541 

width, the higher the accuracy of model prediction. It manifests that the NN 542 

probabilistic prediction model is more accurate in predicting CAFE than the Bayes 543 
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probabilistic prediction model, and the uncertainty of its prediction results is lower. The 544 

prediction mean obtained by the NN probabilistic prediction model is closer to the 1:1 545 

line, which usually means that the deviation between the predicted value of the model 546 

and the actual observed value is small, that is, the prediction accuracy of the model is 547 

higher. The differences in the performance of the two models may stem from their 548 

different strategies for dealing with uncertainty and data fitting. Neural network models 549 

typically capture the nonlinear relationships of data through a large number of 550 

parameters and complex network structures, so they may be able to fit the data 551 

distribution more accurately in some cases. Bayes model deals with uncertainty by 552 

introducing prior knowledge and a posteriori inference, but its performance may be 553 

limited under some complex data distributions. 554 

To further elucidate the models’ effectiveness in probabilistic prediction of CAFE, 555 

Fig. 7 visualizes the time series model predictions with a 95% confidence interval 556 

uncertainty range. The figure shows that almost all CAFE values fall within the 95% 557 

confidence interval of the mean of the predicted values. It can be clearly seen that the 558 

predicted distribution of the NN model is much smaller than that of the Bayes model, 559 

which is consistent with the results shown in Fig. 6. The NPP is clearly periodic in time, 560 

and both models are able to align their predictions on the test set with the periodicity of 561 

the training set. In particular, the scatter in the NN model is more centrally distributed 562 

around the red line, while the scatter in the Bayes model is more discrete from the red 563 

line, which further suggests that the NN model has a more accurate estimate in 564 

predicting the CAFE. 565 

Overall, the trends in the predicted means of the two models are consistent with 566 

the trends in the majority of CAFE values, which further validates the accuracy of the 567 

two methods in capturing the process of CAFE changes. This consistency not only 568 

indicates that the models can accurately reflect the long-term trends of CAFE changes, 569 

but also capture short-term fluctuations and outliers. This is of great significance for 570 

ecosystem monitoring and prediction, and helps to better understand the dynamics of 571 

the ecosystem and take appropriate management and conservation measures. However, 572 
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in terms of confidence interval width, the width of the 95% confidence interval in the 573 

results of the Bayesian probabilistic prediction model is larger than that of the neural 574 

network probabilistic prediction model, indicating that the Bayesian probabilistic 575 

prediction model is not as sharp as the neural network probabilistic prediction model, 576 

which is more locally sensitive and able to respond to the changes in data more quickly. 577 

Although the neural network probabilistic prediction model shows an advantage 578 

in terms of sharpness and local sensitivity, this does not mean that it is superior to the 579 

Bayesian model in all cases. In fact, Bayesian models are more robust and explanatory 580 

by introducing prior knowledge and posterior inferences to deal with uncertainty. 581 

Therefore, when choosing a predictive model, trade-offs need to be made based on 582 

specific application scenarios and data characteristics. 583 

3.2.2. Comparative Analysis of CDF 584 

Fig. 8 depicts the overall predictive distribution versus the empirical distribution 585 

of the CAFE input data. Concurrently, Fig. 9 methodically quantifies the disparity 586 

between the average predictive CDF and the empirical CDF of the input data. Optimally, 587 

the divergence between these two CDFs should be minimal, manifested as extensive 588 

overlap between the yellow and blue curves in Fig. 8, and the blue curve in Fig. 9 589 

approaching zero. Fig. 8 demonstrates the CDF curves of the predicted mean values 590 

after the normalization process and the CDF curves of the CAFE. The CDF plots of the 591 

normalized data can reflect the statistical distribution of the datasets, especially when 592 

the different datasets have different magnitudes or scales, and the normalization can 593 

eliminate these differences, which makes the comparisons and analyses between the 594 

different datasets more accurate and intuitive. Fig. 9 specifically quantifies the 595 

difference between the two CDF curves in Fig. 8 at each point, which is accomplished 596 

by calculating the difference between the y-values of the two CDF curves at the same 597 

x-value. 598 

While the cumulative distribution function (CDF) curves in Fig. 8 show apparent 599 

differences between the test and train datasets for CAFE, these differences can 600 

primarily be attributed to the smaller size of the test dataset relative to the training 601 
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dataset. Such size discrepancies can cause the CDF curves to appear visually different, 602 

even when the underlying data distributions are similar. Moreover, as shown in Fig. 7, 603 

