Dear Editor and anonymous Reviewer,

We express our sincere gratitude for the insightful comments and constructive criticisms on
our manuscript titled "Refining marine net primary production estimates: Advanced
uncertainty  quantification  through  probability  prediction models" (MS No.:
egusphere-2024-3221). In response to your valuable feedback, we have meticulously revised
our manuscript to enhance its clarity, coherence, and overall scientific contribution. Specific
modifications have been made to address each point raised by the reviewers, and these are
detailed in the subsequent pages, where we provide a point-by-point response to your

comments. Reviews’ comments are in normal text, whereas our responses are in blue.

This revision process has been a collaborative effort among all co-authors, and we believe
that the adjustments made significantly improve the manuscript. We are confident that these

changes have addressed your concerns and enriched the manuscript.

With kind regards,

Mengyu Xie (on behalf of all co-authors)

Reviewer #1:
Detailed Review for ‘Refining Marine Net Primary Production Estimates: Advanced

Uncertainty Quantification through Probability Prediction Models’, Jie Niu et al.

1. Line 26: In the abstract, the source of the NPP estimate (i.e., model output or

observation) used in the paper should be mentioned.

We have revised the abstract to explicitly mention the source of the NPP estimate and
have provided details about the research location and data used in the study (Lines

28-34).

“This study focuses on the aquatic environs of Weizhou Island, located off the coast
of Guangxi, China, and introduces an advanced probability prediction model aimed at
improving NPP estimation accuracy while addressing its associated uncertainties. The
dataset comprises eleven distinct sets of monitoring data and satellite data spanning

from January 2007 to February 2018. NPP values were derived using three widely



recognized estimation methods — VGPM, CAFE, and CbPM — serving as model

outputs for further analysis.”

2. Line 30: The author should explain the nature and the sources of uncertainty in

NPP estimates. And why it is important.

We have revised the abstract to clarify the sources and nature of uncertainty in NPP
estimates and to emphasize their significance. Specifically, we have included
information about the challenges arising from measurement difficulties, errors in
satellite-based inversion, and the need for reliable uncertainty quantification to

improve ecosystem management and global carbon cycle modeling (Lines 23 - 28).

“In marine ecosystems, Net Primary Production (NPP) is important, not merely as a
critical indicator of ecosystem health, but also as an essential component in the global
carbon cycling process. Despite its significance, the accurate estimation of NPP is
plagued by uncertainty stemming from multiple sources, including measurement
challenges in the field, errors in satellite-based inversion methods, and inherent

variability in ecosystem dynamics.”

3. Line 61-61: It is important to mention the recent study in Satyendranath et al. 2020

(Reconciling models of primary production and photoacclimation, Applied Optics)

We thank the reviewer for highlighting this relevant study. In response, we have
incorporated a reference to Satyendranath et al. (2020) into the revised manuscript.
Specifically, we have added a sentence to emphasize their contribution to improving
primary production models by addressing parameter assignment and its impact on

reducing uncertainties (Lines 77 - 80).

“Satyendranath et al. (2020) emphasize the critical role of accurately assigning
parameters in primary production models as a key strategy for reducing model
uncertainties and enhancing the reliability of satellite-based primary production

estimates, particularly in the context of climate research.”



4. Line 122: Again, it's important to mention why estimating uncertainty is important?

In the revised manuscript (Lines 129 - 135), we have included sentences to emphasize

the significance of uncertainty estimation.

“The estimated values of NPP derived from the above three classical models exhibit
significant discrepancies, reflecting substantial uncertainties in these methods. These
inaccuracies can impede a comprehensive understanding of the role of oceans in the
global climate system, particularly in their capacity to act as carbon sinks and
regulators of atmospheric CO2 levels. Consequently, quantifying and addressing these
uncertainties is primary to improving the reliability of NPP estimates and ensuring

their applicability in climate research and marine ecosystem management.”

5. Line 137-138: Authors should rephrase “discloses the results” to “discusses the

results”.

Corrected (Line 153).