the patterns for simulating the training set and predicting the test set are consistent for 604 

both the NN and Bayesian models. This consistency indicates that the models 605 

generalize well to the test data, capturing its key characteristics despite the visual 606 

differences in the CDF curves. Therefore, the observed discrepancy in the CDF curves 607 

does not imply poor representation of the test data by the training data. For the NN 608 

probabilistic prediction model, when the CAFE values are lower, the two CDF curves 609 

on the training set and the test set move gently and almost overlap, with the difference 610 

close to 0, which indicates that the model can predict the actual data distribution well 611 

within the range of small values of CAFE. As CAFE increases, the difference between 612 

the predicted and true CDF curves grows larger, with the predicted mean CDF on the 613 

training set generally lying below the CAFE CDF. The difference between the two 614 

ranges from 0 - 0.2. For the test set, the predicted mean CDF initially slightly lies below 615 

the true CDF curve at lower values, becomes steeper and overestimates at mid-range, 616 

and alternates again at higher values. While these trends suggest some instability in the 617 

model’s predictions for higher values, the absolute difference between the two CDFs 618 

remains within 0.1, indicating limited deviation. It is worth noting that the scatter plot 619 

in Fig. 6 shows the test mean NPP predictions distributed more evenly around the 1:1 620 

line. This apparent discrepancy arises from the differing perspectives of the two plots: 621 

the CDF curve highlights cumulative differences across the distribution, whereas the 622 

scatter plot reflects point-wise deviations. Together, these visualizations suggest that 623 

while the model captures the overall distribution trends well, some localized errors in 624 

predicting mid-range and higher values may contribute to these patterns. 625 

For the Bayesian probabilistic prediction model, the predicted mean CDF curve is 626 

above the true value in the training set. When the CAFE increases to a certain extent, 627 

the two curves alternate, and the absolute value of the difference between the CDF does 628 

not exceed 0.2. In the test set, the two CDF curves overlap first and then separate. The 629 

predicted mean CDF rises more quickly, and is on top of the true value CDF curve, with 630 

the difference between the two curves not exceeding 0.1 when the CAFE increases to a 631 
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certain extent. When the NPP increases to a certain degree, the two curves overlap again, 632 

and the absolute value of the difference between the CDF does not exceed 0.3. Overall, 633 

the difference between that of the predicted mean values and the CDF of the true values 634 

obtained by the two models is small, which indicates that the overall deviation of the 635 

model predictions is not large, and both models show good prediction performance and 636 

can capture the statistical characteristics of the data well. However, the CDF curves of 637 

the neural network probabilistic prediction model are closer to the true values on both 638 

the training and test sets, possibly implying that the neural network model is more 639 

effective in dealing with complex data and capturing nonlinear relationships. The 640 

flexibility of neural networks allows them to adapt to different data distributions and 641 

patterns. 642 

Table 5 presents RMSD, MAPD, and CRPS for both models using CAFE as 643 

prediction target. Additionally, we analyzed the proportion of raw input data 644 

encompassed within the 95% confidence interval, thereby providing a more nuanced 645 

evaluation of the model's proficiency in capturing CAFE uncertainty. According to 646 

Table 5, the neural network-based probabilistic prediction model exhibits superior 647 

performance in terms of CRPS, RMSD, and MAPD. This denotes a higher level of 648 

accuracy and reliability for the neural network model in probabilistic predictions of 649 

CAFE, especially when considering uncertainty. Conversely, the Bayesian probabilistic 650 

prediction model demonstrates a stronger ability to encompass a greater proportion of 651 

the raw input data within the 95% confidence interval. This suggests that while it may 652 

exhibit higher overall uncertainty, it has a more pronounced capability to capture the 653 

nuances of uncertainty. 654 

This comparative analysis elucidates that both the neural network-based 655 

probabilistic prediction model and the Bayesian probabilistic prediction model, 656 

grounded in empirical distributions, are adept at capturing and quantifying the 657 

uncertainty of CAFE. While the Bayesian model demonstrates a heightened capability 658 

in encompassing a broader scope of uncertainty, the neural network model distinguishes 659 
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itself by its superior accuracy and reliability, particularly in precisely predicting the 660 

uncertainty of CAFE. A notable observation is that when CAFE values exceed 350 mg 661 