“ Section 4 discusses the results; and Section 5 presents the conclusions.”

6. Line 167-167: Why are these variables (input features) important in terms of

estimating NPP?

We have added detailed explanations in the revised manuscript to clarify the

relevance and importance of the input variables for estimating NPP (Lines 182 - 191).

“These data were aggregated to constitute a comprehensive dataset encompassing
eleven variables, serving as the input features for the models. Phytoplankton, the
primary source of NPP, is directly influenced by variables such as SST, Par, and SH,
which are critical to its photosynthetic processes. Additionally, other variables have
significant indirect effects on phytoplankton growth. Sal, for example, influences the

community structure of phytoplankton (Braarud et al., 1951). Variables such as TH,



H/10, and WS indirectly affect phytoplankton dynamics by modulating water column
mixing and the vertical distribution of nutrients. AP, RH and SV also indirectly

impacts phytoplankton photosynthetic activity by altering environmental conditions.”

7. Line 164: For PAR, SSP, SH and NPP data, authors should mention direct links for

the data they used for experiments.

We have provided direct links to the datasets used in this study (Lines 179-182, Lines

195 - 197).

“For the analysis of three NPP algorithms—namely, VGPM, CbPM, and CAFE—we
utilized their output datasets, which were obtained at an eight-day temporal resolution
from the Ocean Productivity website
(http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.vgpm.m.chl.m.sst.php,
http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.cbpm2.m.php,
http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.cafe.m.php).”

8. Line 783: Table-1: No need to mention the links here, acronyms are sufficient.

We have corrected Table 1 by removing the dataset links and retaining only the

acronyms, as suggested.

Table 1. Summary of Variables and Data Sources.

Variable name Variable description Data source
SST Sea surface temperature (°C)
Sal Salinity (%o)
TH Height of tide(m)
Weizhou Marine environment
AP Air pressure (hPa)
monitoring station
RH Relative humidity (%)
SV Sea visibility (km)

WS Wind speed (m's™!)




H/10 1/10th significant wave height (m)

PAR Photosynthetically active radiation (W-m) Oceancolor
SSP Sea surface precipitation (mm) Earthdata
SH Sunshine hours (h-d!) China Meteorological Administration
VGPM NPP from the VGPM model (mgC m2-d-")
CbPM NPP from the CbPM model (mgC m2-d") Ocean Productivity
CAFE NPP from the CAFE model (mgC m2-d)

9. Line 785: Table-2: Authors should be more clear about the “missing quantity” units

i.e., days.

Thank you for your reminder. We have updated Table 2 to include the unit "days" for

the “missing quantity” column.

Table 2. Summary of Missing Variables.

Variable SV (km) H/10(m)  PAR(W-m?)  SSP(mm) SH (h-d™)

Missing quantity (days) 31 51 828 378 18

10. Line 187: What specific algorithm was applied to make the time series

interpolation.

In our research, we used the ‘interpolate’ function from the Python Pandas library,
configured with the 'time' method, to perform the time series interpolation. This
approach, while classified as linear interpolation, incorporates the time factor,
ensuring that the intervals between timestamps are explicitly considered. This feature
enhances its suitability for time series data, particularly datasets with periodic
variations like those in our study, enabling more accurate estimation of missing values.

Although it is computationally simpler than periodic interpolation methods (e.g.,



Fourier transform or time series models with seasonal decomposition), the ‘time’
method sufficiently captures the periodicity and variations inherent in our dataset,

making it both efficient and effective for this application (Line 224-228).

“ In this study, interpolation was used to address missing variables, and we ensure that
the statistical properties of the original data were preserved to the greatest extent
possible. This approach allows us to maintain the integrity of our analyses while

recognizing the inherent limitations of using interpolated data.”

11. Line 198-216: Authors can drop using “NPP” repeatedly, just the algorithm name

1s sufficient.

Corrected.

12. Line 208-211: It is not clear why CbPM is negatively correlated with AP. Authors

should give an explanation.

Thank you for raising this insightful question. In response, we have elaborated on the
relationship between AP and CbPM in the revised manuscript, providing an

explanation for the observed negative correlation (Lines 260 - 264).

“Changes in AP affect atmospheric stability, cloudiness, and precipitation, indirectly
altering light conditions in the ocean and subsequently affecting phytoplankton
photosynthesis. Lower AP often corresponds to unstable atmospheric conditions and
increased cloud cover, which may inhibit photosynthesis activity by reducing light

penetration.”

13. Line 223: Typo in equation number.

Corrected. (Line 275)

14. Line 282: It is not clear whether the author had normalised the input features since

they are in different scales.



At the beginning of Section 2.3 of the article, it has been clarified that the input data

of different scales have been normalized (Line 341).

“Prior to model evaluation, we normalized the NPP satellite data.”

15. Line 378: Do the authors have any explanation behind finding the lowest CPRS

value than the other models?

In the revised manuscript (Section 3.2.2, Lines 459 — 470, and 476 — 485), we have
elaborated on potential factors contributing to the lower CRPS value for the CAFE
model, in terms of both variance and cumulative distribution function. Also, Figs. S1
to S6 have been added in the SI to better explain the differences among the training

and testing datasets of three NPPs.

“The lower CRPS value for the CAFE NPP, compared to VGPM and CbPM, may
stem from the fact that its probability distribution aligns more closely with the
prediction of models in terms of both shape and central tendency, since CRPS
evaluates the full probability distribution, incorporating factors such as skewness and
kurtosis in addition to variance. In the case of CAFE, the probabilistic structure of its
predictions may exhibit better congruence with the observed cumulative distribution
function (CDF) (Section 3.2.2, Figs. 8 and 9, Figs. S2, S3, S5, and S6), particularly in
regions with higher data density. This enhanced alignment could compensate for its
slightly larger variance compared to CbPM, thereby resulting in a lower CRPS value.
Additionally, the design and parameterization of the CAFE model may inherently
emphasize features that lead to improved probabilistic predictions, which warrants

further investigation.”

“The neural network and Bayesian models developed in this study were trained using
outputs from the VGPM, CbPM, and CAFE models. While this approach allowed us
to evaluate the uncertainty in emulating these base models, it also means that our

models inherit their underlying biases and errors. As such, the uncertainty estimates



reported here reflect the uncertainty in emulating these specific outputs and do not
represent the true uncertainty of NPP estimation. Furthermore, as Fig. 3 demonstrates,
the outputs of VGPM, CbPM, and CAFE differ significantly, underscoring the need
for ground truth data to validate these models. Among these, CAFE NPP is often
considered more accurate based on prior studies, but further validation with

observational data is necessary to confirm this assumption.”
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Fig. 8. Comparison of CAFE and predicted mean CDF. Panels (a) and (b) display the performance
of the training and test sets, respectively, in the neural network-based probabilistic prediction
model. Panels (c) and (d) illustrate the performance of the training and test sets, respectively, in
the empirical distribution-based Bayesian probabilistic prediction model. The data has been
normalized to a scale of 0—1 to ensure consistency across metrics and facilitate direct comparison
between the two models. In each panel, the blue curves represent the CDFs of the CAFE values,
while the yellow curves depict the CDFs of the model's predicted mean values.

(a) NN Train (b) NN Test

02 02

0.1 0.1

0.0 4 = 0.0 =
8 01 —0.1
8 -0.2 r T T T T ™ -0.2 T T T T T T
5 0.0 02 04 0.6 08 10 0.0 02 04 0.6 038 1.0
s=) .
= ¢) Bayes Train d) Bayes Test
2 o (c) Bay s (d) Bay
59 0.1
o [YIE SEe—
&) -0.1

-02
0.0 02 04 0.6 08 1.0 0.0

CAFE NPP (mg Cm~2d™1)