C m−2 d−1, the predictive performance of both models deteriorates. This manifests as an 662 

underestimation of mean predictions, indicating an inability to fully and accurately 663 

predict NPP across the entire range of size classes. The underlying reason for this may 664 

stem from the considerable variation in the input data and its skewed sample 665 

distribution. Most notably, a significant proportion of the samples were primarily 666 

concentrated within the 200-350 mg C m−2 d−1 range. In contrast, CAFE values 667 

exceeding 350 mg C m−2 d−1 constitute only 28% of the input dataset. Consequently, 668 

the models exhibit insufficient learning of higher value ranges during the training phase, 669 

resulting in a notable prediction bias for larger CAFE values. 670 

3.3. Probabilistic Prediction of NPP in Weizhou Island (2007–2018) 671 

Given the 8-day temporal resolution of data acquired by remote sensing satellites 672 

and the consequent data incompleteness, this study employed the previously trained 673 

neural network and the Bayesian probabilistic prediction models using CAFE as 674 

training target to forecast the daily NPP in the Weizhou Island sea area from 2007 to 675 

March 2018, thereby supplementing the NPP dataset. This approach aligns with the 676 

focus established in Section 3.1, which emphasizes the efficacy of probabilistic 677 

prediction models when CAFE is used as the prediction target. The selection of CAFE 678 

outputs reflects the model’s relative strengths in representing phytoplankton-based NPP 679 

dynamics in the study area, as well as the high accuracy achieved by the NN and 680 

Bayesian models in emulating its output. The results are illustrated in Fig. 10, where 681 

the predicted mean values and 95% confidence intervals for both models are displayed. 682 

Fig. 10(c) reveals that the Bayesian model’s confidence interval is broader, primarily 683 

due to its lower limit, yet no substantial difference is noted between the predicted mean 684 

values of the two models. Both models effectively mirror the trend of NPP. The analysis 685 

of the annual change of NPP shows a clear periodicity, which means that the change of 686 

NPP is not random, but follows certain laws and patterns. Combined with Fig. 11, the 687 
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seasonal variation of NPP throughout the year emerges. Specifically, NPP shows a 688 

decreasing trend from January to July each year, with July generally being the lowest 689 

level of the whole year. Then it increases from July to November and slightly decreases 690 

from November to December. Overall, NPP has larger values in winter and spring. 691 

These results provide important insights into seasonal variations and interannual trends 692 

of NPP in the Weizhou Island waters and provide valuable data to support the study of 693 

the marine ecosystem dynamics. 694 

However, the significance of our work extends far beyond mere data replication. 695 

The primary aim of our study is to enhance the reliability of marine NPP estimates by 696 

using advanced probabilistic models. Our objective extends beyond merely reproducing 697 

satellite NPP products. We aim to improve the overall accuracy and uncertainty 698 

quantification of NPP estimates by incorporating a robust probabilistic framework. This 699 

framework helps to better understand and quantify the uncertainties inherent in marine 700 

NPP, whether they originate from satellite data or environmental factors. By using 701 

Bayesian models and probabilistic neural networks, we not only replicate satellite NPP 702 

estimates but also capture and quantify uncertainties at multiple levels. These models 703 

account for uncertainties in the satellite products, input data variability, and the 704 

predictive model itself, thus providing a more comprehensive uncertainty quantification 705 

relevant to marine NPP. 706 

4. Conclusion 707 

This study primarily addresses the challenge of uncertainty in satellite ocean color 708 

data estimates of ocean NPP. Departing from traditional point estimation regression 709 

models, we embraced a probabilistic prediction approach where the output is a 710 

probability distribution. The models utilized in this study include a Bayesian 711 

probabilistic prediction model based on empirical distributions and a deep learning-712 

based probabilistic prediction model under the TFP framework. Focusing on the NPP 713 

uncertainty analysis in the Weizhou Island sea area, we explored the effect of the 714 

probabilistic prediction model when the NPPs obtained by the VGPM, CbPM, and 715 
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CAFE methods, respectively, are used as the prediction targets. Unlike traditional 716 

models such as VGPM, CbPM, and CAFE, the NN and Bayesian probabilistic models 717 

are designed to capture complex nonlinear interactions between environmental 718 

variables and NPP while providing robust uncertainty quantification. These 719 

probabilistic models do not require additional input variables beyond those used by 720 

VGPM, CbPM, and CAFE. Moreover, Pearson correlation analysis allows for the 721 

identification of the most critical inputs for prediction. By prioritizing variables such as 722 