Fig. 9. Difference between the CAFE CDF and predicted mean CDF of model predictions. Panels
(a) and (b) represent the performance of the training set and test sets, respectively, in the neural
network-based probabilistic prediction model. Panels (c) and (d) showcase the performances of
the training set and test sets, respectively, in the empirical distribution-based Bayesian



probabilistic prediction model. The residuals are expressed in normalized units (0—1), enabling
consistent assessment of model performance across different NPP ranges. The blue curves in each
panel indicate the differential magnitude of the CDFs. Instances where the blue curves align with
the yellow lines denote zero discrepancy between the input data CDF and the model’s predicted
mean CDF.
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Fig. S1. Comparison of VGPM and predicted mean values at an 8-day temporal resolution within
a 95% confidence interval. (a) Probabilistic prediction results are based on neural networks; (b)
Bayesian probabilistic prediction results are based on empirical distributions. The dashed lines
represent the mean values of the probabilistic predictions. The purple and red shaded areas
illustrate the uncertainty ranges for the training and the test sets, respectively. Blue dots signify
observed data points. All predictions and observations are presented in chronological sequence.



(a) NN Train (b) NN Test

L0 — vepm — 101 — vapm
~——— Train Mean NPP /,/ ~——— Test Mean NPP / =
A Ve
0.84 0.8 s
/ >
0.6 0.6
0.4 0.4
2 02 02
=
z
<
S 001 0.0
& 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
o
2
5
<
=
E
g (c) Bayes Train (d) Bayes Test
O 101 — vepm i 1.0 — vGem =
~—— Train Mean NPP / ——  Test Mean NPP o
08 2 0.8 V4
/
4 =
0.61 7 0.6
0.4 0.4
0.2 0.2
0.0 0.0
0.0 02 0.4 0.6 08 10 0.0 02 04 0.6 08 10

VGPM (mg Cm~2d™1)

Fig. S2. Comparison of VGPM and predicted mean CDF. Panels (a) and (b) display the
performance of the training and test sets, respectively, in the neural network-based probabilistic
prediction model. Panels (¢) and (d) illustrate the performance of the training and test sets,
respectively, in the empirical distribution-based Bayesian probabilistic prediction model. The data
has been normalized to a scale of 0—1 to ensure consistency across metrics and facilitate direct
comparison between the two models. In each panel, the blue curves represent the CDFs of the
CAFE values, while the yellow curves depict the CDFs of the model's predicted mean values.
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Fig. S3. Difference between the VGPM CDF and predicted mean CDF of model predictions.
Panels (a) and (b) represent the performance of the training set and test sets, respectively, in the
neural network-based probabilistic prediction model. Panels (c¢) and (d) showcase the
performances of the training set and test sets, respectively, in the empirical distribution-based
Bayesian probabilistic prediction model. The residuals are expressed in normalized units (0-1),
enabling consistent assessment of model performance across different NPP ranges. The blue
curves in each panel indicate the differential magnitude of the CDFs. Instances, where the blue
curves align with the yellow lines, denote zero discrepancy between the input data CDF and the
model’s predicted mean CDF.
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Fig. S4. Comparison of CbPM and predicted mean values shown at an 8-day temporal resolution
within a 95% confidence interval. (a) Probabilistic prediction results are based on neural networks;
(b) Bayesian probabilistic prediction results are based on empirical distributions. The dashed lines
represent the mean values of the probabilistic predictions. The purple and red shaded areas
illustrate the uncertainty ranges for the training and the test sets, respectively. Blue dots signify
observed data points. All predictions and observations are presented in chronological sequence.
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Fig. S5. Comparison of CbPM and predicted mean CDF. Panels (a) and (b) display the
performance of the training and test sets, respectively, in the neural network-based probabilistic
prediction model. Panels (¢) and (d) illustrate the performance of the training and test sets,
respectively, in the empirical distribution-based Bayesian probabilistic prediction model. The data
has been normalized to a scale of 0—1 to ensure consistency across metrics and facilitate direct
comparison between the two models. In each panel, the blue curves represent the CDFs of the