SST and AP, the models can be optimized to reduce reliance on less influential inputs, 723 

improving efficiency without compromising accuracy. Furthermore, this study 724 

compares and analyzes the capabilities of Bayesian and neural network probabilistic 725 

models in predicting the CAFE uncertainty. The results reveal that both models are 726 

competent in quantifying CAFE uncertainty.  727 

When exploring the uncertainty of the NPP using the Bayesian probabilistic 728 

prediction model and the neural network probabilistic prediction model, the results 729 

show that the two probabilistic prediction models are the most effective when the 730 

prediction target is the CAFE. The probability distributions obtained by the two 731 

probabilistic prediction models are similar to those of CAFE, with the difference in 732 

CDF between the predicted mean and true values at each data point not exceeding 0.2 733 

for the neural network probabilistic prediction model and 0.3 for the Bayesian 734 

probabilistic prediction model. In contrast, the confidence intervals for the outputs of 735 

the Bayesian probabilistic prediction model are wider, and the proportion of the CAFE 736 

that falls in the confidence intervals is higher, which shows that Bayes is more capable 737 

of capturing uncertainty, but its accuracy is not high. However, the neural network 738 

probabilistic prediction model is more accurate and reliable. Its performance is better 739 

in many assessment indicators, but not all CAFE values in the size range can be 740 

predicted accurately by the model. When the CAFE is less than 450 mg C m-2 d -1, the 741 

model tends to overestimate the actual NPP value. When CAFE is larger than 600 mg 742 

C m-2 d-1, it tends to underestimate the actual NPP value. When the two probabilistic 743 

prediction models are applied to the prediction of CAFE in the Weizhou Island waters 744 
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between January 2007 and February 2018, the prediction results illustrate the 745 

interannual trend of CAFE, and the magnitude of NPP is found to show obvious cyclic 746 

changes. Our study demonstrates the novel application of advanced probabilistic 747 

models to the remote sensing of marine NPP. By addressing the uncertainties in 748 

satellite-derived estimates and improving the reliability of NPP predictions, our work 749 

contributes to advancing the field of marine remote sensing and provides a foundation 750 

for future research. 751 

An important limitation of this study is that the probabilistic prediction models 752 

were trained on outputs from existing NPP models rather than directly on observational 753 

data. This introduces the potential for inherited biases and errors from the base models, 754 

limiting the generalizability of our uncertainty estimates to true NPP values. Future 755 

research should prioritize incorporating in situ NPP measurements to refine model 756 

training and validation, enabling more accurate and reliable uncertainty quantification. 757 

The differences between VGPM, CbPM, and CAFE outputs underscore the challenges 758 

in determining the most reliable NPP training data. While CAFE was chosen as the 759 

primary prediction target, this choice was informed by prior studies highlighting its 760 

strengths in parameterizing key oceanic processes and by the strong predictive 761 

performance of the NN and Bayesian models when using CAFE outputs. We 762 

acknowledge that this approach inherits the limitations of the base models and that 763 

further validation with in situ measurements is necessary to ensure that CAFE outputs 764 

align closely with true NPP values. While our approach demonstrates strong potential 765 

for accurately quantifying NPP uncertainty in this specific marine area, its application 766 

to larger regions may encounter scalability challenges. This limitation arises due to the 767 

large number of input variables required for the neural network and Bayesian 768 

probabilistic models, which necessitate significant computational resources and 769 

extensive observational data coverage. 770 

In the context of ongoing climate change, accurately capturing and reducing the 771 

uncertainty of marine NPP emerges as a key research focus in marine ecology. This 772 
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endeavor is crucial for a deeper understanding of energy and matter flow in marine 773 

ecosystems, providing a solid scientific foundation for the judicious management of the 774 

conservation of natural resources. While our study has advanced the field by 775 

demonstrating the feasibility of probabilistic prediction in quantifying NPP uncertainty, 776 

we acknowledge the potential for further enhancements and expansions. Looking ahead, 777 

future research could embark on the following paths to augment our work: (1) 778 

Expanding the research scope: The current study has concentrated primarily on specific 779 

marine areas. Future initiatives could broaden this focus to encompass diverse 780 

geographic regions and types of marine ecosystems. However, such an expansion 781 

would require addressing the scalability limitations inherent to the current models, such 782 

as their reliance on a high volume of input variables and computational resources. 783 

Investigating strategies to simplify model inputs or develop hierarchical approaches 784 

that adapt to varying data availability and resolution across broader regions would be 785 

critical for enhancing scalability. This expansion is vital to gain a more comprehensive 786 

understanding of probabilistic prediction’s applicability and effectiveness across 787 

varying environmental conditions; (2) Enhancing data collection: The acquisition of 788 

more extensive and comprehensive observational data is instrumental in refining model 789 

training and prediction accuracy. Future endeavors should aim to amass a richer array 790 

of observational data, emphasizing the need for long-term time series and high-791 

resolution remote sensing data. These efforts will significantly bolster the development 792 

and validation of robust probabilistic prediction models; (3) Refining model structure: 793 

Our study utilized Bayesian probabilistic regression and deep learning-based 794 

probabilistic prediction models. Future studies could explore the integration of other 795 

advanced model structures or the optimization of the existing ones, aiming to elevate 796 

the model's performance and robustness. Through these concerted efforts, we aspire to 797 

continually refine the methodologies of probabilistic prediction in quantifying marine 798 

NPP uncertainty, thereby laying the groundwork for more precise ecosystem 799 

management and environmental protection strategies. 800 
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Tables 934 

Table 1. Summary of Variables and Data Sources. 935 

Variable name Variable description Data source 

SST Sea surface temperature (℃) 

Weizhou Marine environment  

monitoring station 

Sal Salinity (‰) 

TH Height of tide(m) 

AP Air pressure (hPa) 

RH Relative humidity (%) 

SV Sea visibility (km) 

WS Wind speed (m·s-1) 

H/10 1/10th significant wave height (m) 

PAR Photosynthetically active radiation (W·m-²) Oceancolor 

SSP Sea surface precipitation (mm) Earthdata 

SH Sunshine hours (h·d-1) China Meteorological Administration 

VGPM  NPP from the VGPM model (mgC m-2·d-1) 

Ocean Productivity CbPM  NPP from the CbPM model (mgC m-2·d-1) 

CAFE  NPP from the CAFE model (mgC m-2·d-1) 

Table 2. Summary of Missing Variables. 936 

Variable SV (km) H/10 (m) PAR (W·m-²) SSP (mm) SH (h·d-1) 

Missing quantity (days) 31 51 828 378 18 

Table 3. Statistics of data pre- and post-interpolation. 937 

 
SV (km) H/10 (m) PAR (W·m-²) SSP (mm) SH (h·d-1) 

pre- post- pre- post- pre- post- pre- post- pre- post- 

count 4046 4077 4026 4077 3249 4077 3699 4077 4059 4077 

mean 15.22 15.23 0.57 0.57 34.92 35.97 4.94 4.85 5.19 5.18 

std 10.33 10.30 0.41 0.41 15.64 15.20 16.13 15.61 3.93 3.93 
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min 0.00 0.00 0.00 0.00 1.20 1.20 0.00 0.00 0.00 0.00 

25% 7.00 7.00 0.30 0.30 22.19 24.14 0.00 0.00 0.80 0.80 

50% 12.00 12.00 0.50 0.50 36.03 36.87 0.00 0.00 5.60 5.60 

75% 25.00 25.00 0.70 0.70 47.58 48.49 1.30 1.50 8.90 8.80 

max 50.00 50.00 4.00 4.00 61.13 61.13 280.40 280.40 12.6 12.6 

Table 4. Parameters of the Neural Network Model 938 

 Hyper-parameters 

Layer Sizes 

Layer 1 64 

Layer 2 32 

Layer 3 16 

Layer4 16 

Layer 5 2 

Distribution Layer Gaussian distribution 

Epochs 800 

Learning Rate 0.0001 

Batch Size 16 

optimizer Adam 

loss Negative log likelihood 

Table 5. CRPS, RMSD, MAPD, and proportion of input data within 95% confidence interval. 939 

 CRPS RMSD MAPD Proportion 

Train Test Train Test Train Test Train Test 

NN 0.096 0.133 0.149 0.198 11.828 13.237 0.971 0.932 

Bayes 0.151 0.20 0.201 0.253 13.909 14.145 0.976 0.951 

  940 
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Figures 941 

 942 

Fig. 1. The research area is located in the waters of Weizhou Island in Beibu Gulf, south China. The 943 
red dots in the figure indicate the location of Weizhou Marine Environmental Monitoring Station 944 
(21.0017°N, 109.0117°E). Eight distinct sets of monitoring data were collected from this monitoring 945 
station. 946 
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 947 

Fig. 2. Time series plots of SV, H/10, PAR, SSP, and SH with missing variables, showing the 948 

cyclical variation of these five variables. 949 
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 950 

Fig. 3. Time series of VGPM, CbPM, and CAFE from January 2007 to February 2018, where the 951 

green line represents VGPM, the blue line represents CbPM, and the orange line represents 952 