CAFE values, while the yellow curves depict the CDFs of the model's predicted mean values.
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Fig. S6. Difference between the CbPM CDF and predicted mean CDF of model predictions.
Panels (a) and (b) represent the performance of the training set and test sets, respectively, in the
neural network-based probabilistic prediction model. Panels (c¢) and (d) showcase the
performances of the training set and test sets, respectively, in the empirical distribution-based
Bayesian probabilistic prediction model. The residuals are expressed in normalized units (0-1),
enabling consistent assessment of model performance across different NPP ranges. The blue
curves in each panel indicate the differential magnitude of the CDFs. Instances, where the blue
curves align with the yellow lines, denote zero discrepancy between the input data CDF and the
model’s predicted mean CDF.

16. Line 466-467: Applying a low pass filter on the time series is recommended

before reaching this conclusion about long-term trend.

We have applied a low-pass filter to the time series data for the three NPPs to isolate
the long-term trends. The filtered results have been included in the revised Figure 3 to
visually represent the smoothed trends, ensuring the analysis and conclusions are

supported by appropriately processed data (Lines 237 — 243).

“To evaluate the long-term trends in Net Primary Production (NPP), we applied a
low-pass filter to the three NPP products (VGPM, CbPM, and CAFE) (Fig. 3). This
filtering process removes high-frequency variations, such as noise and short-term
fluctuations, while retaining the underlying long-term patterns. It became evident that
each exhibits a distinct seasonal periodicity, with the fluctuation ranges remaining
stable over time yet the magnitude and timing of them varing significantly among the

three NPPs.”
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Fig. 3. Time series of VGPM, CbPM, and CAFE from January 2007 to February 2018, where the
green line represents VGPM, the blue line represents CbPM, and the orange line represents CAFE .
The dashed lines are the original data and the solid ones are the low-pass filtered, which show the
seasonal variations more clearly. Abbreviations and data sources can be referenced in Table 1.

17. Line 478-481: Any previous studies (reference papers) that can support the

statement about Bayesian model performing better in estimating uncertainty?

Thank you for the comment. In the section introducing the Bayesian method (Lines
270 — 275), we have added citations to relevant literature to support the statement
about the Bayesian model’s superior performance in estimating uncertainty (lines

274-275).

“Bayesian models can adeptly quantify the uncertainty in the distribution of predicted
outcomes. The Bayesian approach is particularly advantageous in scenarios with
limited training data or when potential invisibility in training data cannot be
discounted in practical applications (Perfors et al, 2011; Kaplan D, 2021; Zou et al,
2024).”

18. Line 483: What formula did the authors use to estimate the CDFs?



In the revised manuscript, we have added a detailed explanation of the formula used

to estimate CDFs (Lines 396 - 407).

“The Cumulative Distribution Function (CDF), also known as the distribution
function, is the integral of probability density function (PDF). It provides a complete
description of the probability distribution of a real-valued random variable X. The
CDF is defined as the probability P that a random variable X is less than or equal to a

given value x, expressed as:

()= (0=)

To evaluate the predictive performance of the model, we computed the empirical CDF
of the input data and compared it with the average predictive CDF generated by the
model. This comparison provides a graphical representation of the model's predictive
accuracy. A higher degree of overlap between the empirical and predictive CDF
curves indicates a greater similarity between the two distributions, thereby reflecting

superior model predictions.”

19. Line 486-487: As mentioned in the previous comment, the estimation of Train

mean NPP and CAFE NPP curves are not clearly mentioned.

Thank you for highlighting this point. In the revised manuscript, we have clarified
that since our models generate probabilistic predictions, the curves presented in some
figures represent the mean of these predictions. This clarification has been added in
Section 2.3 to ensure transparency regarding the methodology and interpretation of

the results (Lines 355 - 360).

“In this study, our models provide probabilistic predictions, generating a probability
distribution for each time point rather than a single point estimate. To facilitate
visualization and interpretation, the curves presented in some figures represent the

mean values derived from these predictive distributions. These mean curves



summarize the central tendency of the model outputs while inherently accounting for

the uncertainty associated with the predictions.”