CAFE . The dashed lines are the original data and the solid ones are the low-pass filtered, which 953 

show the seasonal variations more clearly. Abbreviations and data sources can be referenced in 954 

Table 1. 955 

 956 

Fig. 4. Pearson correlation between the 11 input variables and the three NPPs (VGPM, CAFE, and 957 
CbPM). These input variables serve as inputs to the probabilistic models, while VGPM, CAFE, and 958 
CbPM are used as model outputs. The deeper the shade of red indicates a stronger positive 959 
correlation, whereas the deeper shade of blue indicates a stronger negative correlation. 960 
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 961 

Fig. 5. Comparison of NPP predictive effects from VGPM, CbPM, and CAFE. Panels (a)–(c) 962 
present the results from the neural network-based probabilistic prediction models; panels (d)–(f) the 963 
results from Bayesian probabilistic prediction models based on empirical distributions. The 964 
horizontal coordinates represent the VGPM, CbPM, CAFE as inputs in sequence, separated by gray 965 
dashed lines, where blue dots represent data from the training set, and red dots denote data from the 966 
test set, and the vertical coordinates are the values of the three metrics, CRPS, RMSD, MAPD. Since 967 
NPP values were normalized to the range of 0 – 1, the y axes of subplots (a), (b), (d), and (e) are 968 
dimensionless. The units for MAPD are percentile. 969 

 970 

Fig. 6. Uncertainty quantification of (a) neural network-based probabilistic prediction model and (b) 971 
empirical distribution-based Bayesian probabilistic prediction model. The horizontal axes represent 972 
the input CAFE value, while the vertical axes show the mean predicted by the model. The triangular 973 
icons in the figure represent 514 sets of the forecast average, the gray vertical lines represent the 974 
95% confidence intervals for the predictions, and the blue vertical lines represent the 75% 975 
confidence intervals. 976 
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 977 

Fig. 7. Comparison of original and predicted mean values shown at an 8-day temporal resolution 978 
within a 95% confidence interval. (a) Probabilistic prediction results based on neural networks; (b) 979 
Bayesian probabilistic prediction results based on empirical distributions. The dashed lines 980 
represent the mean values of the probabilistic predictions. The purple and red shaded areas illustrate 981 
the uncertainty ranges for the training and the test sets, respectively. Blue dots signify observed data 982 
points. All predictions and observations are presented in chronological sequence. 983 

 984 

Fig. 8. Comparison of CAFE and predicted mean CDF. Panels (a) and (b) display the performance 985 
of the training and test sets, respectively, in the neural network-based probabilistic prediction model. 986 
Panels (c) and (d) illustrate the performance of the training and test sets, respectively, in the 987 
empirical distribution-based Bayesian probabilistic prediction model. The data has been normalized 988 
to a scale of 0–1 to ensure consistency across metrics and facilitate direct comparison between the 989 
two models. In each panel, the blue curves represent the CDFs of the CAFE values, while the yellow 990 
curves depict the CDFs of the model's predicted mean values. 991 
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 992 

Fig. 9. Difference between the CAFE CDF and predicted mean CDF of model predictions. Panels 993 
(a) and (b) represent the performance of the training set and test sets, respectively, in the neural 994 
network-based probabilistic prediction model. Panels (c) and (d) showcase the performances of 995 
the training set and test sets, respectively, in the empirical distribution-based Bayesian 996 
probabilistic prediction model. The residuals are expressed in normalized units (0–1), enabling 997 
consistent assessment of model performance across different NPP ranges. The blue curves in each 998 
panel indicate the differential magnitude of the CDFs. Instances where the blue curves align with 999 
the yellow lines denote zero discrepancy between the input data CDF and the model’s predicted 1000 
mean CDF.1001 

 1002 

Fig. 10. Time series plots of daily probabilistic NPP predictions in Weizhou Island (2007 – March 1003 
2018). (a) Probability prediction results of the neural network model; (b) Bayesian probability 1004 
prediction results based on empirical distribution; (c) Comparison of the two models’ predictions, 1005 
with the green lines representing the mean predictions from the neural network model and the gray 1006 
lines depicting the mean predictions from the Bayesian model. 1007 
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 1008 

Fig. 11. Time series plots of probabilistic NPP predictions in Weizhou Island (2007 – 2017). The 1009 
light purple shading indicates the 95% confidence interval of the Bayesian model, while the dark 1010 
purple shading represents the 95% confidence interval of the neural network model. The green lines 1011 
show the mean prediction values from the neural network model; and the gray lines depict the mean 1012 
prediction values from the Bayesian model. 1013 