20. Line 505 “Small” should be replaced by “lower values” for more clarity.

Corrected. (Line 625)

21. Line 509-515: Test mean NPP lying below at lower values and the alteration at
higher values is not appearing very significantly. Also, test mean NPP seems to
over-estimate at mid-range but this is not the same as seen in the scatter plot (Fig. 6)

where it is almost evenly distributed across either side of the 1:1 line.

We appreciate the reviewer’s detailed observation. In response, we have revised the
text to provide a clearer explanation of the observed patterns in the CDF curves and
their relationship to the scatter plot (Fig. 6). Additionally, we have clarified the
interpretation of the differences between the predicted and true value CDFs and

provided insights into potential reasons for these discrepancies (Lines 623 - 635).

“As CAFE increases, the difference between the predicted and true CDF curves grows
larger, with the predicted mean CDF on the training set generally lying below the
CAFE CDF. The difference between the two ranges from 0 - 0.2. For the test set, the
predicted mean CDF initially slightly lies below the true CDF curve at lower values,
becomes steeper and overestimates at mid-range, and alternates again at higher values.
While these trends suggest some instability in the model’s predictions for higher
values, the absolute difference between the two CDFs remains within 0.1, indicating
limited deviation. It is worth noting that the scatter plot in Fig. 6 shows the test mean
NPP predictions distributed more evenly around the 1:1 line. This apparent
discrepancy arises from the differing perspectives of the two plots: the CDF curve
highlights cumulative differences across the distribution, whereas the scatter plot

reflects point-wise deviations. Together, these visualizations suggest that while the



model captures the overall distribution trends well, some localized errors in predicting

mid-range and higher values may contribute to these patterns.”

22. Fig 10: The curves are difficult to distinguish. Different choice of colours

recommended.

We appreciate the reviewer’s detailed observation. We have revised the colors in Fig
10 to better present the detailed information clearly. However, the contrast is not
significant due to the fact that the predicted means of the two models are closer and

the folds in the graph overlap more.
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Fig. 10. Time series plots of daily probabilistic NPP predictions in Weizhou Island (2007 — March
2018). (a) Probability prediction results of the neural network model; (b) Bayesian probability
prediction results based on empirical distribution; (c) Comparison of the two models’ predictions,
with the green lines representing the mean predictions from the neural network model and the gray
lines depicting the mean predictions from the Bayesian model.



23. Fig 10: Capturing the seasonal cycle is fairly easy as most of the input features
contain the same signal. To have a better understanding about how good the models
are in reproducing the extreme values, authors should plot the anomaly time series by

removing seasonal signals overlayed with observation treated in the same way.

Thank you for highlighting this point. We have drawn anomaly time series plot with
seasonal signals removed (Figs. S7 and S8), and compared the ability of two

probability prediction models to reproduce extreme values.

“To better understand the model's ability to reproduce extreme values, this article
removed the seasonal signals from the original CAFE values and the predicted means
of the two probabilistic prediction models and plotted the abnormal time series graphs
(Figs. S7 and S8). From Fig. S7, it can be seen that the NN predicted mean values
overlap more with the original values, better reflecting the fluctuation size of the
original CAFE values, and is superior to Bayes in reproducing extreme values. Fig. S8
compares the prediction means of NN and Bayes when removing seasonal signals. As
can be seen from the figure, when the models are applied to the NPP forecast from
2007 to March 2018, the average predictions of the two models are mostly close, but
the NN output results fluctuate more significantly, better reflecting the complexity of

the actual data.”
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Fig. S7. Comparison of CAFE and predicted mean values shown at an 8-day temporal resolution
within a 95% confidence interval. In this case, the seasonal signals have been removed from the



original data and the predicted mean values to form an anomalous time series.
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Fig. S8. Time series plots of daily probabilistic NPP predictions in Weizhou Island (2007 — March
2018). In this case, the seasonal signals have been removed from the predicted mean values to

form an anomalous time series.



